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Abstract
A longstanding goal in deep learning research
has been to precisely characterize training and
generalization. However, the often complex loss
landscapes of neural networks have made a theory
of learning dynamics elusive. In this work, we
show that for wide neural networks the learning
dynamics simplify considerably and that, in the
infinite width limit, they are governed by a linear
model obtained from the first-order Taylor expan-
sion of the network around its initial parameters.
Furthermore, mirroring the correspondence be-
tween wide Bayesian neural networks and Gaus-
sian processes, gradient-based training of wide
neural networks with a squared loss produces test
set predictions drawn from a Gaussian process
with a particular compositional kernel. While
these theoretical results are only exact in the in-
finite width limit, we nevertheless find excellent
empirical agreement between the predictions of
the original network and those of the linearized
version even for finite practically-sized networks.
This agreement is robust across different architec-
tures, optimization methods, and loss functions.

1. Introduction
Machine learning models based on deep neural networks
have achieved unprecedented performance across a wide
range of tasks (Krizhevsky et al., 2012; He et al., 2016;
Devlin et al., 2018). Typically, these models are regarded as
complex systems for which many types of theoretical analy-
ses are intractable. Moreover, characterizing the gradient-
based training dynamics of these models is challenging
owing to the typically high-dimensional non-convex loss
surfaces governing the optimization. As is common in the
physical sciences, investigating the extreme limits of such
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systems can often shed light on these hard problems. For
neural networks, one such limit is that of infinite width,
which refers either to the number of hidden units in a fully-
connected layer or to the number of channels in a convo-
lutional layer. Under this limit, the output of the network
at initialization is a draw from a Gaussian process (GP);
moreover, the network output remains governed by a GP
after exact Bayesian training using squared loss (Neal, 1994;
Lee et al., 2018; Matthews et al., 2018; Novak et al., 2019;
Garriga-Alonso et al., 2018). Aside from its theoretical
simplicity, the infinite-width limit is also of practical inter-
est as wider networks have been found to generalize bet-
ter (Neyshabur et al., 2015; Novak et al., 2018; Lee et al.,
2018; Novak et al., 2019; Neyshabur et al., 2019).

In this work, we explore the learning dynamics of wide
neural networks under gradient descent and find that the
weight-space description of the dynamics becomes surpris-
ingly simple: as the width becomes large, the neural network
can be effectively replaced by its first-order Taylor expan-
sion with respect to its parameters at initialization. For
this induced linear model, the dynamics of gradient descent
become analytically tractable. While the linearization is
only exact in the infinite width limit, we nevertheless find
excellent agreement between the predictions of the original
network and those of the linearized version even for finite
width configurations. The agreement persists across differ-
ent architectures, optimization methods, and loss functions.

For squared loss, the exact learning dynamics admit a closed-
form solution that allows us to characterize the evolution
of the predictive distribution in terms of a GP. This result
can be thought of as extension of “sample-then-optimize”
posterior sampling (Matthews et al., 2017) to the training of
deep neural networks. Our empirical simulations confirm
that the result accurately models the variation in predictions
across an ensemble of finite-width models with different
random initializations.

1.1. Our Contribution

We begin by building on a recent result by Jacot et al. (2018)
that characterizes the exact dynamics of network outputs
throughout gradient descent training in the infinite width
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limit. Their results establish that gradient descent in parame-
ter space corresponds to kernel gradient descent in function
space with respect to a new kernel, the Neural Tangent Ker-
nel (NTK). One may ask what this tells us about the nature
of the dynamics in parameter space, where training updates
are actually made. A key contribution of our work is to
show that dynamics in parameter space are equivalent to the
training dynamics of a model which is affine in the collec-
tion of all network parameters, the weights and biases. This
result holds regardless of the choice of loss function. In
the case of squared loss, the dynamics admit a closed-form
solution as a function of time.

The output of an infinitely wide neural network is Gaussian
at initialization (Lee et al., 2018; Matthews et al., 2018),
and as mentioned in Jacot et al. (2018), for squared loss it
remains Gaussian throughout training1. We derive explicit
time-dependent expressions for the mean and covariance
functions of this GP, and provide a novel interpretation of
the result. In particular, it offers a quantitative understanding
of the mechanism by which gradient descent differs from
Bayesian posterior sampling of the parameters: while both
methods generate draws from a GP, gradient descent does
not generate samples from the posterior of any probabilis-
tic model. This observation is in contrast to the “sample-
then-optimize” framework of (Matthews et al., 2017) in
which only the top-layer weights are trained and gradient
descent does sample from the Bayesian posterior. These
observations establish a framework with which to analyze
the long-standing questions as to if, how, and in what con-
texts gradient descent provides concrete benefits relative to
Bayesian inference.

As argued by Chizat & Bach (2018b), these theoretical re-
sults may appear too simple to be applicable to realistic neu-
ral networks. Nonetheless, we empirically investigate the
applicability of the theory in the finite-width setting and find
that it gives an accurate characterization of both the learn-
ing dynamics and posterior function distributions across
a variety of conditions, including some practical network
architectures such as the wide residual network (Zagoruyko
& Komodakis, 2016).

1.2. Additional related work

Daniely et al. (2016) study the relationship between neu-
ral networks and kernels at initialization. They bound the
difference between the infinite width kernel and the empiri-
cal kernel at finite width n, which diminishes as O(1/

√
n).

Daniely (2017) uses the same kernel perspective to study
stochastic gradient descent(SGD) training of neural net-
works.

