
Perfect Hashing for Network Applications

Yi Lu, Balaji Prabhakar

Dept. of Electrical Engineering
Stanford University
Stanford, CA 94305

yi.lu,balaji@stanford.edu

Flavio Bonomi

Cisco Systems
175 Tasman Dr

San Jose, CA 95134
avio@cisco.com

Abstract— Hash tables are a fundamental data structure in
many network applications, including route lookups, packet
classication and monitoring. Often a part of the data path,
they need to operate at wire-speed. However, several associative
memory accesses are needed to resolve collisions, making them
slower than required. This motivates us to consider minimal
perfect hashing schemes, which reduce the number of memory
accesses to just 1 and are also space-efcient.

Existing perfect hashing algorithms are not tailored for net-
work applications because they take too long to construct and
are hard to implement in hardware.

This paper introduces a hardware-friendly scheme for minimal
perfect hashing, with space requirement approaching 3.7 times
the information theoretic lower bound. Our construction is
several orders faster than existing perfect hashing schemes.
Instead of using the traditional mapping-partitioning-searching
methodology, our scheme employs a Bloom lter, which is known
for its simplicity and speed. We extend our scheme to the dynamic
setting, thus handling insertions and deletions.

I. INTRODUCTION

Hash tables constitute an integral part of many network

applications. For instance, when performing IP address lookup

at a router, one or more hash tables are queried to determine

the egress port for an arriving packet. Hash tables are also

used in packet classication, per-ow state maintenance, and

network monitoring. Given the high operating speeds of to-

day’s network links, hash tables need to respond to queries in

few tens of nanoseconds.

Despite the advance in the embedded memory technology,

it is still not possible to accommodate a hash table, often with

hundreds of thousands of entries, in an on-chip memory [1].

Therefore, hash tables are stored in larger but slower off-chip

memories. It is very important to minimize the number of

off-chip memory accesses and there has been much work on

this recently. For example, Song et. al. [1] proposed a fast

hash table based on Bloom lters [2] and the d-left scheme

[3], while Kirsch and Mitzenmacher [4] proposed an on-chip

summary that speeds up accesses to an off-chip, multi-level

hash table, originally proposed by Broder and Karlin [5].

Our approach differs from the above in the construction

phase: we construct a perfect hash function on-chip without

consulting the off-chip memory. Moreover, the off-chip mem-

ory is a simple list storing each key and its corresponding

item; there is no additional structure to the list. Finally, the

space we use, both on-chip and off-chip, is smaller and our

scheme adapts well to the dynamic situation, allowing us to

perform insertions and deletions in constant time. A drawback

of our scheme (and, indeed of any perfect hashing scheme) in

the dynamic setting is that it requires a complete rebuild if

the set of keys changes drastically. We come up with various

heuristics for minimizing the probability of rebuilding.

A. Perfect Hashing

1) Denitions:

• Perfect Hash Function: Suppose that S is a subset of size

n of the universe U . A function h mapping U into the

integers is said to be perfect for S if, when restricted to

S, it is injective [6].

• Minimal Perfect Hash Function: Let |S| = n and |U | =
u. A perfect hash function h is minimal if h(S) equals

{0, ..., n − 1} [6].

2) Performance Parameters:

• Encoding size: The number of bits needed to store the

representation of h.

• Evaluation time: The time needed to compute h(x) for

x ∈ u.

• Construction time: The time needed to compute h.

Previous Work. Fredman and Komlós used a counting argu-

ment to prove a worst-case lower bound of n log e+log log u−
O(log n) for the encoding size of a minimal perfect hash

function, provided that u ≥ n2+ϵ [7]. The bound is almost

tight as the upper bound given by Mehlhorn is n log e +
log log u + O(log n) bits [8]. However, Mehlhorn‘s algorithm

has a construction time of order nΘ(nenu log u).

