lIntroduction

1. Red Hat System Administration |

Red Hat System Administration | introduction
Red Hat System Administration | (RH124) is designed for IT professionals without previous Linux system
administration experience. The course is intended to provide students with Linux administration

| |"survival skills"lby focusing on core administration tasks. Red Hat System Administration | also provides

a foundation for students planning to become full-time Linux system administrators by introducing key
command-line concepts and enterprise-level tools. These concepts are further developed in the
follow-on course, Red Hat System Administration Il (RH134).

[Course objectives

I
o Gain sufficient skill to perform core system administration tasks on Red Hat Enterprise Linux.
o Build foundational skills needed by an RHCSA-certified Red Hat Enterprise Linux system
administrator.
l Audience
0

o IT professionals across a broad range of disciplines who need to perform essential Linux
administration tasks, including installation, establishing network connectivity, managing
physical storage and basic security administration.

[Prerequisites
I

o There are no formal prerequisites for this course; however, previous system administration
experience on other operating systems will be very beneficial.

2. Orientation to the Classroom Environment

In this course, students will do most hands-on practice exercises and lab work with two computer
systems, which will be referred to as desk top and server. These machines have the host
names desktopX.example.com and serverX.example.com, where the X in the computers’ host nhames
will be a number that will vary from student to student. Both machines have a standard user

account, student, with the password student. The root password on both systems is redhat.

Each student is on the IPv4 network 172.25.x.0/24, where the X matches the number of their desktopX
and serverX systems. The instructor runs a central utility server, classroom.example.com, which acts as

a router for the classroom networks and provides DNS, DHCP, HTTP, and other content services.
I

Classroom Machines

Machine name IP addresses

Student “client” t
desktopX. example. com 172.25. X. 10 aaent o elient computer

Administrator
高亮

Administrator
矩形

Administrator
文本框
生存技巧

Administrator
文本框
获得足够的技巧去完成系统的核心管理任务

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
文本框
无需任何基础

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Machine name IP addresses Role

Student ”server” computer
serverX. example. com 172.25. x. 11 P

classroom. example. com 172. 25. 254. 254 Classroom utility server

3. Internationalization

l Language support

Red Hat Enterprise Linux 7 officially supports 22 languages: English, Assamese, Bengali, Chinese
(Simplified), Chinese (Traditional), French, German, Gujarati, Hindi, Italian, Japanese, Kannada,
Korean, Malayalam, Marathi, Odia, Portuguese (Brazilian), Punjabi, Russian, Spanish, Tamil, and

Telugu.

[l Per-user language selection

Users may prefer to use a different language for their desktop environment than the system-wide
default. They may also want to set their account to use a different keyboard layout or input method.
Language settings

In the GNOME desktop environment, the user may be prompted to set their preferred language and
input method on first login. If not, then the easiest way for an individual user to adjustWeferred

language and input method settings is to use the Region & Language application. Run the

command gnome-control-center region, or from the top bar,
select (User) — Settings. In the window that opens, select Region & Language. The user can click
theLanguage box and select their preferred language from the list that appears. This will also update
the Formatssetting to the default for that language. The next time the user logs in, these changes will
take full effect. gnome-control-center GNOME

] SSH TTY
These settings affectthe ESKtop environment and any appuications,

including gnome-terminal, started inside it. However, they do not apply to that account if

accessed through an ssh login from a remote system or a local text console (such as tty2).

user can make their snelt environment use the same setting as their grapnical environment,

mwhen they log in through a text console or over ssh. One way to do this is to place code similar
to the following in the userd~/ .bashrc file. This example code will set the language used on a
text login to match the one currently set for the user's GNOME desktop environment:

i=$ (grep 'Language=' /var/lib/AccountService/users/${USER} \
| sed 's/Language=//"')

if [nginm 1= nwn]; then

export LANG=$i E%ﬁ

fi

Japanese, Korean, Chinese, or other languages with a non-Latin character set may not display properly

on local text consoles.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
注释框
调节

Administrator
高亮

Administrator
高亮

Administrator
文本框
通过gnome-control-center的设置仅会影响到GNOME桌面环境和相关的应用，但不会应用到SSH、TTY登录

Administrator
矩形

Administrator
矩形

Administrator
文本框
一致的

Administrator
矩形

Administrator
已接受

Individual commands can be made to use another language by setting the LANG variable on the

command line:

[userlhost ~]§ LANG=fr FR.utf8 date
jeu. avril 24 17:55:01 CDT 2014

Subsequent commands will revert to using the system's default language for output.

The Locale command can be used to check the current value of LANG and other related

“ ”

environment variables. IBus Intelligent Input Bus
Code - https://code.google.com/p/ibus/

Input method settings

Google

GNOME 3 in Red Hat Enterprise Linux 7 automatically uses thelIBuslin ut method selection system,

which makes it easy to change keyboard layouts and input methods quickty—{http:/wiki.ubuntu.org.cn/lbus

The Region & Language application can also be used to enable alternative input methods. In

the Region & Languageapplication's window, the Input Sources box shows what input methods are
currently available. By default,English (US) may be the only available method. Highlight English
(Us) and click the keyboard icon to see the current keyboard layout.

To add another input method, click the + button at the bottom left of the Input Sources window.
AnAdd an Input Source window will open. Select your language, and then your preferred input
method or keyboard layout.

Once more than one input method is configured, the user can switch between them quickly by

typing Super+Space(sometimes called Windows+Space). A status indicator will also appear in the
GNOME top bar, which has two functions: It indicates which input method is active, and acts as a menu
that can be used to switch between input methods or select advanced features of more complex input
methods.

Some of the methods are marked with gears, which indicate that those methods have advanced
configuration options and capabilities. For example, the Japanese Japanese (Kana Kanji) input
method allows the user to pre-edit text in Latin and use Down Arrow and Up Arrow keys to select the
correct characters to use.

US English speakers may find also this useful. For example, under English (United States) is the
keyboard layoutEnglish (international AltGr dead keys), which treats Al1tGr (or the

right A1t) on a PC 104/105-key keyboard as a "secondary-shift” modifier key and dead key activation
key for typing additional characters. There are also Dvorak and other alternative layouts available.

Note_
Any Unicode character can be entered in the GNOME desktop environment if the user knows the
character's Unicode code point, by typing Ctr1+shift+U, followed by the code point.

After Ctrl+shift+U has been typed, an underlined u will be displayed to indicate that the system is
waiting for Unicode code point entry.

For example, the lowercase Greek letter lambda has the code point U+03BB, and can be entered by
typingCtrl+Shift+U, then 03bb, then Enter.

System-wide default language settings

The system's default language is set to US English, using the UTF-8 encoding of Unicode as its character
set (@n_US.ut£8), but this can be changed during or after installation.

Administrator
矩形

Administrator
高亮

Administrator
文本框
后来的命令又恢复到系统默认的语言设置

Administrator
矩形

Administrator
文本框
IBus 全称 Intelligent Input Bus是下一代输入法框架（或者说“平台”）。 项目现托管于 Google Code - https://code.google.com/p/ibus/ 此项目包含了世界多数语言的文字输入需求——由世界多个国家开发者维护。

Administrator
注释框
http://wiki.ubuntu.org.cn/Ibus

Administrator
高亮

Administrator
高亮

Administrator
文本框
输入模式设置

Administrator
矩形

Administrator
文本框
整个系统的默认语言设置

From the command line, root can change the system-wide locale settings with

the localectl command. flocalectl is run with no arguments, it will display the current
system-wide locale settings.

To set the system-wide language, run the command localectl set-locale
LANG=1ocale, where locale is the appropriate $ LANG from the "Language Codes Reference"
table in this chapter. The change will take effect for users on their next login, and is stored

_in/etc/locale.conf
[root@fhost ~]# localectl set-locale LANG=fr FR.utf8

In GNOME, an administrative user can change this setting from Region & Language and clicking

the Login Screenbutton at the upper-right corner of the window. Changing the Language of the
login screen will also adjust the system-wide default language setting stored in

the /etec/locale. conf configuration file.

Local text consoles such as tty2 are more limited in the fonts that they can display

than gnome-terminaland ssh sessions. For example, Japanese, Korean, and Chinese
characters may not display as expected on a local text console. For this reason, it may make sense to
use English or another language with a Latin character set for the system'’s text console.

Likewise, local text consoles are more limited in the input methods they support, and this is managed
separately from the graphical desktop environment. The available global input settings can be
configured through 1ocalectl for both local text virtual consoles and the X11 graphical
environment. See thelocalectl(1), kbd(4), and vconsole . con£(5) man pages for more

information.

[l Language packs

When using non-English languages, you may want to install additional "language packs” to provide
additional translations, dictionaries, and so forth. To view the list of available langpacks, run yum
langavailable. To view the list of langpacks currently installed on the system, run yum
langlist. To add an additional langpack to the system, run yum langinstall code,
where code is the code in square brackets after the language name in the output ofyum
langavailable.

locale(7), localectl(l), kbd(4), locale.conf(5), vconsole.conf(5), uni
code(7), ut£-8(7), and yum-langpacks(8) man pages

Conversions between the names of the graphical desktop environment's X11 layouts and their names
inlocalectl can be found in the file /usr/share/X11/xkb/rules/base.1lst.
03.1. Language Codes Reference

0

Language Codes

Language $LANG value
English (US) en US.utf8

Assamese as_ IN.utf8

Administrator
高亮

Administrator
矩形

Administrator
高亮

Administrator
高亮

Administrator
文本框
建议在文本模式下使用英文语言环境

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Language $LANG value

Bengali bn_ IN. utf8
Chinese (Simplified) zh CN. utf8
Chinese (Traditional) zh TW. utf8
French fr FR. utf8
German de DE. utf8
Gujarati gu IN.utf8
Hindi hi_ IN. utf8
Italian it IT.utf8
Japanese ja JP.utf8
Kannada kn IN. utf8
Korean ko KR.utf8
Malayalam ml IN.utf8
Marathi mr IN.utf8
Odia or IN.utf8
Portuguese (Brazilian) pt BR.utf8
Punjabi pa IN.utf8
Russian ru RU. utf§
Spanish es ES.utf8
Tamil ta IN. utf8
Telugu te IN. utf8

[Chapter 1. Accessing the

Command Line

1.1. Accessing the Command Line Using the Local Console
1.2. Practice: Local Console Access Terms

1.3. Accessing the Command Line Using the Desktop

1.4. Practice: The GNOME 3 Desktop Environment

1.5. Executing Commands Using the Bash Shell

Administrator
高亮

1.6. Practice: Bash Commands and Keyboard Shortcuts

1.7. Lab: Accessing the Command Line

Introduction
Goal To log into a Linux system and run simple commands using the shell.
Objectives o Use Bash shell syntax to enter commands at a Linux console.
o Launch applications in a GNOME desktop environment.
o Use Bash features to run commands from a shell prompt using fewer
keystrokes. []
Sections o Accessing the Command Line Using the Local Console (and Practice)
o Accessing the Command Line Using the Desktop (and Practice)
o Executing Commands Using the Bash Shell (and Practice)
Lab o Accessing the Command Line

11.1. Accessing the Command Line Using the Local Console
lObjectives

After completing this section, students should be able to log into a Linux system on a local text console

and run simple commands using the shell.

01 The bash shell

Accessing the command line with virtual consoles

A command line is a text-based interface which can be used to input instructions to a computer system.

The Linux command line is provided by a program called the shell. Over the long history of UNIX-like

systems, many shells have been developed. The default shell for users in Red Hat Enterprise Linux is

the GNU Bourne-Again Shell (bash). Bash is an improved version of one of the most successful shells

used on UNIX-like systems, the Bourne Shell (sh).

When a shell is used interact"iiy,_it displays a string when it is waiting for a command from the user.
h

This is called the shell prompty When a regular user starts a shell, the default prompt ends with

a $ character.

[student@desktopX ~]$

The $ is replaced by a # if the shell is running as the superuser, root. This makes it more obvious

that it is a superuser shell, which helps to avoid accidents and mistakes in the privileged account.

[root@desktopX ~1#

Using bash to execute commands can be powerful. The bash shell provides a scripting language
that can support automation of tasks. The shell has additional capabilities that can simplify or make

possible operations that are hard to accomplish efficiently with graphical tools. | |

Administrator
高亮

Administrator
高亮

Administrator
文本框
快捷键的使用

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
注释框
交互

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
文本框
强大、高效、自动

The bash shell is similar in concept to the command line interpreter found in recent versions of
Microsoft Windows cmd . exe, although bash has a more sophisticated scripting language. It is also
similar to Windows PowerShell in Windows 7 and Windows Server 2008 R2. Mac OS X administrators who
use the Macintosh'sTerminal utility may be pleased to note that bash is the default shell in Mac OS X.
[virtual consoles [|

Users access the bash shell through a terminal. A terminal provides a keyboard for user input and a
display for output. On text-based installations, this can be the Linux machine's physical console, the
hardware keyboard and display. Terminal access can also be configured through serial ports.

Another way to access a shell is from a virtual console. A Linux machine's physical console supports
multiple virtual consoles which act like separate terminals. Each virtual console supports an

independent login session.

If the graphical environment is available, it will run on the first virtual console in Red Hat Enterprise
Linux 7. Five additional text login prompts are available on consoles two through six (or one through
five if the graphical environment is turned off). With a graphical environment running, access a text
login prompt on a virtual console by holding ctrl+Alt and pressing a function key (F2 through ¥6).
Press Ctrl+Alt+F1 to return to the first virtual console and the graphical desktop.
In the pre-configured virtual images delivered by Red Hat, login prompts have been disabled in the
virtual consoles.
Note_
In Red Hat Enterprise Linux 5 and earlier, the first six virtual consoles always provided text login
prompts. When the graphical environment was launched, it ran on virtual console seven (accessed
throughCtrl+Alt+F7).
[Shell basics
Commands entered at the shell prompt have three basic parts:

o Command to run

o [Options]to adjust the behavior of the command

o which are typically targets of the command

The command is the name of the program to run. It may be followed by one or more options, which
adjust the behavior of the command or what it will do. Options normally start with one or two dashes

(—aor ——all, for example) to distinguish them from arguments. Commands may also be followed

by one or more farguments, which often indicate a targetjthat the command should operate on.

For example, the command line usermod -L morgan has a command (usermod), an option
(—L), and an argument (morgan). The effect of this command is to lock the password on user
morgan's account.

To use a command effectively, a user needs to know what options and arguments it takes and in what
order it expects them (the syntax of the command). Most commands have a ——help option. This
causes the command to print a description of what it does, a "usage statement” that describes the
command's syntax, and a list of the options it accepts and what they do.

Usage statements may seem complicated and difficult to read. They become much simpler to

understand once a user becomes familiar with a few basic conventions: | |

o Square brackets, [], surround optional items.

o Anything followed by . . . represents an arbitrary-length list of items of that type.

Administrator
高亮

Administrator
高亮

Administrator
文本框
虚拟控制台

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
文本框
每个虚拟的控制台就像一个分离的终端一样，支持一个独立的会话

Administrator
矩形

Administrator
矩形

Administrator
高亮

Administrator
文本框
一个或两个破折号

Administrator
矩形

Administrator
高亮

Administrator
文本框
选项改变命令的行为

参数指出命令操作的目标

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
文本框
一些基本的约定

Administrator
高亮

Administrator
高亮

Administrator
文本框
表示一个任意长度的列表

o Multiple items separated by pipes, |, means only one of them can be specified.

o Text in angle brackets, <>, represents variable data. For
example, <filename> means “insert the filename you wish to use here”. Sometimes
these variables are simply written in capital letters (e.g., FILENAME).

Consider the first usage statement for the date command:

[student@desktopX ~]$ date --help

date [OPTION]... [+FORMAT]

I:l This indicates that date can take an optional list of options ([OPTION] . . .), followed by an
optional format string, prefixed with a plus character, +, that defines how the current date should be
displayed ([+FORMAT]). Since both of these are optional, date will work even if it is not given

options or arguments (it will print the current date and time using its default format).|

The man page for a command has a SYNOPSIS section that provides information about the command's

syntax. The man—-pages(7) man page describes how to interpret all the square brackets, vertical
bars, and so forth that users see in SYNOPSIS or a usage message.

When a user is finished using the shell and wants to quit, there are a couple of ways to end the session.
The @exi tcommand terminates the current shell session. Another way to finish a session is by

typing Ctrl+D.

intro(1), bash(1), console(4), pts(4), and man—-pages(7) man pages

Note: Some details of the console(4) man page, involving init(8) and inittab(5), are outdated.

01.2. Practice: Local Console Access Terms

P —

Match the following items to their counterparts in the table.

Description Term

The interpreter that executes commands typed as strings. Shell

The visual cue that indicates an interactive shell is waiting for the | Prompt
user to type a command.

The name of a program to run. Command

The part of the command line that adjusts the behavior of a command. | Option

The part of the command line that specifies the target that the command | Argument
should operate on.

The hardware display and keyboard used to interact with a system. | Physical
console

One of multiple logical consoles that can each support an independent | Virtual
login session. console

An interface that provides a display for output and a keyboard for | Terminal

input to a shell session.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
文本框
显示

Administrator
高亮

Administrator
高亮

Administrator
文本框
因为这两个是可选的

Administrator
高亮

Administrator
高亮

Administrator
文本框
随堂测验

[1.3. Accessing the Command Line Using the Desktop

[l Objectives

After completing this section, students should be able to log into the Linux system using the GNOME 3
desktop environment to run commands from a shell prompt in a terminal program.

1 The GNOME desktop environment

Accessing the command line using the desktop
The desktop environment is the graphical user interface on a Linux system. The default desktop
environment in Red Hat Enterprise Linux 7 is provided by GNOME 3. It provides an integrated desktop
for users and a unified development platform on top of a graphical framework provided by the X
Window System.

The GNOME Shell provides the core user interface functions for the GNOME desktop environment.

The gnome-shellapplication is highly customizable. By default, RHEL 7 users use the "GNOME
Classic" theme for gnome-shell, which is similar to the GNOME 2 desktop environment. Another
available option is the "modern” GNOME 3 theme used by the upstream GNOME project. Either theme
can be selected persistently at login by selecting the gear icon next to thesign In button when
entering the user's password.

The first time a new user logs in, an initial setup program runs to help them configure basic account
settings. TheGNOME Help application is then started on the Getting Started with GNOME screen.
This screen includes videos and documentation to help orient new users to the GNOME 3

environment. GNOME Help can be quickly started by typing F1 in gnome-shell, by

selecting Applications — Documentation — Help, or by running the yelp command.

enz #) B Frioa:a3

M Applications Places) Student User

Hore

1/4

Figure 1.1: An empty GNOME 3 desktop
Parts of the GNOME Shell

The various parts of the GNOME Shell have specific names and purposes. These parts include the

following:

o

top bar: The bar that runs along the top of the screen. The top bar provides

the Applications and Places menus, and controls for volume, networking, calendar access,
and selecting between keyboard input methods (if there are more than one configured). Under
the menu for the user's name are options to adjust account settings, lock the screen, switch

users, log out of the system, or shut it down.

Applications menu: This menu on the top bar provides a way to start applications, categorized

into submenus. TheActivities Overview can also be started from this menu.

Places menu: This menu to the right of the Applications menu provides quick access through a
graphical file manager to important menus in the user's home directory, to /, and to exports

and file shares on the network.

window list: The bar that runs along the bottom of the screen. The window list provides an
easy way to access, minimize, and restore all windows in the current workspace. On the right
corner is an indicator to tell the user which workspace they are on and how many are
available.

message tray: The message tray provides a way to review notifications sent by applications or
system components to GNOME. If a notification occurs, normally the notification first appears
briefly as a single line at the bottom of the screen, and a persistent indicator appears in the
lower right corner to inform the user of how many notifications have been recently received.
The message tray can be opened to review these notifications by clicking the indicator or
typing Super+M. The message tray can be closed by typing either Esc or Super+M again.

Activities Overview: This is a special mode that helps a user organize windows and start
applications. The Activities Overview can be started by selecting Applications — Activities
Overview. A faster way is to press the Super key (sometimes called the windows key), found
near the lower left corner of an IBM PC 104/105-key keyboard. The three main areas of the
Activities Overview are the dash on the left side of the screen, the windows overviewin the
center of the screen, and the workspace selector on the right side of the screen. The

Activities Overview can be exited by pressing the Esc key.

dash: This is a configurable list of icons of the user's favorite applications, applications which
are currently running, and a grid button which can be used to select arbitrary applications.
Applications can be started by clicking on one of the icons or by using the grid button to find a

less commonly used application. The dash is also sometimes called the dock.

GNOME Help

LEARN. NETWORK.
EXPERIENCE
OPEN SOURCE.

student@localhost:~/Documents Red Hat | The World's Open Source Leader - Mo...

Figure 1.2: The GNOME 3 Activities Overview

lWorkspaces

Workspaces are separate desktop screens which have different application windows. These can be used
to organize the working environment by grouping open application windows by task. For example,
windows being used to perform a particular system maintenance activity (such as setting up a new
remote server) can be grouped in one workspace, while email and other communication applications
can be grouped in another workspace.

There are three methods for switching between workspaces. One method is to click the indicator in the
right corner of the window list and select the desired workspace. Another, perhaps the fastest, is to
type Ctrl+Alt+UpArrow orCtrl+Alt+DownArrow to switch between workspaces sequentially. A
third is to switch to theActivities Overview and click the desired workspace.

An advantage of using the Activities Overview is that windows can be clicked and dragged
between the current workspace and one of the others by using the workspace selector on the right
side of the screen and thewindows overview in the center of the screen.

Note_
Using the Ctrl+Alt+UpArrow or Ctrl+Alt+DownArrow key combinations to change workspaces
does not work in the virtual learning environment. Instead, the workspace applet on the panel or

the Activities Overviewmust be used to change workspaces.

[IStarting a terminal

To get a shell prompt in GNOME, start a graphical terminal application such as GNOME Terminal. There
are several ways to do this. Here are the three most commonly used methods:

o Select Applications — Utilities — Terminal.

o On an empty desktop, right-click, or press the Menu key, and select Open in Terminal from

the context menu that appears.

o From the Activities Overview, select Terminal from the dash (either from the favorites
area or by finding it with either the grid button (inside Utilities grouping) or the search field

at the top of the windows overview).

When a terminal window is opened, a shell prompt displays for the user that started the graphical
terminal program. The shell prompt and the terminal window's title bar will indicate the current user

name, host name, and working directory.

[Locking the screen or logging out

Locking the screen, or logging out entirely, can be done from the menu for the user's name on the far
right side of the top bar.

To lock the screen, select (User) — Lock or type ctrl+Alt+L. The screen will lock if the graphical
session is idle for a few minutes.

A lock screen curtain will appear that shows the system time and the name of the logged-in user.
To unlock the screen, press Enter or Space to raise the lock screen curtain, then enter the user's
password on the lock screen.

To log out and end the current graphical login session, select (User) — Log Out from the top bar. A
dialog window will appear, giving the option to Cancel the log out within 60 seconds, or confirm

the Log Out action.

[l Powering off or rebooting the system

To shut down the system, select (User) — Power Off from the top bar or type Ctrl+Alt+Del. In the
dialog that appears, the user can choose to Power Off, Restart the machine, or Cancel the
operation. If the user does not make a choice in this dialog, the system will automatically shut down
after 60 seconds.

References

GNOME Help
o yelp
GNOME Help: Getting Started with GNOME
o yelp help:gnome-help/getting-started

[1.4. Practice: The GNOME 3 Desktop Environment

Guided exercise

In this lab, you will log in through the graphical display manager as a regular user to become familiar
with the GNOME Classic desktop environment provided by GNOME 3.

Outcome:

A basic orientation to the GNOME 3 desktop environment.

Before you begin...

Access the graphical login screen of desktopX.example. com.

Important

Administrator
高亮

There are two virtual machines available for lab exercises, a desktop machine (generically

called desk topX) and a server (generically called serverX).

Take care to keep straight which virtual machine an exercise wants you to use.

Do each of the following tasks on the desk topX machine. Mark each task as it is completed.
1. Login as student using the password student.

a. At the GNOME login screen, click the student user account.
Enter student when prompted for the password.

b. Click sign In once the password has been typed in.
2. Change the password for student from password to 55TurnK3y.

a. The simplest approach is to open GNOME Terminal and use the passwd command
at the shell prompt.

On the empty desktop, press the Menu key or right-click with the mouse to open the

context menu.
b. Select Open in Terminal.

c. In the terminal window that appears, type passwd at the shell prompt. Follow the
instructions provided by the program to change the student password
from student to 55TurnK3y.

3. Log out.

a. Select the student — Log Out menu item.

b. Click the Log Out button in the confirmation window that appears.
4. Log back in as student with the new password of 55TurnK3y.

a. At the GNOME login screen, click the student user account.
Enter 55TurnK3y when prompted for the password.

b. Click sign In once the password has been typed in.
5. Lock the screen.
a. Select the student — Lock menu item.
6. Unlock the screen.
a. Press Enter to lift the lock screen curtain.
b. In the Password field, enter 55TurnK3y as the password.
c. Click the Unlock button. The GNOME desktop should reappear.

7. Determine how to shut down desktopX from the graphical interface, but Cancel the
operation without shutting down the system.

a. Select the student — Power Off menu item.

b. Click the cancel button in the confirmation screen that appears.

[1.5. Executing Commands Using the Bash Shell

[l Objectives

After completing this section, students should be able to save time running commands from a shell

prompt using Bash shortcuts.

[Basic command syntax

Executing Commands Using the Bash Shell

The GNU Bourne-Again Shell (bash) is a program that interprets commands typed in by the user.
Each string typed into the shell can have up to three parts: the command, options (that begin with a -
or --), and arguments. Each word typed into the shell is separated from each other with spaces.
Commands are the names of programs that are installed on the system. Each command has its own
options and arguments.

The Enter key is pressed when a user is ready to execute a command. Each command is typed on a
separate line and the output from each command displays before the shell displays a prompt. If a user
wants to type more than one command on a single line, a semicolon, ;, can be used as a command
separator. A semicolon is a member of a class of characters called metacharacters that has special
meanings for bash.

lExamples of simple commands

The date command is used to display the current date and time. It can also be used by the superuser
to set the system clock. An argument that begins with a plus sign (+) specifies a format string for the
date command.

[student@desktopX ~]$ date

Sat Apr 5 08:13:50 PDT 2014

[student@desktopX ~]$ date +3R

08:13

[student@desktopX ~]$ date +%x

04/05/2014

The passwd command changes a user's own password. The original password for the account must
be specified before a change will be allowed. By default, passwd is configured to require a strong
password, consisting of lowercase letters, uppercase letters, numbers, and symbols, and is not based
on a dictionary word. The superuser can use the passwd command to change other users' passwords.
[student@desktopX ~]$ passwd

Changing password for user student.

Changing password for student.

(current) UNIX password: Old_paSSWOI'd

New password: new_password

Retype new password: new_password

passwd: all authentication tokens updated successfully.

Linux does not require file name extensions to classify files by type. The £ile command scans the
beginning of a file's contents and displays what type it is. The files to be classified are passed as
arguments to the command.

[student@desktopX ~]1$ file /etc/passwd

/etc/passwd: ASCII text

[student@desktopX ~]1$ file /bin/passwd

/bin/passwd: setuid ELF 64-bit LSB shared object, x86-64, version 1
(SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.32,
BuildID[shal]=0x91a7160a019b7£f5f754264d920e257522c5bce67, stripped

[student@desktopX ~]$ file /home

/home: directory

The head and tail commands display the beginning and end of a file respectively. By default,
these commands display 10 lines, but they both have a —n option that allows a different number of

lines to be specified. The file to display is passed as an argument to these commands.

[student@desktopX ~]$ head /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:1p:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
operator:x:11:0:o0perator:/root:/sbin/nologin
[student@desktopX ~]$ tail -n 3 /etc/passwd
gdm:x:42:42::/var/lib/gdm:/sbin/nologin
gnome-initial-setup:x:993:991::/run/gnome-initial-setup/:/sbin/nologin

tepdump:x:72:72::/:/sbin/nologin

The we command counts lines, words, and characters in a file. It can take a =1, —w, or —C option to

display only the lines, words, or characters, respectively.
[student@desktopX ~]$ wc /etc/passwd
39 70 2005 /etc/passwd

[student@desktopX ~]1$ wc -1 /etc/passwd

39 /etc/passwd
[student@desktopX ~]$ wc -c /etc/group /etc/hosts
843 /etc/group
227 /etc/hosts

1070 total

1 Tab completion

Tab completion allows a user to quickly complete commands or file names once they have typed
enough at the prompt to make it unique. If the characters typed are not unique, pressing the Tab key
twice displays all commands that begin with the characters already typed.
[student@desktopX ~]$ pas<Tab><Tab>

passwd paste pasuspender

[student@desktopX ~]$ pass<Tab>

[student@desktopX ~]$ passwd

Changing password for user student.

Changing password for student.

(current) UNIX password:

Tab completion can be used to complete file names when typing them as arguments to commands.
When Tab is pressed, it will complete the file name as much as it can. Pressing Tab a second time
causes the shell to list all of the files that are matched by the current pattern. Type additional

characters until the name is unique, then use tab completion to finish off the command line.

[student@desktopX ~]1$ 1ls /etc/pas<Tab>
[student@desktopX ~]1$ 1ls /etc/passwd<Tab>

passwd passwd-

Arguments and options can be matched with tab completion for many commands.
The useradd command is used by the superuser, root, to create additional users on the system.
It has many options that can be used to control how that command behaves. Tab completion following a

partial option can be used to complete the option without a lot of typing.

[root@desktopX ~]# useradd --<Tab><Tab>

--base-dir --groups --no-log-init --shell
—-—-comment --help --non-unique --skel
—-—-create-home --home-dir —-—-no-user-group —-—-system
--defaults --inactive --password --uid
--expiredate -—key --root —--user-group
--gid --no-create-home --selinux-user

[rootRdesktopX ~]# useradd --

l Command history

The history command displays a list of previously executed commands prefixed with a command
number.
The exclamation point character, !, is a metacharacter that is used to expand previous commands
without having to retype them. ! number expands to the command matching the number
specified. ! string expands to the most recent command that begins with the string specified.
[student@desktopX ~]$ history
...0utput omitted...

23 clear

24 who

25 pwd

26 1s /etc

27 uptime
28 1ls -1
29 date

30 history
[student@desktopX ~]$!1s
1s -1
total 0
drwxr-xr-x. 2 student student 6 Mar 29 21:16 Desktop
...0utput omitted...

[student@desktopX ~]1$!'26

ls /etc

abrt hosts pulse
adjtime hosts.allow purple
aliases hosts.deny gemu-ga

...0utput omitted...

The arrow keys can be used to navigate through previous command lines in the shell's history. Up
Arrow edits the previous command in the history list. Down Arrow edits the next command in the
history list. Use this key when theUp Arrow has been pressed too many times. Left Arrow and Right
Arrow move the cursor left and right in the current command line being edited.

The Esc+. key combination causes the shell to copy the last word of the previous command on the
current command line where the cursor is. If used repeatedly, it will continue to go through earlier

commands.

[Editing the command line

When used interactively, bash has a command line-editing feature. This allows the user to use text

editor commands to move around within and modify the current command being typed. Using the arrow

keys to move within the current command and to step through the command history was introduced

earlier in this session. More powerful editing commands are introduced in the following table.
0

Useful command line-editing shortcuts

Shortcut Description

Jump to the beginning of the command line.