Saxe et al. (2013) study the training dynamics of deep linear

1The setting is full-batch training under gradient flow.

networks, in which the nonlinearities are treated as identity
functions. Deep linear networks are linear in their inputs,
but not their parameters. In contrast, we show that the
outputs of sufficiently wide neural networks are linear in
their parameters but not usually their inputs.

Du et al. (2018); Allen-Zhu et al. (2018a;b); Zou et al. (2018)
study the convergence of gradient descent to global min-
ima. They proved that for i.i.d. Gaussian initialization, the
parameters of sufficiently wide networks move little from
their initial values during SGD. This small motion of the
parameters is crucial to the effect we present, where wide
neural networks behave linearly in terms of their parameters
throughout training.

Mei et al. (2018); Chizat & Bach (2018a); Rotskoff &
Vanden-Eijnden (2018); Sirignano & Spiliopoulos (2018)
analyze the mean field SGD dynamics of training neural
networks in the large-width limit. Their mean field analysis
describes distributional dynamics of network parameters via
a PDE. However, their analysis is restricted to one hidden
layer networks with a scaling limit (1/n) different from ours
(1/
√
n), which is commonly used in modern networks He

et al. (2016); Glorot & Bengio (2010).

Finally, Zhang et al. (2019) observed that some of the layers
in trained neural networks are robust to re-initialization, but
not to re-randomization. Our framework provides some
theoretical support for this empirical finding.

2. Theoretical Results
2.1. Notation and setup

Let D ⊆ Rn0 × Rk denote the training set and X = {x :
(x, y) ∈ D} and Y = {y : (x, y) ∈ D} denote the inputs
and labels, respectively. Consider a fully-connected feed-
forward network with L hidden layers with width nl, for
l = 1, ..., L and a readout layer with nL+1 = k. For each
x ∈ Rn0 , we use hl(x), xl(x) ∈ Rnl to represent the pre-
and post-activation functions at layer l with input x. The
recurrence relation for a feed-forward network is defined as{

hl+1 = xlW l+1 + bl+1

xl+1 = φ(hl+1)
and

{
W l
i,j = σω√

nl
ωlij

blj = σbβ
l
j

,

(1)

where φ is a point-wise activation function, W l+1 ∈
Rnl×nl+1 and bl+1 ∈ Rnl+1 are the weights and biases, ωlij
and blj are the trainable variables, drawn i.i.d. from standard
Gaussian ωlij , β

l
j ∼ N (0, 1) at initialization, and σ2

ω and σ2
b

are weight and bias variances. Note that this parametrization
method is non-standard (see SM E for further analysis), and
we will refer to it as the NTK parameterization. It has al-
ready been adopted in several recent works (van Laarhoven,
2017; Karras et al., 2018; Jacot et al., 2018; Du et al., 2018;
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Park et al., 2018). Unlike the standard parameterization
that only normalizes the forward dynamics of the network,
the NTK-parameterization also normalizes its backward dy-
namics. We note that the predictions and training dynamics
of NTK-parameterized networks are identical to those of
standard networks, up to a width-dependent scaling factor
in the learning rate for each parameter tensor. We compare
the test performance of these two parameterization methods
in Figure S1 of SM. Our results (linearity in weights, GP
predictions) also hold for infinitely wide networks with a
standard parameterization (see SM Section E Figure S2).

We set θl ≡ [wli,j , β
l
j ]i,j , the collection of parameters map-

ping to the l-th layer, whose cardinality is (nl−1 + 1)× nl.
Define θ = vec

(
∪L+1
l=1 θ

l
)

and similarly θ≤l or θ>l. Denote
by θt the time-dependence of the parameters and by θ0 their
initial values. We use ft(x) ≡ hL+1(x) ∈ Rk to denote
the output (or logits) of the neural network at time t. Let
`(ŷ, y) : Rk × Rk → R denote the loss function where the
first argument is the prediction and the second argument
the true label. In supervised learning, one is interested in
learning a θ that minimizes the empirical loss2,

L =
∑

(x,y)∈D

`(ft(x, θ), y). (2)

Let η be the learning rate3. Via continuous time gradient
descent, the evolution of the parameters θ and the logits f
can be written as

θ̇t = −η∇θft(X )
T∇ft(X )L (3)

ḟt(X ) = ∇θft(X ) θ̇t = −η Θ̂t(X ,X )∇ft(X )L (4)

where ft(X ) = vec
(
[ft (x)]x∈X

)
, the k|D| × 1 vector of

concatenated logits for all examples, and∇ft(X )L is the gra-
dient of the loss with respect to the model’s output, ft(X ).
Θ̂t ≡ Θ̂t(X ,X ) is the tangent kernel at time t, which is a
k|D| × k|D| matrix

Θ̂t = ∇θft(X )∇θft(X )T =

L+1∑
l=1

∇θlft(X )∇θlft(X )T . (5)

One can define the tangent kernel for general arguments,
e.g. Θ̂t(x,X ) where x is test input. We refer to Θ̂ as the
empirical tangent kernel.

2.2. Linearized networks

In this section, we consider the training dynamics of the
linearized network. Specifically, we replace the outputs of

2To simplify the notation for later equations, we use the total
loss here instead of the average loss, but for all plots in Section 3,
we show the average loss.