One often-used approach to search for a minimal perfect

hash function involves three stages: mapping, partitioning and

searching. Mapping nds an injective function on S with a

smaller range. Partitioning separates the keys into subgroups.

And searching nds a hash value for each subgroup so that

the resulting function is perfect. More details can be found in

[9], [7].

Fredman, Komlós and Szemerédi constructed a data struc-

ture that uses space n + o(n) and accommodates membership

queries in constant time [10]. Fox et. al. [9] constructed an

algorithm for large data sets whose encoding size is very

close to the theoretical lower bound, i.e., around 2.5 bits per

key. They also carried out experiments on 3.8 million keys

and the construction time was 6 hours on a NeXT station.

Separately, Hagerup and Tholey achieved n log e+log log u+
o(n + log log u) encoding space, constant lookup time and

O(n + log log u) expected construction time using similar

approaches [6].

The dynamic perfect hashing problem was considered by

Dietzfelbinger et. al. [11]. Their scheme takes O(1) worst-

case time for lookups and O(1) amortized expected time for

insertions and deletions; it uses O(n) space.

!"!#$%&&'($")*++,)($-".($/0,1$2$3$45($%&&'

!""#$%#!##%&'&#%$(&)(*!&+&&,-!&&),.///

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:31 from IEEE Xplore. Restrictions apply.

Fig. 1. Counting Bloom Filter and Unique Bits

B. Our Approach

Before setting out our approach, it helps to understand what,

precisely, is involved in obtaining a minimal perfect hash

function for a set S. Given U and S ⊂ U , there are many

(hash) functions which map S onto the set {0, 1, ..., n − 1}.
However, a very very small subset of these functions are in-

jective on S, and these are the minimal perfect hash functions

of interest1. Thus, most approaches to nding minimal perfect

hashes involve cleverly searching the set of all hash functions

and hence are very time consuming.

Our approach is fundamentally different. By using counting

Bloom lters (explained below), we recursively nd injections

for random subsets S1, S2, ... of S onto a set of integers which

is a constant factor larger than n. The key reason for our

algorithm’s simple construction is that it avoids searching.

While Fox et. al. compute a minimal perfect hash function

for 3.8 million keys in about 6 hours on a NeXT station, we

are able to nish in 7.7 seconds, on a Pentium4 machine for

the same number of keys. The construction time on the same

machine is 125 milliseconds for a typical Ethernet address

table with 100K entries.

We will rst describe the counting Bloom lter and our

particular way of using it.

Counting Bloom Filter and Unique Bits

Let U denote the universe of keys and let S =
{x1, x2, . . . , xn} be a subset of U .

A Counting Bloom Filter (denoted CBF) is a vector B of

m counters. Available to us are k (random hash) functions

h1(·), ..., hk(·) each of which maps an x ∈ U to a randomly

chosen element of the set {e1, ..., em}, where ei is an m-bit

vector with only its ith bit set to 1. Let h(x) be the sum of

h1(x), ..., hk(x). We refer to h(x) as the “signature” of x.

Training a CBF involves setting the vector B to the sum of

h(x1), ..., h(xn), x1, ..., xn ∈ S. An example of h(x) and the

resulting CBF are shown in Figure 1.

Let the value of each counter be c1, ..., cm. As in a random

ball-bin process, the distribution of ci approximately follows

a Poisson distribution. There is always a portion of positions

that only one key is hashed to. We call such a position a unique

bit for the key. A unique bit is illustrated in Figure 1.

Algorithm Overview

We use a sequence of CBFs of different sizes. The keys

without a unique bit in the previous lter are carried over

1Knuth [12] also notes the difculty in computing minimal perfect hash
functions. He estimates that to nd h for the list of 31 frequently occurring
English words, out of the universe of all English words, a search might need
to examine 1043 possibilities.

to the next. As a result of our construction, each key nds a

hash function hi(·) that puts it in a position that no one has oc-

cupied. Equivalently, the set of predetermined hash functions

h1(·), ..., hk(·) interpolate with one another to give a perfect

hash functions h. This is not unlike the results of traditional

approaches: Each subgroup of keys is assigned a hash value so

that together they form a perfect hash function for the group.

