
®© 2015 MapR Technologies 1

®

© 2015 MapR Technologies

Document Classification with Apache Spark
Joseph Blue, @joebluems
August 19, 2015

®© 2015 MapR Technologies 2

Background survey
q  Data Science

q  Supervised vs. Unsupervised Scenarios
q  Classification Algorithms: Naïve Bayes, Linear, Decision Trees, etc.
q Model metrics: KS, AuROC, etc.
q  Boosting, Stacking, Bagging, etc.

q  TF-IDF Feature Extraction
q  Apache Spark: RDD, DAG, Scala shell, MLlib
q  Applying Machine Learning to Business Problems

®© 2015 MapR Technologies 3

Big Data Solution Workflow

EXTRACT OUTLIER
REMOVAL

FEATURE
CREATION MODELING

Import data
into Hadoop
and transform
into format
appropriate
for solution

ENSEMBLE

Extract from
the raw data
inputs that the
ML algorithms
will use for
pattern
detection

Identify and
remove / adjust
records that
negatively affect
the ability to
achieve good
performance

Application of the
appropriate
machine learning
algorithms, such
as Naïve Bayes,
Linear, Tree-
Based methods

Combining
multiple models
to increase the
performance of
the ultimate
solution

®© 2015 MapR Technologies 4

Resources
•  GITHUB – code & instructions

•  Kaggle – data science competitions, code, message boards

•  Spark MLLib

https://github.com/joebluems/Mockingbird

https://www.kaggle.com/competitions

http://spark.apache.org/docs/1.3.0/mllib-guide.html

®© 2015 MapR Technologies 5 © 2014 MapR Technologies
®

Part 1: Working with Text

®© 2015 MapR Technologies 6

Raw “documents” corpus
•  Four score and seven years ago our fathers brought forth on this continent, a new nation,

conceived in Liberty, and dedicated to the proposition that all men are created equal.
•  Now we are engaged in a great civil war, testing whether that nation, or any nation so

conceived and so dedicated, can long endure. We are met on a great battle-field of that
war. We have come to dedicate a portion of that field, as a final resting place for those who
here gave their lives that that nation might live. It is altogether fitting and proper that we
should do this.

•  But, in a larger sense, we can not dedicate -- we can not consecrate -- we can not hallow --
this ground. The brave men, living and dead, who struggled here, have consecrated it, far
above our poor power to add or detract. The world will little note, nor long remember what
we say here, but it can never forget what they did here. It is for us the living, rather, to be
dedicated here to the unfinished work which they who fought here have thus far so nobly
advanced. It is rather for us to be here dedicated to the great task remaining before us --
that from these honored dead we take increased devotion to that cause for which they gave
the last full measure of devotion -- that we here highly resolve that these dead shall not
have died in vain -- that this nation, under God, shall have a new birth of freedom -- and
that government of the people, by the people, for the people, shall not perish from the
earth.

®© 2015 MapR Technologies 7

Tokenized* documents
•  ArrayBuffer(four, score, seven, year, ago, our, father, brought, forth, contin, new, nation,

conceiv, liberti, dedic, proposit, all, men, creat, equal)
•  ArrayBuffer(now, we, engag, great, civil, war, test, whether, nation, ani, nation, so, conceiv,

so, dedic, can, long, endur, we, met, great, battl, field, war, we, have, come, dedic, portion,
field, final, rest, place, those, who, here, gave, live, nation, might, live, altogeth, fit, proper,
we, should, do)

•  ArrayBuffer(larger, sens, we, can, dedic, we, can, consecr, we, can, hallow, ground,
brave,men, live, dead, who,struggl, here, have, consecr, far, abov, our, poor, power, add,
detract, world, littl, note, nor, long, rememb, what, we, sai, here, can, never, forget, what,
did, here, us, live, rather, dedic, here, unfinish, work, which, who, fought, here, have, thu,
far, so, nobli, advanc, rather, us, here, dedic, great, task, remain, befor, us, from, honor,
dead, we, take, increas, devot, caus, which, gave, last, full, measur, devot, we, here, highli,
resolv, dead, shall, have, di, vain, nation, under, god, shall, have, new, birth, freedom,
govern, peopl, peopl, peopl, shall, perish, from, earth)

*Using Apache Lucene’s Standard English Analyzer

®© 2015 MapR Technologies 8

TF* Vectors – Total Frequency (i.e. word counts)
•  (1000, [17,63,94,197,234,335,412,437,445,521,530,556,588,673,799,893 ,937,960,990],