3Note that compared to the conventional parameterization, η is
larger by factor of width. The NTK parameterization allows usage
of a universal learning rate scale irrespective of network width.

the neural network by their first order Taylor expansion,

f lin
t (x) ≡ f0(x) +∇θf0(x)ωt , (6)

where ωt ≡ θt − θ0 is the change in the parameters from
their initial values4. Note that f lin

t is the sum of two terms:
the first term is the initial output of the network, which
remains unchanged during training, and the second term
captures the change to the initial value during training. The
dynamics of gradient flow using this linearized function are
governed by,

ω̇t = −η∇θf0(X )
T∇f lin

t (X )L (7)

ḟ lin
t (x) = −η Θ̂0(x,X )∇f lin

t (X )L . (8)

As ∇θf0(x) remains constant throughout training, these
dynamics are often quite simple. In the case of an MSE
loss, i.e., `(ŷ, y) = 1

2‖ŷ − y‖
2
2, the ODEs have closed form

solutions

ωt = −∇θf0(X )
T

Θ̂−1
0 (I − e−ηΘ̂0t)(f0(X )− Y) ,

(9)

f lin
t (X ) = (I − e−ηΘ̂0t)Y + e−ηΘ̂0tf0(X ) . (10)

For an arbitrary point x, f lin
t (x) = µt(x) + γt(x), where

µt(x) = Θ̂0(x,X )Θ̂−1
0 (I − e−ηΘ̂0t)Y (11)

γt(x) = f0(x)− Θ̂0(x,X )Θ̂−1
0 (I−e−ηΘ̂0t)f0(X ). (12)

Therefore, we can obtain the time evolution of the linearized
neural network without training it. We only need to compute
the tangent kernel Θ̂0 and the outputs f0 at initialization and
use Equations 11, 12, and 9 to compute the dynamics of the
outputs and the weights.

2.3. Infinite width limit yields Gaussian processes

As the width of the hidden layers approaches infinity, the
Central Limit Theorem (CLT) implies that the outputs at ini-
tialization {f0(x)}x∈X converge to a multivariate Gaussian
in distribution. Informally, this can be proved by induction.
Conditioning on activations at layer l, each pre-activation
(hl+1
j (x)) at layer l + 1 is a sum of nl i.i.d. properly nor-

malized random variables (the weights) and a Gaussian
distribution (the bias term). One can apply the CLT to con-
clude that {hl+1

j (x)}j are i.i.d. Gaussian; see Poole et al.
(2016); Schoenholz et al. (2017); Lee et al. (2018); Xiao
et al. (2018); Yang & Schoenholz (2017) for more details,
and Matthews et al. (2018); Novak et al. (2019) for a formal
treatment.

Therefore, randomly initialized neural networks are in cor-
respondence with a certain class of Gaussian processes

4Since f lin
0 (x) = f0(x), we will often drop the superscript at

time 0.
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(hereinafter referred to as NNGPs), which facilitates a fully
Bayesian treatment of neural networks (Lee et al., 2018;
Matthews et al., 2018). More precisely, let f it denote the i-
th output dimension and K denote the the sample-to-sample
kernel function (of the pre-activation) of the outputs in the
infinite width setting,

Ki,j(x, x′) = lim
min(n1...L)→∞

E[f i0(x) · f j0 (x′)], (13)

then f0(X ) ∼ GP(0,K(X ,X )), where Ki,j(x, x′) denotes
the covariance between the i-th output of x and j-th output
of x′, which can be computed recursively (see Lee et al.
(2018) Section 2.3 and Supplementary Material (SM) Sec-
tion A). For an unobserved test input x, the joint output dis-
tribution f ([x,X ]) is also a Gaussian process. Conditioning
on the training samples5 f(X ) = Y , the posterior predictive
distribution of f(x) is also Gaussian N (µ(x),Σ(x))

µ(x) = K(x,X )K−1Y
Σ(x) = K(x, x)−K(x,X )K−1K(x,X )T , (14)

where K = K(X ,X ). This is the posterior predictive dis-
tribution resulting from exact Bayesian inference in an in-
finitely wide neural network.

2.3.1. GAUSSIAN PROCESSES FROM GRADIENT
DESCENT TRAINING

If we freeze the variables θ≤L after initialization and only
optimize θL+1, the original network and its linearization are
identical. Letting the width approach infinity, this particular
tangent kernel Θ̂0 will converge to K in probability and
Equation 11 will converge to the posterior Equation 14 as
t → ∞ (for further details see SM Section D). This is
a realization of the “sample-then-optimize” approach for
evaluating the posterior of a Gaussian process proposed in
Matthews et al. (2017).

If none of the variables are frozen, in the infinite width
setting, Θ̂0 also converges in probability to a deterministic
kernel Θ (Jacot et al., 2018), which we sometimes refer to as
the analytic kernel, and which can also be computed recur-
sively (see SM Section A). Letting the width go to infinity,
for any t, the output f lin

t (x) is also Gaussian distributed
because Equations 11 and 12 describe an affine transform
of the Gaussian [f0(x), f0(X )]. The mean(µ(x)) and the
variance(Σ(x)) are given by

µ(x) = Θ(x,X )Θ−1(I − e−ηΘt)Y (15)

Σ(x) = K(x, x)− 2Θ(x,X )Θ−1(I − e−ηΘt)K(x,X )T

+ Θ(x,X )Θ−1(I − e−ηΘt)KΘ−1(I − e−ηΘt)Θ(x,X )T .
(16)

5 This imposes that hL+1 directly corresponds to the network
predictions. In the case of softmax readout, variational or sampling
methods are required to marginalize over hL+1.

Unlike the case when only θL+1 is optimized, Equations 15
and 16 do not admit an interpretation corresponding to the
posterior sampling of a probabilistic model6. We contrast
the predictive distributions from the NNGP, NTK-GP (i.e.
Equations 15 and 16) and ensembles of NNs in Figure 3.