Ctrlt+a

Jump to the end of the command line.
Ctrlte

Clear from the cursor to the beginning of the command line.
Ctrltu

Clear from the cursor to the end of the command line.
Ctrl+tk

Jump to the beginning of the previous word on the command line.
CtrltLeft Arrow

. Jump to the beginning of the next word on the command line.
CtrltRight Arrow

Search the history list of commands for a pattern.
Ctrl+r

There are several other command line-editing commands available, but these are the most useful

commands for beginning users. The other commands can be found in the bash(1) man page.

References

bash(1), date(1), £ile(1), head(1), passwd(1), tail(1), and we(1) man pages
11.6. Practice: Bash Commands and Keyboard Shortcuts
Quiz

Match the following Bash shortcuts to their descriptions in the table.

Description Shell command

Jump to the beginning of the previous word on the command line.
CtrltLeft Arrow

Separate commands on the same line. ;
Clear from the cursor to the end of the command line.

Ctrl+tk
Re—execute a recent command by matching the command name. !'string
Shortcut used to complete commands, file names, and options. Tab
Re—execute a specific command in the history list. ! number

Jump to the beginning for the command line.
Ctrlta

Description Shell command

Display the list of previous commands. history

Copy the last argument of previous commands.
Esct.

11.7. Lab: Accessing the Command Line

Performance checklist

In this lab, you will use the Bash shell to efficiently execute commands using shell metacharacters.

Resources:

Files: /usr/bin/clean-binary-files

Outcomes:
o Practice using shell command line editing and history functions to efficiently execute

commands with minor changes.
o Change the password of the student user to T3stlngTlme.

o Execute commands used to identify file types and display parts of text files.

Before you begin...

Perform the following steps on desktopX.

1. Log into your desk topX system's graphical login screen as student.
2. Open a terminal window that will provide a bash prompt.

Select Applications — Utilities — Terminal.
3. Change student's password to T3st1lngT1lme.

Use the passwd command to change the password. Be sure to provide the original
password, student, first.

[student@desktopX ~]$ passwd
Changing password for user student.
Changing password for student.

(current) UNIX password: student

New password: T3st1ngT1me

Retype new password: T3st1ngT1me

passwd: all authentication tokens updated successfully.
4. Display the current time and date.

5. [student@RdesktopX ~]$ date

6. Thu Apr 3 10:13:04 PDT 2014

7. Display the current time in the following format: HH:MM:SS A/PM. Hint: The format string that
displays that output is $x.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Specify the +%x argument to date.

[student@desktopX ~]$ date +%r

10:14:07 AM

8. What kind of fileis /usr/bin/clean-binary-files?Is it readable by humans?

Use the £ile command to determine its file type.

[student@desktopX ~]$ file
/usr/bin/clean-binary-files

/usr/bin/clean-binary-files: POSIX shell script, ASCII text executable
9. Use the we command and bash shortcuts to display the size
of /usr/bin/clean-binary-files.

The easiest shortcut to use is Esc+. to reuse the argument from the previous command.

[student@RdesktopX ~]$ wc <Esc>.
[student@desktopX ~]$ wc /usr/bin/clean-binary-files

594 1780 13220 /usr/bin/clean-binary-files

10. Display the first 10 lines of /usr/bin/clean-binary-files
The head command displays the beginning of the file. Did you use the bash shortcut

again?

[student@ldesktopX ~]$ head <Esc>.

[student@ldesktopX ~]$ head
/usr/bin/clean-binary-files

#!/bin/sh
#

Script to clean binary files.

JPackage Project <http://www.jpackage.org/>

$Id: clean-binary-files,v 1.1 2006/09/19 19:39:37 fnasser Exp $

Import java functions
[-r "/usr/share/java-utils/java-functions™] \
11. Display the last 10 lines at the bottom of
the /usr/bin/clean-binary-files file.

Use the tail command.

[student@desktopX ~]$ tail <Esc>.

[student@desktopX ~]$ tail
/usr/bin/clean-binary-files

...Output omitted...
12. Repeat the previous command, but use the —n 20 option to display the last 20 lines in the

file. Use command line editing to accomplish this with a minimal amount of keystrokes.

Up Arrow displays the previous command. Ctrl+a makes the cursor jump to the beginning

of the line.Ctrl+Right Arrow jumps to the next word, then add the —n 20 option and
hit Enter to execute the command.

[student@desktopX ~]$ tail -n 20
/usr/bin/clean-binary-files

...Output omitted...

13. Execute the date command without any arguments to display the current date and time.

14. [student@desktopX ~]$ date

15. Thu Apr 3 10:48:30 PDT 2014

16. Use bash history to display just the time.

Display the list of previous commands with the history command to identify the
specific date command to be executed. Execute the command with
the ! number history command.

[student@desktopX ~]$ history

44 date +%X

[student@desktopX ~]$!'44

date +%X

10:49:56 AM

17. Finish your session with the bash shell.

Use either exit or the ctrl+d key combination to close the shell.

[student@desktopX ~]$ exit

[Chapter 2. Managing Files From

the Command Line

2.1. The Linux File System Hierarchy

2.2. Practice: File System Hierarchy

2.3. Locating Files by Name

2.4. Practice: Locating Files and Directories

2.5. Managing Files Using Command-Line Tools

2.6. Practice: Command-Line File Management

2.7. Matching File Names Using Path Name Expansion
2.8. Practice: Path Name Expansion

2.9. Lab: Managing Files with Shell Expansion

Introduction

Overview

Goal To copy, move, create, delete, and organize files while working from the
Bash shell prompt.

Objectives o Identify the purpose for important directories on a Linux system.
o Specify files using absolute and relative path names.

o Create, copy, move, and remove files and directories using
command—line utilities.

o Match one or more file names using shell expansion as arguments
to shell commands.

Sections o The Linux File System Hierarchy (and Practice)
o Locating Files by Name (and Practice)
o Managing Files Using Command-Line Tools (and Practice)

o Matching File Names Using Path Name Expansion (and Practice)

Lab o Managing Files with Shell Expansion

2.1. The Linux File System Hierarchy

lObjectives

After completing this section, students should be able to understand fundamental file system layout,
organization, and the location of key file types.

I The file system hierarchy

The Linux file system hierarchy

All files on a Linux system are stored on file systems which are organized into a single inverted tree of
directories, known as a file system hierarchy. This tree is inverted because the root of the tree is said
to be at the top of the hierarchy, and the branches of directories and subdirectories stretch below the

' -
r'ﬂr'—rhmr—r—hmr—@

bin boot dev etc home root run sbin usr

N b &
HEE . r‘fﬁmp:

alice bob eve bin local shin tmp

Figure 2.1: Significant file system directories in Red Hat Enterprise Linux 7

The directory / is the root directory at the top of the file system hierarchy. The / character is also
used as adirectory separator in file names. For example, if @t is a subdirectory of the / directory,
we could call that directory/etc. Likewise, if the /etec directory contained a file named issue,
we could refer to that file as /etc/issue.

Subdirectories of / are used for standardized purposes to organize files by type and purpose. This
makes it easier to find files. For example, in the root directory, the subdirectory /boot is used for
storing files needed to boot the system.

The following terms are encountered in describing file system directory contents:
— static 1is content that remains unchanged until explicitly edited or
reconfigured.

- dynamic or variable 1is content typically modified or appended by active
processes.

— persistent 1is content, particularly configuration settings, that remain
after a reboot.

— runtime 1is process— or system—specific content or attributes cleared during
reboot.

The following table lists some of the most important directories on the system by hame and purpose.

0

Important Red Hat Enterprise Linux directories

Location Purpose

Administrator
矩形

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Location Purpose

/usr Installed software, shared libraries, include files, and static read-only
program data. Important subdirectories include:
- [usr/bin: User commands.

- [Jusr/sbin: System administration commands.

- [fusr/local: Llocally customized software.

/etc Configuration files specific to this system.

/var Variable data specific to this system that should persist between boots. Files
that dynamically change (e.g. databases, cache directories, log files,

printer—spooled documents, and website content) may be found under /wvar.

/run Runtime data for processes started since the last boot. This includes process
ID files and lock files, among other things. The contents of this directory
are recreated on reboot. (This directory

consolidates /war/run and [/wvar/lock from older versions of Red Hat

Enterprise Linux.)

/home Home directories where regular users store their personal data and
configuration files.

/root Home directory for the administrative superuser, root.

/ tmp A world-writable space for temporary files. Files which are more than 10 days
old are deleted from this directory automatically. Another temporary

directory exists, /wvar/tmp, in which files that have not been accessed,

changed, or modified in more than 30 days are deleted automatically.

/boot Files needed in order to start the boot process.
/dev Contains special device files which are used by the system to access
hardware.

Important

In Red Hat Enterprise Linux 7, four older directories in / now have identical contents as their
counterparts located in /usr:

- /bin and /usr/bin.

- [/sbin and /usr/sbin.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

- /1lib and /usr/lib.

- /1ib64 and /usr/libéA4.

In older versions of Red Hat Enterprise Linux, these were distinct directories containing different sets
of files. In RHEL 7, the directories in / are symbolic links to the matching directories in /usr.
hier(7) man page

Filesystem Hierarchy Standard

Quiz

Match the following items to their counterparts in the table.

This directory contains static, persistent system configuration data. /etc
This is the system’ s root directory. /
User home directories are located under this directory. /home
This is the root account’ s home directory. /root
This directory contains dynamic configuration data, such as FTP and /var
websites.

Regular user commands and utilities are located here. /usr/bin
System administration binaries, for root use, are here. /usr/sbin
Temporary files are stored here. /tmp
Contains dynamic, non—persistent application runtime data. /run
Contains installed software programs and libraries. /usr

[2.3. Locating Files by Name

[l Objectives

After completing this section, students should be able to correctly use absolute path names, change a

working directory, and use commands to determine directory locations and contents.

l Absolute paths and relative paths

Locating files by name

Administrator
高亮

Administrator
高亮

http://www.pathname.com/fhs

— var |

I— log — ‘Esages i ’

Figure 2.2: The common file browser view (left) is equivalent to the top-down view (right)

) G

The path of a file or directory specifies its unique file system location. Following a file path traverses
one or more named subdirectories, delimited by a forward slash (/), until the destination is reached.
Standard file behavior definitions apply to directories (also called folders) the same as other file types.
Although a Space is an acceptable character in Linux file names, a space is the delimiter used by the
command shell for command syntax interpretation. New administrators are advised to avoid using
spaces in file names, since file names that include spaces frequently result in undesired command
execution behavior.

Absolute paths

An absolute path is a fully qualified name, beginning at the root (/) directory and specifying each
subdirectory traversed to reach and uniquely represent a single file. Every file in a file system has a
unique absolute path name, recognized with a simple rule: A path name with a forward slash (/) as the
first character is an absolute path name. For example, the absolute path name for the system message
log file is /var/log/messages. Absolute path names can be long to type, so files may also be
located relatively.

When a user logs in and opens a command window, the initial location is normally the user's home
directory. System processes also have an initial directory. Users and processes navigate to other
directories as needed; the termsworking directory or current working directory refer to

their current location.

Relative paths

Like an absolute path, a relative path identifies a unique file, specifying only the path necessary to
reach the file from the working directory. Recognizing relative path names follows a simple rule: A path
name with anything other than a forward slash (/) as a first character is a relative path name. A user in
the /var directory could refer to the message log file relatively as log/messages.

For standard Linux file systems, the path name of a file, including all / characters, may be no more
than 4095 bytes long. Each component of the path name separated by / characters may be no more
than 255 bytes long. File names can use any UTF-8 encoded Unicode character except / and

the NUL character. (ASCIl characters require one byte; other Latin, Greek, Hebrew, or Cyrillic
characters take two bytes; remaining characters in the Unicode Basic Multilingual Plane take three; and
no character will take more than four bytes.)

= | messages
=] 2

/
I
|]
home var
—t—
YR R
— — —
alice bob eve log
|

—

Linux file systems—including, but not limited to, ext4, XFS, BTRFS, GFS2, and GlusterFS—are
case-sensitive. CreatingFileCase. txt and filecase. txt in the same directory results
in two unique files. Although many non-Linux file systems are supported in Linux, each has unique file
naming rules. For example, the ubiquitous VFAT file system is not case-sensitive and allows only one of
the two example files to be created. However, VFAT, along with Microsoft's NTFS and Apple's HFS+,
has case preserving behavior. Although these file systems are not case-sensitive (enforced primarily to
support backward compatibility), they do display file names with the original capitalization used when
the file was created.

[Navigating paths

The pwd command displays the full path name of the current location, which helps determine
appropriate syntax for reaching files using relative path names. The 1s command lists directory

contents for the specified directory or, if no directory is given, for the current directory.
[student@desktopX ~]$ pwd
/home/student

[student@desktopX ~]$ 1s

Desktop Documents Downloads Music Pictures Public Templates Videos

[student@desktopX ~]1$

Use the c¢d command to change directories. With a working directory of /home/student,
relative path syntax is shortest to reach the Videos subdirectory. The Documents subdirectory
is then reached using absolute path syntax.

[student@desktopX ~]$ cd Videos
[student@desktopX Videos]$ pwd

/home/student/Videos
[student@desktopX Videos]$ cd /home/student/Documents
[student@desktopX Documents]$ pwd

/home/student/Documents
[student@desktopX Documents]$ cd
[student@desktopX ~]$ pwd

/home/student

[student@desktopX ~]$

The shell program prompt displays, for brevity, only the last component of the current directory path.
For/home/student/Videos, only Videos displays. At any time, return to the user's
home directory using c¢d without specifying a destination. The prompt displays the tilde (~) character
when the user's current directory is their home directory.

The touch command normally updates a file's timestamp to the current date and time without
otherwise modifying it. This is useful for creating empty files, which can be used for practice, since
"touching” a file name that does not exist causes the file to be created. Using touch, practice files
are created in the Documents and Videossubdirectories.

[student@desktopX ~]$ touch Videos/blockbusterl.ogg
[student@desktopX ~]$ touch Videos/blockbuster2.ogg
[student@desktopX ~]$ touch Documents/thesis chapterl.odf
[student@desktopX ~]$ touch Documents/thesis chapter2.odf
[student@desktopX ~]$

The 1s command has multiple options for displaying attributes on files. The most common and useful
are —1 (long listing format), —a (all files, includes hidden files), and =R (recursive, to include the

contents of all subdirectories).

[student@desktopX ~]$ 1s -1

total 15

drwxr-xr-x. 2 student student 4096 Feb 7 14:02 Desktop
drwxr-xr-x. 2 student student 4096 Jan 9 15:00 Documents
drwxr-xr-x. 3 student student 4096 Jan 9 15:00 Downloads
drwxr-xr-x. 2 student student 4096 Jan 9 15:00 Music
drwxr-xr-x. 2 student student 4096 Jan 9 15:00 Pictures
drwxr-xr-x. 2 student student 4096 Jan 9 15:00 Public
drwxr-xr-x. 2 student student 4096 Jan 9 15:00 Templates
drwxr-xr-x. 2 student student 4096 Jan 9 15:00 Videos

[student@desktopX ~]$ 1ls -a

total 15

drwx------ . 16 student student 4096 Feb 8 16:15

drwxr-xr-x. 6 root root 4096 Feb 8 16:13

—rw--—-—-—- . 1 student student 22664 Feb 8 00:37 .bash history
-rw-r--r--. 1 student student 18 Jul 9 2013 .bash logout
-rw-r--r--. 1 student student 176 Jul 9 2013 .bash profile
-rw-r--r--. 1 student student 124 Jul 9 2013 .bashrc

drwxr-xr-x. 4 student student 4096 Jan 20 14:02 .cache
drwxr-xr-x. 8 student student 4096 Feb 5 11:45 .config
drwxr-xr-x. 2 student student 4096 Feb 7 14:02 Desktop
drwxr-xr-x. 2 student student 4096 Jan 9 15:00 Documents
drwxr-xr-x. 3 student student 4096 Jan 25 20:48 Downloads
drwxr-xr-x. 11 student student 4096 Feb 6 13:07 .gnome?2
drwx—----- . 2 student student 4096 Jan 20 14:02 .gnome2 private
SEjme==ss= . 1 student student 15190 Feb 8 09:49 .ICEauthority
drwxr-xr-x. 3 student student 4096 Jan 9 15:00 .local

drwxr-xr-x. 2 student student 4096 Jan 9 15:00 Music

drwxr-xr-x. 2 student student 4096 Jan 9 15:00 Pictures
drwxr-xr-x. 2 student student 4096 Jan 9 15:00 Public
drwxr-xr-x. 2 student student 4096 Jan 9 15:00 Templates
drwxr-xr-x. 2 student student 4096 Jan 9 15:00 Videos
[student@desktopX ~]$

The two special directories at the top of the listing refer to the current directory (.) and

the parent directory (. .). These special directories exist in every directory on the system. Their

usefulness will become apparent when file management commands are practiced.

Important

File names beginning with a dot (.) indicate files hidden from normal view using 1s and other
commands. This isnot a security feature. Hidden files keep necessary user configuration files from
cluttering home directories. Many commands process hidden files only with specific command-line
options, preventing one user's configuration from being accidentally copied to other directories or
users.

To protect file contents from improper viewing requires the use of file permissions.
[student@desktopX ~]$ 1ls -R

Desktop Documents Downloads Music Pictures Public Templates Videos

./Desktop:

./Documents:

thesis chapterl.odf thesis chapter2.odf
./Downloads:

./Music:

./Pictures:

./Public:

./Templates:

./Videos:

blockbusterl.ogg Dblockbuster2.ogg

[student@desktopX ~]$

The c¢d command has many options. A few are so useful as to be worth practicing early and using often.

The commanded - changes directory to the directory where the user was previous to the current

directory. Watch as this user takes advantage of this behavior to alternate between two directories,

useful when processing a series of similar tasks.

[student@desktopX
[student@desktopX
/home/student/Videos

[student@desktopX
[student@desktopX
/home/student/Documents
[student@desktopX
[student@desktopX
/home/student/Videos

[student@desktopX
[student@desktopX
/home/student/Documents
[student@desktopX
[student@desktopX
/home/student/Videos

[student@desktopX
[student@desktopX

~1$% ed Videos
Videos]$ pwd

Videos]$ cd /home/student/Documents

Documents]$ pwd

Documents]$ cd -
Videos]$ pwd

Videos]$ cd -

Documents]$ pwd

Documents]$ cd -
Videos]$ pwd

Videos]$ cd
~1$

The cd .. command uses the . . hidden directory to move up one level to the parent directory,

without needing to know the exact parent name. The other hidden directory (.) specifies the current

directory on commands in which the current location is either the source or destination argument,

avoiding the need to type out the directory's absolute path name.

[student@desktopX
/home/student/Videos
[student@desktopX
[student@desktopX
/home/student/Videos
[student@desktopX
[student@desktopX
/home/student
[student@desktopX
[student@desktopX
/home

[student@desktopX

Videos]$ pwd

Videos]$ cd
Videos]$ pwd

Videos]$ cd
~]1$ pwd

~]18 cd
home] $ pwd

home]$ cd

[student@desktopX /]1$ pwd
/

[student@desktopX /]$ cd
[student@desktopX ~]$ pwd

/home/student

4

[student@desktopX ~]$

References

info libc 'file name resolution' (GNU C Library Reference Manual)
o Section 11.2.2 File name resolution

bash(1), cd(1), 1s(1), pwd(1), unicode(7), and ut£-8(7) man pages
UTF-8 and Unicode
Quiz

Match the following items to their counterparts in the table.

List the current user s home directory (long format) in simplest syntax, | ls -1 ~
when it is not the current location.

Return to the current user’ s home directory. cd
Determine the absolute path name of the current location. pwd
Return to the most previous working directory. cd —
Move up two levels from the current location. cd .. /..
List the current location (long format) with hidden files. ls —al
Move to the binaries location, from any current location. cd /bin
Move up to the parent of the current location. cd ..
Move to the binaries location, from the root directory. cd bin

[2.5. Managing Files Using Command-Line Tools

[Objectives

After completing this section, students should be able to create, copy, link, move, and remove files and

subdirectories in various directories.

[l Command-line file management

Managing files using command-line tools

File management involves creating, deleting, copying, and moving files. Additionally, directories can
be created, deleted, copied, and moved to help organize files logically. When working at the command
line, file management requires awareness of the current working directory to choose either absolute or

relative path syntax as most efficient for the immediate task.

0

File management commands

http://www.utf-8.com/

(note)

(note)

Activity Single source Multiple source
Copy file cp filel file?2 cp filel file2 filed dir
Move file mv filel file2 mv filel file2 file3 dir
Remove file rm filel rm —f filel file2 file3
Create mkdir dir mkdir -p parl/par2/dir
directory
Copy cp —r dirl dir2 cp —r dirl dir2 dir3 dir4
directory
Move mv dirl dir2 mv dirl dir2 dir3 dir4
directory
Remove rm —r dirl rm —rf dirl dir2 dir3
directory

Note:

The result is a rename.
” . ”
The “recursive” option is required to process a source directory.

If dir2 exists, the result is a move. If dir2 doesn’t exist, the
result is a rename.

The last argument must be a directory.

Use caution with “force” option; you will not be prompted to confirm
your action.

Use caution with “create parent” option; typing errors are not
caught.

Create directories

The mkdir command creates one or more directories or subdirectories, generating errors if the file
name already exists or when attempting to create a directory in a parent directory that doesn't exist.
The —p parent option creates missing parent directories for the requested destination. Be cautious
when usingmkdir -p, since accidental spelling mistakes create unintended directories without

generating error messages.

[student@desktopX ~]$ mkdir Video/Watched

mkdir: cannot create directory ‘Video/Watched': No such file or directory

The mkdir failed because Videos was misspelled. "Video" does not exist as a location in
which to create theWa tched subdirectory. If a —p were used, the user would not have received an
error message and now have two directories, Video and Videos.

[student@desktopX ~]$ mkdir Videos/Watched
[student@desktopX ~]$ cd Documents

[student@desktopX Documents]$ mkdir ProjectX ProjectY

[student@desktopX Documents]$ mkdir -p Thesis/Chapterl
Thesis/Chapter2 Thesis/Chapter3

[student@desktopX Documents]$ cd
[student@desktopX ~]$ 1ls -R Videos Documents
Documents:

ProjectX ProjectY Thesis thesis chapterl.odf thesis chapter2.odf

Documents/ProjectX:

Documents/ProjectY:

Documents/Thesis:

Chapterl Chapter2 Chapter3

Documents/Thesis/Chapterl:

Documents/Thesis/Chapter2:

Documents/Thesis/Chapter3:

Videos:

blockbusterl.ogg Dblockbuster2.ogg Watched

Videos/Watched:

[student@desktopX ~]1$

The last mkdir created three Chaptern subdirectories with one command. The —p parent option
created the missing parent directory Thesis.

Copy files

The cp command copies one or more files to become new, independent files. Syntax allows copying an
existing file to a new file in the current or another directory, or copying multiple files into another
directory. In any destination, new file names must be unique. If the new file name is not unique, the

copy command will overwrite the existing file.

[student@desktopX ~]$ cd Videos

[student@desktopX Videos]$ cp blockbusterl.ogg
blockbuster3.ogg

[student@desktopX Videos]$ 1s -1

total 0

-rw-rw-r--. 1 student student 0 Feb 8 16:23 blockbusterl.ogg
-rw-rw-r-—-. 1 student student 0 Feb 8 16:24 blockbuster2.ogg
-rw-rw-r--. 1 student student 0 Feb 8 19:02 blockbuster3.ogg

drwxrwxr-x. 2 student student 4096 Feb 8 23:35 Watched

[student@desktopX Videos]$

When copying multiple files with one command, the last argument must be a directory. Copied files
retain their original names in the new directory. Conflicting file names that exist at a destination may
be overwritten. To protect users from accidentally overwriting directories with contents, multiple
file cp commands ignore directories specified as a source. Copying non-empty directories, with
contents, requires the —Xx recursive option.

[student@desktopX Videos]$ cd ../Documents

[student@desktopX Documents]$ cp thesis chapterl.odf
thesis_chapter2.odf Thesis ProjectX

cp: omitting directory “Thesis'
[student@desktopX Documents]$ cp -r Thesis ProjectX

[student@desktopX Documents]$ cp thesis chapter2.odf
Thesis/Chapter2/

[student@desktopX Documents]$ 1ls

R

ProjectX ProjectY Thesis thesis chapterl.odf thesis chapter2.odf

./ProjectX:

Thesis thesis chapterl.odf thesis chapter2.odf

./ProjectX/Thesis:

./ProjectY:

./Thesis:

Chapterl Chapter2 Chapter3

./Thesis/Chapterl:

./Thesis/Chapter?2:

thesis chapter2.odf

./Thesis/Chapter3:

[student@desktopX Documents]$

In the first cp command, Thesis failed to copy,

but thesis chapterl.odf and thesis chapter2. odf succeeded. Using

the —r recursive option, copying Thesis succeeded.

Move files

The mv command renames files in the same directory, or relocates files to a new directory. File
contents remain unchanged. Files moved to a different file system require creating a new file by
copying the source file, then deleting the source file. Although normally transparent to the user, large
files may take noticeably longer to move.

[student@desktopX Videos]$ cd ../Documents
[student@desktopX Documents]$ 1ls -1

total 0
-rw-rw-r--. 1 student student 0 Feb 8 16:24 thesis chapterl.odf
-rw-rw-r--. 1 student student 0 Feb 8 16:24 thesis chapter2.odf

[student@desktopX Documents]$ mv thesis chapter2.odf
thesis_chapter2 reviewed.odf

[student@desktopX Documents]$ mv thesis chapterl.odf
Thesis/Chapterl

[student@desktopX Documents]$ 1ls -1R

total 16
drwxrwxr-x. 2 student student 4096 Feb 11 11:58 ProjectX
drwxrwxr-x. 2 student student 4096 Feb 11 11:55 ProjectY

drwxrwxr-x. 5 student student 4096 Feb 11 11:56 Thesis

-rw-rw-r--. 1 student student 0 Feb 11 11:54 thesis chapter2 reviewed.odf
./ProjectX:

total 0

-rw-rw-r—-. 1 student student 0 Feb 11 11:58 thesis chapterl.odf
-rw-rw-r—-. 1 student student 0 Feb 11 11:58 thesis chapter2.odf
./ProjectX/Thesis:

total O

./ProjectY:

total 0

./Thesis:
total 12
drwxrwxr-x. 2 student student 4096 Feb 11 11:59 Chapterl
drwxrwxr-x. 2 student student 4096 Feb 11 11:56 Chapter2

drwxrwxr-x. 2 student student 4096 Feb 11 11:56 Chapter3

./Thesis/Chapterl:

total O

-rw-rw-r—--. 1 student student 0 Feb 11 11:54 thesis chapterl.odf
./Thesis/Chapter?2:

total O

-rw-rw-r—--. 1 student student 0 Feb 11 11:54 thesis chapter2.odf
./Thesis/Chapter3:

total O

[student@desktopX Documents]$

The first mv command is an example of renaming a file. The second causes the file to be relocated to
another directory.

Remove files and directories

Default syntax for rm deletes files, but not directories. Deleting a directory, and potentially many
subdirectories and files below it, requires the —x recursive option. There is no command-line undelete
feature, nor a trash bin from which to restore.

[student@desktopX Documents]$ pwd

/home/student/Documents

[student@desktopX Documents]$ rm

thesis_chapter2 reviewed.odf

[student@desktopX Documents]$ rm Thesis/Chapterl

rm: cannot remove 'Thesis/Chapterl': Is a directory
[student@desktopX Documents]$ rm -r Thesis/Chapterl
[student@desktopX Documents]$ 1ls -1 Thesis

total 8

drwxrwxr-x. 2 student student 4096 Feb 11 12:47 Chapter2

drwxrwxr-x. 2 student student 4096 Feb 11 12:48 Chapter3
[student@desktopX Documents]$ rm -ri Thesis

rm: descend into directory "Thesis'? ¥

rm: descend into directory ‘Thesis/Chapter2'? ¥

rm: remove regular empty file “Thesis/Chapter2/thesis chapter2.odf'? ¥y
rm: remove directory 'Thesis/Chapter2'? ¥

rm: remove directory ‘Thesis/Chapter3'? ¥

rm: remove directory "Thesis'? ¥

[student@desktopX Documents]$

After rm failed to delete the Chapter1 directory, the —x recursive option succeeded. The
last rm command parsed into each subdirectory first, individually deleting contained files before
removing each now-empty directory. Using —iwill interactively prompt for each deletion. This is
essentially the opposite of —£ which will force the deletion without prompting the user.

The rmdir command deletes directories only if empty. Removed directories cannot be undeleted.
[student@desktopX Documents]$ pwd

/home/student/Documents

[student@desktopX Documents]$ rmdir ProjectY
[student@desktopX Documents]$ rmdir ProjectX

rmdir: failed to remove “ProjectX': Directory not empty
[student@desktopX Documents]$ rm -r ProjectX
[student@desktopX Documents]$ 1ls -1R

total O

[student@desktopX Documents]$

The rmdir command failed to delete non-empty ProjectX, but rm -r succeeded.

References

cp(1), mkdir(1), mv(1), rm(1), and rmdir(1) man pages

[12.6. Practice: Command-Line File Management

Guided exercise

In this lab, you will practice efficient techniques for creating and organizing files using directories, file
copies, and links.

Outcomes:

Students will practice creating, rearranging, and deleting files.

Before you begin...

Log into your student account on serverX. Begin in your home directory.

In your home directory, create sets of empty practice files to use for the remainder of this lab.
If the intended command is not immediately recognized, students are expected to use the
guided solution to see and practice how the task is accomplished. Use the shell tab completion
to locate and complete path names more easily.

Create six files with names of the form songX . mp3.
Create six files with names of the form snapX. jpg.
Create six files with names of the form £11lmX.avi.

In each set, replace X with the numbers 1 through 6.

[student@serverX ~]$ touch songl.mp3 song2.mp3
song3.mp3 song4.mp3 song5.mp3 song6.mp3

[student@serverX ~]$ touch snapl.jpg snap2.jpg
snap3.jpg snap4.]jpg snap5.jpg snap6.]jpg
[student@serverX ~]$ touch filml.avi film2.avi
film3.avi film4.avi filmS5.avi film6.avi

[student@serverX ~]$ 1ls -1
From your home directory, move the song files into your Mus i c subdirectory, the snapshot

files into yourPictures subdirectory, and the movie files into
your Videos subdirectory.

When distributing files from one location to many locations, first change to the directory
containing thesource files. Use the simplest path syntax, absolute or relative, to reach the
destination for each file management task.

[student@serverX ~]$ mv songl.mp3 song2.mp3 song3.mp3
song4 .mp3 song5.mp3 song6.mp3 Music

[student@serverX ~]$ mv snapl.jpg snap2.jpg snap3.]jpg
snap4.jpg snap5.]jpg snapb6.jpg Pictures
[student@serverX ~]$ mv filml.avi film2.avi film3.avi
filmd4.avi film5.avi filmé6.avi Videos

[student@serverX ~]$ ls -1 Music Pictures Videos

In your home directory, create three subdirectories for organizing your files into projects. Call

these directories friends, family, and work. Create all three with one command.

You will use these directories to rearrange your files into projects.

[student@serverX ~]$ mkdir friends family work
[student@serverX ~]1$ 1ls -1
You will collect some of the new files into the project directories for family and friends. Use as

many commands as needed. You do not have to use only one command as in the example. For

each project, first change to the project directory, then copy the source files into this

directory. You are making copies, since you will keep the originals after giving these projects

to family and friends.
Copy files (all types) containing numbers 1 and 2 to the friends folder.
Copy files (all types) containing numbers 3 and 4 to the family folder.