[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0, 1.0,1.0,1.0])
•  (1000, [17,21,22,37,63,92,167,211,240,256,270,272,393,395,445,449,

460,472,480,498,535,612,676,688,694,706,724,732,790,909,916,939,960, 965,996],
[1.0,2.0,1.0,1.0,3.0,2.0,2.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,2.0,
1.0,1.0,2.0,1.0,1.0,4.0,1.0,1.0,1.0,1.0,1.0,1.0])

•  (1000,[21,63,92,131,143,147,196,205,208,240,250,256,265,268,296,312,326,340,
341,367,378,391,399,400,412,417,441,445,449,455,464,483,494,503,515,524,526,
539,551,575,602,612,627,641,645,656,676,694,721,742,757,767,780,786,790,802,
807,817,818,844,852,920,946,951,960,983,985,990],
[1.0,1.0,2.0,1.0,2.0,1.0,2.0,1.0,1.0,4.0,1.0,4.0,1.0,4.0,1.0,1.0,2.0,1.0,3.0,1.0,1.0,1.0,1.0,
2.0,1.0,1.0,1.0,3.0,1.0,1.0,1.0,2.0,3.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,
1.0,2.0,1.0,4.0,1.0,1.0,1.0,2.0,6.0,1.0,1.0,1.0,1.0,1.0,3.0,1.0,2.0,1.0,8.0,1.0,1.0,1.0])

*Size of Hash = 1,000 (any token will be hashed to an integer 0-999)

®© 2015 MapR Technologies 9

TF-IDF* Vectors – Word weights
•  (1000,[17,63,94,197,234,335,412,437,445,521,530,556,588,673,799,893,937,960,990],

[0.287,0.0,0.0,0.0,0.0,0.0,0.287,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.287])
•  (1000,[17,21,22,37,63,92,167,211,240,256,270,272,393,395,445,449,460,472,480,

498,535,612,676,688,694,706,724,732,790,909,916,939,960,965,996], [0.287,0.575,0.0,0.
0,0.0,0.575,0.0,0.0,0.287,0.287,0.0,0.0,0.0,0.0,0.0,0.287,0.0,0.0,0.0,0.0,0.0,0.287,0.575,
0.0,0.287,0.0,0.0,0.0,1.15,0.0,0.0,0.0,0.0,0.0,0.0])

•  (1000,[21,63,92,131,143,147,196,205,208,240,250,256,265,268,296,312,326,340,
341,367,378,391,399,400,412,417,441,445,449,455,464,483,494,503,515,524,526,
539,551,575,602,612,627,641,645,656,676,694,721,742,757,767,780,786,790,802,
807,817,818,844,852,920,946,951,960,983,985,990],
[0.287,0.0,0.575,0.0,0.0,0.0,0.0,0.0,0.0,1.150,0.0,1.150,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.287,0.0,0.0,0.0,0.287,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.287,0.0,0.0,0.0,0.0,0.287,0.575,0.0,0.0,0.0,0.0,0.0,0.0,1.726,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.287])

*Minimum Document Frequency = 2 (all other tokens have TF-IDF = 0)

®© 2015 MapR Technologies 10

Transforming Text into Numeric Features
1.  Use Lucene Analyzer to tokenize documents
2.  Hash the tokens into sparse vectors with TF

1.  Control the vector size
2.  Smaller vectors require less memory; Larger vectors have fewer

collisions
3.  Note: hashing is one-way (cannot convert back to tokens)

3.  Build an IDF dictionary from the training vectors
1.  Can limit size by including minimum document frequency
2.  √(TFw)*ln[(# docs +1) /(doc freqw+1)]

4.  Transform the TF vectors into TF-IDF Vectors

®© 2015 MapR Technologies 11

Spark Shell commands to transform text
import statements …
object Stemmer { …}

val getty = sc.textFile(”gettys.txt")
val stemmed = getty.map{x=> Stemmer.tokenize(x)}
getty.collect().foreach(println)
stemmed.collect().foreach(println)

val tf = new HashingTF(1000) //size impacts memory and collisions
val tfdocs = stemmed
tfdocs.collect().foreach(println)

val idfModel = new IDF(minDocFreq = 2).fit(tfdocs)
val idfDocs = idfModel.transform(tfdocs)
idfDocs.collect().foreach(println)

