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Background survey 
q  Data Science 

q  Supervised vs. Unsupervised Scenarios 
q  Classification Algorithms: Naïve Bayes, Linear, Decision Trees, etc. 
q Model metrics: KS, AuROC, etc. 
q  Boosting, Stacking, Bagging, etc. 

q  TF-IDF Feature Extraction 
q  Apache Spark: RDD, DAG, Scala shell, MLlib 
q  Applying Machine Learning to Business Problems 
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Big Data Solution Workflow 

EXTRACT OUTLIER 
REMOVAL 

FEATURE 
CREATION MODELING 

Import data 
into Hadoop 
and transform 
into format 
appropriate 
for solution 

ENSEMBLE 

Extract from 
the raw data 
inputs that the 
ML algorithms 
will use for 
pattern 
detection 

Identify and 
remove / adjust 
records that 
negatively affect 
the ability to 
achieve good 
performance 

Application of the 
appropriate 
machine learning 
algorithms, such 
as Naïve Bayes, 
Linear, Tree-
Based methods 

Combining 
multiple models 
to increase the 
performance of 
the ultimate 
solution 
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Resources 
•  GITHUB – code & instructions 

•  Kaggle – data science competitions, code, message boards 

•  Spark MLLib 
 

https://github.com/joebluems/Mockingbird 
 

https://www.kaggle.com/competitions 
 

http://spark.apache.org/docs/1.3.0/mllib-guide.html 
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Part 1: Working with Text 
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Raw “documents” corpus 
•  Four score and seven years ago our fathers brought forth on this continent, a new nation, 

conceived in Liberty, and dedicated to the proposition that all men are created equal. 
•  Now we are engaged in a great civil war, testing whether that nation, or any nation so 

conceived and so dedicated, can long endure. We are met on a great battle-field of that 
war. We have come to dedicate a portion of that field, as a final resting place for those who 
here gave their lives that that nation might live. It is altogether fitting and proper that we 
should do this. 

•  But, in a larger sense, we can not dedicate -- we can not consecrate -- we can not hallow -- 
this ground. The brave men, living and dead, who struggled here, have consecrated it, far 
above our poor power to add or detract. The world will little note, nor long remember what 
we say here, but it can never forget what they did here. It is for us the living, rather, to be 
dedicated here to the unfinished work which they who fought here have thus far so nobly 
advanced. It is rather for us to be here dedicated to the great task remaining before us -- 
that from these honored dead we take increased devotion to that cause for which they gave 
the last full measure of devotion -- that we here highly resolve that these dead shall not 
have died in vain -- that this nation, under God, shall have a new birth of freedom -- and 
that government of the people, by the people, for the people, shall not perish from the 
earth. 
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Tokenized* documents 
•  ArrayBuffer(four, score, seven, year, ago, our, father, brought, forth, contin, new, nation, 

conceiv, liberti, dedic, proposit, all, men, creat, equal) 
•  ArrayBuffer(now, we, engag, great, civil, war, test, whether, nation, ani, nation, so, conceiv, 

so, dedic, can, long, endur, we, met, great, battl, field, war, we, have, come, dedic, portion, 
field, final, rest, place, those, who, here, gave, live, nation, might, live, altogeth, fit, proper, 
we, should, do) 

•  ArrayBuffer(larger, sens, we, can, dedic, we, can, consecr, we, can, hallow, ground, 
brave,men, live, dead, who,struggl, here, have, consecr, far, abov, our, poor, power, add, 
detract, world, littl, note, nor, long, rememb, what, we, sai, here, can, never, forget, what, 
did, here, us, live, rather, dedic, here, unfinish, work, which, who, fought, here, have, thu, 
far, so, nobli, advanc, rather, us, here, dedic, great, task, remain, befor, us, from, honor, 
dead, we, take, increas, devot, caus, which, gave, last, full, measur, devot, we, here, highli, 
resolv, dead, shall, have, di, vain, nation, under, god, shall, have, new, birth, freedom, 
govern, peopl, peopl, peopl, shall, perish, from, earth) 

*Using Apache Lucene’s Standard English Analyzer  
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TF* Vectors – Total Frequency (i.e. word counts) 
•  (1000, [17,63,94,197,234,335,412,437,445,521,530,556,588,673,799,893 ,937,960,990],

[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0, 1.0,1.0,1.0]) 
•  (1000, [17,21,22,37,63,92,167,211,240,256,270,272,393,395,445,449, 