When collecting files from multiple locations into one location, change to the directory that
will contain thedestination files. Use the simplest path syntax, absolute or relative, to reach

the source for each file management task.

[student@serverX ~]$ cd friends

[student@serverX friends]$ cp ~/Music/songl.mp3
~/Music/song2.mp3 ~/Pictures/snapl.jpg
~/Pictures/snap2.jpg ~/Videos/filml.avi
~/Videos/film2.avi

[student@serverX friends]$ 1ls -1
[student@serverX friends]$ cd ../family

[student@serverX family]$ cp ~/Music/song3.mp3
~/Music/song4 .mp3 ~/Pictures/snap3.jpg
~/Pictures/snap4.]jpg ~/Videos/film3.avi
~/Videos/film4.avi

[student@serverX family]$ 1ls -1

For your work project, you will create additional copies.

[student@serverX family]$ cd ../work

[student@serverX work]$ cp ~/Music/song5.mp3
~/Music/song6.mp3 ~/Pictures/snap5.jpg
~/Pictures/snap6.jpg ~/Videos/film5.avi
~/Videos/film6.avi

[student@serverX work]$ 1ls -1

Your projects are now done. Time to clean up the projects.

Change to your home directory. Attempt to delete both the family and friends projects with a

single rmdi rcommand.

[student@serverX work]$ cd
[student@serverX ~]$ rmdir family friends
rmdir: failed to remove “family': Directory not empty

rmdir: failed to remove “friends': Directory not empty

Using the rmdir command should fail since both directories are non-empty.

Use another command that will succeed in deleting both the family and friends folders.

10. [student@serverX ~]$ rm -r family friends

[student@serverX ~]$ 1ls -1

11. Delete all the files in the work project, but do not delete the work directory.

12. [student@serverX ~]$ cd work

13. [student@serverX work]$ rm song5.mp3 song6.mp3
snap5.jpg snap6.jpg film5.avi filmé6.avi

[student@serverX work]$ 1ls -1

14. Finally, from your home directory, use the rmdixr command to delete the work directory.

The command should succeed now that it is empty.

15. [student@serverX work]$ cd

16. [student@serverX ~]$ rmdir work
[student@serverX ~]$ 1ls -1
12.7. Matching File Names Using Path Name Expansion

[l Objectives

After completing this section, students should be able to use meta-characters and expansion

techniques to improve file management processing efficiency.

[File globbing: path name expansion

Matching file names using path name expansion

The Bash shell has a path name-matching capability historically called globbing, abbreviated from

the “global command” file path expansion program of early UNIX. The Bash globbing feature,
commonly called pattern matchingor “wildcards”, makes managing large numbers of files easier.
Using meta-characters that “expand” to match file and path names being sought, commands perform
on a focused set of files at once.

Pattern matching

Globbing is a shell command-parsing operation that expands a wildcard pattern into a list of matching
path names. Command-line meta-characters are replaced by the match list prior to command
execution. Patterns, especially square-bracketed character classes, that do not return matches display

the original pattern request as literal text. The following are common meta-characters and pattern

classes.
* Any string of 0 or more characters.
? Any single character.

The current user’ s home directory.

Pattern Matches

username | User username’ s home directory.

~

A The current working directory.

~

- The previous working directory.

Any one character in the enclosed class.

labc. . .]

Any one character not. in the enclosed class.
[labc...]
R Any one character not 1in the enclosed class.
["abc...]

[[:alpha:]] | Any alphabetic character. | |

[[:lower:]] | Any lower—case character.

[[:upper:]] | Any upper—case character.

[[:alnum:]] | Any alphabetic character or digit.

[[:punct:]] | Any printable character not a space or alphanumeric.

[[:digit:]]

Any digit, 0-9.

[[:space:]] | Any one whitespace character; may include tabs, newline, or carriage
returns, and form feeds as well as space.

Note pre—set POSIX character class; adjusts for current locale.

A sample set of files is useful to demonstrate expansion.

[student@desktopX ~]$ mkdir glob; cd glob

[student@desktopX glob]$ touch alfa bravo charlie delta echo
able baker cast dog easy

[student@desktopX glob]l$ 1s

able alfa baker bravo cast charlie delta dog easy echo

[student@desktopX glob]$

First, simple pattern matches using * and ?.
[student@desktopX glob]$ 1ls a*
able alfa

[student@desktopX glob]l$ 1ls *a*

able alfa baker bravo cast charlie delta easy

[student@desktopX glob]l$ 1s [ac]*

able alfa cast charlie

[student@desktopX glob]$ 1ls ?°?2??

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
文本框
大小写字母

Administrator
文本框
标点符号

Administrator
高亮

able alfa cast easy echo

baker bravo delta

[student@desktopX glob]l$

Tilde expansion

The tilde character (~), when followed by a slash delimiter, matches the current user's home directory.
When followed by a string of characters up to a slash, it will be interpreted as a username, if one
matches. If no username matches, then an actual tilde followed by the string of characters will be

returned.

[student@desktopX globl$ 1ls ~/glob

able alfa baker bravo cast charlie delta dog easy echo

[student@desktopX glob]l$ echo ~/glob

/home/student/glob

[student@desktopX glob]$

Brace expansion
Brace expansion is used to generate discretionary strings of characters. Braces contain a
comma-separated list of strings, or a sequence expression. The result includes the text preceding or

following the brace definition. Brace expansions may be nested, one inside another.

[student@desktopX glob]$ echo
{Sunday,Monday, Tuesday,Wednesday} . log

Sunday.log Monday.log Tuesday.log Wednesday.log

[student@desktopX glob]$ echo file{l..3}.txt

filel.txt file2.txt file3.txt

[student@desktopX glob]$ echo file{a..c}.txt

filea.txt fileb.txt filec.txt

[student@desktopX glob]$ echo file{a,b}{1l,2}.txt

fileal.txt filea2.txt filebl.txt fileb2.txt

[student@desktopX glob]l$ echo file{a{l,2},b,c}.txt

fileal.txt filea2.txt fileb.txt filec.txt

[student@desktopX glob]$

Command substitution

Command substitution allows the output of a command to replace the command itself. Command
substitution occurs when a command is enclosed with a beginning dollar sign and

parenthesis, $ (command) , or with backticks, - command " . The form with backticks is older,
and has two disadvantages: 1) it can be easy to visually confuse backticks with single quote marks, and
2) backticks cannot be nested inside backticks. The $ (command) form can nest multiple command

expansions inside each other.

[student@desktopX glob]$ echo Today is “date +%A°.

Today is Wednesday.

[student@desktopX glob] $ echo The time is $ (date +%M) minutes
past $(date +%1%p).

The time is 26 minutes past 11AM.

[student@desktopX glob]$

Protecting arguments from expansion

Many characters have special meaning in the Bash shell. To ignore meta-character special

meanings, quoting andescaping are used to protect them from shell expansion. The backslash (\) is an
escape character in Bash, protecting the single following character from special interpretation. To
protect longer character strings, single (') or double quotes (") are used to enclose strings.

Use double quotation marks to suppress globbing and shell expansion, but still allow command and
variable substitution. Variable substitution is conceptually identical to command substitution, but may
use optional brace syntax.

[student@desktopX glob]$ host=$ (hostname); echo $host

desktopX

[student@desktopX glob]$ echo "***** hostname is ${host}
*kkkkk"

***** hostname is desktopX ****x*

[student@desktopX glob]$ echo Your username variable is
\$USER.

Your username variable is SUSER.

[student@desktopX glob]$

Use single quotation marks to interpret all text literally. Observe the difference, on both screen and
keyboard, between the single quote (') and the command substitution backtick (). Besides
suppressing globbing and shell expansion, quotations direct the shell to additionally suppress command
and variable substitution. The question mark is a meta-character that also needed protection from

expansion.
[student@desktopX glob]$ echo "Will variable $host evaluate
to $ (hostname) ?"

Will variable desktopX evaluate to desktopX?

[student@desktopX glob]$ echo 'Will variable $host evaluate
to $ (hostname) ?'

Will variable Shost evaluate to $ (hostname)?

[student@desktopX glob]$

References

bash(1), cd(1), glob(7), isalpha(3), 1s(1), path_resolution(7), and pwd(1)

man pages

[2.8. Practice: Path Name Expansion
Quiz

Match the following items to their counterparts in the table.

Only filenames beginning with “b” bk

Only filenames ending in “b” *b

Only filenames containing a “b” kb

Only filenames where first character is not “b” [1b]*

Only filenames at least 3 characters in length PP0%

Only filenames that contain a number %[[:digit:]]*
Only filenames that begin with an upper—case letter [[:upper:]]*

[2.9. Lab: Managing Files with Shell Expansion

Performance checklist

In this lab, you will create, move, and remove files and folders using a variety of file name matching
shortcuts.

Outcomes:

Familiarity and practice with many forms of wildcards for locating and using files.

Before you begin...

Perform the following steps on serverX unless directed otherwise. Log in as student and begin the
lab in the home directory.
1. To begin, create sets of empty practice files to use in this lab. If an intended shell expansion
shortcut is not immediately recognized, students are expected to use the solution to learn and
practice. Use shell tab completion to locate file path names easily.

Create a total of 12 files with names tv_seasonX episodeY.ogg. Replace X with
the season number and Ywith that season's episode, for two seasons of six episodes each.

[student@serverX ~]$ touch
tv_season{l..2} episode{l..6}.0gg

[student@serverX ~]$ 1ls -1

2. As the author of a successful series of mystery novels, your next bestseller's chapters are being
edited for publishing. Create a total of eight files with
namesmystery chapterX.odf. Replace X with the numbers 1 through 8.

3. [student@serverX ~]$ touch mystery chapter{l..8}.odf

[student@serverX ~]$ 1ls -1

4. To organize the TV episodes, create two subdirectories
named seasonl and season2 under the existingVideos directory. Use one

command.

5. [student@serverX ~]$ mkdir Videos/season{l..2}

[student@serverX ~]$ 1ls -1R

6. Move the appropriate TV episodes into the season subdirectories. Use only two commands,

specifying destinations using relative syntax.

7. [student@serverX ~]$ mv tv_seasonl* Videos/seasonl

8. [student@serverX ~]$ mv tv_season2* Videos/season2

[student@serverX ~]$ 1ls -1R

9. To organize the mystery book chapters, create a two-level directory hierarchy with one
command. Createmy bestseller under the existing Documents directory,
and chapters beneath the new my bestsellerdirectory.

10. [student@serverX ~]$ mkdir -p
Documents/my bestseller/chapters

[student@serverX ~]$ 1ls -1R

11. Using one command, create three more subdirectories directly under
themy bestseller directory. Name these
subdirectories editor, plot change, and vacation. The create parent option
is not needed since themy bestseller parent directory already exists.

12. [student@serverX ~]$ mkdir
Documents/my bestseller/{editor,plot_change,vacatio
n}

[student@serverX ~]$ 1ls -1R

13. Change to the chapters directory. Using the home directory shortcut to specify the
source files, move all book chapters into the chapters directory, which is now your

current directory. What is the simplest syntax to specify the destination directory?

14. [student@serverX ~]1$ cd
Documents/my bestseller/chapters

15. [student@serverX chapters]$ mv ~/mystery chapter*

[student@serverX chapters]$ 1ls -1

16. The first two chapters are sent to the editor for review. To remember to not modify these
chapters during the review, move those two chapters only to the edi tor directory. Use
relative syntax starting from thechapters subdirectory.

17. [student@serverX chapters]$ mv mystery chapterl.odf
mystery chapter2.odf ../editor

18. [student@serverX chapters]$ 1ls -1

[student@serverX chapters]$ 1ls -1 ../editor

19. Chapters 7 and 8 will be written while on vacation. Move the files

from chapters to vacation. Use one command without wildcard characters.

20. [student@serverX chapters]$ mv mystery chapter7.odf
mystery chapter8.odf ../vacation

21. [student@serverX chapters]$ 1ls -1

[student@serverX chapters]$ 1ls -1 ../vacation

22. With one command, change the working directory to the season 2 TV episodes location, then
copy the first episode of the season to the vacation directory.

23. [student@serverX chapters]$ cd ~/Videos/season2

[student@serverX season2]$ cp tv_season2_episodel.ogg
~/Documents/my bestseller/vacation

24. With one command, change the working directory to vacation, then list its files. Episode
2 is also needed. Return to the season2 directory using the previous working
directory shortcut. This will succeed if the last directory change was accomplished with one
command. Copy the episode 2 file into vacation. Return tovacation using the

shortcut again.

25. [student@serverX season2]$ cd
~/Documents/my bestseller/vacation

26. [student@serverX vacation]$ 1ls -1
27. [student@serverX vacation]$ cd -

28. [student@serverX season2]$ cp tv_season2_episode2.ogg
~/Documents/my bestseller/vacation

29. [student@serverX vacation]$ cd -

[student@serverX vacation]$ 1ls -1

30. Chapters 5 and 6 may need a plot change. To prevent these changes from modifying original
files, copy both files into plot _change. Move up one directory to vacation’s

parent directory, then use one command from there.

31. [student@serverX vacation]$ cd

32. [student@serverX my bestseller]$ cp
chapters/mystery chapter[56].odf plot change

33. [student@serverX my bestseller]$ 1ls -1 chapters

[student@serverX

my bestseller]$ 1ls -1 plot_change

34. To track changes, make three backups of chapter 5. Change to
the plot_change directory. Copymystery chapter5.odf asanew file

name to include the full date (Year-Mo-Da). Make another copy appending the current

timestamp (as the number of seconds since the epoch) to ensure a unique file name. Also

make a copy appending the current user (SUSER) to the file name. See the solution for the

syntax of any you are unsure of (like what arguments to pass the date).

35

36

37.

38.

. [student@serverX

. [student@serverX

mystery chapter5.

+%F) .odf

[student@serverX

mystery chapter5.

+%s) .odf

[student@serverX

mystery chapter5.

[student@serverX

my bestseller]$ cd plot change

plot_change]$ cp
odf mystery chapter5_$ (date

plot_change]$ cp
odf mystery chapter5_$ (date

plot_change]$ cp
odf mystery chapter5 $USER.odf

plot change]$ 1ls -1

Note, we could also make the same backups of the chapter 6 files too.

39. The plot changes were not successful. Delete the plot_change directory. First, delete

all of the files in theplot_change directory. Change directory up one level because the

directory cannot be deleted while it is the working directory. Try to delete the directory using

the rm command without the recursive option. This attempt should fail. Now use

the rmdir command, which will succeed.

40

41

42

43.

44

. [student@serverX
. [student@serverX

. [student@serverX

. [student@serverX

[student@serverX

plot _change]$ rm mystery*
plot change]$ cd
my bestseller]$ rm plot change

rm: cannot remove 'plot change': Is a directory

my bestseller]$ rmdir plot_change

my bestseller]$ 1ls -1

45. When the vacation is over, the vacation directory is no longer needed. Delete it using

the rm command with the recursive option.

When finished, return to the home directory.

[student@serverX my_bestseller]$ rm -r vacation
[student@serverX my bestseller]$ 1ls -1

[student@serverX my_bestseller]$ cd

[Chapter 3. Getting Help in Red

Hat Enterprise Linux

3.1. Reading Documentation Using man Command
3.2. Practice: Using the man Command

3.3. Reading Documentation Using pinfo Command
3.4. Practice: Using the pinfo Command

3.5. Reading Documentation in /usr/share/doc
3.6. Practice: Viewing Package Documentation
3.7. Getting Help From Red Hat

3.8. Practice: Creating and Viewing an SoS Report

3.9. Lab: Viewing and Printing Help Documentation

Introduction

Overview

Goal To resolve problems by using on—line help systems and Red Hat support
utilities.
Objectives o Use the man Linux manual reader.

o Use the pinfo GNU Info reader.
o Use the Red Hat Package Manager (RPM) package documentation.

o Use the redhat—support—tool command.

Sections o Reading Documentation Using man Command (and Practice)
o Reading Documentation Using pinfo Command (and Practice)
o Reading Documentation in /usr/share/doc (and Practice)

o Getting Help From Red Hat (and Practice)

Lab o Viewing and Printing Help Documentation

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

[3.1. Reading Documentation Using man Command

lObjectives

After completing this section, students should be able to locate documentation and research answers
about commands.

lintroducing the man command

Reading documentation using man command

The historical Linux Programmer's Manual, from which man pages originate, was large enough to be
multiple printed books. Each contained information for specific types of files, which have become

the sections listed below. Articles are referred to as topics, as pages no longer applies.
0

Sections of the Linux manual

Section | Content type

1
2
3
4
o
6
7
8
9

User commands (both executable and shell programs)

System calls (kernel routines invoked from user space)

Library functions (provided by program libraries)| |

Special files (such as device files) | |

File formats (for many configuration files and structures)

Games (historical section for amusing prograjmw_‘ Linux

Conventions, standards, and miscellaneous (protoclols, file systems)

.. . .. L
System administration and privileged commands (maintenance tasks)

Linux kernel AP1 (7internal kernel calls) AP

Manual section 9 is a recent addition to Linux. Not all man section listings reference it.

To distinguish identical topic names in different sections, man page references include the section
number in parenthesffs after the topic. For example, passwd(1) describes the command to change
passwords, while passwd(5) explains the /etc/passwd file format for storing local user
accounts.

To read specific man pages, use man topic. Topic contents display one screen at a time. Use
arrow keys for single line scrolling or the space bar for the next screen. The man command searches

manual sections in a configured order, displaying popular sections first. For example, man

passwd displays passwd(1) by default. To display the man page topic from a sgecific section,

include the section number argument: man 5 passwd displays passwd(5).
l1dentify man pages by keyword

The ability to efficiently search for topics and navigate man pages is a critical administration skill. The

following table lists basic man navigation commands:
0

Navigating man pages

Command Result

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
文本框
用户可以操作的命令或可执行文件

Administrator
文本框
系统内核可调用的函数与工具等

Administrator
文本框
常用的函数与函数库

Administrator
文本框
设备文件的说明

Administrator
文本框
配置文件和其格式

Administrator
文本框
娱乐、游戏

Administrator
文本框
约定与标准，如Linux标准文件系统、网络协议

Administrator
文本框
系统管理员可用的管理命令

Administrator
文本框
内核的API

Administrator
铅笔

Administrator
铅笔

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
文本框
首先显示常用的章节

Administrator
高亮

Administrator
文本框
也可显示特定的章节

Command Result

Spacebar Scroll forward (down) one screen
PageDown Scroll forward (down) one screen
PageUp Scroll backward (up) one screen
DownArrow Scroll forward (down) one line
UpArrow Scroll back (up) one line

d Scroll forward (down) one half-screen
u Scroll backward (up) one half-screen
/string

Search forward (down) for string in the man page

Repeat previous search forward (down) in the man page

Repeat previous search backward (up) in the man page

Go to start of the man page.

Go to end of the man page.

Qv |23

Exit man and return to the command shell prompt

Important

When performing searches, string allows regular expression syntax. While simple text (such
aspas swd) works as expected, regular expressions use meta-characters (such as S, * . and ~)
for more sophisticated pattern matching. Therefore, searching with strings which include program
expression meta-characters, such as make $S8S, might yield unexpected results.

Regular expressions and syntax are discussed in Red Hat System Administration Il, and in

the regex(7) man topic. |:|

[Searching for man pages by keyword

A keyword search of man pages is performed usingman -k keywoxrd, which displays a list of

keyword-matching man page topics with section numbers.

[student@desktopX ~]$ man -k passwd

checkPasswdAccess (3) - query the SELinux policy database in the kernel.
chpasswd (8) - update passwords in batch mode

ckpasswd (8) - nnrpd password authenticator

fgetpwent r (3) - get passwd file entry reentrantly

getpwent r (3) - get passwd file entry reentrantly

passwd (1) - update user's authentication tokens

sslpasswd (1lssl) - compute password hashes

passwd (5) - password file

passwd.nntp (5) - Passwords for connecting to remote NNTP servers

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
文本框
讨论

Administrator
高亮

passwd2des (3) - RFS password encryption

Popular system administration topics are in sections 1 (user commands), 5 (file formats), and 8
(administrative commands). Administrators using certain troubleshooting tools also use section 2
(system calls). The remaining sections are commonly for programmer reference or advanced
administration.

Keyword searches rely on an index generated by the mandb(8) command, which must be run as root.
The command runs daily through cron.daily, or by anacrontab within an hour of boot if
out of date.

Important

The man command —K option performs a full-text page search, not just titles and descriptions like
the =K. A full-text search can use greater systems resources and take more time.

References
man(1), mandb(8), man-pages(7), less(1), intro(1), intro(2), intro(5), intr
o(7), intro(8) man pages

[3.2. Practice: Using the man Command

Guided exercise

In this lab, you will practice finding relevant information by using man options and arguments.
Outcomes

Familiarity with the man Linux manual system and practice finding useful information by searching
and browsing.

Before you begin...

Perform the following steps on serverX unless directed otherwise.
1. View the gedi (1) man page.

[student@serverX ~]$ man 1 gedit

2. Research how to edit a specific file using gedit from the command line.
gedit filename

3. Research the gedi t option used to begin an editing session with the cursor at the end of
the file.

gedit + filename

4. Research the su(1) man page.

[student@serverX ~]$ man 1 su

5. Research what su does when the username argument is omitted.
Su assumes a username of root.

6. Research how su behaves when a single dash option is used.

Administrator
高亮

Administrator
高亮

Administrator
高亮

su starts a child login shell (creating login environment by sourcing login scripts). Without

the single dash, a non-login child shell is created, matching the user's current environment.

7. Consult the passwd(1) man page. Determine the options that will lock and unlock a user

account when this command is used by root.

[student@serverX ~]$ man 1 passwd

passwd -1 username
passwd -u username

8. Locate the two principles to remember according to the passwd man page authors.
Search for the word“principle”.

o Protect your password.
o Choose a hard-to-guess password.

9. Consult the man page documenting the syntax of the /etc/passwd file. What is stored
in the third field of each line?

The relevant man page is passwd(5), found withman —-f passwd.
The UID (numeric user ID) for each account.
10. Which command will list detailed information about a zip archive?
zipinfo(1) found withman -k zip
11. Which man page contains a list of parameters that can be passed to the kernel at boot time?
bootparam(7) found withman -k boot
12. Which command is used to tune ext4 file system parameters?

tune2fs(8) found withman -k extd

[3.3. Reading Documentation Using pinfo Command

[l Objectives

After completing this section, students should be able to research answers using GNU Info
documentation.

lIntroducing GNU info

Reading documentation using pinfo command

|:]Man pages have a formal format useful as a command reference, but less useful as general
documentation. For such documents, the GNU Project developed a different online documentation
system, known as GNU info. Info documents are an important resource on a Red Hat Enterprise Linux
system because many fundamental components and utilities, such as the coreutils package
and glibc standard libraries, \are either developed by the GNU Project or utilize the info document

system.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
文本框
正式的

Administrator
高亮

Administrator
注释框
基本的工具

File: dir Node: Top This is the top of the INFO tree |:

This (the Directory node) gives a menu of major topics.
Typing "g" exits, "?" lists all Info commands, "d" returns here,
“h" gives a primer for first-timers,
"mEmacs<Return=" visits the Emacs topic, etc.
In Emacs, you can click mouse button 2 on a menu item or cross reference
to select it.
* Menu:
Archiving 1.
* Cpio: (cpio). Copy-in-copy-out archiver to tape or disk. 3
¥ Tar: (tar). Making tape (or disk) archives.
Basics
% Common options: (coreutils)Common options.
Common options.
* Coreutils: (coreutils). Core GNU (file, text, shell) utilities.
* Date input formats: (coreutils)Date input formats.
File permissions: (coreutils)File permissions.
Access modes.
Finding files: (find). Operating on files matching certain criteria.
¥ ed: (ed). The GNU Line Editor.

Viewing line 25/2002, 1%

Figure 3.1: pinfo Info document viewer, top directory
Info documentation is structured as hyperlinked info nodes. This format is more flexible than man
pages, allowing thorough discussion of complex commands and concepts. Like man pages, info nodes
are read from the command line, using either the info or pinfo commands.
Some commands and utilities have both man pages and info documentation; usually, the info

documentation will be more in-depth. Compare the differences in tar documentation

using man and pinfo: |:|

[student@desktopX ~]$ man tar

[student@desktopX ~]$ pinfo tar

The pinfo info reader is more advanced than the original info command. Designed to match
the 1ynx text web browser keystrokes, it also adds color. Info nodes for a particular topic are
browsed with pinfo topic. Enter onlypinfo for the info topics directory. New

documentation nodes become available in pinfo when their corresponding software packages are

installed.

IGNU Info vs. man page navigation

The info command uses different navigation keystrokes than does man. The info command was
designed to match the keystrokes of the hypertext-aware 1ynx web browser. Compare the key

bindings in the following table:
0

pinfo and man, key binding comparison

Navigation pinfo man

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
文本框
更深入

Navigation

Scroll forward (down) one screen

pinfo

PageDown or Space

man

PageDown or Space

Scroll backward (up) one screen

PageUp or b

PageUp or b

Display the directory of topics d -
Scroll forward (down) one - d
half-screen
Display the parent node of a topic u -
Display the top (up) of a topic HOME 1G
Scroll backward (up) one - u
half-screen
Scroll forward (down) to next DownArrow -
hyperlink
Open topic at cursor location Enter -
Scroll forward (down) one line -
DownArrow or Enter

Scroll backward (up) to previous UpArrow -
hyperlink
Scroll backward (up) one line - UpArrow
Search for a pattern /string /string
Display next node (chapter) in n -
topic
Repeat previous search forward n

/ then Enter
(down)
Display previous node (chapter) P -
in topic
Repeat previous search backward - N
(up)
Quit the program q q

References

pinfo info (Info: An Introduction)
o All Sections

pinfo pinfo (Documentation for ‘pinfo’)
o All Sections

The GNU Project http://www.gnu.org/gnu/thegnuproject.html

pinfo(1) and info(1) man pages

Administrator
高亮

Administrator
高亮

Administrator
高亮

http://www.gnu.org/gnu/thegnuproject.html

[3.4. Practice: Using the pinfo Command

Guided exercise
In this lab, you will browse GNU Info documentation using command-Lline tools.

Outcomes

Understand program documentation in the GNU Info node system.

Before you begin...

Perform the following steps on serverX unless directed otherwise.

1.

10.

Invoke pinfo without arguments.

[student@serverX ~]$ pinfo

Navigate to the Common options topic.

Use UpArrow or DownArrow until (coreutils) Common options is highlighted.

Press Enter to view this topic.
Browse through this info topic. Learn if long-style options can be abbreviated.

Use PageUp and PageDown to navigate through the topic. Yes, many programs allow long

options to be abbreviated.
Determine what the symbols —— signify when used as a command argument.

The symbols — = signify the end of command options and the start of command arguments in
complex commands where the shell's command-line parser might not correctly make the
distinction.

Without exiting pinfo, move up to the GNU Coreutils node.
Press u to move up to the top node of the topic.
Move up again, to the top topic.

Press u again. Observe that when positioned at the top of a topic node, moving up returns to
the directory of topics. Alternately, pressing d from any level or topic will move directly to

the directory of topics.
Search for the pattern nano and select that topic.
Press / followed by the search pattern “nano”. With the topic highlighted, press Enter.

In the Introduction, locate and select Command Line Options. Browse the
topic.

Press Enter to select Introduction, then bownArrow and Enter to
select Command Line Options. Use the arrow keys to browse the topic.

Move up one level to return to Introduction. Move to the next topic.

Press u to move up one level. The new location will be nano’s topic 1 Introduction.
Now press n. You will have moved to nano's topic 2 Editor Basics.

Exit pinfo.

Press q to quit pinfo.

11. Invoke pinfo again, specifying nano as the destination topic from the command line.

[student@serverX ~]$ pinfo nano

12. Select the Editor Basics topic.
Press DownArrow to highlight EdAitor Basaics, then press Enter to select this topic.
13. Read the Entering Text and Special Functions subtopics.

Use arrow keys to highlight a topic, PageUp and PageDown to browse the text, then

press u to move up one level. Press q to quit pinfo when you are finished.

[3.5. Reading Documentation in /usr/share/doc

[l Objectives

After completing this section, students should be able to research information using Red Hat Package
Manager documentation.

[Introducing package documentation

Reading documentation in /usr/share/doc

In addition to man and pinfo, developers may also choose to include documentation in their
application's RPM distribution package. When the package is installed, files recognized as
documentation are moved to/usr/share/doc/packagename. Software package builders
may include anything deemed helpful as a complement to, but not duplicating, man pages. GNU
packages also use /usr/share/doc to supplement info nodes.

Most packages include files describing package distribution licensing. Some packages include extensive
PDF- or HTML-based documentation. Accordingly, a useful package browsing method is pointing a
browser of choice tofile:///usr/share/doc and utilizing a mouse.

[student@desktopX ~]$ firefox file:///usr/share/doc

Some packages come with extensive examples, configuration file templates, scripts, tutorials, or user
guides. Browse/usr/share/doc/vsftpd-* as an example. Some documentation is sparse;
the zip utility includes the compression algorithm used and little else. Other packages includes large
user manuals or developer guides, or electronic copies of related, published books.

Note
Developers may choose to bundle extensive documentation in a separate RPM. The gnuplot program
has the extra gnuplot-doc package, which must be installed separately. Other similar packages to
browse include bash-doc and samba-doc. Often, extra packages are found in Red Hat Enterprise
Linux’s Optional software channel.

Many packages also include developer documentation, such as an Application Programming Interface
(API) specification, provided in a package with a name ending in -devel or similar. Packages may
include additional files, such as headers; useful documentation usually only needed for software
development or compiling.

Administrator
高亮

Administrator
高亮

The kernel itself has a significant documentation package. The kernel-doc package is a treasure of
kernel, driver, tuning, and advanced configuration information. Experienced system administrators
regularly researchkernel-doc files.

References

hier(7) man page
o Discusses the hierarchy of Linux directories, including /usr/share/doc.

[3.6. Practice: Viewing Package Documentation

Guided exercise

In this lab, you will research the documentation under /usr/share/doc to answer questions.
Use your choice ofless, gedit, or a browser to view the documentation file contents.
Outcomes

More familiarity, through practice, with the types of information that developers include with their
software packages.

Before you begin...

Perform the following steps on serverX unless directed otherwise.
1. Where can you find the latest news about the vim project?

2. [student@serverX ~]$ cd /usr/share/doc

[student@serverX doc]$ less vim-common-*/README. txt

View the vim-common README and search for “news”.

3. What is the wiki URI for the yum package?

[student@serverX doc]$ less yum-3*/README

Search for “wiki” in /usr/share/doc/yum-3*/README.
4. What examples are provided for the command-line be calculator?

[student@serverX doc]$ 1ls -1 bc-*/Examples

Found in the directory /usr/share/doc/bc-*/Examples.
5. How would you read the provided GRUB2 manual?

[student@serverX doc]$ firefox grub2-tools-*/grub.html

Use firefox to
display /usr/share/doc/grub2-tools-*/grub.html.
6. What software provides its document as a separate package?

7. [student@serverX doc]$ yum list *-doc*

8. [student@serverX doc]$ cd

[student@serverX ~]$

Use yum to display only those packages that contain “-doc”, “-docs”,
or “-documentation” in the package name. When finished, return to the home directory.