2.4. Infinite width networks are linearized networks

The ODEs (Equation 3, 4) of the original network are un-
solvable in general, since Θ̂t evolves with time. Remarkably,
Jacot et al. (2018) showed that

sup
t∈[0,T ]

‖Θ̂t − Θ̂0‖F = O(min{n1, . . . , nL}−1/2
) (17)

under the technical assumption that the integrated func-
tional gradient norm remains stochastically bounded as
n1, . . . , nL →∞ sequentially, i.e.∫ T

0

∥∥∇ft(X )L
∥∥

2
dt <∞, (18)

where T is the training budget (independent from the
widths), i.e. the amount of allowable training time. This
assumption was verified in (Jacot et al., 2018) in some
specific cases. Recent work on the convergence theory
of over-parameterized neural networks provides a rigor-
ous proof of Equation 18 in the simultaneous limit (i.e.
min{n1, . . . , nL} → ∞) under discrete-time stochastic
gradient descent with MSE loss on various architectures
(fully-connected networks, residual CNNs, RNNs) (Du
et al., 2018; Allen-Zhu et al., 2018b;a; Zou et al., 2018).
Note that the bound in Equation 17 is just a theoretical up-
per bound and we observe empirically that the exponent− 1

2
may be improved to −1; see Figure 2.

Coupling Equation 18 with Grönwall’s type arguments, in
the MSE setting, we can upper bound the discrepancy be-
tween the outputs of the original network and those of its
linearization,

sup
t∈[0,T ]

‖ft(X )− f lin
t (X )‖2 = O( sup

t∈[0,T ]

‖Θ̂t − Θ̂0‖F ),

(19)

which approaches 0 as the width goes to infinity. Intuitively,
the ODE of the original network (Equation 4) can be con-
sidered as a ‖Θ̂t − Θ̂0‖F -fluctuation from the linearized
ODE (Equation 8). One expects the difference between the
solutions of these two ODEs to be upper bounded by some
functional of ‖Θ̂t − Θ̂0‖F (refer to SM Section F for the
proof). Therefore, for a large width network, the training
dynamics can be well approximated by linearized dynamics.

Note that the updates for individual weights in Equation 7
vanish in the infinite width limit, which for instance can be

6One possible exception is when the NNGP kernel and NTK
are the same up to a scalar multiplication.
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seen from the explicit width dependence of the gradients
in the NTK parameterization. Individual weights move
by a vanishingly small amount for wide networks in this
regime of dynamics, as do hidden layer activations, but they
collectively conspire to provide a finite change in the final
output of the network, as is necessary for training.

An additional insight gained from linearization of the net-
work is that the dynamics derived in (Jacot et al., 2018) are
equivalent to a random features method, where the features
are the gradients of the model with respect to its weights.

2.5. Extensions

The linearization of the wide neural networks and its training
dynamics can be generalized in multiple directions.

2.5.1. MOMENTUM

One direction is to go beyond vanilla gradient descent dy-
namics. We consider momentum updates7

θk+1 = θk + β(θk − θk−1)− η∇θL|θ=θk . (20)

The discrete update to the function output becomes

f lin
k+1(x) = f lin

k (x)− ηΘ̂0(x,X )∇f lin
k (X )L

+ β(f lin
k (x)− f lin

k−1(x)) (21)

where f lin
t (x) is the output of the linearized network after

t steps. One can take the continuous time limit as in Qian
(1999); Su et al. (2014) and obtain

ω̈t = β̃ω̇t −∇θf lin
0 (X )T∇f lin

t (X )L (22)

f̈t
lin(x) = β̃ḟ lin

t (x)− Θ̂0(x,X )∇f lin
t (X )L (23)

where continuous time relates to steps t = k
√
η and

β̃ = (β − 1)/
√
η. These equations are also amenable to

analytic treatment for MSE loss. See Figure 5, 6 and 7 for
experimental agreement.

2.5.2. CROSS-ENTROPY LOSS

One can extend the loss function to general functions with
multiple output dimensions. Unlike for squared error, we do
not have a closed form solution to the dynamics equation.
However, the equations for the dynamics can be solved
using an ODE solver as an initial value problem. For cross-
entropy loss with softmax output (see SM Section C),

`(f, y) = −
∑
i

yi log σ(f i), σ(f i) ≡ exp(f i)∑
j exp(f j)

.

(24)
7Combining the usual two stage update into a single equation.
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Figure 1. Kernel convergence. Kernels computed from randomly
initialized ReLU networks with one and three hidden layers con-
verge to the corresponding analytic kernel as width n and number
of Monte Carlo samples M increases. Colors indicate averages
over different numbers of Monte Carlo samples.

the dynamics equation becomes

ḟ lin
t (X ) = −η Θ̂0(X ,X )

(
σ(f lin

t (X ))− Y
)

(25)

ḟ lin
t (x) = −η Θ̂0(x,X )

(
σ(f lin

t (X ))− Y
)
. (26)

2.5.3. BEYOND FULLY-CONNECTED NETWORKS

Although our theoretical analysis has focused on fully-
connected architectures, there is good reason to suspect the
results to extend to much broader class of models. In partic-
ular, a wealth of recent literature suggests that the mean field
theory governing the wide network limit of fully-connected
models (Poole et al., 2016; Schoenholz et al., 2017) ex-
tends naturally to residual networks (Yang & Schoenholz,
2017), CNNs (Xiao et al., 2018), RNNs (Chen et al., 2018),
batch normalization (Yang et al., 2019), and general archi-
tectures (Yang, 2019). We postpone the development of
these theoretical extensions in favor of a purely empirical
investigation of linearization for a variety of architectures
(see Section 3.3).