®© 2015 MapR Technologies 12 © 2014 MapR Technologies
®

STEP 2: Model Building

®© 2015 MapR Technologies 13

when,he,nearli,thirteen,brother,jem,got,hi,arm,badli
broken,elbow,when,heal,jem,fear,never,be,abl,plai
footbal,were,assuag,he,seldom,self,consciou,about,hi,injuri
hi,left,arm,somewhat,shorter,than,hi,right,when,he
stood,walk,back,hi,hand,right,angl,hi,bodi,hi
thumb,parallel,hi,thigh,he,couldn’t,have,care,less,so
long,he,could,pass,punt,when,enough,year,had,gone
enabl,us,look,back,them,sometim,discuss,event,lead,hi
accid,maintain,ewel,start,all,jem,who,four,year,senior
said,start,long,befor,he,said,began,summer,dill,came
us,when,dill,first,gave,us,idea,make,boo,radlei
come,out,said,he,want,take,broad,view,thing,realli
began,andrew,jackson,gener,jackson,hadn’t,run,creek,up,creek
simon,finch,would,never,have,paddl,up,alabama,where,would
he,hadn’t,were,far,too,old,settl,argument,fist,fight
so,consult,atticu,father,said,were,both,right,be,southern
sourc,shame,some,member,famili,had,record,ancestor,either,
battl,hast,all,had,simon,finch,fur,trap,apothecari,from
cornwal,whose,pieti,exceed,onli,hi,stingi,england,simon,irrit
persecut,those,who,call,themselv,methodist,hand,more,liber,
simon,call,himself,methodist,he,work,hi,wai,across,atlant
philadelphia,thenc,jamaica,thenc,mobil,up,saint,stephen,mind,
weslei,strictur,us,mani,word,bui,sell,simon,made,pile
practic,medicin,pursuit,he,unhappi,lest,he,tempt,do,what
he,knew,glori,god,put,gold,costli,apparel,so,simon

*Note: removed first person terms such as I,our, my, we, etc.

A classification problem…
sinc,atlanta,she,had,look,out,dine,car,window,delight
almost,physic,over,her,breakfast,coffe,she,watch,last,georgia
hill,reced,red,earth,appear,tin,roof,hous,set,middl
swept,yard,yard,inevit,verbena,grew,surround,whitewash,tire,
grin,when,she,saw,her,first,tv,antenna,atop,unpaint
negro,hous,multipli,her,joi,rose,jean,louis,finch,alwai
made,journei,air,she,decid,go,train,from,new,york
maycomb,junction,her,fifth,annual,trip,home,on,thing,she
had,life,scare,out,her,last,time,she,plane,pilot
elect,fly,through,tornado,anoth,thing,fly,home,meant,her
father,rise,three,morn,drive,hundr,mile,meet,her,mobil
do,full,dai,work,afterward,he,seventi,two,now,longer
fair,she,glad,she,had,decid,go,train,train,had
chang,sinc,her,childhood,novelti,experi,amus,her,fat,geni
porter,materi,when,she,press,button,wall,her,bid,stainless
steel,washbasin,pop,out,anoth,wall,john,on,could,prop
on,feet,she,resolv,intimid,sever,messag,stencil,around,her
compart,roomett,call,when,she,went,bed,night,befor,she
succeed,fold,herself,up,wall,becaus,she,had,ignor,injunct
pull,lever,down,over,bracket,situat,remedi,porter,her,embarrass
her,habit,sleep,onli,pajama,top,luckili,he,happen,patrol
corridor,when,trap,snap,shut,her,i’ll,get,you,out
miss,he,call,answer,her,pound,from,within,pleas,she
said,just,tell,me,how,get,out,can,do,back
turn,he,said,did,when,she,awok,morn,train,switch
chug,atlanta,yard,obedi,anoth,sign,her,compart,she,stai

®© 2015 MapR Technologies 14

Create the training and evaluation sets
val mock = sc.textFile(”mock.tokens")
val watch = sc.textFile(”watch.tokens”)
/// convert data to numeric features with TF
val tf = new HashingTF(10000)
val mockData = mock.map { line =>
 var target = "1"
 LabeledPoint(target.toDouble, tf.transform(line.split(",")))
}
val watchData = watch.map { line =>
 var target = "0"
 LabeledPoint(target.toDouble, tf.transform(line.split(",")))
}
/// build IDF model and transform data into modeling sets
val data = mockData.union(watchData)
val splits = data.randomSplit(Array(0.7, 0.3)) // prepare train and test sets
val trainDocs = splits(0).map{ x=>x.features}
val idfModel = new IDF(minDocFreq = 3).fit(trainDocs) // build on training data only

val train = splits(0).map{ point=>
 LabeledPoint(point.label,idfModel.transform(point.features))
}
val test = splits(1).map{ point=>
 LabeledPoint(point.label,idfModel.transform(point.features))
}