460,472,480,498,535,612,676,688,694,706,724,732,790,909,916,939,960, 965,996],
[1.0,2.0,1.0,1.0,3.0,2.0,2.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,2.0, 
1.0,1.0,2.0,1.0,1.0,4.0,1.0,1.0,1.0,1.0,1.0,1.0]) 

•  (1000,[21,63,92,131,143,147,196,205,208,240,250,256,265,268,296,312,326,340, 
341,367,378,391,399,400,412,417,441,445,449,455,464,483,494,503,515,524,526, 
539,551,575,602,612,627,641,645,656,676,694,721,742,757,767,780,786,790,802, 
807,817,818,844,852,920,946,951,960,983,985,990],
[1.0,1.0,2.0,1.0,2.0,1.0,2.0,1.0,1.0,4.0,1.0,4.0,1.0,4.0,1.0,1.0,2.0,1.0,3.0,1.0,1.0,1.0,1.0, 
2.0,1.0,1.0,1.0,3.0,1.0,1.0,1.0,2.0,3.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0, 
1.0,2.0,1.0,4.0,1.0,1.0,1.0,2.0,6.0,1.0,1.0,1.0,1.0,1.0,3.0,1.0,2.0,1.0,8.0,1.0,1.0,1.0]) 

*Size of Hash = 1,000 (any token will be hashed to an integer 0-999)  
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TF-IDF* Vectors – Word weights 
•  (1000,[17,63,94,197,234,335,412,437,445,521,530,556,588,673,799,893,937,960,990],

[0.287,0.0,0.0,0.0,0.0,0.0,0.287,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.287]) 
•  (1000,[17,21,22,37,63,92,167,211,240,256,270,272,393,395,445,449,460,472,480, 

498,535,612,676,688,694,706,724,732,790,909,916,939,960,965,996], [0.287,0.575,0.0,0. 
0,0.0,0.575,0.0,0.0,0.287,0.287,0.0,0.0,0.0,0.0,0.0,0.287,0.0,0.0,0.0,0.0,0.0,0.287,0.575, 
0.0,0.287,0.0,0.0,0.0,1.15,0.0,0.0,0.0,0.0,0.0,0.0]) 

•  (1000,[21,63,92,131,143,147,196,205,208,240,250,256,265,268,296,312,326,340, 
341,367,378,391,399,400,412,417,441,445,449,455,464,483,494,503,515,524,526, 
539,551,575,602,612,627,641,645,656,676,694,721,742,757,767,780,786,790,802, 
807,817,818,844,852,920,946,951,960,983,985,990],
[0.287,0.0,0.575,0.0,0.0,0.0,0.0,0.0,0.0,1.150,0.0,1.150,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 
0.0,0.0,0.0,0.0,0.287,0.0,0.0,0.0,0.287,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 
0.287,0.0,0.0,0.0,0.0,0.287,0.575,0.0,0.0,0.0,0.0,0.0,0.0,1.726,0.0,0.0,0.0,0.0,0.0,0.0, 
0.0,0.0,0.0,0.0,0.0,0.0,0.287]) 

*Minimum Document Frequency = 2 (all other tokens have TF-IDF = 0) 
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Transforming Text into Numeric Features 
1.  Use Lucene Analyzer to tokenize documents 
2.  Hash the tokens into sparse vectors with TF 

1.  Control the vector size  
2.  Smaller vectors require less memory; Larger vectors have fewer 

collisions 
3.  Note: hashing is one-way (cannot convert back to tokens) 

3.  Build an IDF dictionary from the training vectors 
1.  Can limit size by including minimum document frequency 
2.  √(TFw)*ln[(# docs +1) /(doc freqw+1)] 

4.  Transform the TF vectors into TF-IDF Vectors 
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Spark Shell commands to transform text 
import statements … 
object Stemmer { …} 
 
val getty = sc.textFile(”gettys.txt") 
val stemmed = getty.map{x=>  Stemmer.tokenize(x)} 
getty.collect().foreach(println) 
stemmed.collect().foreach(println) 
 
val tf = new HashingTF(1000) //size impacts memory and collisions 
val tfdocs = stemmed 
tfdocs.collect().foreach(println) 
 