3. Experiments
In this section, we provide empirical support showing that
the training dynamics of wide neural networks are well
captured by linearized models. We consider fully-connected,
convolutional, and wide ResNet architectures trained with
full and mini- batch gradient descent using learning rates
sufficiently small so that the continuous time approximation
holds well. We consider two-class classification on CIFAR-
10 (horses and planes) as well as ten-class classification on
MNIST and CIFAR-10. When using MSE loss, we treat
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Figure 2. Relative Frobenius norm change during training.
One hidden layer, ReLU networks trained with η = 1.0, |D| =

128. We measure changes of (read-out/non read-out) weights,
empirical Θ̂ and empirical K̂ after T = 65, 536 steps of gradi-
ent descent updates for varying width. We see that the change in
weights scales as 1√

n
whereas the change in Θ̂ and K̂ is bounded

by O( 1√
n

) but close to O( 1
n

).

the binary classification task as regression with one class
regressing to +1 and the other to −1.

3.1. Convergence of empirical kernel

As in Novak et al. (2019), we can use Monte Carlo estimates
of the tangent kernel (Equation 5) to probe convergence
to the infinite width kernel (analytically computed using
Equations S3, S6). For simplicity, we consider random
inputs drawn from N (0, 1) with n0 = 1024. In Figure 1,
we observe convergence as both width n increases and the
number of Monte Carlo samples M increases. For both
NNGP and tangent kernels we observe ‖Θ̂(n) − Θ‖F =
O( 1√

n
) and ‖K̂(n) − K‖F = O( 1√

n
) as predicted by a

CLT (Daniely et al., 2016).

Moreover, as the neural network trains the change during
training in the NNGP and tangent kernels, and in individual
weights, becomes small as width increases, as shown in
Figure 2.

3.2. Predictive output distribution

In the case of an MSE loss, the output distribution remains
Gaussian throughout training. In Figure 3, the predictive
output distribution for input points interpolated between two
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Figure 3. Dynamics of mean and variance of trained neural
network outputs follow analytic dynamics from linearization.
Black lines indicate the time evolution of the predictive output dis-
tribution from an ensemble of 100 trained neural networks (NNs).
The blue region indicates the analytic prediction of the output
distribution throughout training (Equations 15, 16). Finally, the
red region indicates the prediction that would result from training
only the top layer, corresponding to an NNGP (Equations S30,
S31). The trained network has 3 hidden layers of width 8192,
tanh activation functions, σ2

w = 1.5, no bias, and η = 0.5. The
output is computed for inputs interpolated between two training
points (denoted with black dots) x(α) = αx(1) + (1 − α)x(2).
The shaded region and dotted lines denote 2 standard deviations
(∼ 95% quantile) from the mean denoted in solid lines. Training
was performed with full-batch gradient descent with dataset size
|D| = 128. For dynamics for individual draw of functions, see
SM Figure S4

training points is shown for an ensemble of neural networks
and their corresponding GPs. The interpolation is given by
x(α) = αx(1) + (1− α)x(2) where x(1,2) are two training
inputs with different classes. We observe that the mean
and variance dynamics of neural network outputs during
gradient descent training follow the analytic dynamics from
linearization well (Equations 15, 16). Moreover the NNGP
posterior which corresponds to exact Bayesian inference,
while similar, is noticeably different from the predictive
distribution at the end of gradient descent training. For
dynamics for individual function draws, see SM Figure S4.

3.3. Comparison of training dynamics of linearized
network to original network

For a particular realization of a finite width network, one
can analytically predict the dynamics of the weights and
outputs over the course of training using the empirical tan-
gent kernel at initialization. In Figures 5,6,7, we compare
these linearized dynamics (Equations 9, 10) with the re-
sult of training the actual network. In all cases we see
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Figure 4. Full batch gradient descent on a model behaves sim-
ilarly to analytic dynamics on its linearization, both for net-
work outputs, and also for individual weights. A binary CIFAR
classification task with MSE loss and a ReLU fully connected
network with 5 hidden layers of width n = 2048, η = 0.01,
|D| = 256, k = 1, σ2

w = 2.0, and σ2
b = 0.1. All three panes

in the first row show dynamics for a randomly selected subset of
datapoints or parameters. The first two panes in the second row
show that the dynamics of loss and accuracy for training and test
points agree well between the original and linearized model. The
bottom right pane shows the dynamics of RMSE between the two
models on test points. We observe that the empirical kernel Θ̂

gives more accurate dynamics for finite width networks.

remarkably good agreement. We also observe that for finite
networks, dynamics predicted using the empirical kernel Θ̂
better match the data than those obtained using the infinite-
width, analytic, kernel Θ. To understand this we note that
‖Θ̂(n)

T − Θ̂
(n)
0 ‖F = O( 1

n ) < O( 1√
n

) = ‖Θ̂(n)
0 − Θ‖F , as

plotted in Figure 2.

For general loss, e.g. cross-entropy with softmax out-
put, we need to rely on solving the ODE Equations 25
and 26. We use the dopri5 method for ODE inte-
gration, which is the default integrator in TensorFlow
(tf.contrib.integrate.odeint). In Figure 4, we
see that the learning dynamics for the CIFAR-10 all class
classification task with cross-entropy loss are well described
by the linearized model. In Figure 6, we tested full MNIST
digit classification with cross-entropy loss, and trained with
a momentum optimizer. For cross-entropy loss with soft-
max output, some logits at late times grow indefinitely, in
contrast to MSE loss where logits converge to target value.
The error between original and linearized model for cross
entropy loss becomes much worse at late times if the two
models deviate significantly before the logits enter their
late-time steady-growth regime (See Figure S5.).