We do not explicitly split the keys into subgroups, but the

CBFs randomly produces a subgroup for each hash function

it uses.

Contributions

In Theorem 1, we show that as the number of CBFs goes to

innity, the encoding size goes to a minimum of 2en bits. This

is 3.7 times the information-theoretic lower bound n log e +
log log u − O(log n), without the requirement u ≥ n2+ϵ. A

practical construction with a nite number of CBFs gives 8.6n
bits as the encoding size.

More practical motivations for using CBFs include the ease

of implementation in hardware and the small encoding size,

which enables the use of a fast on-chip memory. Construction

is orders faster than existing schemes as veried by simulation.

In addition, we extend the algorithm to the dynamic situ-

ation where encoding size only doubles from the static case,

and remains O(n). Both insertions and deletions are handled

in constant time. Lookups consist of a single off-chip memory

access most of the time and two in the worst case.

II. MINIMAL PERFECT HASHING

Section II-A illustrates the architecture and algorithm of

the CBF-based perfect hash. In Section II-B, we show that

the minimum encoding size with the random approach goes to

2en as n becomes large. We also analyze the tradeoff between

encoding size and maximum evaluation time. In Section II-

C, we analyze the algorithm’s construction time and failure

probability. We complete the section with simulation results.

A. Description of Algorithm

1) Architecture: The perfect hash table includes an on-chip

structure and a simple off-chip list, as illustrated by Figure

2. The on-chip structure contains d CBFs, B1, ..., Bd, with

possibly different sizes, in the top layer. There is an indicator

layer in the middle, and an array of counters at the bottom. The

indicator layer is a series of bits, with ‘1‘ corresponding to a

value 1 in the CBF counter above, and ‘0‘ for all other values.

The purpose of the indicator layer is to denote the presence of

a unique bit. The counters in the bottom layer have range n,

and are placed beneath every (log n)th indicator bit. In Figure

2, n = 16. The off-chip list can accommodate exactly |S|
entries, where S is the set of keys we want to store.

2) Construction: Each CBF, Bi, is assigned ki hash func-

tions. We start by training the rst CBF, B1, with all keys

in S, as described in I-B. The indicator layer beneath the rst

CBF is updated accordingly, i.e., with a ‘1‘ indicating a unique

bit. A counter in the bottom layer records the number of ‘1‘s

present in the indicator layer up to its position.

All keys in S are hashed again with the k1 hash functions.

If a key nds a unique bit b in B1 belonging to its signature,

!"!#$%&&'($")*++,)($-".($/0,1$2$3$45($%&&'

!""'

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:31 from IEEE Xplore. Restrictions apply.

Fig. 2. Minimal Perfect Hash Function

it consults the closest bottom-layer counter before b and

determines that b is the jth unique bit. The key is hence

inserted into he jth slot of the off-chip list.

The keys without a unique bit in B1 continue to train the

CBF B2, and the procedure repeats sequentially over all CBFs

until all keys are accommodated. Once the construction is

complete, only the indicator layer and the bottom counters are

needed for subsequent lookups. The CBFs are only required

for construction.

In the event where some keys are not accommodated, we

denote it a “failure“ and repeat the entire construction with a

different set of hash functions. We will show in Section II-C

that the probability of failure can be made exponentially small

with a linear increase in the encoding size. A realistic appli-

cation can be designed to have a very low failure probability

and succeeds with one run of construction most of the time.

3) Lookup: Given a key x, we calculate its signature for

each CBF. Once we encounter a unique bit b belonging to its

signature, we consult the closest bottom-layer counter before

b and calculate the unique bit index j. We retrieve the item

from the jth slot of the off-chip list.