val idfModel = new IDF(minDocFreq = 2).fit(tfdocs) 
val idfDocs = idfModel.transform(tfdocs) 
idfDocs.collect().foreach(println) 
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STEP 2: Model Building 
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when,he,nearli,thirteen,brother,jem,got,hi,arm,badli 
broken,elbow,when,heal,jem,fear,never,be,abl,plai 
footbal,were,assuag,he,seldom,self,consciou,about,hi,injuri 
hi,left,arm,somewhat,shorter,than,hi,right,when,he 
stood,walk,back,hi,hand,right,angl,hi,bodi,hi 
thumb,parallel,hi,thigh,he,couldn’t,have,care,less,so 
long,he,could,pass,punt,when,enough,year,had,gone 
enabl,us,look,back,them,sometim,discuss,event,lead,hi 
accid,maintain,ewel,start,all,jem,who,four,year,senior 
said,start,long,befor,he,said,began,summer,dill,came 
us,when,dill,first,gave,us,idea,make,boo,radlei 
come,out,said,he,want,take,broad,view,thing,realli 
began,andrew,jackson,gener,jackson,hadn’t,run,creek,up,creek 
simon,finch,would,never,have,paddl,up,alabama,where,would 
he,hadn’t,were,far,too,old,settl,argument,fist,fight 
so,consult,atticu,father,said,were,both,right,be,southern 
sourc,shame,some,member,famili,had,record,ancestor,either, 
battl,hast,all,had,simon,finch,fur,trap,apothecari,from 
cornwal,whose,pieti,exceed,onli,hi,stingi,england,simon,irrit 
persecut,those,who,call,themselv,methodist,hand,more,liber, 
simon,call,himself,methodist,he,work,hi,wai,across,atlant 
philadelphia,thenc,jamaica,thenc,mobil,up,saint,stephen,mind, 
weslei,strictur,us,mani,word,bui,sell,simon,made,pile 
practic,medicin,pursuit,he,unhappi,lest,he,tempt,do,what 
he,knew,glori,god,put,gold,costli,apparel,so,simon 
 
*Note: removed first person terms such as I,our, my, we, etc. 

A classification problem… 
sinc,atlanta,she,had,look,out,dine,car,window,delight 
almost,physic,over,her,breakfast,coffe,she,watch,last,georgia 
hill,reced,red,earth,appear,tin,roof,hous,set,middl 
swept,yard,yard,inevit,verbena,grew,surround,whitewash,tire, 
grin,when,she,saw,her,first,tv,antenna,atop,unpaint 
negro,hous,multipli,her,joi,rose,jean,louis,finch,alwai 
made,journei,air,she,decid,go,train,from,new,york 
maycomb,junction,her,fifth,annual,trip,home,on,thing,she 
had,life,scare,out,her,last,time,she,plane,pilot 
elect,fly,through,tornado,anoth,thing,fly,home,meant,her 
father,rise,three,morn,drive,hundr,mile,meet,her,mobil 
do,full,dai,work,afterward,he,seventi,two,now,longer 
fair,she,glad,she,had,decid,go,train,train,had 
chang,sinc,her,childhood,novelti,experi,amus,her,fat,geni 
porter,materi,when,she,press,button,wall,her,bid,stainless 
steel,washbasin,pop,out,anoth,wall,john,on,could,prop 
on,feet,she,resolv,intimid,sever,messag,stencil,around,her 
compart,roomett,call,when,she,went,bed,night,befor,she 
succeed,fold,herself,up,wall,becaus,she,had,ignor,injunct 
pull,lever,down,over,bracket,situat,remedi,porter,her,embarrass 
her,habit,sleep,onli,pajama,top,luckili,he,happen,patrol 
corridor,when,trap,snap,shut,her,i’ll,get,you,out 
miss,he,call,answer,her,pound,from,within,pleas,she 
said,just,tell,me,how,get,out,can,do,back 
turn,he,said,did,when,she,awok,morn,train,switch 
chug,atlanta,yard,obedi,anoth,sign,her,compart,she,stai 
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Create the training and evaluation sets 
val mock = sc.textFile(”mock.tokens") 
val watch = sc.textFile(”watch.tokens”) 
/// convert data to numeric features with TF 
val tf = new HashingTF(10000) 
val mockData = mock.map { line => 
  var target = "1" 
  LabeledPoint(target.toDouble, tf.transform(line.split(","))) 
} 
val watchData = watch.map { line => 
  var target = "0" 
  LabeledPoint(target.toDouble, tf.transform(line.split(","))) 
} 
/// build IDF model and transform data into modeling sets 
val data = mockData.union(watchData) 
val splits = data.randomSplit(Array(0.7, 0.3)) // prepare train and test sets 
val trainDocs = splits(0).map{ x=>x.features} 
val idfModel = new IDF(minDocFreq = 3).fit(trainDocs) // build on training data only 
 
val train = splits(0).map{ point=> 
  LabeledPoint(point.label,idfModel.transform(point.features)) 
} 
val test = splits(1).map{ point=> 
  LabeledPoint(point.label,idfModel.transform(point.features)) 
} 
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Naïve Bayes Algorithm 