One can directly optimize parameters of f lin instead of solv-
ing the ODE induced by the tangent kernel Θ̂. Standard neu-
ral network optimization techniques such as mini-batching,
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Figure 5. A convolutional network and its linearization behave
similarly when trained using full batch gradient descent with
a momentum optimizer Binary CIFAR classification task with
MSE loss, tanh convolutional network with 3 hidden layers of
channel size n = 512, 3× 3 size filters, average pooling after last
convolutional layer, η = 0.1, β = 0.9, |D| = 128, σ2

w = 2.0

and σ2
b = 0.1. The linearized model is trained directly by full

batch gradient descent with momentum, rather than by integrating
its continuous time analytic dynamics. Panes are the same as in
Figure 4.

weight decay, and data augmentation can be directly applied.
In Figure 5 and 7, we compared the training dynamics of
the linearized and original network while directly training
both networks.

As discussed in Section 2.5.3, the linearized dynamics suc-
cessfully describes the training of networks beyond vanilla
fully connected models. To demonstrate the generality of
this procedure we show we can predict the learning dy-
namics of Wide Residual Networks (WRN) (Zagoruyko &
Komodakis, 2016). WRNs are a class of model that are
popular in computer vision and leverage convolutions, batch
normalization, skip connections, and average pooling. In
Figure 7, we show a comparison between the linearized
dynamics and the true dynamics for a wide residual net-
work trained with MSE loss and SGD with momentum. We
slightly modified the block structure described in Figure 7
so that each layer has a constant number of channels (1024
in this case) and otherwise followed the original implemen-
tation. As elsewhere, we see strong agreement between the
predicted dynamics and the result of training.

3.4. Effects of depth and dataset size

The training dynamics of a neural network match those of
its linearization when the width is infinite and the dataset is
finite. In previous experiments, we chose sufficiently wide
networks to achieve small error between neural networks
and their linearization for smaller datasets. Here we inves-
tigate how the agreement between the linearized dynamics
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Figure 6. A neural network and its linearization behave simi-
larly when both are trained via SGD with momentum on cross
entropy loss on MNIST. Experiment is for 10 class MNIST clas-
sification using a ReLU fully connected network with 2 hidden
layers of width n = 2048, η = 1.0, β = 0.9, |D| = 50, 000,
k = 10, σ2

w = 2.0, and σ2
b = 0.1. Both models are trained using

stochastic minibatching with batch size 64. Panes are the same as
in Figure 4, except that the top row shows all ten logits for a single
randomly selected datapoint.

and the true dynamics behaves as a function of width and
dataset size across a wide range of models. We consider
Root Mean Squared Error (RMSE) between the predicted
outputs and the true outputs of the network over the test
set. Generally, the RMSE will increase with time until it
plateaus at the end of training at some final value. In Fig-
ure 8 we plot this plateau RMSE for a range of models as a
function of both width and dataset size. Overall, we observe
that as the width grows the error decreases. This decrease
goes approximately as 1/N for fully-connected networks,
with more ambiguous scaling for convolutional and WRN
architectures. Additionally, we see that the error grows
approximately linearly in the size of the dataset. Thus, al-
though error grows with dataset this can be counterbalanced
by a corresponding increase in the model size.

4. Discussion
We showed theoretically that the learning dynamics in pa-
rameter space of deep nonlinear neural networks are exactly
described by a linearized model in the infinite width limit.
Empirical investigation revealed that this agrees very well
with actual training dynamics and predictive distributions
across fully-connected, convolutional, and even wide resid-
ual network architectures, as well as with different optimiz-
ers (gradient descent, momentum, mini-batching) and loss
functions (MSE, cross-entropy). Our results suggest that
a surprising number of realistic neural networks may be
operating in the regime we studied.

In the regime which we study, since the learning dynam-

GROUP NAME OUTPUT SIZE BLOCK TYPE

CONV1 32 × 32 [3×3, CHANNEL SIZE]

CONV2 32 × 32
[
3× 3, CHANNEL SIZE
3× 3, CHANNEL SIZE

]
× N

CONV3 16 × 16
[
3× 3, CHANNEL SIZE
3× 3, CHANNEL SIZE

]
× N

CONV4 8 × 8
[
3× 3, CHANNEL SIZE
3× 3, CHANNEL SIZE

]
× N

AVG-POOL 1 × 1 [8 × 8]
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Figure 7. A wide residual network and its linearization behave
similarly when both are trained by SGD with momentum on
MSE loss on CIFAR-10. (top) We adopt the network architecture
from Zagoruyko & Komodakis (2016). In the residual block, we
follow Batch Normalization-ReLU-Conv ordering. We useN = 1,
channel size 1024, η = 1.0, β = 0.9, k = 10, σ2

w = 1.0, and
σ2
b = 0.0. Both linearized and original model are trained directly

on full CIFAR-10 (|D| = 50, 000), using stochastic minibatching
with batch size 8. (bottom) Output dynamics for a randomly se-
lected subset of train and test points are shown in the first row. The
second row shows training and accuracy curves for original and
linearized networks.