[3.7. Getting Help From Red Hat

[l Objectives

After completing this section, students should be able to view Knowledgebase information and manage

support cases from the command line.

lRed Hat Customer Portal

Red Hat Customer Portal (https://access.redhat . com) provides customers with access
to everything provided with their subscription through one convenient location. Customers can search
for solutions, FAQs, and articles through Knowledgebase. Access to official product documentation is
provided. Support tickets can be submitted and managed. Subscriptions to Red Hat products can be
attached to and detached from registered systems, and software downloads, updates, and evaluations
can be obtained. Parts of the site are accessible to everyone, while others are exclusive to customers
with active subscriptions. Help with getting access to Customer Portal is available
athttps://access.redhat.com/help/.

Customers can work with Red Hat Customer Portal through a web browser. This section will introduce a
command line tool that can also be used to access Red Hat Customer Portal

services, redhat-support-tool.

Knowledgebase

© AR -

SOLUTIONS ARTICLES DOCUMENTATION VIDEOS
Find answers to questions or issues you Read technical articles and best practices Learn how to install, configure and use Walch short tutorials and presentations for
may experience for your Red Hat products your Red Hat products Red Hat products and events

Figure 3.2: Knowledgebase at the Red Hat Customer Portal

[l Using redhat-support-tool to search Knowledgebase

Getting help from Red Hat

The Red Hat Support Tool utility redhat-support-tool provides a text console interface to
the subscription-based Red Hat Access services. Internet access is required to reach the Red Hat
Customer Portal. The redhat-support-tool is text-based for use from any terminal or SSH
connection; no graphical interface is provided.

The redhat-support-tool command may be used as an interactive shell or invoked as
individually executed commands with options and arguments. The tool's available syntax is identical for
both methods. By default, the program launches in shell mode. Use the provided help sub-command
to see all available commands. Shell mode supports tab completion and the ability to call programs in
the parent shell.

[student@desktopX ~]$ redhat-support-tool
Welcome to the Red Hat Support Tool.

Command (? for help):

Administrator
高亮

Administrator
高亮

When first invoked, redhat-support-tool prompts for required Red Hat Access subscriber
login information. To avoid repetitively supplying this information, the tool asks to store account
information in the user's home directory

(SHOME/ . redhat-support-tool/redhat-support-tool. conf). If a Red
Hat Access account is shared by many users, the ——global option can save account information
to /etc/redhat-support-tool. conf, along with other systemwide configuration.
The tool's config command modifies tool configuration settings.

The redhat-support-tool allows subscribers to search and display the same
Knowledgebase content seen when on the Red Hat Customer Portal. Knowledgebase permits keyword
searches, similar to the man command. Users can enter error codes, syntax from log files, or any mix of
keywords to produce a list of relevant solution documents.

The following is an initial configuration and basic search demonstration:

[student@desktopX ~]$ redhat-support-tool

Welcome to the Red Hat Support Tool.

Command (? for help): search How to manage system entitlements with
subscription-manager

Please enter your RHN user ID: subscriber

Save the user ID in /home/student/.redhat-support-tool/redhat-support-tool.conf
(y/n): ¥

Please enter the password for subscriber: password

Save the password for subscriber in

/home/student/.redhat-support-tool/redhat-support-tool.conf (y/n): ¥

After prompting the user for the required user configuration, the tool continues with the original search
request:

Type the number of the solution to view or 'e' to return to the previous menu.
1 [253273:VER] How to register and subscribe a system to Red Hat Network
(RHN) using Red Hat Subscription Manager (RHSM)?
2 [17397:VER] What are Flex Guest Entitlements in Red Hat Network?
3 [232863:VER] How to register machines and manage subscriptions using Red
Hat Subscription Manager through an invisible HTTP proxy / Firewall?

3 of 43 solutions displayed. Type 'm' to see more, 'r' to start from the beginning

again, or '?' for help with the codes displayed in the above output.

Select a Solution:

Specific sections of solution documents may be selected for viewing.

Select a Solution: 1

Type the number of the section to view or 'e' to return to the previous menu.

1 Title

2 Issue

3 Environment

4 Resolution

5 Display all sections
End of options.

Section: 1

How to register and subscribe a system to Red Hat Network (RHN) using Red Hat

Subscription Manager (RHSM)?

URL: https://access.redhat.com/site/solutions/253273

(END) q
[student@desktopX ~]1$

Directly access Knowledgebase articles by document ID
Locate online articles directly using the tool's kb command with the Knowledgebase document ID.
Returned documents scroll on the screen without pagination, allowing a user to redirect the output

using other local commands. This example views the document with the 1ess command:

[student@desktopX ~]$ redhat-support-tool kb 253273 | less

Title: How to register and subscribe a system to Red Hat Network (RHN) using

Red Hat Subscription Manager (RHSM)?
ID: 253273

State: Verified: This solution has been verified to work by Red Hat Customers

and Support Engineers for the specified product version(s).

URL: https://access.redhat.com/site/solutions/253273
q

Documents retrieved in unpaginated format are easy to send to a printer, convert to PDF or other
document format, or to redirect to a data entry program for an incident tracking or change

management system, using other utilities installed and available in Red Hat Enterprise Linux.

[l Using redhat-support-tool to manage support cases

One benefit of a product subscription is access to technical support through Red Hat Customer Portal.
Depending on the system's subscription support level, Red Hat may be contacted through on-line tools
or by phone.
Seehttps://access.redhat.com/site/support/policy/support p
rocess for links to detailed information about the support process.

Preparing a bug report

Before contacting Red Hat Support, gather relevant information for a bug report.

Define the problem. Be able to clearly state the problem and its symptoms. Be as specific as possible.
Detail the steps which will reproduce the problem.

Gather background information. Which product and version is affected? Be ready to provide relevant
diagnostic information. This can include output of sosreport, discussed later in this section. For
kernel problems, this could include the system's kdump crash dump or a digital photo of the kernel
backtrace displayed on the monitor of a crashed system.

Determine the severity level. Red Hat uses four severity levels to classify

issues. Urgent and High severity problem reports should be followed by a phone call to the relevant
local support center
(seehttps://access.redhat.com/site/support/contact/technica
1Support).

Severity Description

Urgent (Severity | A problem that severely impacts your use of the software in a
1) production environment (such as loss of production data or in which
your production systems are not functioning). The situation halts
your business operations and no procedural workaround exists.

High(Severity 2) | A problem where the software is functioning but your use in a
production environment is severely reduced. The situation is
causing a high impact to portions of your business operations and
no procedural workaround exists.

Medium(Severity | A problem that involves partial, non—critical loss of use of the
3) software in a production environment or development environment.
For production environments, there is a medium—to—low impact on
your business, but your business continues to function, including
by using a procedural workaround. For development environments,
where the situation is causing your project to no longer continue
or migrate into production.

Low(Severity 4) | A general usage question, reporting of a documentation error, or
recommendation for a future product enhancement or modification.
For production environments, there is low—to—no impact on your
business or the performance or functionality of your system. For
development environments, there is a medium—to—low impact on your
business, but your business continues to function, including by
using a procedural workaround.

Managing a bug report with redhat-support-tool

Subscribers may create, view, modify, and close Red Hat Support cases

using redhat-support-tool. When support cases are opened or maintained, users may
include files or documentation, such as diagnostic reports (sosreport). The tool uploads and attaches
files to online cases. Case details including product, version, summary, description,severity, and case
group may be assigned with command options or letting the tool prompt for required information. In

the following example, the ——product and —-version options are specified,

but redhat-support-tool would provide a list of choices for those options if
the opencase command did not specify them.
[student@desktopX ~]$ redhat-support-tool

Welcome to the Red Hat Support Tool.

Command (? for help) : opencase —-product="Red Hat Enterprise Linux"
--version="7.0"

Please enter a summary (or 'g' to exit): System fails to run without power
Please enter a description (Ctrl-D on an empty line when complete):

When the server is unplugged, the operating system fails to continue.

1 Low

2 Normal

3 High
4 Urgent
Please select a severity (or 'g' to exit): 4

Would you like to assign a case group to this case (y/N)? N

Would see if there is a solution to this problem before opening a support case?

(y/N) N

Support case 01034421 has successfully been opened.

Including diagnostic information by attaching a SoS report archive

Including diagnostic information when a support case is first created contributes to quicker problem
resolution. Thesosreport command generates a compressed tar archive of diagnostic information
gathered from the running system. The redhat-support-tool prompts to include one if an
archive has been created previously:

Please attach a SoS report to support case 01034421. Create a SoS report as
the root user and execute the following command to attach the SoS report

directly to the case:

redhat-support-tool addattachment -c 01034421 path to sosreport

Would you like to attach a file to 01034421 at this time? (y/N) N

Command (? for help):

If a current SoS report is not already prepared, an administrator can generate and attach one later,
using the tool'saddattachment command as advised previously. This section's practice exercise
will provide the steps for creating and viewing a current SoS diagnostic report.

Support cases can also be viewed, modified, and closed by you as the subscriber:

command (? for help): listcases

Type the number of the case to view or 'e' to return to the previous menu.
1 [Waiting on Red Hat] System fails to run without power
No more cases to display

Select a Case: 1

Type the number of the section to view or 'e' to return to the previous menu.
1 Case Details

2 Modify Case

3 Description

4 Recommendations

5 Get Attachment

6 Add Attachment

7 Add Comment

End of options.

Option:
Select a Case:
Command (? for help) :q

[student@desktopX ~]$ redhat-support-tool modifycase
--status=Closed 01034421

Successfully updated case 01034421

[student@desktopX ~]$

The Red Hat Support Tool has advanced application diagnostic and analytic capabilities. Using kernel
crash dump core files, redhat-support-tool can create and extract a backtrace, a report
of the active stack frames at the point of a crash dump, to provide onsite diagnostics and open a
support case.

The tool also provides log file analysis. Using the tool's analyze command, log files of many types,
including operating system, JBoss, Python, Tomcat, oVirt, and others, can be parsed to recognize
problem symptoms, which can then be viewed and diagnosed individually. Providing preprocessed
analysis, as opposed to raw data such as crash dump or log files, allows support cases to be opened and
made available to engineers more quickly.

sosreport(1) man page

Red Hat Access: Red Hat Support Tool

Red Hat Support Tool First Use

Contacting Red Hat Technical Support

Help - Red Hat Customer Portal

[3.8. Practice: Creating and Viewing an SoS Report

Guided exercise

In this lab, you will use the sosreport command to generate a SoS report, then view the contents of that
diagnostic archive.

Outcomes

A compressed tar archive of systemwide diagnostic information.

Before you begin...

Perform the following steps on serverX unless directed otherwise.
1. If currently working as a non-root user, switch to root.

2. [student@serverX ~]$ su -

rassword: redhat

3. Runthe sosreport command. This may take many minutes on larger systems.

4. [root@serverX ~]# sosreport

5.

6. sosreport (version 3.0)

7o

8. This command will collect system configuration and

9. diagnostic information from this Red Hat Enterprise Linux
10. system. An archive containing the collected information
11. will be generated in /var/tmp and may be provided to a Red
12. Hat support representative or used for local diagnostic or
13. recording purposes.

14.

15. Any information provided to Red Hat will be treated in
16. strict confidence in accordance with the published support
17. policies at:

18.

19. https://access.redhat.com/support/

20.

21. The generated archive may contain data considered

22. sensitive and its content should be reviewed by the

23. originating organization before being passed to any third party.

24.

25.
26.
27.
28.

29.

30.

31.

32.

33.

No changes will be made to system configuration.

Press ENTER to continue, or CTRL-C to quit. ENTER

Please enter your first initial and last name [serverX.example.com]: yourname

Please enter the case number that you are generating this report for: 01034421

Press Enter. Provide the requested information. Make up a value for the case number.

Running 17/74: general...

Creating compressed archive...

Your sosreport has been generated and saved in:

/var/tmp/sosreport-yourname.01034421-20140129000049.tar.xz

The checksum is: b2e78125290a4c791162e68da8534887

Please send this file to your support representative.
Change directory to /var/tmp, and unpack the archive.

[root@serverX ~]# cd /var/tmp

[root@serverX tmpl# tar -xvJf sosreport-*.tar.xz

Change directory to the resulting subdirectory and browse the files found there.

[root@serverX ~]# cd
sosreport-yourname.01034421-20140129000049

[root@serverX
sosreport-yourname.01034421-20140129000049]# 1s -1R

Open files, list directories, and continue to browse to become familiar with the information
included in SoS reports. In the form of the original archived and compressed file, this is the
diagnostic information you would be attaching to a redhat-support-tool support
case. When finished, remove the archive directory and files and return to your home

directory.

[root@serverX
sosreport-yourname.01034421-20140129000049]# cd
/var/tmp

[root@serverX tmpl# rm -rf sosreport¥*

[root@serverX tmpl# exit

[student@serverX ~]$

[3.9. Lab: Viewing and Printing Help Documentation

Performance checklist

In this lab, you will practice research methods typically used by system administrators to learn how to
perform necessary tasks.
Outcomes

o Accomplish a given task; practice locating relevant commands by searching man pages
and pinfo nodes.

o Learn new options for commonly used documentation commands.

o Recognize various document file formats; use appropriate tools to view and print

documentation and other non-text formatted files.

Before you begin...

Perform the following steps on serverX unless directed otherwise.
1. Research man(1) to determine how to prepare a man page for printing. What format or

rendering language is commonly used?
[student@serverX ~]$ man man

man uses —t to prepare a man page for printing, using PostScript.
2. Create a formatted output file of the passwd man page. Determine the file content
format.

3. [student@serverX ~]$ man -t passwd > passwd.ps

4. [student@serverX ~]$ file passwd.ps

[student@serverX ~]$ less passwd.ps

The file is in PostScript format, learned using the £i11e command and confirmed by
viewing the file contents. Notice the header lines of PostScript information.

5. Research using man to learn the command(s) used for viewing or printing PostScript files.

[student@serverX ~]$ man -k postscript viewer

Using multiple words with the —k option finds man pages matching either word; those with
"postscript” or"viewer” in their descriptions. Notice the evince(1)
and ghostscript(1) (or gs(1)) commands in the output.

6. Research evince(1) using man to learn how to use the viewer in preview mode. Also,

determine how to open a document starting on a specific page.

[student@serverX ~]$ man evince

The —w (or ——preview) option opens @vince in preview mode. The —1 option is
used to specify a starting page.
7. View your PostScript file using the various @vince options you researched. Close your

document file when you are finished.

8. [student@serverX ~]$ evince passwd.ps

9. [student@serverX ~]$ evince -w passwd.ps

[student@serverX ~]$ evince -i 3 passwd.ps

While normal @evince mode allows full-screen and presentation-style viewing,
the evince preview mode is useful for quick browsing and printing. Notice the print
icon at the top.
10. Using man, research 1p(1) to determine how to print any document starting on a specific
page. Without actually entering any commands (since there are no printers), what would be

the syntax, on one command line, to print only pages 2 and 3 of your PostScript file?

[student@serverX ~]$ man 1lp

One answer is 1lp passwd.ps -P 2-3.

From 1p(1), learn that the —P option specifies pages. The 1p command spools to

the default printer, sending only the page range starting on 2 and ending on 3.

Note
There are currently no printers configured in the classroom. However, you may practice later
using printer models configured in your own environment. Familiarity with these commands is
often useful.

11. Using pinfo, look for GNU info about the @vince viewer.
[student@serverX ~]$ pinfo evince

Notice that the evince(1) man page displays instead. The pinfo document viewer
looks for the relevant man page when no appropriate GNU documentation node exists for
the requested topic. Press q to closepinfo.
12. As an opportunity to observe the abundance of GNU fundamental utilities, use pinfo to
locate and browse all document nodes for the coreutils commands and programs.

[student@serverX ~]$ pinfo

From the directory node, press DownArrow until the link is selected for Coreutils:
Core GNU (file, text, shell) utilities. Press Enter to follow
the link to GNU Coreutils. Notice the long menu listing,

with Introduction currently selected. Press Enter. At the top of the screen, pay
attention to the header, which displays the previous, current, and next nodes. Browse the
information, press n for the next node, and repeat. Browse each screen, simply noticing the
commands and their descriptions. Continue until node 29 Opening the
Software Toolbox is reached. Read this chapter in its entirety using the navigation

you have learned. When finished, return the way you came by using only LeftArrow until
the top directory node is finally reached. Press q to close pinfo.
13. Using £irefox, open the system's package documentation directory and browse into

the man-db package subdirectory. View the provided manual(s).

[student@serverX ~]$ firefox /usr/share/doc

Remember that bookmarks can be made for any directories that are frequently used. After

Overview

browsing to theman—-db directory, click to open and view the text version of the manual,
then close it. Click to open the PostScript version. As observed earlier, evince is the
system's default viewer for PostScript and PDF documents. You may wish to return to these
documents later to become more knowledgeable about man. When finished, close
the evince viewer.
14. Using the open Firefox browser, locate and browse into the initscripts package
subdirectory. View thesysconfig. txt file, which describes important system
configuration options stored in the /etc/ sysconfigdirectory.

Notice how useful a browser is for locating and viewing local system documentation. Close
the document when finished, but leave Firefox open.

lChapter 4. Creating, Viewing,
and Editing Text Files

4.1. Redirecting Output to a File or Program
4.2. Practice: 1/0 Redirection and Pipelines
4.3. Editing Text Files from the Shell Prompt
4.4, Practice: Editing Files with Vim

4.5. Editing Text Files with a Graphical Editor
4.6. Practice: Copying Text Between Windows

4.7. Lab: Creating, Viewing, and Editing Text Files

Introduction

Goal To create, view, and edit text files from command output or in an editor.

Objectives o Redirect the text output of a program to a file or to another
program.

o Edit existing text files and create new files from the shell prompt
with a text editor.

o Copy text from a graphical window to a text file using a text editor
running in the graphical environment.

Sections o Redirecting Output to a File or Program (and Practice)
o Editing Text Files from the Shell Prompt (and Practice)
o Editing Text Files with a Graphical Editor (and Practice)

Lab o Creating, Viewing, and Editing Text Files

14.1. Redirecting Output to a File or Program
lObjectives

After completing this section, students should be able to:

o Describe the technical terms standard input, standard output, and standard error.
o Use redirection characters to control output to files.

o Use piping to control output to other programs.
IStandard input, standard output, and standard error
Redirecting output to a file or program
A process structure is constructed with numbered channels (file descriptors) to manage open files.
Processes connect to files to reach data content or devices these files represent. Processes are created
with default connections for channels 0, 1, and 2, known as standard input, standard output,

and standard error. Processes use channels 3 and above to connect to other files.

0

Figure 4.1: Process 1/0 channels (file descriptors)

Channels (File Descriptors)

Number Channel name Description Default connection Usage
0 stdin Standard input Keyboard read only
1 stdout Standard output Terminal write only
2 stderr Standard error Terminal write only
3+ filename | Other files none read and/or write

Redirecting output to a file
Channel redirection replaces default channel destinations with file names representing either output

files or devices. Using redirection, process output and error messages can be captured as file contents,

sent to a device, or discarded.

Redirecting stdout suppresses process output from appearing on the terminal. As seen in the

following table, redirecting only stdout does not suppress stderr error messages from

displaying on the terminal. The special file/dev/null quietly discards channel output redirected

to it.
I

Output Redirection Operators

(note)

Explanation Visual aid
>file redirect stdout to a file
>>file redirect stdout to a file,

append to current file content

2>file redirect stderr to a file

2>/d 11
/dev/nu discard stderr error messages by

redirecting to /dev/null

&file combine stdout and stderr to

one file

>>file 2>&1 combine stdout and stderr,

append to current file
content

Note:
Overwrite existing file, create file if new.

Append existing file, create file if new.

The order of redirection is important to avoid unexpected command

behavior. 2>&l1 sendsstderr to the same place as stdout. For t
to work, stdout needs to be redirected

first, beforeadding stderr to stdout. Although &>> 1is an

(note)

Visual aid

Explanation

alternate way to append both stdout and stderr to a

file, 2>&1 1is the method needed to send

both stdout and stderr through a pipe.

Examples for output redirection
Many routine administration tasks are simplified by using redirection. Use the previous table to assist
while considering the following examples:

o Save a timestamp for later reference.

[student@desktopX ~]$ date > /tmp/saved-timestamp

o Copy the last 100 lines from a log file to another file.

[student@desktopX ~]$ tail -n 100 /var/log/dmesg >
/tmp/last-100-boot-messages

o Concatenate four files into one.

[student@desktopX ~]$ cat filel file2 file3 filed >
/tmp/all-four-in-one

o List the home directory's hidden and regular file names into a file.
[student@desktopX ~]$ 1s -a > /tmp/my-file-names
o Append output to an existing file.

o [student@desktopX ~]$ echo "new line of information" >>
/tmp/many-lines-of-information

[student@desktopX ~]$ diff previous-file
current-file >> /tmp/tracking-changes-made

o In the next examples, errors are generated since normal users are denied access to system
directories. Redirect errors to a file while viewing normal command output on the terminal.

[student@desktopX ~]$ find /etc -name passwd 2>
/tmp/errors

o Save process output and error messages to separate files.

[student@desktopX ~]$ find /etc -name passwd >
/tmp/output 2> /tmp/errors

o lIgnore and discard error messages.

[student@desktopX ~]$ find /etc -name passwd >
/tmp/output 2> /dev/null

o Store output and generated errors together.

[student@desktopX ~]$ find /etc -name passwd &>
/tmp/save-both

o Append output and generated errors to an existing file.

[student@desktopX ~]$ find /etc -name passwd >>
/tmp/save-both 2>&l

[Constructing pipelines
Redirection controls channel output to or from files while piping sends channel output to

another process.

Figure 4.8: Process 1/0 piping
Examples for process piping redirection

Paginate a command's long output.

[student@desktopX ~]$ 1s -1 /usr/bin | less

Count the number of lines in an output or listing.

[student@desktopX ~]$ 1s | wc -1 > /tmp/how-many-files

Grab the first lines, last lines, or selected lines of command output.

[student@desktopX ~]$ 1s -t | head -n 10 >
/tmp/ten-last-changed-files

Figure 4.9: Process I/0 piping with tee
Examples for using the tee command for piping
The tee command displays or redirects the intermediate result normally suppressed due to piping. In

the first example, the 1s listing is viewed on a terminal while simultaneously being stored in a file.

[student@desktopX ~]$ 1s -1 | tee /tmp/saved-output

Determine the terminal device for the current window. Send the results as mail and view the same

results in this window.

[student@desktopX ~]$ tty

/dev/pts/0

[student@desktopX ~]$ 1s -1 | tee /dev/pts/0 | mail -s subject
student@desktopl.example.com

References

info bash (The GNU Bash Reference Manual)
o Section 3.2.2: Pipelines

info bash (The GNU Bash Reference Manual)
o Section 3.6: Redirections

info coreutils 'tee invocation' (The GNU coreutils Manual)
o Section 17.1: Redirect output to multiple files or processes

bash(1), cat(1), head(1), less(1), mail(1), tee(1), tty(1), we(1) man pages

14.2. Practice: I/0 Redirection and Pipelines
Quiz

Match the following items to their counterparts in the table.

Result needed Redirection syntax
used

Display command output to terminal, ignore all errors. 2>/dev/null

Send command output to file; errors to different file. >file 2>file2

Send output and errors to the same new, empty file. &>file

Send output and errors to the same file, but preserve existing >ofile 2>&1

file content.

Run a command, but throw away all possible terminal displays. &>/dev/null
Send command output to both the screen and a file at the same | tee file
time.

Run command, save output in a file, discard error messages. | > file 2> /dev/null

[4.3. Editing Text Files from the Shell Prompt

[l Objectives

After completing this section, students should be able to:

o Create new files and edit existing text files from the shell prompt.

o Navigate within an editor to effectively accomplish editing tasks.

[Editing files with Vim

Editing text files from the shell prompt

A key design principle of Linux is that information is stored in text-based files. Text files include
both flat files with rows of similar information, such as configuration files in /e@te, and Extensible
Markup Language (XML) files, which define data structure through text tags, seen in application

configuration files throughout both /etec and /usr. The advantage of text files is that they can be

moved or shared between systems without requiring conversion, and can be viewed and edited using

any simple text editor.

Vim is an improved version of the vi editor distributed with Linux and UNIX systems. Vim is highly

configurable and efficient for practiced users, including such features as split screen editing, color

formatting, and highlighting for editing text.

n
[V
- —
- v
— Esc—
Ay
-- INSERT -- 1,1 A1l -- VISUAL --

Enter

e

Figure 4.10: Moving between Vim modes

When first opened, Vim starts in command mode, used for navigation, cut and paste, and other text

manipulation. Enter each of the other modes with single character keystrokes to access specific editing

functionality:

o An i keystroke enters insert mode, where all text typed becomes file content.

Pressing Esc returns to command mode.

o A v keystroke enters visual mode, where multiple characters may be selected for text

manipulation. Use Vv for multi-line and ctrl-v for block selection. The same keystroke used

to enter visual mode (v, V or Ctrl-v) is used to exit.

o The : keystroke begins extended command mode for tasks like writing the file to save it, and

quitting the Vim editor.

The minimum, basic Vim workflow

Vim has efficient, coordinated keystrokes for advanced editing tasks. Although considered useful with

practice, Vim's capabilities can overwhelm new users. The following workflow presents

the minimum keystrokes every Vim user must learn to accomplish any editing task.

The instructor will demonstrate a typical file editing session using only basic Vim keystrokes.

1. Open a file with vim filename.

2. Repeat this text entry cycle, as many times as the task requires:

o

o

Use arrow keys to position the cursor.
Press i to enter insert mode.

Enter text.

Press Esc to return to command mode.

If necessary, press U to undo mistaken edits on the current line.

3. Repeat this text deletion cycle, as many times as the task requires:
o Use arrow keys to position the cursor.
o Press X to delete a selection of text.
o If necessary, use U to undo mistaken edits on the current line.
4. To save or exit, choose one of the following to write or discard file edits:
o Enter :w to write (save) the file and remain in command mode for more editing.
o Enter :w(to write the file and quit Vim.

o Enter :q! to quit Vim, but discard all file changes since the last write.

Rearranging existing text
In Vim, copy and paste is known as yank and put, using command characters y and p. Begin by
positioning the cursor on the first character to be selected, then enter visual mode. Use arrow keys to
expand the visual selection. When ready, press y to yank the selection into memory. Position the
cursor at the new location, then press p to put the selection at the cursor.
The instructor will demonstrate “yank and put” using visual mode.

1. Open a file with vim filename.

2. Repeat this text selection cycle, as many times as the task requires:
o Use arrow keys to position the cursor to the first character.
o Press v to enter visual mode.
o Use arrow keys to position the cursor to the last character.
o Press y to yank (copy) the selection.
o Use arrow keys to position the cursor at the insert location.
o Press p to put (paste) the selection.
3. To save or exit, choose one of the following to write or discard file edits:
o Enter :w to write (save) the file and remain in command mode for more editing.
o Enter :w(to write the file and quit Vim.

o Enter :q! to quit Vim, but discard all file changes since the last write.
Note
Beware the advanced Vim user offering shortcuts and tricks before the basics are mastered. Vim
requires practice to become efficient. It is recommended to continue learning new keystrokes to
extend Vim's usefulness. For those curious how extensive this can be, perform an Internet search
for “Vim tips”.
An in-depth presentation of Vim is included in the Red Hat Enterprise Linux 7 System Administration
Il course.
vim(1) man page
Vim the editor

http://www.vim.org/

14.4. Practice: Editing Files with Vim

Guided exercise

In this lab, you will use a locally installed resource to practice entry-level vim editor techniques.
Outcomes:

Experience with vim, and knowledge about using vimtutor to gain competency.

Before you begin...

In this exercise, use the existing Vim tutorial bundled with the Vim editor. The
installed vim-enhanced package provides vimtutoxr. For each exercise step, use the corresponding
lesson in vimtutor to practice. Return here when the lesson step is complete. Perform the following
steps on serverX unless directed otherwise.

1. Open vimtutor. Read the Welcome screen and perform Lesson 1.1.

[student@serverX ~]$ wvimtutor

In the lecture, only keyboard arrow keys were used for navigation. In vi's early years, users
could not rely on working keyboard mappings for arrow keys. Therefore, Vi was designed
with commands using only standard character keys, such as the conveniently grouped h, j, k,
and 1. Here is one way to remember them:
hang back, Jump down, kick up, leap forward.

2. Return to the vimtutoxr window. Perform Lesson 1.2.

This early lesson teaches how to quit without having to keep an unwanted file change. All
changes are lost, but this is better than leaving a critical file in an incorrect state.

3. Return to the vimtutoxr window. Perform Lesson 1.3.

Vim has faster, more efficient keystrokes to delete an exact amount of words, lines, sentences,
and paragraphs. However, any editing job can be accomplished using only x for

single-character deletion.
4, Return to the vimtutor window. Perform Lesson 1.4.

The minimum required keystrokes are for entering and leaving edit mode, arrow keys, and

deleting. For most edit tasks, the first key pressed is 1.
5. (Optional) Return to the vimtutoxr window. Perform Lesson 1.5.

In the lecture, only the i (insert) command was taught as the keystroke to enter edit mode.
This vimtutor lesson demonstrates that other keystrokes are available to change the cursor
placement when insert mode is entered. However, once in insert mode, all text typed is still
file content.

6. Return to the vimtutoxr window. Perform Lesson 1.6.

Save the file by writing and quitting. This is the last lesson for the
minimum required keystrokes to be able to accomplish any editing task.

7. Return to the vimtutoxr window. Finish by reading the Lesson 1 Summary.

There are six more multi-step lessons in vimtutoxr. None are assigned as further lessons

for this course, but feel free to use vimtutor on your own to learn more about Vim.

[4.5. Editing Text Files with a Graphical Editor

[l Objectives

After completing this section, students should be able to:
o Edit text files with gedit.

o Copy text between graphical windows.

[Editing files with gedit

Editing text files with a graphical editor

The gedi t application is a full-featured text editor for the GNOME desktop environment.

Launch gedit by selectingApplications — Accessories — gedit from the GNOME menu. Like other
graphical applications, gedi t can be started without navigating the menu. Press ALt+F2 to open
the Enter a Command dialog box. Type gedit and press Enter.

Unsaved Document 1 - gedit

File Edit View Search Tools Documents
Lemt EOpen Dl 'L-ijave @ @a |:_ Q q

Unsaved Document 1

Plain Text v Tab Width: & v Ln1l, Coll INS

Figure 4.11: gedit text editor
GNOME Help includes a gedi t help guide, which may be found by
selecting Applications — Favorites — Help from the GNOME menu. Then select Go — All
Documents to view the list of graphical applications. Scroll down to select the gedit Text
Editor hyperlink.
Basic gedit Keystrokes

Perform many file management tasks using gedi t's menu:

o To create a new file in gedit, click the blank paper toolbar icon, or

select File =~ New (Ctrl-n) from the menu.

o To save a file, click the disk-drive save toolbar icon, or select File — Save (Ctrl-s)
from the menu.

o To open an existing file, click the Open toolbar icon, or select File — Open (Ctrl-o) from
the menu. TheOpen Files dialog window will display from which users can locate and select

the file to open.

Multiple files may be opened simultaneously, each with a unique tab under the menu bar. Tabs display
a file name after being saved the first time.