®© 2015 MapR Technologies 15

Naïve Bayes Algorithm

Classification: p(Cj |T1,T2,...) =
1
Z
* p(Cj)* p(Ti |Cj)

i=1

n

∏

prior * likelihoods ignore

Tokens P(Ti|C1) P(Ti|C2) … P(Ti|Ck)
T1 0.004 0.001 0.010
T2 0.002 0.008 0.021
… …
Tn 0.014 0.002 0.003

Likelihood
calculations:

c l a s s e s (aka d a t a s o u r c e s)

®© 2015 MapR Technologies 16

Run the Naïve Bayes Algorithm in Spark Shell
import org.apache.spark.mllib.classification.{NaiveBayes, NaiveBayesModel}

val nbmodel = NaiveBayes.train(train, lambda = 1.0)
val bayesTrain = train.map(p => (nbmodel.predict(p.features), p.label))
val bayesTest = test.map(p => (nbmodel.predict(p.features), p.label))
println("Training accuracy", bayesTrain.filter(x => x._1 == x._2).count() /
bayesTrain.count().toDouble)
println("Test accuracy ", bayesTest.filter(x => x._1 == x._2).count() /
bayesTest.count().toDouble)

// print confusion matrix
println("Predict:mock,label:mock -> ",bayesTest.filter(x => x._1 == 1.0 & x._2==1.0).count())
println("Predict:watch,label:watch -> ",bayesTest.filter(x => x._1 == 0.0 & x._2==0.0).count())
println("Predict:mock,label:watch -> ",bayesTest.filter(x => x._1 == 1.0 & x._2==0.0).count())
println("Predict:watch,label:mock -> ",bayesTest.filter(x => x._1 == 0.0 & x._2==1.0).count())

®© 2015 MapR Technologies 17

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

0 0.2 0.4 0.6 0.8 1 1.2

Id
x

of
 H

ei
gh

t/A
ge

Idx of Weight/Education

No Diabetes

Diabetes

Decision Tree for Classification

X1<0.7 X1>0.7

X2<0.5
X2>0.5

X2<0.8 X2>0.8

X1<0.8 X1>0.8

®© 2015 MapR Technologies 18

Random Forest
•  Aggregate estimates from

many independent trees
•  Key parameters

–  number of trees
–  maximum tree depth

•  Notes
–  Randomness in training and

feature subsets
–  more trees decreases over-

fitting
–  trees are built in parallel
–  depth is generally larger than

GBT

0.24 0.56 0.54 0.66

0.37 0.54 0.82 0.25

0.34 0.29 0.04 0.18

estimate = avg(Ti) = 0.40

®© 2015 MapR Technologies 19

Train a Random Forest Model in Spark
import org.apache.spark.mllib.tree.RandomForest
import org.apache.spark.mllib.tree.model.RandomForestModel

val categoricalFeaturesInfo = Map[Int, Int]()
val numClasses = 2
val featureSubsetStrategy = "auto”.
val impurity = "variance” // tells Spark we want regression, not classification
val maxDepth = 10
val maxBins = 32
val numTrees = 50

val modelRF = RandomForest.trainRegressor(train, categoricalFeaturesInfo, numTrees,
featureSubsetStrategy, impurity, maxDepth, maxBins)
val trainScores = train.map { point =>
 val prediction = modelRF.predict(point.features)
 (prediction, point.label)
}
val testScores = test.map { point =>
 val prediction = modelRF.predict(point.features)
 (prediction, point.label)
}

®© 2015 MapR Technologies 20

Gradient Boosted Trees
•  Successive trees attempt to

minimize error by focusing
on large residuals

•  Key parameters
–  number of trees
–  maximum tree depth

•  Notes
–  more trees increases over-

fitting
–  trees are not built in parallel
–  depth is generally smaller

than Random Forest

+ + + +

+ + + + …

0.24 +0.02=0.26 -0.07=0.19 +0.10=0.29

+0.11=0.40 +0.02=0.42 -0.06=0.36 +0.04=0.40

®© 2015 MapR Technologies 21

Train a GBTree Model in Spark
import org.apache.spark.mllib.tree.GradientBoostedTrees
import org.apache.spark.mllib.tree.configuration.BoostingStrategy
import org.apache.spark.mllib.tree.model.GradientBoostedTreesModel

val boostingStrategy = BoostingStrategy.defaultParams("Regression") // squared-error loss
boostingStrategy.numIterations = 50
boostingStrategy.treeStrategy.maxDepth = 5
boostingStrategy.treeStrategy.categoricalFeaturesInfo = Map[Int, Int]()

val modelGB = GradientBoostedTrees.train(train, boostingStrategy)

val trainScores = train.map { point =>
 val prediction = modelGB.predict(point.features)
 (prediction, point.label)
}
val testScores = test.map { point =>
 val prediction = modelGB.predict(point.features)
 (prediction, point.label)
}