B. Encoding Size

Minimum Encoding Size

Theorem 1 The minimum number of bits needed to provide

n keys with one unique bit each, with random hashing, goes to

en as n becomes large. It is achievable with an innite number

of CBFs with geometrically decreasing size, each with a single

hash function.

Proof. Assuming that the hash outputs are perfectly random,

the counter value ci in a CBF converges to a Poisson distri-

bution as n becomes large.

We start with one CBF, and let the CBF contain m counters.

Recall that one counter in the CBF corresponds to one bit

in the indicator layer in the nal encoding. Assume k hash

functions are assigned to the CBF. Hence the proportion of

unique bits is f = (nk/m) exp (−nk/m). The proportion f
is maximized with nk/m = 1, and fmax = e−1.

Let the number of keys with a unique bit be s. When k = 1,

s = fm; when k > 1, s < fm, since more than one unique

bit might belong to the same signature in the latter case. For

a xed m, s ≤ fmaxm. Hence smax = fmaxm = m/e when

k = 1. This shows that using one hash function per CBF is

the optimal solution.

Since m bits can provide unique bits for at most m/e keys,

a minimum of en bits are required to accommodate n keys.

The proof also shows how to achieve the minimum encoding

size. With k = 1, setting n = m for each CBF achieves fmax.

2 3 4 5 6 7 8 9 10
5

6

7

8

9

10

11

no of sections

sp
ac

e

Fig. 3. Tradeoff between space and number of sections

Hence, letting mi = n(1 − e−1)i−1, i.e., each CBF having

a size equal to the number of keys remaining, achieves the

minimum. We can check that
∑∞

i=1 mi = en.

Based on the above theorem, the minimum size of the

indicator layer is en for n keys. The total size of the counters

in the bottom layer is also en since each counter contains logn
bits and the counters are logn bits apart. In total, the minimum

encoding size is 2en.

Maximum Evaluation Time vs. Encoding Size

While the innite sequence of CBFs provides the minimum-

space solution, it is impossible to evaluate an innite number

of hashes. This prompts us to look at the tradeoff between

encoding size and evaluation time in the nite case.

Since the sizes of CBFs in the innite sequence is geometri-

cally decreasing, the rst few CBFs provide most of the unique

bits. For this comparison, we distribute 95% of the entries

over the rst few CBFs, and over-provide in the last CBF to

accommodate the remaining 5%. We focus our attention on

the rst few CBFs, assuming the over-provision in the last

CBF works the same for all cases under comparison.

We consider the case where the number of hashes, k, in

each CBF is 1, following the same argument as in Theorem

1. Thus the number of CBFs is the same as the maximum

number of hashes to be evaluated. Also, we assume that the

load on each CBF is the same, that is, ni/mi = λ, where ni

is the remaining number of entries for CBF i and mi is the

number of counters in CBF i. We will nd the space needed

when l CBFs are used to accommodate 95% of the entries.

The total number of keys accommodated by the rst l CBFs

is tl = (1 − (1 − e−λ)l)n. Letting tl = 0.95n, we solve

λ = − ln (1 − l
√

0.05). Hence the proportion of unique bits

q = λ exp (−λ), and the total space needed is

2n/q = −2n[(1 − l
√

0.05) ln (1 − l
√

0.05)]−1

The tradeoff between space (2/q) and number of sections (l) is

plotted in Figure 3. Clearly, l = 4 is the optimal tradeoff point

between space and number of sections. l = 7 is the minimum-

space point, which is the same as the answer obtained by

equating (1−(1−e−1)l) to 0.95. In summary, a little increase

in space reduces the maximum number of hash evaluations by

almost half. A similar tradeoff can be exploited in general.

C. Construction Time and Failure Probability

Since we choose to over-provide in the last CBF to ac-

commodate all the remaining entries, we are interested in

!"!#$%&&'($")*++,)($-".($/0,1$2$3$45($%&&'

!"")