[Copying text between graphical windows

Text can be copied between documents, text windows, and command windows in the graphical
environment. Selected text is duplicated using copy and paste or moved using cut and paste. Whether
cut or copied, the text is held in memory for pasting into another location.
To select text:

o Click and hold the left mouse button before the first character desired.

o Drag the mouse over and down until all required text is in a single highlighted selection, then
release the left button. Do not click again with the left button, as that deselects the text.
To paste the selection, multiple methods can accomplish the same result. In the first method:
o Click the right mouse button anywhere on the text area just selected.

o From the resulting context menu, select either cut or copy.

o Move the mouse to the window or document where the text is to be placed, click the left
mouse button to position where the text should go, and click the right mouse button again,
now choosing paste.

Here is a shorter mouse technique to practice:

o First, select the text.

o Hover the mouse over the destination window and click the center mouse button, just once, to
paste the text at the cursor.

This last method can only copy, not cut. The original text remains selected and can be deleted. As with
other methods, the text remains in memory and can be repeatedly pasted.

*Unsaved Document 1 - gedit - O] X

File Edit View Search Tools Documents
|| Bopen v [save | G| SHtnde v | g B Q &K

-
]' *Unsaved Document 1 |

File Edit Vie arch Terminal Help
[student@desktopl ~1$ 1s -1
total @ drwxr-xr-x. 2 student student 6 Feb 16 11:29 Downloads
. 2 student student 52 Feb 21 11:52 Desktop drwxr-xr-x. 2 student student 6 Feb 16 11:29 Music
6§ Feb 16 11:29 drwxr-xr-x. 2 student student 6 Feb 21 11:33 Pictures
= 1] drwxr-xr-x. 2 student student 6 Feb 16 11:29 Public
drwxr-xr-x. 2 student student 6 Feb 16 11:29 Templates

cl nt lent
drwxr-xr-x. 2 student student

[student@desktopl ~1$ [] After text selection at left,
click middle mouse button here to paste.

Plain Text v Tab Width: & v Ln6, Col 1 INS

Figure 4.12: Select and paste using middle mouse button

The keyboard shortcut method can also be used in graphical applications:
o First, select the text.

o Usectrl-xto cut or Ctrl-c to copy the text.
o Click the location where the text is to be placed to position the cursor.

o Use ctrl-v to paste.
Ctrl-c and Ctrl-v will not copy and paste within a terminal window. Ctxr1l-c will actually
terminate the current running process within a terminal window. To copy and paste within a terminal
window, use Ctrl-shift-cand Ctrl-shift-v.
gedit(1) man page
gedit Text Editor

o yelp help:gedit

gedit Wiki
4.6. Practice: Copying Text Between Windows

Guided exercise
In this lab, you will edit a file with gedit, selecting text and pasting it into the editor.
Outcomes:

An edited list of the configuration files found in the user's home directory.

Before you begin...

Perform the following steps on serverX unless directed otherwise. Log in as student and begin in
student's home directory.
1. Redirect a long listing of all home directory files, including hidden, into a file named
gedit_lab.txt. Confirm that the file contains the listing.

[student@serverX ~]$ cd
[student@serverX ~]$ 1ls -al > gedit lab.txt

[student@serverX ~]$ cat gedit lab.txt

Open the file with the gedit text editor. Include the ending ampersand so that the shell

prompt can return while gedi t is running.

[student@serverX ~]$ gedit gedit lab.txt &

Insert the date at the top of your file document.

a.

In the shell command window, display today's date with day of the week, month, date,
and year.

[student@serverX ~]$ date +%A", "%B" "3%d", "3%Y

Friday, February 21, 2014

Select the text using the mouse.

[student@desktopl ~]%
[student@desktopl ~1% date +%A", "SB" "Sd", "%Y
Friday, February 21,

[student@desktopl ~1%

bl

Insert the text at the top of the file document. Switch to the gedi t window. Using

arrow keys, place the cursor at the upper-left corner of the document. Press the
middle mouse button to paste the text.

Press Enter one or more times at the end of the inserted text to open blank lines

above the file listing.

Insert a description for this document, including your username and host name, on line 2.

a.

C.

In the shell command window, create descriptive text using shell expansion concepts
to include the username and host name where the file list was generated.

[student@serverX ~]$ echo "SUSER's
configuration files on" $ (hostname)

student's configuration files on serverX.example.com

Select the text using the mouse.

[student@desktopl ~1%
[student@desktopl ~]% echo "$USER's conflguratlon files on" $({hostname)
student's configuration files o topl .e)

[student@desktopl ~1%

d. Insert the text on the second line of the file document. Switch to
the gedi t window. Using the arrow keys, place the cursor at the second line's

leftmost character. Press the middle mouse button to paste the text.
e. Press Enter or Delete, as necessary, to maintain blank lines above the file listing.
7. Remove file lines that are not hidden configuration files or directories.
a. Remove the “total” line at the beginning of the listing.
b. Remove the two lines representing the current directory and the parent directory.

c. Remove lines for file names that do not start with a dot. Do not edit or remove lines
for hidden files or directories that begin with a dot.

8. The final file document should be similar to the following image. Manually edit the file to
make corrections. The asterisk in the document tab or window header is a reminder of edits
unsaved. Save the file and exit gedit.

*gedit_lab.txt (~) - gedit ST

File Edit View Search Tools Documents

| | BElopen v 1% Save (5 - Undo a6 E Q q

I |1 *gedit_Lab.txt

Friday, February 21, 2014
student's configuration files on desktopl.example.com

(=)

i EERE T 1 student student 194 Feb 21 16:00 .bash history
-rw-r--r-- 1 student student 18 Aug 9 2013 .bash_logout
-rw-r--r--. 1 student student 193 Aug 9 2013 .bash profile
) Lol AL 1 student student 231 Aug 9 2013 .bashrc
drwx------ 9 student student 4096 Feb 21 16:02 .cache
drwxr-xr-x. 15 student student 4696 Feb 21 16:11 .config

i I 1 student student 16 Feb 16 04:48 .esd auth
“FWorzamme 1 student student 1550 Feb 21| 16:02 .ICFauthority
drwx------ 3 student student 18 Feb 16 04:48 .local
drwx------ 2 student student 28 Feb 15 13:47 .ssh

Plain Text v Tab Width: & v Ln12 Col 43 INS

14.7. Lab: Creating, Viewing, and Editing Text Files

Performance checklist

In this lab, you will edit a file using Vim's visual mode to simplify repetitive edits.

Outcomes:

Familiarity with the utilities and techniques required to perform file editing. The final edited file will
be a list of selected files and tabular data.

Before you begin...

Perform the following steps on serverX unless directed otherwise. Log in as student and begin in

the student's home directory.

1.

Redirect a long listing of all content in student's home directory, including hidden directories
and files, into a file named editing final lab. txt. Your home directory files
may not exactly match those shown in the example graphics. Theis lab edits arbitrary lines and
columns. The important outcome is to practice the visual selection process.

[student@serverX ~]$ cd

[student@serverX ~]$ 1ls -al > editing final lab.txt

Edit the file using Vim, to take advantage of visual mode.

[student@serverX ~]$ vim editing final lab.txt

Remove the first three lines, since those lines are not normal file names. Enter line-based

visual mode with upper case V.

Use the arrow keys to position the cursor at the first character in the first row. Enter
line-based visual mode with V. Move down using the down arrow key twice to select the
first three rows. Delete the rows with X.

Remove the permission columns for group and world on the first line. In this step, enter visual

mode with lower case v, which allows selecting characters on a single line only.

Use the arrow keys to position the cursor at the first character. Enter visual mode with v.
Use the arrow keys to position the cursor at the last character, as shown in the screenshot.

Delete the selection with x.

student@desktopl:~

File Edit View Search Terminal Help

MW-====== B 1 student student 7691 Mar 5 10:56 .bash history
-rw-r--r--. 1 student student 18 Jan 25 05:45 .bash_logout
-rw-r--r--, 1 student student 193 Jan 29 05:45 .bash_profile
-rw-r--r--, 1 student student 231 Jan 29 05:45 .bashrc
drwx------ 12 student student 4096 Feb 22 13:23 .cache
drwxr-xr-x. 18 student student 4096 Feb 21 11:33 .config
drwxr-xr-x. 2 student student 6 Feb 21 20:06 Desktop
idrwxr-xr-x. 2 student student 4096 Feb 23 17:46 Documents
drwxr-xr-x. 2 student student 6 Feb 16 11:29 Downloads
drwxr-xr-x. 2 student student 4096 Feb 23 14:06 Music
drwxr-xr-x. 2 student student 6 Feb 23 16:23 Pictures
drwxr-xr-x. 2 student student 6 Feb 16 11:29 Public
drwx------ 2 student student 24 Feb 22 15:33 .ssh
drwxr-xr-x. 2 student student 6 Feb 16 11:29 Templates
drwxr-xr-x. 2 student student 4096 Feb 23 16:35 Videos
“rW=------- 1 student student 1620 Feb 21 21:14 .viminfo

-- VISUAL -- 1,11

ALl

6. Remove the permission columns for group and world on the remaining lines. This step will use
a more efficient block selection visual mode to avoid having to repeat the single line edit
multiple times. This time, enter visual mode with the control sequence ctrl-v, which allows

selecting a block of characters on multiple lines.

Use the arrow keys to position the cursor at the first character. Enter visual mode with the
control sequence Ctxrl-v. Use the arrow keys to position the cursor at the last character
of the column on the last line, as shown in the screenshot. Delete the selection with X.

student@desktopl:~

File Edit View Search Terminal Help

l-rw- 1 student student 7691 Mar 5 10:56 .bash_history
-rw-r--r--. 1 student student 18 Jan 29 05:45 .bash_logout

[-rw-r--r--. 1 student student 193 Jan 29 05:45 .bash _profile
-rw-r--r--. 1 student student 231 Jan 29 05:45 .bashrc
[drwx=-==--=- . 12 student student 4096 Feb 22 13:23 .cache
[drwxr=xr-x. 18 student student 4096 Feb 21 11:33 .config

[drwxr-xr-x. 2 student student 6 Feb 21 20:06 Desktop
[drwxr-xr-x. 2 student student 4096 Feb 23 17:46 Documents
ldrwxr-xr-x. 2 student student 6 Feb 16 11:29 Downloads
[drwxr-xr-x. 2 student student 4096 Feb 23 14:06 Music
[drwxr-xr-x. 2 student student 6 Feb 23 16:23 Pictures
[drwxr-xr-x. 2 student student 6 Feb 16 11:29 Public
[drwxEisss== 2 student student 24 Feb 22 15:33 .ssh
[drwxr-xr-x. 2 student student 6 Feb 16 11:29 Templates
[drwxr-xr-x. 2 student student 4096 Feb 23 16:35 Videos

- rw- e B 1 student student 1020 Feb 21 21:14 .viminfo
|-- VISUAL BLOCK -- 16,11

7. Remove the group owner column, leaving only one "student” column on all lines. Use the same
block selection technique as the last step.

Use the arrow keys to position the cursor at the first character of the group owner column.
Enter visual mode with Ctxrl—v. Use the arrow keys to position the cursor at the last
character and row of the group owner column, as shown in the screenshot. Delete the

selection with x.

ALl

8.

_m-
-m-
_rw-
-
drwx
drwx
drwx
drwx
drwx
drwx
drwx
drwx
drwx
drwx
drwx
-rw-

Remove the time column, but leave the month and day on all lines. Again, use the block

1
1
1
1

—
%)

fa
FMNMNNNMONDNNNDN OO

student
student
student
student
student
student
student
student
student
student
student
student
student
student
student
student

selection visual mode.

Use the arrow keys to position the cursor at the first character. Enter visual mode

with Ctrl-v. Use the arrow keys to position the cursor at the last character and row of

File Edit View Search Terminal

student 7691
student 18
student 193
student 231
student 4096
student 4096
student 6
student 4096

student 6
student 4096
student 6
student 6
student 24
student 6

student 4096
studenf§ 1020

-- VISUAL BLOCK --

student@desktopl:~

Help

Mar
Jan
Jan
Jan
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb

5
29
29
29
22
21
21
23
16
23
23
16
22
16
23
21

10
05
05
05
13
11
20
17
11
14
16
11
15
11
16
21

:56
145
145
145
123
:33
106
146
129
106
123
129
233
129
135
114

.bash_history
.bash_logout
.bash_profile
.bashrc
.cache
.config
Desktop
Documents
Downloads
Music
Pictures
Public

.ssh
Templates
Videos
.viminfo

the time column, as shown in the screenshot. Delete the selection with x.

AL

9.

File Edit View Search Terminal
-rw- 1 student 7691 Mar 5
-rw- 1 student 18 Jan 29
-rw- 1 student 193 Jan 29

-rw- 1 student 231 Jan 29
drwx 12 student 4096 Feb 22
drwx 18 student 4096 Feb 21
drwx 2 student 6 Feb 21
drwx 2 student 4096 Feb 23
drwx 2 student 6 Feb 16
drwx 2 student 4096 Feb 23
drwx 2 student 6 Feb 23
drwx 2 student 6 Feb 16
drwx 2 student 24 Feb 22
drwx 2 student 6 Feb 16
drwx 2 student 4096 Feb 23
-rw- 1 student 1020 Feb 21

-- VISUAL BLOCK --

student@desktopl:~

Help

:56 .bash history
:45 .bash_logout
:45 .bash_profile
:45 .bashrc

:23 .cache

:33 .config

:06 Desktop

:46 Documents

:29 Downloads

:06 Music

123 Pictures

:29 Public

:33 .ssh

:29 Templates

:35 Videos

21 .viminfo

16,34

Al

Remove the Desktop and Public rows. This time, enter visual mode with upper case v,

which automatically selects full lines.

Use the arrow keys to position the cursor at any character on the Desktop row. Enter

visual mode with upper case V. The full line is selected, as shown in the screenshot. Delete
the selection with X. Repeat for the Public row.

10.

1.

12.

13.

14

student@desktopl:~

File Edit View Search Terminal Help

-rw- 1 student 7691 Mar 5 .bash history
-rw- 1 student 18 Jan 29 .bash_logout
-rw- 1 student 193 Jan 29 .bash profile
-rw- 1 student 231 Jan 29 .bashrc

drwx 12 student 4096 Feb 22 .cache

drwx 18 student 4096 Feb 21 .config
drwx 2 student 6 Feb 21 [Mesktop
drwx 2 student 4096 Feb 23 Documents
drwx 2 student 6 Feb 16 Downloads
drwx 2 student 4096 Feb 23 Music
drwx 2 student 6 Feb 23 Pictures
drwx 2 student 6 Feb 16 Public
drwx 2 student 24 Feb 22 .ssh

drwx 2 student 6 Feb 16 Templates
drwx 2 student 4096 Feb 23 Videos
-rw- 1 student 1020 Feb 21 .viminfo
-- VISUAL LINE -- 7.31 All

Save and exit. Make a backup, using the date (in seconds) to create a unique file name.

[student@serverX ~]$ cp editing final lab.txt
editing final lab $(date +%s).txt

Mail the file contents as the message, not an attachment, to the user student.

[student@serverX ~]1$ cat editing final lab.txt | mail
-s "lab file" student

Append a dashed line to the file to recognize the beginning of newer content.

[student@serverX ~]$ echo

editing final lab.txt

Append a full process listing, but only for processes owned by the current
user student and running on the currently used terminal. View the process listing and

send the listing to the file with one command line.

[student@serverX ~]$ ps -f | tee -a
editing final lab.txt

. Confirm that the process listing is at the bottom of the lab file.

15. [student@serverX ~]$ cat editing final lab.txt

16. -rw- 1 student 7691 Mar 5 .bash history

17.

18.

19.

20.

21.

22.

23.

24.

25 .

26.

27.

28.

29.

30.

31.

32.

33.

34.

-rw- 1

-rw- 1

-rw- 1

drwx 12

drwx 18

drwx 2

drwx 2

drwx 2

drwx 2

drwx 2

drwx 2

drwx 2

-rw- 1

student

student

student

student

student

student

student

student

student

student

student

student

student

18 Jan 29

193 Jan 29

231 Jan 29

4096 Feb 22

4096 Feb 21

4096 Feb 23

6 Feb 16

4096 Feb 23

6 Feb 23

24 Feb 22

6 Feb 16

4096 Feb 23

1020 Feb 21

.bash_logout

.bash profile

.bashrc
.cache

.config

Documents

Downloads

Music

Pictures

.ssh

Templates

Videos

.viminfo

student

student

student

PID PPID C STIME TTY

2005 2001 O 16:01 pts/0

26923 2005 0 19:14 pts/0

26924 2005 0 19:14 pts/O0

TIME CMD
00:00:00 /bin/bash

00:00:00 ps -f

00:00:00 tee -a editing final lab.txt

[Chapter 5. Managing Local

Linux Users and Groups

5.1. Users and Groups

5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

Practice: User and Group Concepts

Gaining Superuser Access

Practice: Running Commands as root

Managing Local User Accounts

Practice: Creating Users Using Command-line Tools

Managing Local Group Accounts

5.8. Practice: Managing Groups Using Command-line Tools
5.9. Managing User Passwords
5.10. Practice: Managing User Password Aging

5.11. Lab: Managing Local Linux Users and Groups

Introduction

Overview

Goal To manage local Linux users and groups and administer local password
policies.
Objectives o Explain the role of users and groups on a Linux system and how they

are understood by the computer.
o Run commands as the superuser to administer a Linux system.
o Create, modify, lock, and delete locally defined user accounts.
o Create, modify, and delete locally defined group accounts.

o Lock accounts manually or by setting a password—aging policy in
the shadow password file.

Sections o Users and Groups (and Practice)

o Gaining Superuser Access (and Practice)

o Managing Local User Accounts (and Practice)
o Managing Local Group Accounts (and Practice)

o Managing User Passwords (and Practice)

Lab o Managing Local Linux Users and Groups

15.1. Users and Groups
lObjectives

After completing this section, students should be able to explain the role of users and groups on a Linux
system and how they are understood by the computer.

lWhat is a user?

Users and groups

Every process (running program) on the system runs as a particular user. Every file is owned by a
particular user. Access to files and directories are restricted by user. The user associated with a running
process determines the files and directories accessible to that process.

The id command is used to show information about the current logged-in user. Basic information
about another user can also be requested by passing in the username of that user as the first argument

to the 1d command.

[student@desktopX ~]$ id

uid=1000 (student) gid=1000 (student) groups=1000 (student), 10 (wheel)

context=unconfined u:unconfined r:unconfined t:s0-s0:c0.c1023

To view the user associated with a file or directory, use the 1s =1 command. The third column shows

the username:

[student@serverX ~]$ 1ls -1 /tmp

drwx——--—--—- . 2 gdm gdm 4096 Jan 24 13:05 orbit-gdm
drwx——-—---—- . 2 student student 4096 Jan 25 20:40 orbit-student
-rw-r--r--. 1 YOOt root 23574 Jan 24 13:05 postconf

To view process information, use the ps command. The default is to show only processes in the
current shell. Add the a option to view all processes with a terminal. To view the user associated with
a process, include the u option. The first column shows the username:

[student@serverX ~]$ ps au

USER PID %CPU 3%MEM VSzZ RSS TTY STAT START TIME COMMAND

root 428 0.0 0.7 152768 14400 ttyl Ss+ Feb03 0:04 /usr/bin/Xorg
root 511 0.0 0.0 110012 812 ttysoO Ss+ Feb03 0:00 /sbin/agetty
root 1805 0.0 0.1 116040 2580 pts/0 Ss Feb03 0:00 -bash

root 2109 0.0 0.1 178468 2200 pts/0 S Feb03 0:00 su - student

student 2110 0.0 0.1 116168 2864 pts/0 S Feb03 0:00 -bash

student 3690 0.0 0.0 123368 1300 pts/0 R+ 11:42 0:00 ps au

The output of the previous commands displays users by name, but internally the operating system
tracks users by aUID number. The mapping of names to numbers is defined in databases of account
information. By default, systems use a simple "flat file," the /etc/pas swd file, to store
information about local users. The format of /etc/ passwdfollows (seven colon-separated fields):

o username: epassword: eUID: oGID: 9GECOS: o /home/dir: o shell

o username 1s a mapping of a UID to a name for the benefit of human users.

password 1is where, historically, passwords were kept in an encrypted format.

Today, they are stored in a separate file called /etc/shadow.

UID 1is a user 1D, a number that identifies the user at the most fundamental
level.

GID 1is the user’ s primary group ID number. Groups will be discussed in a moment.

O 0 O

e GECOS field is arbitrary text, which usually includes the user’ s real name.
G /home/dir 1is the location of the user’ s personal data and configuration files.

shell 1is a program that runs as the user logs in. For a regular user, this
o is normally the program that provides the user’ s command line prompt.

lWhat is a group?
Like users, groups have a name and a number (GID). Local groups are defined in /etc/group.

Primary groups

o Every user has exactly one primary group.

o For local users, the primary group is defined by the GID number of the group listed in the third
field of/etc/passwd.

o Normally, the primary group owns new files created by the user.

o Normally, the primary group of a newly created user is a newly created group with the same
name as the user. The user is the only member of this User Private Group (UPG).

Supplementary groups

o Users may be a member of zero or more supplementary groups.

o The users that are supplementary members of local groups are listed in the last field of the
group’'s entry in/etc/group. For local groups, user membership is determined by a
comma-separated list of users found in the last field of the group’s entry in /etc/group:

groupname :password:GID:1ist,of,users,in,this,group

o Supplementary group membership is used to help ensure that users have access permissions to
files and other resources on the system.

References

id(1), passwd(5), and group(5) man pages
info libec (GNU C Library Reference Manual)
o Section 29: Users and groups

(Note that the glibc-devel package must be installed for this info node to be available.)
[5.2. Practice: User and Group Concepts
Quiz

Match the items below to their counterparts in the table.

Description Keyword

A number that identifies the user at the most fundamental level UID

The program that provides the user’s command line prompt login shell
Location of local group information /etc/group
Location of the user’s personal files home directory

A number that identifies the group at the most fundamental level | GID

Location of local user account information /etc/passwd

The fourth field of /etc/passwd primary group

[5.3. Gaining Superuser Access

[l Objectives

After completing this section, students should be able to run commands as the superuser to administer

a Linux system.

IThe root user

Gaining superuser access

Most operating systems have some sort of superuser, a user that has all power over the system. This
user in Red Hat Enterprise Linux is the *OO T user. This user has the power to override normal
privileges on the file system, and is used to manage and administer the system. In order to perform
tasks such as installing or removing software and to manage system files and directories, a user must
escalate privileges to the root user.

Most devices can only be controlled by root, but there are a few exceptions. For instance,
removable devices, such as USB devices, are allowed to be controlled by a normal user. Thus, a
non-root user is allowed to add and remove files and otherwise manage a removable device, but only
root is allowed to manage "fixed" hard drives by default.

This unlimited privilege, however, comes with responsibility. xoot has unlimited power to damage
the system: remove files and directories, remove user accounts, add backdoors, etc. If

the root account is compromised, someone else would have administrative control of the system.
Throughout this course, administrators will be encouraged to log in as a normal user and escalate
privileges to root only when needed.

The root account on Linux is roughly equivalent to the local Administrator account on Windows. In
Linux, most system administrators log into an unprivileged user account and use various tools to
temporarily gain root privileges.

One common practice on Windows in the past is for the local Administrator user to log in directly to
perform system administrator duties. However, on Linux, it is recommended that system
administrators should not log in directly as root. Instead, system administrators should log in as a
non-root user, and use other mechanisms (su, sudo, or PolicyKit, for example) to temporarily gain

superuser privileges.

By logging in as the administrative user, the entire desktop environment unnecessarily runs with
administrative privileges. In that situation, any security vulnerability which would normally only
compromise the user account has the potential to compromise the entire system.

In recent versions of Microsoft Windows, Administrator disabled by default, and features such as User
Account Control (UAC) are used to limit administrative privileges for users until actually needed. In

Linux, the PolicyKitsystem is the nearest equivalent to UAC.

[Switching users with su

The su command allows a user to switch to a different user account. If a username is not specified,
the root account is implied. When invoked as a regular user, a prompt will display asking for the
password of the account you are switching to; when invoked as root, there is no need to enter the
account password.

su [-] <username>

[student@desktopX ~]$ su -
Password: redhat
[rootRdesktopX ~]#

The command sSu username starts a non-login shell, while the command su

— username starts a login shell. The main distinction is su = sets up the shell environment as if
this were a clean login as that user, while su just starts a shell as that user with the current
environment settings.

In most cases, administrators want to run Su - to get the user's normal settings. For more information,
see thebash(1) man page.

Note
The su command is most frequently used to get a command line interface (shell prompt) which is
running as another user, typically root. However, with the —¢ option, it can be used like the

Windows utility xunas to run an arbitrary program as another user. See info su for details.

lRunning commands as root With sudo

Fundamentally, Linux implements a very coarse-grained permissions model: root can do everything,
other users can do nothing (systems-related). The common solution previously discussed is to allow
standard users to temporarily“become root” using the su command. The disadvantage is that while
acting as root, all the privileges (and responsibilities) of root are granted. Not only can the user restart
the web server, but they can also remove the entire /@tc directory. Additionally, all users requiring
superuser privilege in this manner must know the rootpassword.

The sudo command allows a user to be permitted to run a command as root, or as another user,
based on settings in the /etec/sudoers file. Unlike other tools such as su, sudo requires
users to enter their own password for authentication, not the password of the account they are trying
to access. This allows an administrator to hand out fine-grained permissions to users to delegate system
administration tasks, without having to hand out the rootpassword.

For example, when sudo has been configured to allow the user student to run the

command usermod as root,student could run the following command to lock a user account:

[student@serverX ~]$ sudo usermod -1 username

[sudo] password for student: password

One additional benefit to using sudo is that all commands executed using sudo are logged by
default to/var/log/secure.

[student@serverx ~]$ sudo tail /var/log/secure

Feb 19 15:23:36 localhost sudo: student : TTY=pts/O0 ; PWD=/home/student ;
USER=root ; COMMAND=/sbin/usermod -L student

Feb 19 15:23:36 localhost usermod[16325]: lock user 'student' password

Feb 19 15:23:47 localhost sudo: student : TTY=pts/0 ; PWD=/home/student ;
USER=root ; COMMAND=/bin/tail /var/log/secure

In Red Hat Enterprise Linux 7, all members of group wheel can use sudo to run commands as any
user, includingroot. The user will be prompted for their own password. This is a change from Red Hat
Enterprise Linux 6 and earlier. Users who were members of group wheel did not get this
administrative access by default in RHEL 6 and earlier.

To enable similar behavior on earlier versions of Red Hat Enterprise Linux, use visudo to edit the
configuration file and uncomment the line allowing the group wheel to run all commands.

[root@desktopX ~]# cat /etc/sudoers
...0utput omitted...
Allows people in group wheel to run all commands

Swheel ALL= (ALL) ALL

Same thing without a password
%Swheel ALL=(ALL) NOPASSWD: ALL

...0utput omitted...

RHEL 6 did not grant group whee1l any special privileges by default. Sites which have been using this
group may be surprised when RHEL 7 automatically grants all members

of wheel full sudo privileges. This could lead to unauthorized users getting superuser access to
RHEL 7 systems.

Historically, membership in group whee1l has been used by Unix-like systems to grant or control
superuser access.

Most system administration applications with a GUI use PolicyKit to prompt users for authentication
and to manage root access. In Red Hat Enterprise Linux 7, PolicyKit may also prompt members of
group wheel for their own password in order to get root privileges when using graphical tools.
This is similar to the way in which they can use sudo to get those privileges at the shell

prompt. PolicyKit grants these privileges based on its own configuration settings, separate

from sudo. Advanced students may be interested in the pkexec(1) andpolki t(8) man pages

for details on how this system works, but it is beyond the scope of this course.

References

su(1) and sudo(8) man pages
info 1libc (GNU C Library Reference Manual)
o Section 29.2: The Persona of a Process

(Note that the glibc-devel package must be installed for this info node to be available.)

[5.4. Practice: Running Commands as root

Guided exercise
In this lab, you will practice running commands as root.

Outcomes

Use the su with and without login scripts to switch users. Use sudo to run commands with privilege.

Before you begin...

Reset your serverX system.
1. Log into the GNOME desktop on serverX as student with a password of student.

2. Open a window with a Bash prompt.

Select Applications — Utilities — Terminal.

3. Explore characteristics of the current student login environment.

a.

View the user and group information and display the current working directory.

[student@serverX ~]$ id

uid=1000 (student) gid=1000 (student) groups=1000 (student), 10 (wheel)

context=unconfined u:unconfined r:unconfined t:s0-s0:c0.c1023

[student@serverX ~]$ pwd

/home/student

View the variables which specify the home directory and the locations searched for
executable files.

[student@serverX ~]$ echo $HOME
/home/student
[student@serverX ~]$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/home/student/.lo

cal/bin:/home/student/bin

4. Switch to root without the dash and explore characteristics of the new environment.

a.

C.

Become the root user at the shell prompt.

[student@serverX ~]$ su

Password: redhat

View the user and group information and display the current working directory. Note
the identity changed, but not the current working directory.

H

-

[root@serverX student]# id

uid=0(root) gid=0(root) groups=0 (root)

context=unconfined u:unconfined r:unconfined t:s0-s0:c0.c1023

[root@serverX student]# pwd

/home/student

View the variables which specify the home directory and the locations searched for
executable files. Look for references to the student and root accounts.

[root@serverX student]# echo $HOME
/root
[root@serverX student]# echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/home/student/.lo

cal/bin: /home/student/bin

m. Exit the shell to return to the student user.

[root@serverX student]# exit

exit

5. Switch to root with the dash and explore characteristics of the new environment.

a.

-

o~

Become the root user at the shell prompt. Be sure all the login scripts are also

executed.

[student@serverX ~]$ su -

Password: redhat

View the user and group information and display the current working directory.

[rootRserverX ~]# id

uid=0(root) gid=0(root) groups=0(root)

context=unconfined u:unconfined r:unconfined t:s0-s0:c0.c1023

[root@serverX ~]# pwd

/root

View the variables which specify the home directory and the locations searched for

executable files. Look for references to the student and root accounts.

[root@serverX ~]# echo $HOME

/root

[root@serverX ~]# echo $PATH

1. /usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/

bin
m. Exit the shell to return to the student user.

n. [root@serverX ~]# exit

0. logout

6. Run several commands as student which require root access.

a. View the last 5 lines of the /var/log/messages.

b. [student@serverX ~]$ tail -5 /var/log/messages
c. tail: cannot open ‘/var/log/messages’ for reading: Permission denied
d. [student@serverX ~]$ sudo tail -5

/var/log/messages

e. Feb 3 15:07:22 localhost su: (to root) root on pts/0

f. Feb 3 15:10:01 localhost systemd: Starting Session 31 of user root.
g. Feb 3 15:10:01 localhost systemd: Started Session 31 of user root.
h. Feb 3 15:12:05 localhost su: (to root) root on pts/0

i. Feb 3 15:14:47 localhost su: (to student) root on pts/0

j. Make a backup of a configuration file in the /ete directory.

k. [student@serverX ~]$ cp /etc/motd /etc/motdOLD

1. cp: cannot create regular file ‘/etc/motdOLD’: Permission denied

m. [student@serverX ~]$ sudo cp /etc/motd
/etc/motdOLD

n. Remove the /etc/motdOLD file that was just created.

o. [student@serverX ~]$ rm /etc/motdOLD

- rm: remove write-protected regular empty file ‘/etc/motdOLD’? y
g. rm: cannot remove ‘/etc/motdOLD’: Permission denied

r. [student@serverX ~]$ sudo rm /etc/motdOLD

s. Edit a configuration file in the /@tc directory.

t. [student@serverX ~]$ echo "Welcome to class" >>
/etc/motd
u. -bash: /etc/motd: Permission denied

[student@serverX ~]$ sudo vim /etc/motd

[5.5. Managing Local User Accounts

[l Objectives

After completing this section, students should be able to create, modify, lock, and delete locally
defined user accounts.

| Managing local users

Managing local users

A number of command-line tools can be used to manage local user accounts.

useradd creates users

o useradd username sets reasonable defaults for all fields
in /etc/passwd when run without options. Theuseradd command does not set any
valid password by default, and the user cannot log in until a password is set.

o useradd --help will display the basic options that can be used to override the
defaults. In most cases, the same options can be used with the usermod command to

modify an existing user.

o Some defaults, such as the range of valid UID numbers and default password aging rules, are
read from the/etc/login.defs file. Values in this file are only used when creating
new users. A change to this file will not have an effect on any existing users.

usermod modifies existing users

o usermod --help will display the basic options that can be used to modify an account.
Some common options include:

usermod options:

-c, --comment Add a value, such as a full name, to the GECOS field.
COMMENT

-g, --gid GROUP Specify the primary group for the user account.