ics is fully captured by the kernel Θ̂ and the target signal,
studying the properties of Θ̂ to determine trainability and
generalization are interesting future directions. Furthermore,
the infinite width limit gives us a simple characterization of
both gradient descent and Bayesian inference. Some pre-
liminary observations in Lee et al. (2018) showed that wide
neural networks trained with SGD perform similarly to the
corresponding GPs as width increase, while Novak et al.
(2019) found the opposite in the case of convopostlutional
networks without pooling. By studying properties of the
NNGP kernel K and the tangent kernel Θ, we may shed
light on the inductive bias of gradient descent.
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Figure 8. Error dependence on depth and dataset size. Final
value of the RMSE for fully-conected, convolutional, wide residual
network as networks becomes wider for varying depth and dataset
size. Top row: error in fully connected networks as the depth is
varied from 1 to 16 (left) and the dataset size is varied from 32 to
4096 (right). Bottom row: error in convolutional networks (left) as
the depth is varied between 1 and 32 and WRN (right) for depths
10 and 16 corresponding to N=1,2 described in Figure 7. Network
is critically initialized σ2

w = 2.0, σ2
b = 0.1, trained with gradient

descent on MSE loss.
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Supplemental Material

A. Computing NTK and NNGP Kernel
For completeness, we reproduce, informally, the recursive formula of the NNGP kernel and the tangent kernel from (Lee
et al., 2018) and (Jacot et al., 2018), respectively. Let the activation function φ : R→ R be absolutely continuous. Let T
and Ṫ be functions from 2× 2 positive semi-definite matrices Σ to R given by{

T (Σ) = E[φ(u)φ(v)]

Ṫ (Σ) = E[φ′(u)φ′(v)]
(u, v) ∼ N (0,Σ) . (S1)

In the infinite width limit, the NNGP and tangent kernel can be computed recursively. Let x, x′ be two inputs in Rn0 . Then
hl(x) and hl(x′) converge in distribution to a joint Gaussian as min{n1, . . . , nl−1}. The mean is zero and the variance
Kl(x, x′) is

Kl(x, x′) = K̃l(x, x′)⊗ Idnl
(S2)

K̃l(x, x′) = σ2
ωT
([
K̃l−1(x, x) K̃l−1(x, x′)

K̃l−1(x, x′) K̃l−1(x′, x′)

])
+ σ2

b (S3)

with base case

K1(x, x′) = σ2
ω ·

1

n0
xTx′ + σ2

b . (S4)

Using this one can also derive the tangent kernel for gradient descent training. We will use induction to show that

Θl(x, x′) = Θ̃l(x, x′)⊗ Idnl
(S5)

where

Θ̃l(x, x′) = K̃l(x, x′) + σ2
ωΘ̃l−1(x, x′)Ṫ

([
K̃l−1(x, x) K̃l−1(x, x′)

K̃l−1(x, x′) K̃l−1(x′, x′)

])
(S6)

with Θ̃1 = K̃1. Let

J l(x) = ∇θ≤lhl0(x) = [∇θlhl0(x),∇θ<lhl0(x)]. (S7)

Then

J l(x)J l(x′)T = ∇θlhl0(x)∇θlhl0(x′)T +∇θ<lhl0(x)∇θ<lhl0(x′)T (S8)

Letting n1, . . . , nl−1 →∞ sequentially, the first term converges to the NNGP kernel Kl(x, x′). By applying the chain rule
and the induction step (letting n1, . . . , nl−2 →∞ sequentially), the second term is

∇θ<lhl0(x)∇θ<lhl0(x′)T =
∂hl0(x)

∂hl−1
0 (x)

∇θ≤l−1hl−1
0 (x)∇θ≤l−1hl−1

0 (x′)T
∂hl0(x′)

∂hl−1
0 (x′)

T

(S9)

→ ∂hl0(x)

∂hl−1
0 (x)

Θ̃l−1(x, x′)⊗ Idnl−1

∂hl0(x′)

∂hl−1
0 (x′)

T

(n1, . . . , nl−2 →∞) (S10)

→ σ2
ω

(
Eφ′(hl−1

0,i (x))φ′(hl−1
0,i (x′))Θ̃l−1(x, x′)

)
⊗ Idnl

(nl−1 →∞) (S11)

=

(
σ2
ωΘ̃l−1(x, x′)Ṫ

([
K̃l−1(x, x) K̃l−1(x, x′)

K̃l−1(x, x′) K̃l−1(x′, x′)

]))
⊗ Idnl

(S12)
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B. Tangent kernel for ReLU and erf

For ReLU and erf activation functions, the tangent kernel can be computed analytically. We begin with the case φ = ReLU ;
using the formula from Cho & Saul (2009), we can compute T and Ṫ in closed form. Let Σ be a 2× 2 PSD matrix. We will
use

kn(x, y) =

∫
φn(x · w)φn(y · w)e−‖w‖

2/2dw · (2π)−d/2 =
1

2π
‖x‖n‖y‖nJn(θ) (S13)

where

φ(x) = max(x, 0), θ(x, y) = arccos(
x · y
‖x‖‖y‖

) ,

J0(θ) = π − θ , J1(θ) = sin θ + (π − θ) cos θ =

√
1− (

x · y
‖x‖‖y‖

)2 + (π − θ)( x · y
‖x‖‖y‖

) . (S14)

Let d = 2 and u = (x · w, y · w)T . Then u is a mean zero Gaussian with Σ = [[x · x, x · y]; [x · y, y · y]]. Then

T (Σ) = k1(x, y) =
1

2π
‖x‖‖y‖J1(θ) (S15)

Ṫ (Σ) = k0(x, y) =
1

2π
J0(θ) (S16)

For φ = erf , let Σ be the same as above. Following Williams (1997), we get

T (Σ) =
2

π
sin−1(

2x · y√
(1 + 2x · x)(1 + 2y · y)

) (S17)

Ṫ (Σ) =
4

π
det(I + 2Σ)−1/2 (S18)