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:31 from IEEE Xplore. Restrictions apply.

the amount of space needed in the last section so that the

probability of failure is small.

Theorem 2 Let n be the number of keys remaining for the

last section, and m be the space assigned for the section. Then

the probability of failure can be made double-exponentially

small in m, and the optimal number of hash functions in this

section is k∗ = m
n ln 2.

Proof. Assuming the last section has k hash functions. For

one particular item, the probability of not nding a unique

position is

P = [1 − (1 − 1
m

)(n−1)k]k → (1 − e−
kn
m)k

A failure occurs when at least one key cannot nd a unique

position, so

Pfail = 1 − (1 − (1 − e−
kn
m)k)n → 1 − e−n(1−e− kn

m)k

k∗ = m
n ln 2 minimizes Pfail. The optimized Pfail = 1 −

exp (−n/2k∗
) = 1 − exp (−n(2(−ln2/n))m), hence doubly

exponential in m.

The average construction time is closely related to the fail-

ure probability. Construction successful in one pass requires

T = O(n). However, the actual construction time follows

a geometric distribution with parameter (1 − Pfail). So the

average construction time T = T/(1 − Pfail). The fast

construction of our algorithm requires Pfail to be small. An

actual value of Pfail is given in section II-D.

D. Simulation Results

The simulation is run on a Pentium4 machine with randomly

generated keys. We present a design example to illustrate

experimental failure probability, unique bits distribution and

average construction time for a large number of keys.

a) Design Specication: Since 4 CBFs give the optimal

tradeoff point for 95% entries (discussed in Section II-B), we

use a total of 5 CBFs. The corresponding proportion of unique

bits is 0.3375.

This gives a space ratio of 1.56 : 0.74 : 0.35 : 0.17 : 1.5,

with a total size of 8.6n. The number of hashes for the 5 CBFs

are 1, 1, 1, 1, 12 respectively.

b) Failure Probability: The experimental failure proba-

bility is obtained by running the algorithm with 1000 keys

over 105 runs. We get Pfail = 0.0012. This translates into an

average construction time T = T/0.9988 ≈ T , where T is the

duration of a successful construction with no repetition.

c) Unique Bits Distribution: The number of unique bits

in the rst four CBFs is very close to what it is designed to

be, i.e., 0.3375 of the size of the section. This veries the

correctness of the approximated Poisson distribution. Here are

data from arbitrary runs with different number of keys.

d) Construction Time: Fox et. al. performed experiments

on 3.8 million keys, and their algorithm completes in about

6 hours. We run our simulation on 3.8 million keys, with a

C program on a Pentium4 machine 100 times. The average

time for a successful construction is 7.73 seconds using the

“clock” command. It will be signicantly faster if implemented

in hardware.

For a typical Ethernet address table, the number of keys are

in the hundreds of thousands. For a 100K keys, the algorithm

Number of Keys 1000 1000000 3800000
Section 1 526 526286 2001952
Section 2 258 249887 948100
Section 3 107 118137 448368
Section 4 63 56810 215679
Section 5 46 48880 185901

TABLE I

UNIQUE BITS DISTRIBUTION FOR DIFFERENT NUMBER OF KEYS

Fig. 4. Dynamic Perfect Hash Function

completes on a Pentium4 machine in 125 milliseconds. Again

it can be reduced further in hardware.

III. EXTENSION: DYNAMIC PERFECT HASHING

A minimal perfect hash function is specically optimized

for one set S in order to achieve space efciency. The static

nature of the minimal perfect hash makes it perform poorly

when S is dynamically changing. We propose an extension

of the unique bits idea to the dynamic setting, replacing the

minimal perfect hash function with a non-minimal perfect hash

function. As a “perfect” hash, it retains an O(1) lookup time.