-G, --groups Specify a list of supplementary groups for the user
GROUPS account.

-a, --append

Used with the -G option to append the user to the

supplemental groups mentioned without removing the user
from other groups.

-d, --home Specify a new home directory for the user account.
HOME DIR
-m, --move-home Move a user home directory to a new location. Must be used

with the -d option.

usermod options:

-s, --shell SHELL | Specify a new login shell for the user account.

-L, --lock Lock a user account.

-U, --unlock Unlock a user account.

userdel deletes users

o

userdel username removes the user from /etc/passwd, but leaves the home
directory intact by default.

userdel -r username removes the user and the user's home directory.

When a user is removed with userdel without the —x option specified, the system will
have files that are owned by an unassigned user ID number. This can also happen when files
created by a deleted user exist outside their home directory. This situation can lead to
information leakage and other security issues.

In Red Hat Enterprise Linux 7 the useradd command assigns new users the first free UID
number available in the range starting from UID 1000 or above. (unless one is explicitly
specified with the —u UID option). This is how information leakage can occur: If the first
free UID number had been previously assigned to a user account which has since been removed
from the system, the old user's UID number will get reassigned to the new user, giving the new
user ownership of the old user's remaining files. The following scenario demonstrates this

situation:

[root@serverX ~]# useradd prince
[root@serverX ~]# 1ls -1 /home
drwg------ . 3 prince prince 74 Feb 4 15:22 prince
[root@serverX ~]# userdel prince
[root@serverX ~]# 1ls -1 /home
drwx———--- . 3 1000 1000 74 Feb 4 15:22 prince
[root@serverX ~]# useradd bob
[root@serverX ~]# 1ls -1 /home
drwx----—-—- . 3 bob bob 74 Feb 4 15:23 bob

drwx------ . 3 bob bob 74 Feb 4 15:22 prince

Notice that bob now owns all files that prince once owned. Depending on the situation,
one solution to this problem is to remove all "unowned" files from the system when the user
that created them is deleted. Another solution is to manually assign the "unowned" files to a
different user. The root user can find "unowned" files and directories by running: £ind /
-nouser -o -nogroup 2> /dev/null.

id displays user information

o id will display user information, including the user's UID number and group memberships.

o 1id username will display user information for username, including the user's UID
number and group memberships.

passwd sets passwords

o passwd username can be used to either set the user's initial password or change that
user's password.

o The root user can set a password to any value. A message will be displayed if the password
does not meet the minimum recommended criteria, but is followed by a prompt to retype the
new password and all tokens are updated successfully.

o [root@serverX ~]# passwd student

o Changing password for user student.

) Mm;m%wmd:redhat123

o BAD PASSWORD: The password fails the dictionary check - it is based on a dictionary
word
) Retype new password: redhatl23

passwd: all authentication tokens updated successfully.

o Aregular user must choose a password which is at least 8 characters in length and is not based

on a dictionary word, the username, or the previous password.

UID ranges

Specific UID numbers and ranges of numbers are used for specific purposes by Red Hat Enterprise Linux.

o UID 0 s always assigned to the superuser account, root.
o UID 1-200 is a range of "system users" assigned statically to system processes by Red Hat.

o UID 201-999 is a range of "system users” used by system processes that do not own files on the
file system. They are typically assigned dynamically from the available pool when the software
that needs them is installed. Programs run as these "unprivileged" system users in order to

limit their access to just the resources they need to function.

o UID 1000+ is the range available for assignment to regular users.

Prior to Red Hat Enterprise Linux 7, the convention was that UID 1-499 was used for system users and
UID 500+ for regular users. Default ranges used by useradd and groupadd can be changed in
the /etc/login.def£sfile.

References

useradd(8), usermod(8), userdel(8) man pages

[5.6. Practice: Creating Users Using Command-line Tools

Guided exercise

In this lab, you will create a number of users on your serverX system, setting and recording an initial
password for each user.

Outcomes

A system with additional user accounts.

Before you begin...

Reset your serverX system.
1. Log into the GNOME desktop on serverX as student with a password of student.

2. Open a window with a Bash prompt.
Select Applications — Utilities — Terminal.

3. Become the root user at the shell prompt.

4. [student@serverX ~]$ su -

Password: redhat
5. Add the user juliet.
[root@serverX ~]# useradd juliet
6. Confirm that juliet has been added by examining the /etc/passwd file.

7. [root@serverX ~]# tail -2 /etc/passwd
8. tcpdump:x:72:72::/:/sbin/nologin

9. juliet:x:1001:1001::/home/juliet:/bin/bash
10. Use the passwd command to initialize juliet's password.

11. [root@serverX ~]# passwd juliet

12. Changing password for user juliet.

13. New password: juliet

14. BAD PASSWORD: The password is shorter than 8 characters
15. Retype new password: j'l.Illet
passwd: all authentication tokens updated successfully.

16. Continue adding the remaining users in the steps below and set initial passwords.

a. romeo

b. [root@serverX ~]# useradd romeo

c. [root@serverX ~]# passwd romeo

d. Changing password for user romeo.

e. New password: XoOomeo
f. BAD PASSWORD: The password is shorter than 8 characters
g. Retype new password: XOmMeEO

passwd: all authentication tokens updated successfully.
h. hamlet

i. [root@serverX ~]# useradd hamlet

[root@serverX ~]# passwd hamlet
j. reba

k. [root@serverX ~]# useradd reba

[root@serverX ~]# passwd reba
[. dolly

m. [root@serverX ~]# useradd dolly

[root@serverX ~]# passwd dolly

n. elvis

o. [root@serverX ~]# useradd elvis

[root@serverX ~]# passwd elvis

[5.7. Managing Local Group Accounts

[l Objectives
After completing this section, students should be able to create, modify, and delete locally defined

group accounts.

| Managing supplementary groups

Managing local groups
A group must exist before a user can be added to that group. Several command-line tools are used to

manage local group accounts.

groupadd creates groups

o groupadd groupname without options uses the next available GID from the range
specified in the/etc/login.defs file.

o The =g GID option is used to specify a specific GID.

[student@serverx ~]$ sSudo groupadd -g 5000 ateam

Given the automatic creation of user private groups (GID 1000+), it is generally recommended
to set aside a range of GID numbers to be used for supplementary groups. A higher range will
avoid a collision with a system group (GID 0-999).

o The —x option will create a system group using a GID from the range of valid system GID
numbers listed in the/etc/login.defs file.

[student@serverx ~]$ Sudo groupadd -r appusers

groupmod modifies existing groups

o The groupmod command is used to change a group name to a GID mapping.
The —n option is used to specify a new name.

[student@serverx ~]$ sSudo groupmod -n javaapp appusers
o The —g option is used to specify a new GID.

[student@serverx ~]$ sudo groupmod -g 6000 ateam

groupdel deletes a group
o The groupdel command will remove a group.

[student@serverx ~]$ Sudo groupdel javaapp

o A group may not be removed if it is the primary group of any existing user. As
with userdel, check all file systems to ensure that no files remain owned by the group.

usermod alters group membership

o The membership of a group is controlled with user management. Change a user's primary
group with usermod -ggroupname.

[student@serverx ~]$ Sudo usermod -g student student

o Add a user to a supplementary group with usermod
-aG groupname username.

[student@serverXx ~]$ sudo usermod -aG wheel elvis

Important

The use of the —a option makes usermod function in "append” mode. Without it, the user
would be removed from all other supplementary groups.

References

group(5), groupadd(8), groupdel(8), and usermod(8) man pages

[5.8. Practice: Managing Groups Using Command-line Tools

Guided exercise

In this lab, you will add users to newly created supplementary groups.
Outcomes

The shakespeare group consists of juliet, romeo, and hamlet
The artists group contains reba, dolly, andelvis.

Before you begin...

Perform the following steps on serverX unless directed otherwise.
1. Become the root user at the shell prompt.

2. [student@serverX ~]$ su -

Password: redhat
3. Create a supplementary group called shakespeare with a group ID of 30000.
[root@serverX ~]# groupadd -g 30000 shakespeare
4. Create a supplementary group called artists.
[root@serverX ~]# groupadd artists

5. Confirm that shakespeare and artists have been added by examining
the /etc/group file.

o

[root@serverX ~]# tail -5 /etc/group

7. reba:x:1004:
8. dolly:x:1005:
9. elvis:x:1006:

10. shakespeare:x:30000:

11. artists:x:30001:

12. Add the juliet user to the shakespeare group as a supplementary group.
[root@serverX ~]# usermod -G shakespeare juliet

13. Confirm that juliet has been added using the 1d command.

14. [root@serverX ~]# id juliet

15. uid=1001 (juliet) gid=1001(juliet) groups=1001(juliet), 30000 (shakespeare)

16. Continue adding the remaining users to groups as follows:

a. Add romeo and hamlet to the shakespeare group.

b. [root@serverX ~]# usermod -G shakespeare romeo

[root@serverX ~]# usermod -G shakespeare hamlet

c. Add reba, dolly, and elvis to the artists group.

d. [root@serverX ~]# usermod -G artists reba

e. [root@serverX ~]# usermod -G artists dolly

[root@serverX ~]# usermod -G artists elvis

f. Verify the supplemental group memberships by examining the /etc/group file.

g. [root@serverX ~]# tail -5 /etc/group
h. reba:x:1004:

i. dolly:x:1005:

J. elvis:x:1006:

k. shakespeare:x:30000:juliet, romeo, hamlet

artists:x:30001:reba,dolly,elvis

15.9. Managing User Passwords

[l Objectives

After completing this section, students should be able to lock accounts manually or by setting a

password-aging policy in the shadow password file.

Shadow passwords and password policy

Managing passwords
In the distant past, encrypted passwords were stored in the world-readable /etc/passwd file. This was
thought to be reasonably secure until dictionary attacks on encrypted passwords became common. At
that point, the encrypted passwords, or "password hashes,” were moved to the more secure
/etc/shadow file. This new file also allowed password aging and expiration features to be
implemented.
There are three pieces of information stored in a modern password hash:
1gCjLa2/zs IR /

1. 1. SSSEREEESEE. The numbeliNEESSENESEESE The number SEIICEEEIE

SHA-512 hash is used.

2. gCjLa2/Z: The salt used to encrypt the hash. This is originally chosen at random. The salt

and the unencrypted password are combined and encrypted to create the encrypted password

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

hash. The use of a salt prevents two users with the same password from having identical
entries in the /etc/shadow file.

3. 6PuOEKOAzfCjxjv2hoLOB/: The encrypted hash.

When a user tries to log in, the system looks up the entry for the user in /etc/shadow, combines
the salt for the user with the unencrypted password that was typed in, and encrypts them using the
hashing algorithm specified. If the result matches the encrypted hash, the user typed in the right
password. If the result doesn't match the encrypted hash, the user typed in the wrong password and the
login attempt fails. This method allows the system to determine if the user typed in the correct
password without storing that password in a form usable for logging in.

Note
Red Hat Enterprise Linux 6 and 7 support two new strong password hashing algorithms, BilA-ESSl
(algorithm [§) and SEEESIRNSSEEENNE). Both the salt string and the encrypted hash are longer for
these algorithms. The default algorithm used for password hashes can be changed by the root user

by running the command il ENEOEEEEESEEEEIith one of the

argument; as appropriate.

Red Hat Enterprise Linux 7 defaults to using SHA-512 encryption.
/etc/shadow format
The format of /etc/shadow follows (nine colon-separated fields):

o-=e—:e—: o—o— o
—O e O O,

The login name. This must be a valid account name on the system.

The encrypted password. A password field which starts with a exclamation mark
means that the password is locked.

The date of the last password change, represented as the number of days since
1970. 01. O1.

The minimum number of days before a password may be changed, where 0 means
"no minimum age requirement.”

The maximum number of days before a password must be changed.

The warning period that a password is about to expire. Represented in days,
where 0 means “no warning given.”

© 0 0 60 0 ©

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

The number of days an account remains active after a password has expired. A
o user may still log into the system and change the password during this period.
After the specified number of days, the account is locked, becoming 7inactive.

The account expiration date, represented as the number of days since
e 1970. 01. O1.

o This blank field is reserved for future use.

[l Password aging

The following diagram relates the relevant password-aging parameters, which can be adjusted

using chage to implement a password-aging policy.

chage -HNO0 ENEEO ENNNN- BN username

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

chage -d 0 username will force a password update on next login.
chage -1 username will list a username’s current settings.
chage -E YYYY-MM-DD will expire an account on a specific day.

The date command can be used to calculate a date in the future.

[student@serverX ~]$ date -d "+45 days"

Sat Mar 22 11:47:06 EDT 2014

[Restricting access

With the chage command, an account expiration can be set. Once that date is reached, the user
cannot log into the system interactively. The usermod command can "lock” an account with

the —L option.

[student@serverX ~]$ sudo usermod -L elvis
[student@serverX ~]$ su - elvis
Password: elvis

su: Authentication failure

When a user has left the company, the administrator may lock and expire an account with a

single usermodcommand. The date must be given as the number of days since 1970.01.01.

[student@serverX ~]$ sudo usermod -L -e 1 elvis

Locking the account prevents the user from authenticating with a password to the system. It is the
recommended method of preventing access to an account by an employee who has left the company. If
the employee returns, the account can later be unlocked with usermod -U USERNAME. If the
account was also expired, be sure to also change the expiration date.

The nologin shell

Sometimes a user needs an account with a password to authenticate to a system, but does not need an
interactive shell on the system. For example, a mail server may require an account to store mail and a
password for the user to authenticate with a mail client used to retrieve mail. That user does not need
to log directly into the system.

A common solution to this situation is to set the user's login shell to /sbin/nologin. If the user
attempts to log into the system directly, the nologin "shell” will simply close the connection.

[root@serverX ~]# OSSOSO
[root@serverX ~]# su - student

Last login: Tue Feb 4 18:40:30 EST 2014 on pts/0

Important
Use of the nologin shell prevents interactive use of the system, but does not prevent all access. A
user may still be able to authenticate and upload or retrieve files through applications such as web

applications, file transfer programs, or mail readers.

References

Administrator
高亮

Administrator
高亮

chage(1), usermod(8), shadow(5), crypt(3) man pages

[5.10. Practice: Managing User Password Aging

Guided exercise

In this lab, you will set unique password policies for users.

Outcomes

The password for romeo must be changed when the user first logs into the system, every 90 days

thereafter, and the account expires in 180 days.

Before you begin...

Perform the following steps on serverX unless directed otherwise.
1. Explore locking and unlocking accounts.

a. Lock the romeo account.
[student@serverX ~]$ sudo usermod -L romeo

b. Attempt to log in as romeo.

c. [student@serverX ~]$ su - romeo
d. Password: romeo
e. su: Authentication failure

f. Unlock the romeo account.
[student@serverX ~]$ sudo usermod -U romeo

2. Change the password policy for romeo to require a new password every 90 days.

3. [student@serverX ~]$ sudo chage -M 90 romeo
4. [student@serverX ~]$ sudo chage -1 romeo

5. Last password change : Feb 03, 2014
6. Password expires : May 04, 2014
7o Password inactive ¢ never

8. Account expires : never

9. Minimum number of days between password change : 0

10. Maximum number of days between password change : 90

1, Number of days of warning before password expires 8 7

12. Additionally, force a password change on the first login for the romeo account.
13. [student@serverX ~]$ sudo chage -d 0 romeo

14. Log in as romeo and change the password to forsoothl23.

15,

[student@serverX ~]$ su - romeo

16.

17.
18.
19.
20.
21.

22.

23.

Password: romeo

You are required to change your password immediately (root enforced)

Changing password for romeo.

(current) UNIX password: romeo
New password: forsoothl23

Retype new password: forsoothl23

[romeo@serverX ~]$ exit

Expire accounts in the future.

a. Determine a date 180 days in the future.

b. [student@serverX ~]$ date -d "+180 days"

Go Sat Aug 2 17:05:20 EDT 2014

d. Set accounts to expire on that date.

c. [student@serverX ~]$ sudo chage
romeo

£. [student@serverX ~]$ sudo chage

g. Last password change

h. Password expires

o Password inactive

J. Account expires

k. Minimum number of days between password change

1. Maximum number of days between password change

Number of days of warning before password expires

-E 2014-08-02

-1 romeo
: Feb 03, 2014
: May 04, 2014
: never
: Aug 02, 2014
3 ©

: 90

15.11. Lab: Managing Local Linux Users and Groups

Performance checklist
In this lab, you will define a default password policy, create a supplementary group of three new users,

and modify the password policy of one user.

Outcomes

o

A new group on serverX called consultants, including three new user accounts for Sam

Spade, Betty Boop, and Dick Tracy.

All new accounts should require that passwords be changed at first login and every 30 days

thereafter.

The new consultant accounts should expire at the end of the 90-day contract, and Betty Boop

must change her password every 15 days.

Before you begin...

Reset your serverX system.

1. Ensure that newly created users have passwords which must be changed every 30 days.

9

[student@serverX ~]$ sudo vim /etc/login.defs
[student@serverX ~]$ cat /etc/login.defs

...Output omitted...

PASS MAX DAYS 30
PASS MIN DAYS 0
PASS MIN LEN 5
PASS WARN AGE 7

...Output omitted...

10. Create a new group named consultants with a GID of 40000.

11.

12.

13.

14.

15,

16.

17.

[student@serverX ~]$ sudo groupadd -g 40000
consultants

[student@serverX ~]$ tail -5 /etc/group
stapdev:x:158:
pesign:x:989:
tcpdump:x:72:
slocate:x:21:

consultants:x:40000:

18. Create three new users: sspade, bboop, and dtracy, with a password
of default and add them to the supplementary group consultants. The primary

group should remain as the user private group.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29 ¢

30.

[student@serverX ~]$ sudo useradd -G consultants
sspade

[student@serverX ~]$ sudo useradd -G consultants bboop

[student@serverX ~]$ sudo useradd -G consultants
dtracy

[student@serverX ~]$ tail -5 /etc/group
slocate:x:21:

consultants:x:40000:sspade,bboop,dtracy

sspade:x:1001:

bboop:x:1002:

dtracy:x:1003:

[student@serverX ~]$ sudo passwd sspade

Changing password for user sspade.

New password: default

31. BAD PASSWORD: The password is shorter than 8 characters
32. Retype new password: default

33. passwd: all authentication tokens updated successfully.
34. [student@serverX ~]$ sudo passwd bboop

35. [student@serverX ~]$ sudo passwd dtracy

36. Determine the date 90 days in the future and set each of the three new user accounts to

expire on that date.

37. [student@serverX ~]$ date -d "+90 days"

38. Mon May 5 11:49:24 EDT 2014

39. [student@serverX ~]$ sudo chage -E 2014-05-05 sspade
40. [student@serverX ~]$ sudo chage -E 2014-05-05 bboop
41. [student@serverX ~]$ sudo chage -E 2014-05-05 dtracy

42. Change the password policy for the bboop account to require a new password every 15
days.

43. [student@serverX ~]$ sudo chage -M 15 bboop
a4. [student@serverX ~]$ sudo chage -1 bboop

45. Last password change : Feb 04, 2014
46. Password expires : Feb 19, 2014
47. Password inactive : never

48. Account expires : May 05, 2014
49. Minimum number of days between password change : 0

50. Maximum number of days between password change g 15

51. Number of days of warning before password expires g8 7

52. Additionally, force all users to change their password on first login.

53. [student@serverX ~]$ sudo chage -d 0 sspade
54. [student@serverX ~]$ sudo chage -d 0 bboop
55. [student@serverX ~]$ sudo chage -d 0 dtracy

56. When you finish, run the 1lab localusers grade evaluation script to confirm you
have done everything correctly.

[student@serverX ~]$ lab localusers grade

[Chapter 6. Controlling Access
to Files with Linux File System

Permissions

6.1. Linux File System Permissions

6.2. Practice: Interpreting File and Directory Permissions

6.3. Managing File System Permissions from the Command Line
6.4. Practice: Managing File Security from the Command Line
6.5. Managing Default Permissions and File Access

6.6. Practice: Controlling New File Permissions and Ownership

6.7. Lab: Controlling Access to Files with Linux File System Permissions

Introduction

Overview

Goal To set Linux file system permissions on files and interpret the security
effects of different permission settings.

Objectives o Explain how the Linux file permissions model works.

o Change the permissions and ownership of files using command—line
tools.

o Configure a directory in which newly created files are
automatically writable by members of the group which owns the
directory, using special permissions and default umask settings.

Sections o Linux File System Permissions (and Practice)

o Managing File System Permissions from the Command Line (and
Practice)

o Managing Default Permissions and File Access (and Practice)

Lab o Controlling Access to Files with Linux File System Permissions

6.1. Linux File System Permissions

lObjectives

After completing this section, students should be able to explain how the Linux file permissions model
works.

[Linux file system permissions

Linux file system permissions

Access to files by users are controlled by file permissions. The Linux file permissions system is simple
but flexible, which makes it easy to understand and apply, yet able to handle most normal permission
cases easily.

Files have just three categories of user to which permissions apply. The file is owned by a user,
normally the one who created the file. The file is also owned by a single group, usually the primary
group of the user who created the file, but this can be changed. Different permissions can be set for the
owning user, the owning group, and for all otherusers on the system that are not the user or a member
of the owning group.

The most specific permissions apply. So, user permissions override group permissions, which

override otherpermissions.

In the graphic that follows, joshua is a member of the groups joshua and web, while allison is a member
of allison, wheel, and web. When joshua and allison have the need to collaborate, the files should be
associated with the group web and the group permissions should allow the desired access.

joshua allison

allison

joshua web

wheel

Figure 6.1: Group membership illustration
There are also just three categories of permissions which apply: read, write, and execute. These

permissions affect access to files and directories as follows:
0

Effects of permissions on files and directories

Permission Effect on files Effect on directories

Contents of the file | Contents of the directory (file names) can be

r (read) can be read. listed.

Contents of the file | Any file in the directory may be created or

w (write) can be changed. deleted.

Permission Effect on files Effect on directories

Files can be Contents of the directory can be accessed

x (exec) . . .
executed as (dependent on the permissions of the files in the
commands. directory).

7 Note that users normally have both read and exec on read-only directories, so that they can list
the directory and access its contents. If a user only has read access on a directory, the names of the
files in it can be listed, but no other information, including permissions or time stamps, are available,
nor can they be accessed. If a user only hasexec access on a directory, they cannot list the names of
the files in the directory, but if they already know the name of a file which they have permission to
read, then they can access the contents of that file by explicitly specifying the file name.

A file may be removed by anyone who has write permission to the directory in which the file resides,
regardless of the ownership or permissions on the file itself. (This can be overridden with a special
permission, the sticky bit, which will be discussed at the end of the unit.)

l Viewing file/directory permissions and ownership

The —1 option of the 1 s command will expand the file listing to include both the permissions of a file

and the ownership:

[student@desktopX ~]$ 1ls -1 test

-rw-rw-r--. 1 student student 0 Feb 8 17:36 test

The command 1s -1 directoryname will show the expanded listing of all of the files that
reside inside the directory. To prevent the descent into the directory and see the expanded listing of

the directory itself, add the —doption to ls:

[student@desktopX ~]$ 1ls -1d /home

drwxr-xr-x. 5 root root 4096 Jan 31 22:00 /home

Unlike NTFS permissions, Linux permissions only apply to the directory or file that they are set on.
Permissions on a directory are not inherited automatically by the subdirectories and files within it. (The
permissions on a directory may effectively block access to its contents, however.) All permissions in
Linux are set directly on each file or directory.

The read permission on a directory in Linux is roughly equivalent to List folder contents in
Windows.

The write permission on a directory in Linux is equivalent to Modi £y in Windows; it implies the ability
to delete files and subdirectories. In Linux, if write and the sticky bit are both set on a directory,
then only the user that owns a file or subdirectory in the directory may delete it, which is close to the
behavior of the Windows Write permission.

Root has the equivalent of the Windows Full Control permission on all files in Linux. However, root
may still have access restricted by the system's SELinux policy and the security context of the process
and files in question. SELinux will be discussed in a later course.

lExamples: Linux user, group, other concepts

Users and their groups:

lucy lucy, ricardo
ricky ricky, ricardo
ethel ethel, mertz

fred fred,mertz

File attributes (permissions, user & group ownership, name) :

drwxrwxr-x ricky ricardo dir (which contains the following files)

—IrW-Iw-Ir-—- lucy lucy 1filel
—IrWw-r--rw- lucy ricardo 1file2
—IrW-Iw-r-—- ricky ricardo rfilel
—rw-r——--- ricky ricardo rfile2

Allowed/denied behavior Controlling permissions

lucy is the only person who can | lucy has write permissions on the
change the contents of 1filel. | file 1filel as the owner. No one is listed as

a member of the group lucy. The permissions

for other do not include write permissions.

ricky can view the contents ricky is a member of the group ricardo, and

oflfile2, but cannot modify the | that group has read-only permissions on 1file2.

. Even though other has write permissions, group
contents of 1lfile2. ..
permissions take precedence.

ricky can ricky has write permissions on the directory

containing both files, and as such, he can delete

delete 1filel andlfile2.) i)
any file in that directory.

ethel can change the contents | Since ethel isnot lucy, and is not a member

oflfile2. of the ricardo group, otherpermissions

apply to her, and those include write permission.

lucy can change the contents lucy is a member of the ricardo group, and

. that group has both read and write permissions
ofrfilel.

Allowed/denied behavior

Controlling permissions

on rfilel.

ricky can view and modify the
contents of rfile2.
lucy canviewbut not modify the
contents of rfile2.

ethel and fred do not have
any access to the contents

of rfile2.

References

1s(1) man page
info coreutils (GNU Coreutils)
o Section 13: Changing file attributes

ricky owns the file and has both read and write
access to rfile2.

lucy 1is a member of the ricardo group, and
that group has read-only access to rfile2.

other permissions apply to ethel and £fred,

and those permissions do not include read or write
permission.

6.2. Practice: Interpreting File and Directory Permissions

Quiz

Using the directory listing presented, match the items that follow to their counterparts in the table.

Users and their groups:

wilma wilma, flintstone
fred fred, flintstone
betty betty, rubble

barney Dbarney, rubble

File attributes (permissions, user & group ownership, name):

Adrwxrwxr-x fred flintstone dir (which contains the following files)
-rw-rw-r-- wilma wilma 1filel
-rw-r--rw- wilma flintstone 1file2
-rw-rw-r-- fred flintstone rfilel

—rw-r——--- fred flintstone rfile2

Description File name

filel
Is owned by fred and readable by all users rhe

1file2
Contents may be modified by the user betty e

all
Can be deleted by the user fred

file2
Cannot be read by the user barney e

1filel
Has a group ownership of wilma e
Can be deleted by the user barney none

6.3. Managing File System Permissions from the Command
Line

[l Objectives

After completing this section, students should be able to change the permissions and ownership of files
using command-Lline tools.
Managing file system permissions from the command line

[Changing file/directory permissions

The command used to change permissions from the command line is chmod, short for "change mode”
(permissions are also called the mode of a file). The chmod command takes a permission instruction
followed by a list of files or directories to change. The permission instruction can be issued either
symbolically (the symbolic method) or numerically (the numeric method).

Symbolic method keywords:

chmod WhoWhatWhich file|directory

o Whoisu, g, o, a (for user, group, other, all)
o Whatis +, -, = (for add, remove, set exactly)
o Whichisr, w, x (for read, write, executable)

The symbolic method of changing file permissions uses letters to represent the different groups of
permissions: u for user, g for group, © for other, and a for all.

With the symbolic method, it is not necessary to set a complete new group of permissions. Instead, it is
possible to change one or more of the existing permissions. In order to accomplish this, use three
symbols: + to add permissions to a set, — to remove permissions from a set, and = to replace the

entire set for a group of permissions.

The permissions themselves are represented by a single letter: ¥ for read, W for write, and X for

execute.

Numeric method:

chmod ### file|directory

o Each digit represents an access level: user, group, other.
o #issum of r=4, w=2, and x=1.

Using the numeric method, permissions are represented by a three-digit (or four, when setting
advanced permissions)octal number. A single octal digit can represent the numbers 0—7, exactly the
number of possibilities for a three-bit number.

To convert between symbolic and numeric representation of permissions, we need to know how the
mapping is done. In the three-digit octal (numeric) representation, each digit stands for one group of
permissions, from left to right: user, group, and other. In each of these groups, start with 0. If the read
permission is present, add 4. Add 2 if write is present, and 1 for execute.

Numeric permissions are often used by advanced administrators since they are shorter to type and
pronounce, while still giving full control over all permissions.

Examine the permissions —XrwXr—-x———. For the user, WX is calculated as 4+2+1=7. For the
group, r—X is calculated as4+0+1=5, and for other users, —=— is represented with 0. Putting
these three together, the numeric representation of those permissions is 750.

This calculation can also be performed in the opposite direction. Look at the permissions 64 0. For the
user permissions, 6 represents read (4) and write (2), which displays as £w—. For the group

part, 4 only includes read (4) and displays as £——. The O for other provides no permissions (—=-)

and the final set of symbolic permissions for this file is ~-rw—-r——-—---— .

Examples

o Remove read and write permission for group and other on £ilel:

[student@desktopX ~]$ chmod go-rw filel

o Add execute permission for everyone on £ile2:

[student@desktopX ~]$ chmod a+x file2

o Setread, write, and execute permission for user, read, and execute for group, and no

permission for other onsampledir:

[student@desktopX ~]$ chmod 750 sampledir

The chmod commands supports the =R option for recursively setting permissions on an entire
directory tree. When using this option, be sure to use the X permissions instead of the X permission to
indicate that execute permissions should only be set on directories, and not regular files. For example,
the following command will recursively set read and write access on demodir and all its children

for their group owner, but will only apply execute permissions to directories, not regular files:

[student@desktopX ~]# chmod -R g+rwX demodir

[l Changing file/directory user or group ownership

A newly created file is owned by the user who creates the file. By default, the new file has a group
ownership which is the primary group of the user creating the file. Since Red Hat Enterprise Linux uses
user private groups, this group is often a group with only that user as a member. To grant access based
on group membership, the owner or the group of a file may need to be changed.

