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The need for modelling

• Given a real world problem, translating it to a well-defined learning
problem is non-trivial.

• The “framework” of plain regression/classification is rather restricted:
input x, output y.

• Graphical models (probabilstic models with multiple random variables
and dependencies) are a more general framework for modelling
“problems”; regression & classification become a special case;
Reinforcement Learning, decision making, but also language
processing, image segmentation, are special cases.
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Graphical Models

• The core difficulty in modelling is specifying
What are the relevant variables?

How do they depend on each other?
(Or how could they depend on each other→ learning)

• Graphical models are a simple, graphical notation for
1) which random variables exist
2) which random variables are “directly coupled”

Thereby they describe a joint probability distribution P (X1, .., Xn) over
n random variables.

• 2 basic variants:
– Bayesian Networks (aka. directed model, belief network)
– Factor Graphs (aka. undirected model, Markov Random Field)
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Bayesian Networks

• A Bayesian Network is a
– directed acyclic graph (DAG)
– where each node represents a random variable Xi

– for each node we have a conditional probability distribution
P (Xi |Parents(Xi))

• In the simplest case (discrete RVs), the conditional distribution is
represented as a conditional probability table (CPT)
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Example

drinking red wine→ longevity?
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Bayesian Networks

• DAG→ we can sort the RVs; edges only go from lower to higher index

• The joint distribution can be factored as

P (X1:n) =

n∏
i=1

P (Xi |Parents(Xi))

• Missing links imply conditional independence

• Ancestral simulation to sample from joint distribution
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Example
(Heckermann 1995)

P(G=empty|B=good,F=not empty)=0.04

P(G=empty|B=good,F=empty)=0.97

P(G=empty|B=bad,F=not empty)=0.10

P(G=empty|B=bad,F=empty)=0.99

P(T=no|B=good)=0.03

P(T=no|B=bad)=0.98

P(S=no|T=yes,F=not empty)=0.01

P(S=no|T=yes,F=empty)=0.92

P(S=no|T=no,Fnot empty)=1.00

P(S=no|T=no,F=empty)=1.00

Fuel

Gauge

Battery

TurnOver Start

P(B=bad) =0.02 P(F=empty)=0.05

⇐⇒ P (S, T,G, F,B) = P (B) P (F ) P (G|F,B) P (T |B) P (S|T, F )

• table sizes: LHS = 25 − 1 = 31 RHS = 1 + 1 + 4 + 2 + 4 = 12
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Constructing a Bayes Net

1. Choose a relevant set of variables Xi that describe the domain

2. Choose an ordering for the variables

3. While there are variables left
(a) Pick a variable Xi and add it to the network
(b) Set Parents(Xi) to some minimal set of nodes already in the net
(c) Define the CPT for Xi
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• This procedure is guaranteed to produce a DAG

• Different orderings may lead to different Bayes nets representing
the same joint distribution:

• To ensure maximum sparsity choose a wise order (“root causes”first).
Counter example: construct DAG for the car example using the
ordering S, T, G, F, B

• “Wrong” ordering will give same joint distribution, but will require the
specification of more numbers than otherwise necessary
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Bayes Nets & conditional independence

• Independence: Indep(X,Y ) ⇐⇒ P (X,Y ) = P (X) P (Y )

• Conditional independence:
Indep(X,Y |Z) ⇐⇒ P (X,Y |Z) = P (X|Z) P (Y |Z)

Z

X Y

(head-to-head)

Indep(X,Y )

¬Indep(X,Y |Z)

Z

X Y

(tail-to-tail)

¬Indep(X,Y )

Indep(X,Y |Z)

Z

X Y

(head-to-tail)

¬Indep(X,Y )

Indep(X,Y |Z)
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• Head-to-head: Indep(X,Y )

P (X,Y, Z) = P (X) P (Y ) P (Z|X,Y )

P (X,Y ) = P (X) P (Y )
∑
Z P (Z|X,Y ) = P (X) P (Y )

• Tail-to-tail: Indep(X,Y |Z)
P (X,Y, Z) = P (Z) P (X|Z) P (Y |Z)
P (X,Y |Z) = P (X,Y, Z) = P (Z) = P (X|Z) P (Y |Z)

• Head-to-tail: Indep(X,Y |Z)
P (X,Y, Z) = P (X) P (Z|X) P (Y |Z)
P (X,Y |Z) = P (X,Y,Z)

P (Z) = P (X,Z) P (Y |Z)
P (Z) = P (X|Z) P (Y |Z)
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General rules for determining conditional independence in a Bayes net:

• Given three groups of random variables X,Y, Z

Indep(X,Y |Z) ⇐⇒ every path from X to Y is “blocked by Z”

• A path is “blocked by Z” ⇐⇒
– ∃ a node in Z that is head-to-tail w.r.t. the path, or
– ∃ a node in Z that is tail-to-tail w.r.t. the path, or
– ∃ another node A which is head-to-head w.r.t. the path

and neither A nor any of its descendants are in Z
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Example
(Heckermann 1995)