Classification: p(Cj |T1,T2,...) =
1
Z
* p(Cj )* p(Ti |Cj )

i=1

n

∏

prior * likelihoods ignore 

Tokens P(Ti|C1) P(Ti|C2) … P(Ti|Ck) 
T1 0.004 0.001 0.010 
T2 0.002 0.008 0.021 
… … 
Tn 0.014 0.002 0.003 

Likelihood 
calculations: 

c l a s s e s (aka d a t a  s o u r c e s) 
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Run the Naïve Bayes Algorithm in Spark Shell 
import org.apache.spark.mllib.classification.{NaiveBayes, NaiveBayesModel} 
 
val nbmodel = NaiveBayes.train(train, lambda = 1.0) 
val bayesTrain = train.map(p => (nbmodel.predict(p.features), p.label)) 
val bayesTest = test.map(p => (nbmodel.predict(p.features), p.label)) 
println("Training accuracy", bayesTrain.filter(x => x._1 == x._2).count() / 
bayesTrain.count().toDouble) 
println("Test accuracy    ", bayesTest.filter(x => x._1 == x._2).count() / 
bayesTest.count().toDouble) 
 
// print confusion matrix 
println("Predict:mock,label:mock -> ",bayesTest.filter(x => x._1 == 1.0 & x._2==1.0).count()) 
println("Predict:watch,label:watch -> ",bayesTest.filter(x => x._1 == 0.0 & x._2==0.0).count()) 
println("Predict:mock,label:watch -> ",bayesTest.filter(x => x._1 == 1.0 & x._2==0.0).count()) 
println("Predict:watch,label:mock -> ",bayesTest.filter(x => x._1 == 0.0 & x._2==1.0).count()) 
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Random Forest 
•  Aggregate estimates from 

many independent trees  
•  Key parameters 

–  number of trees 
–  maximum tree depth 

•  Notes 
–  Randomness in training and 

feature subsets 
–  more trees decreases over-

fitting 
–  trees are built in parallel 
–  depth is generally larger than 

GBT 

0.24             0.56                0.54               0.66   

0.37            0.54                0.82               0.25   

0.34            0.29                0.04               0.18   

estimate = avg(Ti) = 0.40  
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Train a Random Forest Model in Spark 
import org.apache.spark.mllib.tree.RandomForest 
import org.apache.spark.mllib.tree.model.RandomForestModel 
 
val categoricalFeaturesInfo = Map[Int, Int]() 
val numClasses = 2 
val featureSubsetStrategy = "auto”. 
val impurity = "variance” // tells Spark we want regression, not classification 
val maxDepth = 10 
val maxBins = 32 
val numTrees = 50  
 
val modelRF = RandomForest.trainRegressor(train, categoricalFeaturesInfo, numTrees, 
featureSubsetStrategy, impurity, maxDepth, maxBins) 
val trainScores = train.map { point => 
  val prediction = modelRF.predict(point.features) 
  (prediction, point.label) 
} 
val testScores = test.map { point => 
  val prediction = modelRF.predict(point.features) 
  (prediction, point.label) 
} 
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Gradient Boosted Trees 
•  Successive trees attempt to 

minimize error by focusing 
on large residuals 

•  Key parameters 
–  number of trees 
–  maximum tree depth 

•  Notes 
–  more trees increases over-

fitting 
–  trees are not built in parallel 
–  depth is generally smaller 

than Random Forest 
 

+ + + +

+ + + + … 

0.24           +0.02=0.26    -0.07=0.19    +0.10=0.29   

+0.11=0.40     +0.02=0.42    -0.06=0.36     +0.04=0.40  
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Train a GBTree Model in Spark 
import org.apache.spark.mllib.tree.GradientBoostedTrees 
import org.apache.spark.mllib.tree.configuration.BoostingStrategy 
import org.apache.spark.mllib.tree.model.GradientBoostedTreesModel 
 