File ownership can be changed with the chown command (change owner). For example, to grant

ownership of the filefoofile to student, the following command could be used:

[rootRdesktopX ~]# chown student foofile

chown can be used with the =R option to recursively change the ownership of an entire directory
tree. The following command would grant ownership of £oodir and all files and subdirectories
within it to student:

[root@desktopX ~]# chown -R student foodir

The chown command can also be used to change group ownership of a file by preceding the group
name with a colon (:). For example, the following command will change the
group foodir to admins:

[root@desktopX ~]# chown :admins foodir

The chown command can also be used to change both owner and group at the same time by using the
syntaxowner : group. For example, to change the ownership of foodir to visitor and
the group to guests, use:

[rootRdesktopX ~]# chown visitor:guests foodir

Only root can change the ownership of a file. Group ownership, however, can be set by root or
the file's owner.xroot can grant ownership to any group, while non-root users can grant ownership
only to groups they belong to.

Note.
Instead of using chown, some users change the group ownership by using the chgrp command;
this command works exactly the same as changing ownership with chown, including the use of =R to
affect entire directory trees.

References

1s(1), chmod(1), chown(1), and chgrp(1) man pages

6.4. Practice: Managing File Security from the Command

Line

Guided exercise
In this lab, you will create a collaborative directory for pre-existing users.
Outcomes

A directory accessible by all members of the ateam group and a file created by Andy that can be
modified by Alice.

Before you begin...

Reset your serverX system.
1. Log into the GNOME desktop on serverX as s tudent with a password of password.

2. Open a window with a Bash prompt.
Select Applications — Utilities — Terminal.

3. Become the root user at the shell prompt.

4. [student@serverX ~]$ su -

Password: redhat

5. Run lab permissions setup which will create a shared group, ateam, with two
new users, andy andalice. The password for these accounts is password

[root@serverX ~]# lab permissions setup

6. Create a directory in /home called ateam-text.
[root@serverX ~]# mkdir /home/ateam-text

7. Change the group ownership of the ateam-text directory to ateam.
[root@serverX ~]# chown :ateam /home/ateam-text

8. Ensure the permissions of ateam-text allows group members to create and delete files.
[root@serverX ~]# chmod g+w /home/ateam-text

9. Ensure the permissions of ateam—-text forbids others from accessing its files.

10. [root@serverX ~]# chmod 770 /home/ateam-text

11. [root@serverX ~]$ 1ls -1d /home/ateam-text

drwxrwx---. 1 root ateam 6 Jan 23 12:50 /home/ateam-text
12. Exit the root shell and switch to the user andy with a password of password.
13. [root@serverX ~]# exit
14. [student@serverX ~]$ su - andy

Password: password

15. Navigate to the /home/ateam-text folder (remember to open a terminal window
first).

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27 o

28.

[andy@serverX ~]$ cd /home/ateam-text

Create an empty file called andyfile3.

[andy@serverX ateam-text]$ touch andyfile3
Record the default user and group ownership of the new file and its permissions.

[andy@serverX ateam-text]$ 1ls -1 andyfile3

-rw-rw-r--. 1 andy andy 0 Jan 23 12:59 andyfile3

Change the group ownership of the new file to ateam and record the new ownership and

permissions.

[andy@serverX ateam-text]$ chown :ateam andyfile3

[andy@serverX ateam-text]$ 1ls -1 andyfile3

-rw-rw-r--. 1 andy ateam 0 Jan 23 12:59 andyfile3
Exit the shell and switch to the user alice with a password of password.

[root@serverX ~]# exit

[student@serverX ~]$ su - alice

Password: password

Navigate to the /home/ateam-text folder.

[alice@serverX ~]$ cd /home/ateam-text

Determine alice’s privileges to access and/or modify andyfile3.

[alice@serverX ateam-text]$ echo "text" >> andyfile3

[alice@serverX ateam-text]$ cat andyfile3

text

16.5. Managing Default Permissions and File Access

[l Objectives

After completing this section, students should be able to configure a directory in which newly created

files are automatically writable by members of the group which owns the directory, using special

permissions and default umask settings.

Controlling default permissions on new files

[Special permissions

The setuid (or setgid) permission on an executable file means that the command will run as
the user (or group) of the file, not as the user that ran the command. One example is

the passwd command:

[student@desktopX ~]1$ 1ls -1 /usr/bin/passwd

-rwSr-xr-x. 1 root root 35504 Jul 16 2010 /usr/bin/passwd

In a long listing, you can spot the setuid permissions by a lowercase s where you would normally
expect the X(owner execute permissions) to be. If the owner does not have execute permissions, this
will be replaced by an uppercase S.

The sticky bit for a directory sets a special restriction on deletion of files: Only the owner of the file

(and root) can delete files within the directory. An example is /tmp:

[student@desktopX ~]$ 1ls -1d /tmp

drwxrwxrwt. 39 root root 4096 Feb 8 20:52 /tmp

In a long listing, you can spot the sticky permissions by a lowercase t where you would normally
expect the X(other execute permissions) to be. If the other does not have execute permissions, this
will be replaced by an uppercase T.

Lastly, setgid on a directory means that files created in the directory will inherit the group affiliation
from the directory, rather than inheriting it from the creating user. This is commonly used on group
collaborative directories to automatically change a file from the default private group to the shared
group.

In a long listing, you can spot the setgid permissions by a lowercase S where you would normally
expect the X(group execute permissions) to be. If the group does not have execute permissions, this

will be replaced by an uppercase S.
0

Effects of special permissions on files and directories

Special Effect on files Effect on directories
permission
. File executes as the No effect.
u+s (suid))
user that owns the file,
not the user that ran
the file.
+ (sgid) File executes as the Files newly created in the directory have
s (s .
g 8 group that owns the their group owner set to match the group
file. owner of the directory.
. No effect.) .
o+t (sticky) Users with write on the directory can
only remove files that they own; they cannot
remove or force saves to files owned by other

Special Effect on files Effect on directories

permission

users.

Setting special permissions

o Symbolically: setuid = u+s; setgid = g+s; sticky = o+t
o Numerically (fourth preceding digit): setuid = 4; setgid = 2; sticky = 1

Examples
o Add the setgid bit on directory:

[root@desktopX ~]# chmod g+s directory
o Set the setgid bit, and read/write/execute for user and group on directory:

[root@desktopX ~]# chmod 2770 directory

[Default file permissions

The default permissions for files are set by the processes that create them. For example, text editors
create files so they are readable and writeable, but not executable, by everyone. The same goes for
shell redirection. Additionally, binary executables are created executable by the compilers that create
them. The mkdir command creates new directories with all permissions set—read, write, and
execute.

Experience shows that these permissions are not typically set when new files and directories are
created. This is because some of the permissions are cleared by the umask of the shell process.

The umask command without arguments will display the current value of the shell's umask:

[student@desktopX ~]$ umask

0002

Every process on the system has a umask, which is an octal bitmask that is used to clear the permissions
of new files and directories that are created by the process. If a bit is set in the umask, then the
corresponding permission is cleared in new files. For example, the previous umask, 0002, clears the
write bit for other users. The leading zeros indicate the special, user, and group permissions are not
cleared. A umask of 077 clears all the group and other permissions of newly created files.

Use the umask command with a single numeric argument to change the umask of the current shell.
The numeric argument should be an octal value corresponding to the new umask value. If it is less than
3 digits, leading zeros are assumed.

The system default umask values for Bash shell users are defined in

the /etc/profile and /etc/bashrc files. Users can override the system defaults in
their .bash profileand .bashrc files.

In this example, please follow along with the next steps while your instructor demonstrates the effects
of umask on new files and directories.

1. Create a new file and directory to see how the default umask affects permissions.

9

10.

11.

12.

13.

14.

15,

16

17.

18.

19.

20.

21.

22.

23.

24

25 .
26.
27.
28.
29.
30.

31.

32.

[student@desktopX ~]$ touch newfilel
[student@desktopX ~]$ 1ls -1 newfilel
-rw-rw-r--. 1 student student 0 May 9 01:54 newfilel
[student@desktopX ~]$ mkdir newdirl
[student@desktopX ~]$ 1ls -1d newdirl

drwxrwxr-x. 2 student student 0 May 9 01:54 newdirl

Set the umask value to 0. This setting will not mask any of the permissions of new files. Create

a new file and directory to see how this new umask affects permissions.

[student@desktopX ~]$ umask O

[student@desktopX ~]$ touch newfile2
[student@desktopX ~]$ 1ls -1 newfile2
-rw-rw-rw-. 1 student student 0 May 9 01:54 newfile2
[student@desktopX ~]$ mkdir newdir2
[student@desktopX ~]$ 1ls -1d newdir2

drwxrwxrwx. 2 student student 0 May 9 01:54 newdir2
. Set the umask value to 007. This setting will mask all of the “other” permissions of new files.

[student@desktopX ~]$ umask 007

[student@desktopX ~]$ touch newfile3
[student@desktopX ~]$ 1ls -1 newfile3
-rw-rw----. 1 student student 0 May 9 01:55 newfile3
[student@desktopX ~]$ mkdir newdir3
[student@desktopX ~]$ 1ls -1d newdir3

drwxrwx---. 2 student student 0 May 9 01:54 newdir3

. Set the umask value to 027. This setting will mask write access for group members and all of

the “other”permissions of new files.

[student@desktopX ~]$ umask 027

[student@desktopX ~]$ touch newfile4
[student@desktopX ~]$ 1ls -1 newfiled
—IW-r—---- . 1 student student 0 May 9 01:55 newfile4
[student@desktopX ~]$ mkdir newdir4
[student@desktopX ~]$ 1ls -1d newdir4

drwxr-x---. 2 student student 0 May 9 01:54 newdir4

Log in as root to change the default umask for unprivileged users to prohibit all access for

users not in their group.

Modify /etc/bashrc and /etc/profile to change the default umask for Bash
shell users. Since the default umask for unprivileged users is 0002, look for

the umask command in these files that sets the umask to that value. Change them to set
the umask to 007.

[root@desktopX ~]# less /etc/bashrc
You could check uidgid reservation validity in
/usr/share/doc/setup-*/uidgid file
if [$UID -gt 199] && ["'id -gn'" = "'id -un'" 1; then
umask 002
else

umask 022

Only display echos from profile.d scripts if we are no login shell
[root@desktopX ~]# vim /etc/bashrc
[root@desktopX ~]# less /etc/bashrc

You could check uidgid reservation validity in

/usr/share/doc/setup-*/uidgid file

if [$UID -gt 199] && ["'id -gn'" = "'id -un'" 1; then

umask 007
else

umask 022

Only display echos from profile.d scripts if we are no login shell
[root@desktopX ~]# less /etc/profile
You could check uidgid reservation validity in
/usr/share/doc/setup-*/uidgid file
if [$UID -gt 199] && ["'id -gn'" = "'id -un""]; then
umask 002
else

umask 022

for i in /etc/profile.d/*.sh ; do

[root@desktopX ~]# vim /etc/profile

[root@desktopX ~]# less /etc/profile
You could check uidgid reservation validity in
/usr/share/doc/setup-*/uidgid file
if [$UID -gt 199] && ["'id -gn'" = "'id -un'" 1; then
umask 007
else

umask 022

for 1 in /etc/profile.d/*.sh ; do
33. Log back in as student and confirm that the umask changes you made are persistent.

34. [student@desktopX ~]$ umask

35, 0007

Other shells, such as tesh, may have different system default initialization files in /@tc and users’
home directories.

References

bash(1), 1s(1), chmod(1), and umask(1) man pages

16.6. Practice: Controlling New File Permissions and

Ownership

Guided exercise

In this lab, you will control default permissions on new files using the umask command
and setgid permission.

Outcomes

o Create a shared directory where new files are automatically owned by the group ateam.
o Experiment with various umask settings.

o Adjust default permissions for specific users.

o Confirm your adjustment is correct.

Before you begin...

Reset your serverX system. Run lab permissions setup to create the alice account.
The password for alice ispassword.
1. Loginasalice onyour serverX virtual machine and open a window with a Bash
prompt. Use the umaskcommand without arguments to display Alice's default umask value.

2. [alice@serverX ~]$ umask

3o 0002

(o))

[e0)

O

10.

11

12.

13.

14.

15

16.
17

18.

19.

20.
21.
22.
23.
24.

25.

26

27.

28.

29.

30.

31

Create a new directory / tmp/shared and a new
file /tmp/shared/defaults to see how the default umask affects permissions.

[alice@serverX ~]$ mkdir /tmp/shared
[alice@serverX ~]$ 1ls -1d /tmp/shared
drwxrwxr-x. 2 alice alice 6 Jan 26 18:43 /tmp/shared
[alice@serverX ~]$ touch /tmp/shared/defaults
[alice@serverX ~]$ 1ls -1 /tmp/shared/defaults

-rw-rw-r——. 1 alice alice 0 Jan 26 18:43 /tmp/shared/defaults

. Change the group ownership of /tmp/ shared to ateam and record the new ownership

and permissions.

[alice@serverX ~]$ chown :ateam /tmp/shared
[alice@serverX ~]$ 1ls -1d /tmp/shared

drwxrwxr-x. 2 alice ateam 21 Jan 26 18:43 /tmp/shared
. Create a new file in /tmp/ shared and record the ownership and permissions.

[alice@serverX ~]$ touch /tmp/shared/alice3
[alice@serverX ~]$ 1ls -1 /tmp/shared/alice3

-rw-rw-r-—-. 1 alice alice 0 Jan 26 18:46 /tmp/shared/alice3

Ensure the permissions of /tmp/ shared cause files created in that directory to inherit
the group ownership of ateam.

[alice@serverX ~]$ chmod g+s /tmp/shared
[alice@serverX ~]$ 1ls -1d /tmp/shared
drwxrwsr-x. 2 alice ateam 34 Jan 26 18:46 /tmp/shared
[alice@serverX ~]$ touch /tmp/shared/alice4
[alice@serverX ~]$ 1ls -1 /tmp/shared/alice4

-rw-rw-r——. 1 alice ateam 0 Jan 26 18:48 /tmp/shared/alice4d

. Change the umask for alice such that new files are created with read-only access for the
group and no access for other users. Create a new file and record the ownership and

permissions.

[alice@serverX ~]$ umask 027
[alice@serverX ~]$ touch /tmp/shared/alice5
[alice@serverX ~]$ 1ls -1 /tmp/shared/alice5

—rw-r——-——-— . 1 alice ateam 0 Jan 26 18:48 /tmp/shared/alice5

. Open a new Bash shell as alice and view the umask.

32. [alice@serverX ~]$ umask

33. 0002
34. Change the default umask for alice to prohibit all access for users not in their group.

35. [alice@serverX ~]# echo "umask 007" >> ~/.bashrc
36. [alice@serverX ~]# cat ~/.bashrc

37. # .bashrc

38.

39. # Source global definitions

40. if [-f /etc/bashrc]; then

41. . /etc/bashrc

42. fi

43.

44, # Uncomment the following line if you don't like systemctl's auto-paging feature:

45. # export SYSTEMD PAGER=
46.
47. # User specific aliases and functions

48. umask 007

49. Log out and back into serverX as alice and confirm that the umask changes you made

are persistent.

50. [alice@serverX ~]$ umask

0007

16.7. Lab: Controlling Access to Files with Linux File System

Permissions

Performance checklist
In this lab, you will configure a system with directories for user collaboration.
Outcomes
o Adirectory on serverX called /home/stooges where these three users can work
collaboratively on files.

o Only the user and group access, create, and delete files in /home/stooges. Files
created in this directory should automatically be assigned a group ownership of stooges.

o New files created by users will not be accessible outside of the group.

Before you begin...

Reset your serverX system. Log into and set up your server system.

[student@serverX ~]$ lab permissions setup

Your serverX machine has three accounts, curly, larry, and moe, who are members of a group
called stooges. The password for each account is password.
1. Open a terminal window and become root on serverX.

2. [student@serverX ~]$ SU —

3. password: redhat

[root@serverX ~]#

4. Create the /home/stooges directory.

[root@serverx ~14# mkdir /home/stooges

5. Change group permissions on the /home/stooges directory so it belongs to the stooges group.

[root@serverx ~1# chown :stooges /home/stooges

6. Set permissions on the /home/stooges directory so it is a set GID bit directory (2), the
owner (7) and group (7) have full read/write/execute permissions, and other users have no
permission (0) to the directory.

[root@serverx ~1# chmod 2770 /home/stooges

7. Check that the permissions were set properly.

8. [rootéserverx ~1# 1s -1d /home/stooges

drwxrws---. 2 root stooges 1024 Dec 9 1:38 /home/stooges

9. Modify the global login scripts so that normal users have a umask setting which prevents others

from viewing or modifying new files and directories.

10. [root@serverX ~]# vim /etc/bashrc
11. [root@serverX ~]# vim /etc/profile
12. [root@serverX ~]# less /etc/bashrc
13. # You could check uidgid reservation validity in

14. # /usr/share/doc/setup-*/uidgid file

15. if [SUID -gt 199] && ["'id -gn'" = "'id -un""]; then
16. umask 007

17. else

18. umask 022

19. fi

20.

21. for i in /etc/profile.d/*.sh ; do

22. When you finish, open a terminal window on serverX and run 1ab permissions
grade to confirm you have done everything correctly.

[student@serverx ~]$ lab permissions grade

lChapter 7. Monitoring and

Managing Linux Processes

7.1. Processes

7.2. Practice: Processes

7.3. Controlling Jobs

7.4. Practice: Background and Foreground Processes

7.5. Killing Processes

7.6. Practice: Killing Processes

7.7. Monitoring Process Activity

7.8. Practice: Monitoring Process Activity

7.9. Lab: Monitoring and Managing Linux Processes

Introduction
Goal To evaluate and control processes running on a Red Hat Enterprise Linux system.
Objectives o List and interpret basic information about processes running on the system.
o Control processes in the shell's session using bash job control.
o Terminate and control processes using signals.
o Monitor resource usage and system load due to process activity.
Sections o Processes (and Practice)
o Controlling Jobs (and Practice)

Overview

o Killing Processes (and Practice)

o Monitoring Process Activity (and Practice)

Lab o Monitoring and Managing Linux Processes

07.1. Processes

lObjectives

After completing this section, students should be able to:

o Define the life cycle of a process.
o Define process states.

o View and interpret process listings.

lWhat is a process?
Processes

A process is a running instance of a launched, executable program. A process consists of:

o an address space of allocated memory,

o security properties including ownership credentials and privileges,
o one or more execution threads of program code, and

o the process state.

The environment of a process includes:

o local and global variables,
o a current scheduling context, and

o allocated system resources, such as file descriptors and network ports.

An existing (parent) process duplicates its own address space (£oxrk) to create a new (child) process
structure. Every new process is assigned a unique process ID (PID) for tracking and security. The PID and
the parent's process ID (PPID) are elements of the new process environment. Any process may create a
child process. All processes are descendants of the first system process, which is systemd(1) on a

Red Hat Enterprise Linux 7 system.

\) e N
fork arent ‘ arent
process > e process -
process ‘ process
'R -
> child child exit sombie
process process

-/ S

Figure 7.1: Process life cycle

Through the £ork routine, a child process inherits security identities, previous and current file
descriptors, port and resource privileges, environment variables, and program code. A child process
may then @xec its own program code. Normally, a parent process sleeps while the child process runs,
setting a request (wait) to be signaled when the child completes. Upon exit, the child process has
already closed or discarded its resources and environment; the remainder is referred to as a zombie.
The parent, signaled awake when the child exited, cleans the remaining structure, then continues with

its own program code execution.

lProcess states
In a multitasking operating system, each CPU (or CPU core) can be working on one process at a single

point in time. As a process runs, its immediate requirements for CPU time and resource allocation
change. Processes are assigned astate, which changes as circumstances require.

e

——
~ - - .
. e ..
\\\ //I \\\
\
\ . \
4

\
1

Stopped \ Running |
/_..- (user) // o
o 4
fork suspend resume syscall return reap

TN e B . B
4 N 4 o N\ / o N\ / o N\
\ schedule __fun \ o exit \
(new) | Runnable | Running | Zombie :I
/ (ready) / (kernel) /

)/ " preempt or 4 4

e e

reschedule

event or
signal

Figure 7.2: Linux process states

The Linux process states are illustrated in the previous diagram and described in the following table.

0

Linux process states

Name Flag Kernel-defined state name and description

Running | R | TASK RUNNING: The process is either executing on a CPU or waiting to run. Process can be

executing user routines or kernel routines (system calls), or be queued and ready when in
theRunning (or Runnable) state.

Name Flag Kernel-defined state name and description

Sleeping | S TASK INTERRUPTIBLE: The process is waiting for some condition: a hardware request,
system resource access, or signal. When an event or signal satisfies the condition, the process

returns toRunning.

D TASK UNINTERRUPTIBLE: This process is also Sleeping, but unlike S state, will not
respond to delivered signals. Used only under specific conditions in which process interruption

may cause an unpredictable device state.

K TASK KILLABLE: Identical to the uninterruptible D state, but modified to allow the waiting
task to respond to a signal to be killed (exited completely). Ultilities frequently
display Killable processes as D state.

Stopped | T | TASK STOPPED: The process has been Stopped (suspended), usually by being signaled by a
user or another process. The process can be continued (resumed) by another signal to return

toRunning.

TASK TRACED: A process that is being debugged is also temporarily Stopped and shares the
same Tstate flag.

Zombie 2 EXIT ZOMBIE: A child process signals its parent as it exits. All resources except for the
process identity (PID) are released.

EXIT DEAD: When the parent cleans up (reaps) the remaining child process structure, the
process is now released completely. This state will never be observed in process-listing
utilities.

[Listing processes

The ps command is used for listing current processes. The command can provide detailed process
information, including:
o the user identification (UID) which determines process privileges,

o the unique process identification (PID),

o the CPU and real time already expended,

o how much memory the process has allocated in various locations,

o the location of process STDOUT, known as the controlling terminal, and

o the current process state.

Important
The Linux version of ps supports three option formats, including:

o UNIX (POSIX) options, which may be grouped and must be preceded by a dash,

o BSD options, which may be grouped and must not be used with a dash, and
o GNU long options, which are preceded by two dashes.

For example, ps -aux is not the same as ps aux.

A common display listing (options aux) displays all processes, with columns in which users will be
interested, and includes processes without a controlling terminal. A long listing (options 1ax) provides
more technical detail, but may display faster by avoiding the username lookup. The similar UNIX syntax
uses the options —ef to display all processes.

[student@serverX ~]$ ps aux

USER PID %CPU $SMEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.1 0.1 51648 7504 ? Ss 17:45 0:03 /usr/lib/systemd/syst
root 2 0.0 0.0 0 0 2 S 17:45 0:00 [kthreadd]

root 3 0.0 0.0 0 0 S 17:45 0:00 [ksoftirqgd/0]

root 5 0.0 0.0 0 0 S< 17:45 0:00 [kworker/0:0H]

root 7 0.0 0.0 0 0 2 S 17:45 0:00 [migration/0]

-- output truncated --

[student@serverX ~]$ ps lax

F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND

4 0 1 0 20 0 51648 7504 ep pol Ss 2 0:03 /usr/lib/systemd/
1 0 2 0 20 O 0 0 kthrea S ? 0:00 [kthreadd]

1 0 3 2 20 0 0 0 smpboo S ? 0:00 [ksoftirgd/0]

1 0 5 2 0 -20 0 0 worker S< ? 0:00 [kworker/0:0H]

1 0 7 2 =100 - 0 0 smpboo S ? 0:00 [migration/0]

-- output truncated --
[student@serverX ~]$ ps -ef
UID PID PPID C STIME TTY TIME CMD

root 1 0 0 17:45 2 00:00:03 /usr/lib/systemd/systemd --switched-ro

root 2 0 0 17:45 2 00:00:00 [kthreadd]

root 3 2 0 17:45 2 00:00:00 [ksoftirgd/0]
root 5 2 0 17:45 2 00:00:00 [kworker/0:0H]
root 7 2 0 17:45 2 00:00:00 [migration/0]

-- output truncated --

By default, ps with no options selects all processes with the same effective user ID (EUID) as the
current user and associated with the same terminal where ps was invoked.

o Processes in brackets (usually at the top) are scheduled kernel threads.
o Zombies show up in a ps listing as exiting or defunct.

o ps displays once. Use top(1) for a repetitive update process display.
o ps can display in tree format to view parent/child relationships.

o The default output is unsorted. Display order matches that of the system process table, which
reuses table rows as processes die and new ones are created. Output may appear
chronological, but is not guaranteed unless explicit —O or ——soxrt options are used.

References

info libc signal (GNU C Library Reference Manual)
o Section 24: Signal Handling

info libc processes (GNU C Library Reference Manual)

o Section 26: Processes

ps(1) and signal(7) man pages

07.2. Practice: Processes
Quiz

Match the following items to their counterparts in the table.

Description State

Process has been stopped temporarily.

Process has just been terminated.

Process is scheduled but is not yet on a CPU.

Process is waiting for I/0.

Process is uninterruptibly waiting for a device to respond.

Process is at a prompt, needing user input.

Tl | oln || NS

Process is executing a system call.

17.3. Controlling Jobs

[l Objectives

After completing this section, students should be able to:

o Explain the terms foreground, background, and controlling terminal.

o Use job control to manage multiple command-line tasks.

l1Jobs and sessions

Controlling jobs

Job control is a command shell feature allowing a single shell instance to run and manage multiple
commands. Without job control, a parent shell forks a child process to run a command, sleeping until
the child process exits. When the shell prompt redisplays, the parent shell has returned. With job
control, commands can be selectively suspended, resumed, and run asynchronously, allowing the shell

to return for additional commands while child processes run.

A foreground process is a command running in a terminal window. The terminal's device ID (tty) is the
process'scontrolling terminal. Foreground processes receive keyboard-generated input and signals and
are allowed to read from or write to the terminal (e.g., via stdin and stdout).

A process session is created when a terminal or console first opens (e.g., at login or by invoking a
new Terminalinstance). All processes (e.g., the first command shell, its children, and pipelines)
initiated from that terminal share the same session ID. Within a session, only one process can be in the

foreground at a time.

A background process is started without a controlling terminal because it has no need for terminal
interaction. In aps listing, such processes (e.g., service daemons and kernel process threads) display a
question mark (?) in the TTYcolumn. Background processes which (improperly) attempt to read from

or write to the terminal may be suspended.

[Running jobs in the background

Any command can be started in the background by appending an ampersand (&) to the command line.
The bash shell displays a job number (unique to the session) and the PID of the new child process.
The command shell does not wait for the child process and redisplays the shell prompt.

[student@serverX ~]$ sleep 10000 &

[1] 5947
[student@serverX ~]$

An ampersand will background only the last command in a pipeline, unless the command set is

surrounded with parentheses. The PID returned is from the pipeline's last process. All processes in the

pipeline are now members of the same job.

[student@serverX ~]$ (example command | sort | mail -s "Sort
output") &

[1] 5998

The bash command shell tracks jobs, per session, in a table displayed with the Jobs command.

[student@serverX ~]$ jobs

[1]+ Running sleep 10000 &

[student@serverX ~]$

Background jobs can reconnect to the controlling terminal by being brought to the foreground using

the £gcommand with the job ID ($job number).

[student@serverX ~]$ fg %1

sleep 10000

The example s1leep command is now running on the controlling terminal. The command shell is
again asleep, waiting for this child process to exit. To resend to the background, or to send any
command in which the trailing ampersand was not originally included, send the

keyboard-generated suspend request (Ctrl-z) to the process.

sleep 10000

~Z

[1]+ Stopped sleep 10000
[student@serverX ~]1$

The suspend takes effect immediately. The job is placed in the background. Pending output and

keyboard typeahead are discarded.

The ps option J displays job information, including the initial command shell of each session. Since

the sleepexample command is currently suspended, the state flag displayed is T.

[student@serverX ~]$ ps j

PPID PID PGID SID TTY TPGID STAT UID TIME COMMAND
2764 2768 2768 2768 pts/0 6377 Ss 1000 0:00 /bin/bash
2768 5947 5947 2768 pts/0 6377 T 1000 0:00 sleep 10000
2768 6377 6377 2768 pts/0 6377 R+ 1000 0:00 ps j

[student@serverX ~]$

To restart the process in the background, use the bg command with the same job ID.

[student@serverX ~]$ bg %1

[1]+ sleep 10000 &
[student@serverX ~]$

The command shell will warn a user who attempts to exit a terminal window (session) with suspended
jobs. If the user tries exiting again immediately, the suspended jobs are killed.

References

Additional information may be available in the chapter on viewing system processes in the Red Hat
Enterprise Linux System Administrator's Guide for Red Hat Enterprise Linux 7, which can be found
athttp://docs.redhat.com/

libc info page (GNU C Library Reference Manual)
o Section 24: Signal Handling

o Section 26: Processes

bash(1), builtins(1), ps(1), sleep(1) man pages

17.4. Practice: Background and Foreground Processes

Guided exercise
In this lab, students will start, suspend, and reconnect to multiple processes using job control.
Outcomes:

Practice suspending and restarting user processes.

Before you begin...

Log in as student to serverX. Begin in student’s home directory.

1. Open two terminal windows, side by side, to be referred to as left and right.

2. In the left window, start a process that continuously appends the word "rock” and a space to
the file~ /out£ile at one-second intervals. The complete command set must be

contained in parentheses for job control to interpret the set as a single job.

[student@serverX ~]$ (while true; do echo -n "rock " >>
~/outfile; sleep 1; done)

3. In the right window, use tail to confirm that the new process is writing to the file.
[student@serverX ~]$ tail -f ~/outfile

4. In the left window, suspend the running process. The shell returns the job ID in square
brackets. In the right window, confirm that the process output has stopped.

[student@serverX ~]$ Ctrl-z

http://docs.redhat.com/

5.

10.

11.

12.

13.

14.

15,

16.

17.

18.

19.

In the left window, view the jobs list. The + denotes the current job. Restart the job in the
background. In the right window, confirm that the process output is again active.

[student@serverX ~]$ jobs
[11+ Stopped (while true; do
echo -n "rock " >> ~/outfile; sleep 1;

done)

[student@serverX ~]$ bg

[student@serverX ~]$ jobs

In the left window, start two more processes to append to the same output file. Replace "rock”
with "paper,” and then with "scissors.” To properly background the process, the complete

command set must be contained in parentheses and ended with an ampersand.

[student@serverX ~]$ (while true; do echo -n "paper " >>
~/outfile; sleep 1; done) &

[student@serverX ~]$ (while true; do echo -n "scissors
" >> ~/outfile; sleep 1; done) &

In the left window, view Jobs to see all three processes "Running”. In the right window,

confirm that all three processes are appending to the file.

[student@serverX ~]$ jobs

Using only commands previously learned, suspend the "rock” process. In the left window,
foreground the job, using the job ID determined from the jobs listing, then suspend it using
Ctrl-z. Confirm that the "rock" process is "Stopped". In the right window, confirm that "rock"

output is no longer active.
[student@serverX ~]$ jobs
[student@serverX ~]$ fg %$number
[student@serverX ~]$ Ctrl-z

End the "paper” process. In the left window, foreground the job, then terminate it using Ctrl-c.
Confirm that the "paper” process has disappeared. In the right window, confirm that "paper”

output is no longer active.

[student@serverX ~]$ jobs
[student@serverX ~]$ fg %Snumber

[student@serverX ~]$ Ctrl-c

20. In the left window, view the remaining jobs using Ps. The suspended job has state T. The
other background job is sleeping (S), since ps is "on cpu” (R) while displaying.