®© 2015 MapR Technologies 22

Looking at the ROC

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

M
oc

ki
ng

bi
rd

 L
in

es
 A

bo
ve

 T
hr

es
ho

ld

Watchmen Lines Above Threshold

ROC for Test Data

gradient boosted trees

baseline

random forest
AuROCRF= 0.884
AuROCGB= 0.867
KSRF = 0.62
KSGB = 0.60

1.  Order results by
descending score (i.e.
threshold), optionally
put into ordered bins

2.  Calculate cumulative
percent of targets

3.  Calculate cumulative
percent of non-targets

®© 2015 MapR Technologies 23 © 2014 MapR Technologies
®

STEP 3: Value from Operational Constraints

®© 2015 MapR Technologies 24

From ROC to Value

•  Start with highest
scores

•  Assign $ values
–  Target identification
–  Operational cost

•  Display profit @ each
threshold

0

2

4

6

8

0% 20% 40% 60% 80% 100%

W
ee

kl
y

Pr
of

it
(in

 th
ou

sa
nd

s)

Portion of Total Population Examined

Profit Curve Based on Random Forest Score

net profit at threshold

Example:
Identify target: $950
Operational cost: $800

®© 2015 MapR Technologies 25

Find my presentation and other related resources here:

http://events.mapr.com/AtlantaHUG155
(you can find this link in the event’s page at meetup.com)

Today’s Presentation

Whiteboard & demo
videos

Free On-Demand Training

Free eBooks

Free Hadoop Sandbox And more…

®© 2015 MapR Technologies 26

Q & A

@mapr maprtech

sales@mapr.com

Engage with us!

MapR

maprtech

mapr-technologies

®© 2015 MapR Technologies 27 © 2014 MapR Technologies
®

Appendix

®© 2015 MapR Technologies 28

Glossary
•  RDD (Resilient Distributed Dataset)

–  in Apache Spark, an immutable, partitioned collection of elements
that can be operated on in parallel

•  Supervised Modeling
–  family of modeling algorithms which use labeled data and thus have

an error to minimize. Contrast with unsupervised methods
•  Overtraining

–  Extra performance on the training set that is due to memorization
of the training data rather than learning the true patterns

•  ROC
–  Receiver Operating Characteristic. Measure performance by plotting

cumulative false positives vs cumulative true positives over score
bins

•  KS
–  Kolmogorov-Smirnov coefficient = maximum separation of the ROC with

baseline, usually reported * 100.

®© 2015 MapR Technologies 29

“Stemmer” (Tokenizer) object
import org.apache.lucene.analysis.en.EnglishAnalyzer
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute
import scala.collection.mutable.ArrayBuffer

object Stemmer {
 def tokenize(content:String):Seq[String]={
 val analyzer=new EnglishAnalyzer()
 val tokenStream=analyzer.tokenStream("contents", content)
 val term=tokenStream.addAttribute(classOf[CharTermAttribute])
 tokenStream.reset()

 var result = ArrayBuffer.empty[String]
 while(tokenStream.incrementToken()) {
 val termValue = term.toString
 if (!(termValue matches ".*[\\d\\.].*")) {
 result += term.toString

 } }
 tokenStream.end()
 tokenStream.close()
 result
 } }

Launch the shell with this command:
./bin/spark-shell --packages "org.apache.lucene:lucene-
analyzers-common:5.1.0”

This code originally appeared here:
https://chimpler.wordpress.com/2014/06/11/classifiying-
documents-using-naive-bayes-on-apache-spark-mllib/

®© 2015 MapR Technologies 30

Code to produce and write an ROC
//// create RDD’s of predictions and labels
val trainScores = train.map { point =>
 val prediction = modelGB.predict(point.features)
 (prediction, point.label)
}
val testScores = test.map { point =>
 val prediction = modelGB.predict(point.features)
 (prediction, point.label)
}

//// generate ROC’s and write to file – will produce error if destination exists
val metricsTrain = new BinaryClassificationMetrics(trainScores,100)
val metricsTest = new BinaryClassificationMetrics(testScores,100)
val trainroc= metricsTrain.roc()
val testroc= metricsTest.roc()
trainroc.saveAsTextFile(”./ROC/gbtrain")
testroc.saveAsTextFile(”./ROC/gbtest")