val boostingStrategy = BoostingStrategy.defaultParams("Regression") // squared-error loss 
boostingStrategy.numIterations = 50   
boostingStrategy.treeStrategy.maxDepth = 5 
boostingStrategy.treeStrategy.categoricalFeaturesInfo = Map[Int, Int]() 
 
val modelGB = GradientBoostedTrees.train(train, boostingStrategy) 
 
val trainScores = train.map { point => 
  val prediction = modelGB.predict(point.features) 
  (prediction, point.label) 
} 
val testScores = test.map { point => 
  val prediction = modelGB.predict(point.features) 
  (prediction, point.label) 
} 
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Looking at the ROC 
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ROC for Test Data 

gradient boosted trees 

baseline 

random forest 
AuROCRF= 0.884 
AuROCGB= 0.867 
KSRF = 0.62 
KSGB = 0.60 

1.  Order results by 
descending score (i.e. 
threshold), optionally 
put into ordered bins 

2.  Calculate cumulative 
percent of targets 

3.  Calculate cumulative 
percent of non-targets 
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STEP 3: Value from Operational Constraints 



®© 2015 MapR Technologies 24 

From ROC to Value 

•  Start with highest 
scores 

•  Assign $ values 
–  Target identification 
–  Operational cost 

•  Display profit @ each 
threshold 
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Example: 
Identify target: $950 
Operational cost: $800 
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Find my presentation and other related resources here: 

http://events.mapr.com/AtlantaHUG155 
(you can find this link in the event’s page at meetup.com) 

Today’s Presentation 

Whiteboard & demo 
videos 

Free On-Demand Training 

Free eBooks 

Free Hadoop Sandbox And more… 
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Q & A 

@mapr maprtech 

sales@mapr.com 

Engage with us! 

MapR 

maprtech 

mapr-technologies 
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Appendix 
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Glossary 
•  RDD (Resilient Distributed Dataset)

–  in Apache Spark, an immutable, partitioned collection of elements 
that can be operated on in parallel

•  Supervised Modeling
–  family of modeling algorithms which use labeled data and thus have 

an error to minimize. Contrast with unsupervised methods
•  Overtraining

–  Extra performance on the training set that is due to memorization 
of the training data rather than learning the true patterns

•  ROC
–  Receiver Operating Characteristic. Measure performance by plotting 

cumulative false positives vs cumulative true positives over score 
bins

•  KS
–  Kolmogorov-Smirnov coefficient = maximum separation of the ROC with 

baseline, usually reported * 100.
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“Stemmer” (Tokenizer) object 
import org.apache.lucene.analysis.en.EnglishAnalyzer   
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute   
import scala.collection.mutable.ArrayBuffer 

object Stemmer { 
  def tokenize(content:String):Seq[String]={ 
    val analyzer=new EnglishAnalyzer() 
    val tokenStream=analyzer.tokenStream("contents", content) 
    val term=tokenStream.addAttribute(classOf[CharTermAttribute]) 
    tokenStream.reset()  

 
    var result = ArrayBuffer.empty[String] 
    while(tokenStream.incrementToken()) { 
        val termValue = term.toString 
        if (!(termValue matches ".*[\\d\\.].*")) { 
          result += term.toString 

        } } 
    tokenStream.end() 
    tokenStream.close() 
    result 
  } } 
 

Launch the shell with this command: 
./bin/spark-shell --packages "org.apache.lucene:lucene-
analyzers-common:5.1.0” 
 
This code originally appeared here:  
https://chimpler.wordpress.com/2014/06/11/classifiying-
documents-using-naive-bayes-on-apache-spark-mllib/ 
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Code to produce and write an ROC 
//// create RDD’s of predictions and labels 
val trainScores = train.map { point => 
  val prediction = modelGB.predict(point.features) 
  (prediction, point.label) 
} 
val testScores = test.map { point => 
  val prediction = modelGB.predict(point.features) 
  (prediction, point.label) 
} 
 
//// generate ROC’s and write to file – will produce error if destination exists 
val metricsTrain = new BinaryClassificationMetrics(trainScores,100) 
val metricsTest = new BinaryClassificationMetrics(testScores,100) 
val trainroc= metricsTrain.roc() 
val testroc= metricsTest.roc() 
trainroc.saveAsTextFile(”./ROC/gbtrain") 
testroc.saveAsTextFile(”./ROC/gbtest") 