A. Description of Algorithm

1) Architecture: The architecture of a dynamic perfect hash

function is illustrated in Figure 4. The CBF layer and the

indicator layer are the same as in the static case. There is

no additional counter layer, and both CBF and indicator are

retained at all times. The major change is in the off-chip list:

Instead of size |S|, the list now contains as many slots as the

number of bits in the indicator layer. There is also a small

CAM for accommodating collisions in a relatively rare event

(not shown in gure).

2) Operations:

a) Insertion: At insertion, a key compares the non-

negative bits in its signature with the corresponding CBF

counter sequentially. At each comparison, it takes action

according to the counter value c at the position (illustrated

in Figure 4). Let the corresponding indicator bit be i.
Case 1: c = 0. This indicates that an empty slot in the off-

chip list is found. Change c = 1 and i = 1, and the item is

inserted into the corresponding slot.

Case 2: c = 1. This indicates the slot is occupied by another

entry and a collision has occurred. There is an option in the

algorithm to rehash, i.e., change c = 2 and i = 0. Both keys

are re-inserted into the CBF. If they meet other collisions in

the process, rehash happens recursively. A rehash is successful

if all keys involved nd a unique position.

To avoid non-deterministic time for insertion, we limit the

levels of rehash to 2. When a rehash fails, the item is entered

into the external CAM.

!"!#$%&&'($")*++,)($-".($/0,1$2$3$45($%&&'

!"""

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:31 from IEEE Xplore. Restrictions apply.

第一次发生冲突

Case 3: c > 1. Increment c and move to the next CBF. If

this is the last CBF, the item is entered into the CAM.

b) Lookup: In normal situations, the index of the rst

unique bit for a key yields the correct index into the off-chip

list. When there was a collision, or no unique bits were found

for the key at insertion, the lookup is redirected to the CAM.

c) Deletion: A lookup is performed rst. The entry is

erased from the off-chip memory, or the CAM. Its signature

bits before its unique bit are subtracted from the CBF. And

the indicator for its unique bit is changed to 0.

d) Rebuild: If the CAM overows, the whole structure

is rebuilt just as in the construction process of the minimal

perfect hashing.

e) Load balancing: In order to distribute the load over

all CBFs, each key chooses a random CBF (using hashing) as

its rst CBF. The insertion process continues sequentially, and

wraps around until it covers all CBFs.

B. Performance Evaluation

1) Space: Both the counting Bloom lter and the indicator

layer have number of bits equal to a multiple of n. So the

space used is O(n). In the simulated design that follows, we

use 4 CBFs and each CBF has n counters with depth 4. It

consumes 20 bits per key.

2) Insertion: Due to limitation of space, we omit the

calculation and instead present numbers for the probability

of collision (Pc) and rehash failure (Pr). Both have analytical

formulae in terms of the load factor λ = nk/m, where n is the

number of currently active ows, k is the number of hashes in

one CBF, and m is the total space. Let the number of CBFs

be l.
For l = 5 and λ = 0.25, Pc = 0.2 and Pr = 0.1. Most of

the time, the system does not operate with peak load. At one-

fth the peak load, λ = 0.05, Pc = 0.047 and Pr = 0.005.

We design λmax = 0.25. Hence an empty slot in the off-

chip memory is found at least 90% of the time. For the rest

10%, the entry is inserted into the more power-consuming

CAM. In both cases, the insertion involves exactly one access

to the slower memory.

3) Lookup / Deletion: The complexity of deletion is the

same as that of lookup. In most cases, the process involves

one access to the off-chip memory or the CAM. The only case

where there is one access to the memory and the CAM is when

a collision occurred at insertion, and attempts at rehash failed.

Hence, with probability Pr, the process needs two accesses to

slower memory, and otherwise one access sufces.

One heuristic we use is moving an entry from the CAM

to the off-chip memory, when it nds a unique bit later. This

lowers the number of CAM lookups and the probability of a

CAM overow.