P(G=empty|B=good,F=not empty)=0.04

P(G=empty|B=good,F=empty)=0.97

P(G=empty|B=bad,F=not empty)=0.10

P(G=empty|B=bad,F=empty)=0.99

P(T=no|B=good)=0.03

P(T=no|B=bad)=0.98

P(S=no|T=yes,F=not empty)=0.01

P(S=no|T=yes,F=empty)=0.92

P(S=no|T=no,Fnot empty)=1.00

P(S=no|T=no,F=empty)=1.00

Fuel

Gauge

Battery

TurnOver Start

P(B=bad) =0.02 P(F=empty)=0.05

Indep(T, F )? Indep(B,F |S)? Indep(B,S|T )?

13/21



What can we do with Bayes nets?

• Inference: Given some pieces of information (prior, observed
variabes) what is the implication (the implied information, the posterior)
on a non-observed variable

• Learning:
– Fully Bayesian Learning: Inference over parameters (e.g., β)
– Maximum likelihood training: Optimizing parameters

• Structure Learning (Learning/Inferring the graph structure itself):
Decide which model (which graph structure) fits the data best; thereby
uncovering conditional independencies in the data.
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Inference
• Inference: Given some pieces of information (prior, observed variabes)

what is the implication (the implied information, the posterior) on a
non-observed variable

• In a Bayes Nets: Assume there is three groups of RVs:
– Z are observed random variables
– X and Y are hidden random variables
– We want to do inference about X, not Y

Given some observed variables Z, compute the
posterior marginal P (X |Z) for some hidden variable X.

P (X |Z) = P (X,Z)

P (Z)
=

1

P (Z)

∑
Y

P (X,Y, Z)

where Y are all hidden random variables except for X

• Inference requires summing over (eliminating) hidden variables.
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Example: Holmes & Watson

• Mr. Holmes lives in Los Angeles. One morning when Holmes leaves
his house, he realizes that his grass is wet. Is it due to rain, or has he
forgotten to turn off his sprinkler?

– Calculate P (R|H), P (S|H) and compare these values to the prior probabilities.
– Calculate P (R,S|H).

Note: R and S are marginally independent, but conditionally dependent

• Holmes checks Watson’s grass, and finds it is also wet.

– Calculate P (R|H,W ), P (S|H,W )

– This effect is called explaining away

JavaBayes: run it from the html page

http://www.cs.cmu.edu/~javabayes/Home/applet.html
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Example: Holmes & Watson

Watson Holmes

P(W=yes|R=yes)=1.0

P(W=yes|R=no)=0.2 P(H=yes|R=yes,S=yes)=1.0

P(H=yes|R=yes,S=no)=1.0

P(H=yes|R=no,S=yes)=0.9

P(H=yes|R=no,S=no)=0.0

Rain

P(R=yes)=0.2

Sprinkler

P(S=yes)=0.1

P (H,W,S,R) = P (H|S,R) P (W |R) P (S) P (R)

P (R|H) =
∑
W,S

P (R,W,S,H)

P (H)
=

1

P (H)

∑
W,S

P (H|S,R) P (W |R) P (S) P (R)

=
1

P (H)

∑
S

P (H|S,R) P (S) P (R)

P (R=1 |H=1) =
1

P (H=1)
(1.0 · 0.2 · 0.1 + 1.0 · 0.2 · 0.9) =

1

P (H=1)
0.2

P (R=0 |H=1) =
1

P (H=1)
(0.9 · 0.8 · 0.1 + 0.0 · 0.8 · 0.9) =

1

P (H=1)
0.072
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• These types of calculations can be automated
→ Variable Elimination Algorithm
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Bavarian dialect example

D

B

• Two binary random variables(RVs): B (bavarian) and D (dialect)

• Given:
P (D,B) = P (D |B) P (B)

P (D=1 |B=1) = 0.4, P (D=1 |B=0) = 0.01, P (B=1) = 0.15

• Notation: Grey shading usually indicates “observed”
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Coin flipping example

H

d1 d2 d3 d4 d5

• One binary RV H (hypothesis), 5 RVs for the coin tosses d1, .., d5

• Given:
P (D,H) =

∏
i P (di |H) P (H)

P (H=1) = 999
1000 , P (di=H |H=1) = 1

2 , P (di=H |H=2) = 1
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Ridge regression

β

xi

yi
i = 1 : n

• One multi-variate RV β, 2n RVs x1:n, y1:n (observed data)

• Given:
P (D,β) =

∏
i

[
P (yi |xi, β) P (xi)

]
P (β)

P (β) = N(β | 0, σ
2

λ ), P (yi |xi, β) = N(yi |x>iβ, σ2)

• Plate notation: Plates (boxes with index ranges) mean “copy n-times”
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