21. [student@serverX ~1$ ps jJ

22. PPID PID PGID SID TTY TPGID STAT UID TIME COMMAND

23. 4489 6223 6223 6223 pts/1 12918 Ss 1000 0:00 bash

24. 4489 6237 6237 6237 pts/2 9782 Ss 1000 0:00 bash

25 . 6237 9782 9782 6237 pts/2 9782 S+ 1000 0:00 tail -f /home/student/o
26. 7360 9856 7360 6223 pts/1 12918 T 1000 0:00 sleep 1

27 o 7395 12916 7395 6223 pts/1 12918 s 1000 0:00 sleep 1

6223 12918 12918 6223 pts/1 12918 R+ 1000 0:00 ps jJ

28. Stop the remaining two jobs. In the left window, foreground either job. Terminate it using
Ctrl-c. Repeat with the remaining job. The "Stopped” job temporarily restarts when

foregrounded. Confirm that no jobs remain and that output has stopped.

29. [student@serverX ~]$ fg $number
30. [student@serverX ~]$ Ctrl-c
31. [student@serverX ~]1$ fg %$number
32. [student@serverX ~]$ Ctrl-c

[student@serverX ~]$ jobs

33. In the right window, stop the tail command. Close extra terminal windows.

[student@serverX ~]$ Ctrl-c

[7.5. Killing Processes

[l Objectives

After completing this section, students should be able to:

o Use commands to kill and communicate with processes.
o Define the characteristics of a daemon process.

o End user sessions and processes.

[l Process control using signals

Killing processes

A signal is a software interrupt delivered to a process. Signals report events to an executing program.
Events that generate a signal can be an error, external event (e.g., 1/0 request or expired timer), or

by explicit request (e.g., use of a signal-sending command or by keyboard sequence).

The following table lists the fundamental signals used by system administrators for routine process

management. Refer to signals by either their short (HUP) or proper (SIGHUP) name.

0

Fundamental process management signals

Signal Definition Purpose
number
1 HUP | Hangup Used to report termination of the controlling process of a terminal.
Also used to request process reinitialization (configuration reload)
without termination.
2 INT Keyboard Causes program termination. Can be blocked or handled. Sent by
nterrupt typing INTRcharacter (Ctrl-c).
3 QUIT | Keyboard quit | Sjmjlar to SIGINT, but also produces a process dump at termination.
Sent by typing QUIT character (Ctrl-\).
9 KILL Kill, Causes abrupt program termination. Cannot be blocked, ignored, or
unblockable handled; always fatal.
15 TERM | Terminate Causes program termination. Unlike SIGKILL, can be blocked,
default ignored, or handled. The polite way to ask a program to terminate;
allows self-cleanup.
18 CONT | Continue Sent to a process to resume if stopped. Cannot be blocked. Even if
handled, always resumes the process.
19 STOP | Stop, Suspends the process. Cannot be blocked or handled.
unblockable
20 TSTP | Keyboard stop | ynplike SIGSTOP, can be blocked, ignored, or handled. Sent by
typing SUSPcharacter (Ctrl-z).

Signal numbers vary on different Linux hardware platforms, but signal names and meanings are

standardized. For command use, it is advised to use signal names instead of numbers. The numbers

discussed in this section are for Intel x86 systems.

Each signal has a default action, usually one of the following:

Term — Cause a program to terminate (exit) at once.
Core — Cause a program to save a memory image (core dump), then terminate.

Stop — Cause a program to stop executing (suspend) and wait to continue (resume).
Programs can be prepared for expected event signals by implementing handler routines to ignore,
replace, or extend a signal's default action.

Commands for sending signals by explicit request

Users signal their current foreground process by typing a keyboard control sequence to suspend
(Ctrl-z), kill (Ctrl-c), or core dump (Ctrl-\) the process. To signal a background process or
processes in a different session requires a signal-sending command.

Signals can be specified either by name (e.g., -HUP or —SIGHUP) or by number (e.g., —1). Users

may Kkill their own processes, but root privilege is required to kill processes owned by others.

o The kill command sends a signal to a process by ID. Despite its name, the kill command can

be used for sending any signal, not just those for terminating programs.

o [student@serverX ~]$ kill PID

o [student@serverX ~]$ kill -signal PID

o [student@serverX ~]$ kill -1

(@] 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP

(@] 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSRL

(@] 11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM

o 16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP

-- output truncated --

o Usekillall tosend asignal to one or more processes matching selection criteria, such as a

command name, processes owned by a specific user, or all system-wide processes.

o [student@serverX ~]$ killall command pattern

o [student@serverX ~]$ killall -signal command pattern

[root@serverX ~]# killall -signal -u username command pattern

o The pkill command, like killall, can signal multiple processes. pkill uses advanced
selection criteria, which can include combinations of:
Command — Processes with a pattern-matched command name.
UID — Processes owned by a Linux user account, effective or real.
GID — Processes owned by a Linux group account, effective or real.
Parent — Child processes of a specific parent process.

Terminal — Processes running on a specific controlling terminal.

o [student@serverX ~]$ pkill command | pattern

o [student@serverX ~]$ pkill -signal command pattern
o [root@serverX ~]# pkill -G GID command pattern

o [root@serverX ~]# pkill -P PPID command pattern

o [root@serverX ~]# pkill -t terminal name -U UID command pattern

[Logging users out administratively

The w command views users currently logged into the system and their cumulative activities. Use
the TTY and FROMcolumns to determine the user's location.

All users have a controlling terminal, listed as pts/N while working in a graphical environment
window (pseudo-terminal) or ttyN on a system console, alternate console, or other directly
connected terminal device. Remote users display their connecting system name in the FROM column
when using the —£ option.

[student@serverX ~]$ w -f

12:43:06 up 27 min, 5 users, load average: 0.03, 0.17, 0.66

USER TTY FROM LOGING@ IDLE JCPU PCPU WHAT

student :0 :0 12:20 ?xdm? 1:10 0.16s gdm-session-wor
student pts/0 10 12:20 2.00s 0.08s 0.01ls w -f

root tty2 12:26 14:58 0.04s 0.04s -bash

bob tty3 12:28 14:42 0.02s 0.02s -bash

student pts/1 desktop2.example.12:41 1:07 0.03s 0.03s -bash

[student@serverX ~]$

Discover how long a user has been on the system by viewing the session login time. For each session,
CPU resources consumed by current jobs, included background tasks and children , are in

the JCPU column. Current foreground process CPU consumption is in the PCPU column.

Users may be forced off a system for security violations, resource overallocation, or other
administrative need. Users are expected to quit unnecessary applications, close unused command

shells, and exit login sessions when requested.

When situations occur in which users cannot be contacted or have unresponsive sessions, runaway
resource consumption, or improper system access, their sessions may need to be administratively

terminated using signals.

Important

Although SIGTERM is the default signal, SIGKILL is a commonly misused administrator favorite.
Since theSIGKILL signal cannot be handled or ignored, it is always fatal. However, it forces

termination without allowing the killed process to run self-cleanup routines. It is recommended to

send SIGTERM first, then retry with SIGKILL only if a process fails to respond.

Processes and sessions can be individually or collectively signaled. To terminate all processes for one
user, use thepkill command. Because the initial process in a login session (session leader) is
designed to handle session termination requests and ignore unintended keyboard signals, killing all of a
user's processes and login shells requires using the SIGKILL signal.

[root@serverX ~]# pgrep -1 -u bob
6964 bash
6998 sleep

6999 sleep

7000 sleep

[root@serverX ~]# pkill -SIGKILL -u bob
[root@serverX ~]# pgrep -1 -u bob

[root@serverX ~]1#_

When processes requiring attention are in the same login session, it may not be necessary to kill all of a
user's processes. Determine the controlling terminal for the session using the w command, then kill only
processes which reference the same terminal ID. Unless SIGKILL is specified, the session leader
(here, the bash login shell) successfully handles and survives the termination request, but all other

session processes are terminated.

[root@serverX ~]#_pgrep -1 -u bob
7391 bash
7426 sleep

7427 sleep

7428 sleep

[root@serverX ~]# w -h -u bob

bob tty3 18:37 5:04 0.03s 0.03s -bash
[root@serverX ~]# pkill -t tty3
[root@serverX ~]# pgrep -1 -u bob

7391 bash

[root@serverX ~]# pkill -SIGKILL -t tty3

[root@serverX ~]# pgrep -1 -u bob

[root@serverX ~]#_

The same selective process termination can be applied using parent and child process relationships.
Use the pstreecommand to view a process tree for the system or a single user. Use the parent
process's PID to kill all children they have created. This time, the parent bash login shell survives

because the signal is directed only at its child processes.

[root@serverX ~]# pstree -p bob
bash (8391) ——sleep (8425)

[-sleep (8426)

Lsleep(8427)
[root@serverX ~]# pkill -P 8391
[root@serverX ~]# pgrep -1 -u bob
bash (8391)
[root@serverX ~]# pkill -SIGKILL -P 8391
[root@serverX ~]# pgrep -1 -u bob
bash (8391)
[root@serverX ~]#

References

info libc signal (GNU C Library Reference Manual)
o Section 24: Signal Handling

info libc processes (GNU C Library Reference Manual)

o Section 26: Processes

kill(1), killall(1), pgrep(1), pkill(1), pstree(1), signal(7), and w(1) man pages

17.6. Practice: Killing Processes

Guided exercise

In this lab, students will use keyboard sequences and signals to manage and stop processes.

Outcomes:

Experience with observing the results of starting and stopping multiple shell processes.
Before you begin...
Log in as student to serverX. Start in your home directory.

o Open two terminal windows, side by side, to be referred to as_left and right.

o In the left window, start three processes that append text to an output file at one-second

intervals. To properly background each process, the complete command set must be contained

in parentheses and ended with an ampersand.

[student@serverX ~]$ (while true; do echo -n "game " >>
~/outfile; sleep 1; done) &

[student@serverX ~]$ (while true; do echo -n "set " >>
~/outfile; sleep 1; done) &

[student@serverX ~]$ (while true; do echo -n "match " >>
~/outfile; sleep 1; done) &

In the right window, use_ tail to confirm that all three processes are appending to the file.

In the left window, view_jobs_to see all three processes "Running".

[student@serverX ~]$ tail -f ~/outfile
[student@serverX ~]$ jobs

[1] Running (while true; do
echo -n "game " >> ~/outfile; sleep 1;

done) &

[2]- Running (while true; do
echo -n "set " >> ~/outfile; sleep 1;

done) &

[31+ Running (while true; do

echo -n "match " >> ~/outfile; sleep 1;

done) &

Suspend the "game” process using signals. Confirm that the "game” process is "Stopped”. In the

right window, confirm that "game” output is no longer active.

[student@serverX ~]$ kill -SIGSTOP %number

[student@serverX ~]$ jobs

Terminate the "set” process using signals. Confirm that the "set” process has disappeared. In
the right window, confirm that "set” output is no longer active.

[student@serverX ~]$ kill -SIGTERM %number

[student@serverX ~]$ jobs

Resume the "game” process using signals. Confirm that the "game” process is "Running”. In the

right window, confirm that "game” output is again active.

[student@serverX ~]$ kill -SIGCONT %number

[student@serverX ~]$ jobs

o Terminate the remaining two jobs. Confirm that no jobs remain and that output has stopped.

From the left window, terminate the right window's_ tail_command.

Close extra terminal windows.

[student@serverX ~]$ kill -SIGTERM %number
[student@serverX ~]$ kill -SIGTERM %number
[student@serverX ~]$ jobs
[student@serverX ~]$ pkill -SIGTERM tail

[student@serverX ~]$

17.7. Monitoring Process Activity

[l Objectives

After completing this section, students should be able to:

o Interpret uptime and load averages.

o Monitor real-time processes.

lLoad average

Monitoring process activity
The Linux kernel calculates a load average metric as an exponential moving average of the load
number, a cumulative CPU count of active system resource requests.

o Active requests are counted from per-CPU queues for running threads and threads waiting for

170, as the kernel tracks process resource activity and corresponding process state changes.

o Load number is a calculation routine run every five seconds by default, which accumulates

and averages the active requests into a single number for all CPUs.

o Exponential moving average is a mathematical formula to smooth out trending data highs and

lows, increase current activity significance, and decrease aging data quality.

o Load average is the load number calculation routine result. Collectively, it refers to the three

displayed values of system activity data averaged for the last 1, 5, and 15 minutes.

Understanding the Linux load average calculation
The load average represents the perceived system load over a time period. Linux implements the load
average calculation as a representation of expected service wait times, not only for CPU but also for
disk and network 1/0.
o Linux counts not only processes, but threads individually, as separate tasks. CPU request
queues for running threads (nr_running) and threads waiting for 1/0 resources (nr_iowait)
reasonably correspond to process states R(Running) and D (Uninterruptable Sleeping).

Waiting for 1/0 includes tasks sleeping for expected disk and network responses.

The load number is a global counter calculation, which is sum-totaled for all CPUs. Since tasks
returning from sleep may reschedule to different CPUs, accurate per-CPU counts are difficult,

but an accurate cumulative count is assured. Displayed load averages represent all CPUs.

Linux counts each physical CPU core and microprocessor hyperthread as separate execution
units, logically represented and referred to as individual CPUs. Each CPU has independent
request queues. View /proc/cpuinfofor the kernel representation of system CPUs.

[student@serverX ~]$ grep "model name" /proc/cpuinfo

model name : Intel(R) Core(TM) 1i5 CPU M 520 @ 2.40GHz
model name : Intel(R) Core(TM) 1i5 CPU M 520 @ 2.40GHz
model name : Intel(R) Core(TM) 1i5 CPU M 520 @ 2.40GHz
model name : Intel(R) Core(TM) 1i5 CPU M 520 @ 2.40GHz

[student@serverX ~]$ grep "model name" /proc/cpuinfo
| we -1

Some UNIX systems only considered CPU utilization or run queue length to indicate system load.
Since a system with idle CPUs can experience extensive waiting due to busy disk or network
resources, 1/0 consideration is included in the Linux load average. When experiencing high

load averages with minimal CPU activity, examine the disk and network activity.

Interpreting displayed load average values

The three values represent the weighted values over the last 1, 5, and 15 minutes. A quick glance can

indicate whether system load appears to be increasing or decreasing. Calculate the

approximate per-CPU load value to determine whether the system is experiencing significant waiting.

o

top, uptime, w, and gnome-system-moni tor display load average values.

[student@serverX ~]$ uptime

15:29:03 up 14 min, 2 users, load average: 2.92, 4.48, 5.20

Divide the displayed load average values by the number of logical CPUs in the system. A value
below 1 indicates satisfactory resource utilization and minimal wait times. A value above 1
indicates resource saturation and some amount of service waiting times.

From /proc/cpuinfo, system has four logical CPUs, so divide by 4:

load average: 2.92, 4.48, 5.20

divide by number of logical CPUs: 4 4 4
oo (R oo

per-CPU load average: 0.73 1.12 1.30
#

This system's load average appears to be decreasing.

With a load average of 2.92 on four CPUs, all CPUs were in use ~73% of the time.

During the last 5 minutes, the system was overloaded by ~12%.

During the last 15 minutes, the system was overloaded by ~30%.

An idle CPU queue has a load number of 0. Each ready and waiting thread adds a count of 1.
With a total queue count of 1, the resource (CPU, disk, or network) is in use, but no requests
spend time waiting. Additional requests increment the count, but since many requests can be

processed within the time period, resource utilizationincreases, but not wait times.

Processes sleeping for 1/0 due to a busy disk or network resource are included in the count and
increase the load average. While not an indication of CPU utilization, the queue count still

indicates that users and programs are waiting for resource services.

Until resource saturation, a load average will remain below 1, since tasks will seldom be found
waiting in queue. Load average only increases when resource saturation causes requests to
remain queued and counted by the load calculation routine. When resource utilization

approaches 100%, each additional request starts experiencing service wait time.

Real-time process monitoring

The top program is a dynamic view of the system's processes, displaying a summary header followed

by a process or thread list similar to ps information. Unlike the static ps output, top continuously

refreshes at a configurable interval, and provides capabilities for column reordering, sorting, and

highlighting. User configurations can be saved and made persistent.

Default output columns are recognizable from other resource tools:

o

o

o

o

The process ID (PID).
User name (USER) is the process owner.

Virtual memory (VIRT) is all memory the process is using, including the resident set, shared
libraries, and any mapped or swapped memory pages. (Labeled VSZ in the ps command.)

Resident memory (RES) is the physical memory used by the process, including any resident
shared objects. (Labeled RSS in the ps command.)

Process state (S) displays as:
o D = Uninterruptable Sleeping
o R =Running or Runnable
o S =Sleeping
o T = Stopped or Traced
o 4 =Zombie

CPU time (TIME) is the total processing time since the process started. May be toggled to

include cumulative time of all previous children.

The process command name (COMMAND).

Fundamental keystrokes in top

Key Purpose
Help for interactive keystrokes.
? or h
1 & Toggles for load, threads, and memory header lines.
b bl m
1 Toggle showing individual CPUs or a summary for all CPUs in header.
Change the refresh (screen) rate, in decimal seconds (e.g., 0.5, 1, 5).
s
b Toggle reverse highlighting for Aunning processes; default is bold
only.
B Enables use of bold in display, in the header, and
for HKunning processes.
H Toggle threads; show process summary or individual threads.
U Filter for any user name (effective, real).
u,
Sorts process listing by memory usage, in descending order.
P Sorts process listing by processor utilization, in descending order.
k Kill a process. When prompted, enter PID, then signal.
r Renice a process. When prompted, enter PID, then nice_value.
W Write (save) the current display configuration for use at the
next top restart.
q Quit.
Note:

References

Not available if top started in secure mode. See top(1).

GNOME System Monitor
o yelp help:gnome-system-monitor

Ps(1), top(1), uptime(1), and w(1) man pages

17.8. Practice: Monitoring Process Activity

Guided exercise

In this lab, students will use the top command to dynamically view, sort, and stop processes.

Outcomes

Practice with managing processes in real time.

Before you begin...

Perform the following tasks as student on the serverX machine. Run 1lab processl101

setup on serverX to prepare for this exercise.

[student@serverX ~]$ lab processl0l setup

1. Open two terminal windows, side by side, to be referred to as left and right. In the right

terminal, run thetop utility. Size the window to be as tall as possible.

[student@serverX ~]$ top

2. In the left terminal, determine the number of logical CPUs on this virtual machine.

[student@serverX ~]$ grep "model name" /proc/cpuinfo | wc
-1

3. In the left terminal, run a single instance of the process101 executable.

[student@serverX ~]$ processlOl

4. In the right terminal, observe the top display. Use the single keystrokes 1, t, and m to
toggle the load, threads, and memory header lines. After observing this behavior, ensure that

all headers are displaying.

5. Note the process ID (PID) for process101. View the CPU percentage for the process,
which is expected to hover around 25% or 30%.

View the load averages. On a single-CPU virtual machine, for example, the one-minute load
average is currently less than a value of 1. The value observed may be affected by resource
contention from another virtual machine or the virtual host.

6. In the left terminal, run a second instance of process101.

[student@serverX ~]$ processlOl
7. In top, note the process ID (PID) for the second process101. View the CPU percentage
for the process, also expected to hover around 25% or 30%.

View the one-minute load average again, which may still be less than 1. Wait up to one minute

to allow the calculation to adjust to the new workload.

8. In the left terminal, run a third instance of process101.

[student@serverX ~]$ processlO1l
9. In top, note the process ID (PID) for the third process101. View the CPU percentage
for the process, again expected to hover around 25% or 30%.

View the one-minute load average again, which now is expected to be above 1. Wait up to one

minute to allow the calculation to again adjust to the new workload.

10. Optional: If this virtual machine has more than one logical CPU, slowly start
additional process101 instances until the one-minute load average equals or exceeds
the number of logical CPUs. Divide the load average value by the number of CPUs to determine
the estimated load average per CPU.

11. When finished observing the load average values, terminate each of
the process101 processes from withintop.

a. Press k. Observe the prompt below the headers and above the columns.
b. Type the PID for one of the process101 instances. Press Enter.
c. Press Enter again to use the default SIGTERM signal 15.

Confirm that the selected process is no longer observed in top. If the PID still remains,
repeat these terminating steps, substituting SIGKILL signal 9 when prompted.

12. Repeat the previous step for each remaining process101 instance. Confirm that
no process101 instances remain in top.

13. In the right window, press q to exit top. Close extra terminal windows.

7.9. Lab: Monitoring and Managing Linux Processes

Performance checklist
In this lab, students will locate and manage processes that are using the most resources on a system.
Outcomes

Experience using top as a process management tool.

Before you begin...
Perform the following tasks as student on the serverX machine. Run 1lab processes
setup as root on serverX to prepare for this exercise.

[student@serverX ~]$ lab processes setup

1. In a terminal window, run the top utility. Size the window to be as tall as possible.

2. [student@serverX ~]$ top
3. top - 12:47:46 up 2:02, 3 users, load average: 1.67, 1.25, 0.73
4. Tasks: 361 total, 6 running, 355 sleeping, 0 stopped, 0 zombie

5. %Cpu(s): 98.5 us, 1.4 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.1 si, 0.0 st

6. KiB Mem: 2043424 total, 897112 used, 1146312 free, 1740 buffers
7. KiB Swap: 4079612 total, 0 used, 4079612 free. 296276 cached Me
8.

9. PID USER PR NI VIRT RES SHR S %$CPU %MEM TIME+ COMMAND
10. 4019 root 20 0 4156 76 0 R 57.5 0.0 2:54.15 hippo

11. 2492 student 20 0 1359500 168420 37492 S 16.8 8.2 3:55.58 gnome-shell

12. 1938 root 20 0 189648 35972 7568 R 1.9 1.8 0:29.66 Xorg

13. 2761 student 20 0 620192 19688 12296 s 0.4 1.0 0:04.48 gnome-termi+

output truncated

14. Observe the top display. The default display sorts by CPU utilization, highest first. What are
the processes using the most CPU time?

In addition to the default GNOME shell, find the process named hippo.

15. Change the display to sort by the amount of memory in use by each process.

Press M.

top - 12:57:38 up 2:11, 3 users, load average: 2.09, 1.70, 1.19
Tasks: 360 total, 5 running, 355 sleeping, 0 stopped, 0 zombie

%Cpu(s): 99.8 us, 0.2 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

KiB Mem: 2043424 total, 896952 used, 1146472 free, 1740 buffers
KiB Swap: 4079612 total, 0 used, 4079612 free. 296280 cached Mem
PID USER PR NI VIRT RES SHR S $CPU %MEM TIME+ COMMAND

2492 student 20 0 1359500 168420 37492 S 0.5 8.2 4:01.04 gnome-shell

4013 root 20

o

55360 51208 152 s 0.0 2.5 0:00.43 elephant

1938 root 20

o

189648 35972 7568 R 0.2 1.8 0:30.49 Xorg
2576 student 20 0 533752 33684 27784 s 0.1 1.6 0:09.29 vmtoolsd
2420 student 20 0 916268 25616 14404 S 0.0 1.3 0:00.61 gnome-setti+
2550 student 20 0 1048204 23136 16060 S 0.0 1.1 0:00.46 nautilus
output truncated

16. What are the processes with the largest memory allocations?
In addition to the default GNOME shell and Xorg, find a process named elephant.

17. Turn off the use of bold in the display. Save this configuration for reuse when top is
restarted.

Press the single uppercase keystroke B to toggle bold use off.

Press the single uppercase keystroke W to save this configuration. The

default configuration file is .toprcin the current user’ s home directory.

18. Exit top, then restart it again. Confirm that the new display uses the saved configuration;

i.e., the display starts sorted by memory utilization and bold is turned off.

Press q to quit the current display, then run top again.

[student@serverX ~]$ top

19. Modify the display to again sort by CPU utilization. Turn on the use of bold. Observe that

only Running orRunnable (state R) process entries are bold. Save this configuration.

Press the single uppercase keystroke P to sort by CPU utilization.

Press the single uppercase keystroke B to toggle bold use on.

Press the single uppercase keystroke W to save this configuration.

20. Open another terminal window if necessary. As root, suspend the hippo process.

In top, observe that the process state is now T.

21. [student@serverX ~]$ su -

22. password: redhat

[root@serverX ~]# pkill -SIGSTOP hippo

23. The hippo process quickly disappears from the display, since it is no longer actively using
CPU resources. List the process information from the command line to confirm the process

state.

[root@serverX ~]# ps -f $(pgrep hippo)

24. Resume execution of the hippo processes.

[root@serverX ~]# pkill -SIGCONT hippo

25. When finished observing the display, terminate the extra processes using the command line.
Confirm that the processes no longer display in top.

26. [root@serverX ~]# pkill elephant

[root@serverX ~]# pkill hippo

27. Check that the cleanup is successful by running the grading script. If necessary, find and

terminate processes listed by the grading script, and repeat grading.

[root@serverX ~]# lab processes grade

28. Exit the top display. Close extra terminal windows.

Press q to quit.

[Chapter 8. Controlling Services

and Daemons

8.1. Identifying Automatically Started System Processes
8.2. Practice: Identify the Status of systemd Units
8.3. Controlling System Services

8.4. Practice: Using systemct1 to Manage Services

|systemct| service chkconfig |
8.5. Lab: Controlling Services and Daemons

Introduction [ROE 7 systemd
sysvinit

Overview

Goal To control and monitor network services and system daemons using systemd.

Objectives o List system daemons and network services started by the systemd
service and socket units.

o Control system daemons and network services using systemctl.

Sections o Identifying Automatically Started System Processes (and Practice)

o Controlling System Services (and Practice)

Lab o Controlling Services and Daemons

[8.1. Identifying Automatically Started System Processes

lObjectives
After completing this section, students should be able to list system daemons and network services
started by thesy s temd service and socket units.

lIntroduction to systemd [systemd |
Viewing service status I:l
System startup and server processes are managed by the| systemd System and Service Manager. THR
program provides a method for ENSENSSSISINESON0ES, SENNNNSSNoNS, - dSNpeNesses, doth
at boot time and on a running system.

I |
Daemons are processes that wait or run in the background SEHSERNENENENSIEEEES Generally,
daemons start automatically at boot time and continue to run until shutdown or until they are manually

stopped. By convention, the names of many daemon programs end in the letter "d".
To listen for connections, a daemon uses This is the primary communication channel with
local or remote clients. Sockets may be created by daemons or may be separated from the daemon and

Administrator
高亮

Administrator
高亮

Administrator
文本框
RHEL7使用systemd控制和监视网络服务和系统服务进程，代替了之前的sysvinit管理

Administrator
文本框
systemctl 集成了service和chkconfig的功能

Administrator
高亮

Administrator
文本框
systemd介绍

Administrator
文本框
查看服务的状态

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
文本框
执行不同的任务

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
椭圆

be created by another process, such as systemd. The socket is passed to the daemon when a connection
is established by the client.

A service often refers to one or more daemons, DUT Starting or stopping a service may instead make a |
lone-time change to the state of the system, which does not involve leaving a daemon process running
afterward (calledoneshot).

Abit of history ||

For many years, process ID 1 of Linux and UNIX systems has been the init process. This process was

responsible for activating other services on the system and is the origin of the term "init system."
Frequently used daemons were started on systems at boot time with System V and LSB init scripts.
These are shell scripts, and may vary from one distribution to another. Less frequently used daemons
were started on demand by another service, such as initd orxinetd, which listens for client
connections. These systems have several limitations, which are addressed with systemd.

In Red Hat Enterprise Linux 7, process ID 1 is systemd, the new init system. A few of the new
features provided by systemd include:

o Parallelization capabilities, which increase the boot speed of a system. |

o On-demand starting of daemons without requiring a separate service

o Automatic service dependency management, which can prevent long timeouts, such as by not

starting a network service when the network is not available.)

o A method of tracking related processes together by using Linux control groups.| Linux

With systemd, shell-based service scripts are used only for a few legacy services. Therefore,
configuration files with shell variables, such as those found in /etc/ sysconfig, are being
replaced. Those still in use are included as systemd environment files and read as NAME=VALUE pairs.
They are no longer sourced as a shell script.

systemctl and systemd units

The systemctl command is used to manage different types of systemd objects, called units. A list
of available unit types can be displayed with systemctl -t help.

The systemctl may abbreviate or "ellipsize” unit names, process tree entries, and unit
descriptions unless run with the =1 option. |:|

Some common unit types are listed below: |.service |

o [HEIEEE have a .service extension and represent system services. This type of unit is used

to start frequently accessed daemons, such as a web server.

o BRSNS have a .socket extension and represent inter-process communication (IPC)

|ats. Control of the socket will be passed to a daemon or newly started service when a

client connection is made. Socket units are used to delay the start of a service at boot time

and to start less frequently used services on demand. These are similar in principle to services

which use the xinetd superserver to start on demand.

o |JBEEES have a .path extension and are used to delay the activation of a service until a

specific file system change occurs. This is commonly used for services which use spool

directories, such as a printing system.
spool

Service states

Administrator
高亮

Administrator
文本框
一次通过

Administrator
矩形

Administrator
文本框
服务通常是指一个或多个守护进程，但是启动或停止服务也许不是改变一次，这不包含结束进程

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
文本框
并行功能，增加系统的启动速度

Administrator
文本框
按需启动守护进程，不需要一个服务单独的

Administrator
文本框
自动服务依赖关系管理,它可以防止超时,如当网络不可用，不再启动一个网络服务

Administrator
文本框
使用Linux控制组追踪相关进程的模式

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
文本框
缩写

Administrator
文本框
省略

Administrator
高亮

Administrator
文本框
.service 扩展名

Administrator
文本框
频繁被访问的进程

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
文本框
客户端成功建立连接

Administrator
文本框
在开机启动时服务启动有延迟和很少被使用的服务

Administrator
高亮

Administrator
高亮

Administrator
文本框
延迟激活一个服务，直到指定的文件系统改变发生，通常用于服务使用了spool目录，如打印服务

[root@rhce ~]# systemctl
Available unit types:
service

socket

target

device

mount

automount

snapshot

timer

swap

path

slice

scope

—i help_

The status of a service can be viewed with systemctl status name. type. If the unit

type is not provided,systemctl will show the status of a service unit, if one exists.

[root@serverX ~]# systemctl status sshd.service

sshd.service - OpenSSH server daemon

Loaded:

Active:

Main PID:

CGroup:

loaded
active (running)
1073 (sshd)

/system.slice/sshd.service

L1073 /usr/sbin/sshd -D

Feb 27 11:

Feb 27 11:

Feb 27 11

Feb 27 11:

Feb 27 11:

Feb 27 11:

Hint: Some lines were ellipsized,

51339

51339

:51:39

51339

53:21

53:22

server(

server(

server(

server(

server(

server(.

.example.
.example.
.example.
.example.
.example.

example.

com

com

com

com

com

com

systemd([1]:
sshd[1073]:
sshd[1073] :
sshd[1073]:
sshd[1270] :

sshd[1270] :

(/usr/lib/systemd/system/sshd.service; enabled)

since Thu 2014-02-27 11:51:39 EST; 7h ago

Started OpenSSH server daemon.
Could not load host key: /et...y
Server listening on 0.0.0.0
Server listening on :: port 22.
error: Could not load host k...y

Accepted password for root f...2

use -1 to show in full.

Several keywords indicating the state of the service can be found in the status output:

Keyword:

Description:

loaded Unit configuration file has been processed.
active Running with one or more continuing processes.
(running)

active (exited)

Successfully completed a one—time configuration.

active Running but waiting for an event.

(waiting)

inactive Not running.

enabled Will be started at boot time.

disabled Will not be started at boot time.

Sstatic Can not be enabled, but may be started by an enabled unit

automatically.

The systemctl status NAME command replaces
the service NAME status command used in previous versions of Red Hat Enterprise Linux.

[Listing unit files with systemctl |

service Name status |

In this example, please follow along with