C. Trace-driven Simulation

A good application of the dynamic perfect hashing is the

ow lookup table in routers. Hence we run the algorithm on

a 5 million packet CAIDA trace collected at 9:20am, Aug

14, 2002. There are a total of 417931 ows. The number of

concurrently active ows reaches a maximum of 54853.

Since load balancing is used, each section is designed to

be the same size, 55000 bits, which is slightly more than

the maximum ow number. The total space for the encoding

is 1.1Mbits, and there are a total of 220, 000 off-chip slots.

The rst 3 CBFs have 1 hash, while the last one has 2
hashes. The CAM is assigned a size 2.5% of the maximum

ow number. The table below tabulates the experiment output:

Number Percentage

Total Insertion 417931
Total Lookup 4684091

Insertion into CAM 14799 3.54%
Lookups in CAM 67548 1.44%

Average Hash Check at Insertion 1.52
Average Hash Check at Lookup 1.57

Flows Moved from CAM 2729 0.65%

TABLE II

PERFORMANCE PARAMETERS OF DYNAMIC PERFECT HASHING ON TRACE

A rebuild is not necessary in this experiment. Note that

despite the use of 5 hashes, on average a unique bit is found

between the 1st and 2nd hashes.

IV. CONCLUSION

The paper presented a new approach to minimal perfect

hashing via counting Bloom lters. By generating random

subgroups for pre-determined hash functions, we avoid the

need of searching and as a result, speed up the construction.

In the limit, our encoding size is 3.7 times the information-

theoretic lower bound. The resulting construction is hardware-

friendly and ts the need of high-speed network applications

well.

REFERENCES

[1] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash
table lookup using extended bloom lter: An aid to network processing,”
SIGCOMM, (Philadelphia), Aug, 2005.

[2] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communication of the ACM, vol. 13, no. 7, pp. 422–426, July
1970.

[3] Andrei Broder and Michael Mitzenmacher, “Using multiple hash
functions to improve ip lookups,” Proceedings of IEEE Infocomd, 2001.

[4] A. Kirsch and M. Mitzenmacher, “Simple summaries for hashing with
multiple choices,” 43rd Annual Allerton Conference on Communication,

Control and Computing, Sep, 2005.
[5] A. Broder and A. Karlin, “Multilevel adaptive hashing,” Proceedings

of the 1st ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
43–53, 1990.

[6] Torben Hagerup and Torsten Tholey, “Efcient minimal perfect hashing
in nearly minimal space,” STACS 2001, LNCS 2001, pp. 317–326, 2001.

[7] M. Fredman and J. Komlós, “On the size of separating systems and
families of perfect hash functions,” SIAM J. Alg. Disc. Meth, , no. 5,
pp. 61–68, 1984.

[8] K. Mehlhorn, “Data structures and algorithms, vol. 1: Sorting and
searching,” 1984.

[9] Edward A. Fox, Qi Fan Chen, and Lenwood S. Heath, “A faster
algorithm for constructing minimal perfect hash functions,” 15th Ann

Int’l SIGIR Denmark, 1992.
[10] M. Fredman, J. Komlós, and E. Szemeredi, “Storing a sparse table with

o(1) worst case access time,” Journal of the ACM, vol. 31, no. 3, pp.
538–544, July 1984.

[11] Martin Dietzfelbinger, Annar Karlin, Kurt Melhorn, Friedhelm Meyer
auf der Heide, Hans Rohnert, and Robert E. Tarjan, “Dynamic perfect
hashing: Upper and lower bounds,” SIAM J. Computing, 1990.

[12] D. E. Knuth, “The art of computing programming. volume 3: Sorting
and searching,” pp. 506–507, 1973.

!"!#$%&&'($")*++,)($-".($/0,1$2$3$45($%&&'

!""0

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:31 from IEEE Xplore. Restrictions apply.

之前这一位置已经发生过冲突，冲突的key已经被移动到下一个CBF中去了