C. Multi-dimensional output and cross-entropy loss
For completeness, we include the derivation for cross entropy loss for softmax output,

`(f, y) = −
∑
i

yi log σ(f i), σ(f i) ≡ exp(f i)∑
j exp(f j)

. (S19)

Recall that ∂`
∂ŷi = σ(ŷi)− yi. For general input point x and for an arbitrary parameterized function f i(x) parameterized by

θ, gradient flow dynamics is given by

ḟ it (x) = ∇θf it (x)
dθ

dt
= −η∇θf it (x)

∑
j

∑
(z,y)∈D

[
∇θf jt (z)T

∂`(ft, y)

∂ŷj

]
(S20)

= −η
∑

(z,y)∈D

∑
j

∇θf it (x)∇θf jt (z)T
(
σ(f jt (z))− yj

)
(S21)

Let Θij(x,X ) = ∇θf i(x)∇θf j(X )T . The above is

ḟt(X ) = −ηΘt(X ,X ) (σ(ft(X ))− Y) (S22)

ḟt(x) = −ηΘt(x,X ) (σ(ft(X ))− Y) . (S23)

The linearization is

ḟt
lin

(X ) = −ηΘ0(X ,X )
(
σ(f lin

t (X ))− Y
)

(S24)

ḟt
lin

(x) = −ηΘ0(x,X )
(
σ(f lin

t (X ))− Y
)
. (S25)
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D. Gradient flow dynamics for training only the readout-layer
The connection between Gaussian processes and Bayesian wide neural networks can be extended to the setting when only
the readout layer parameters are being optimized. More precisely, we show that when training only the readout layer, the
outputs of the network form a Gaussian process (over an ensemble of draws from the parameter prior) throughout training,
where that output is an interpolation between the GP prior and GP posterior.

Note that for any x, x′ ∈ Rn0 , in the infinite width limit x̄(x) · x̄(x′) = K̂(x, x′) → K(x, x′) in probability, where for
notational simplicity we assign x̄(x) = [σwx

L(x)√
nL

, σb]. The regression problem is specified with mean-squared loss

L =
1

2
‖f(X )− Y‖22 =

1

2
‖x̄(X )θL+1 − Y‖22, (S26)

and applying gradient flow to optimize the readout layer (and freezing all other parameters),

θ̇L+1 = −ηx̄(X )
T (
x̄(X )θL+1 − Y

)
, (S27)

where η is the learning rate. The solution to this ODE gives the evolution of the output of an arbitrary x∗. So long as the
empirical kernel x̄(X )x̄(X )T is invertible, it is

ft(x
∗) = f0(x∗) + K̂(x,X )K̂(X ,X )−1

(
exp

(
−ηtK̂(X ,X )

)
− I
)

(f0(X )− Y) (S28)

For any x, x′ ∈ Rn0 , letting nl →∞ for l = 1, . . . , L, one has the convergence in distribution in probability and distribution
respectively

x̄(x)x̄(x′)→ K(x, x′) and x̄(X )θL+1
0 → N (0,K(X ,X )). (S29)

Moreover x̄(X )θL+1
0 and the term containing f0(X ) are the only stochastic term over the ensemble of network initializations,

therefore for any t the output f(x∗) throughout training converges to a Gaussian distribution in the infinite width limit, with

E[ft(x
∗)] = K(x∗,X )K−1(I − e−ηKt)Y , (S30)

Var[ft(x
∗)] = K(x∗, x∗)−K(x∗,X )K−1(I − e−ηKt)K(x∗,X )T . (S31)

Thus the output of the neural network is also a GP and the asymptotic solution (i.e. t → ∞) is identical to the posterior
of the NNGP (Equation 14). Therefore, in the infinite width case, the optimized neural network is performing posterior
sampling if only the readout layer is being trained. This result is a realization of sample-then-optimize equivalence identified
in Matthews et al. (2017).

E. Results for NTK parameterization transfer to standard parameterization
Here we present a sketch for why the linearization results, derived for NTK parameterized networks, also apply to networks
with a standard parameterization

{
hl+1 = xlW l+1 + bl+1

xl+1 = φ(hl+1)
and

{
W l
i,j = ωlij ∼ N (0,

σ2
ω

nl
)

blj = βlj ∼ N (0, σ2
b )

. (S32)

The NTK parameterization in Equation 1 is not commonly used for training neural networks. While the function that the
network represents is the same for both NTK and standard parameterization, training dynamics under gradient descent
are generally different for the two parameterizations. However, for a particular choice of layer-dependent learning rate
training dynamics also become identical. Let ηlNTK,w and ηlNTK,b be layer-dependent learning rate for W l and bl in the
NTK parameterization, and ηstd = 1

nmax
η0 be the learning rate for all parameters in the standard parameterization, where

nmax = maxl nl. Recall that gradient descent training in standard neural networks requires a learning rate that scales with
width like 1

nmax
, so η0 defines a width-invariant learning rate (Park et al., 2018). If we choose

ηlNTK, w =
nl

nmaxσ2
ω

η0, and ηlNTK, b =
1

nmaxσ2
b

η0, (S33)
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Figure S1. NTK vs Standard parameterization. Across different choices of dataset, activation function and loss function, models
obtained from (S)GD training for both parameterization (circle and triangle denotes NTK and standard parameterization respectively) get
similar performance.

then learning dynamics are identical for networks with NTK and standard parameterizations. With only extremely minor
modifications, consisting of incorporating the multiplicative factors in Equation S33 into the per-layer contributions to the
Jacobian, the arguments in Section 2.4 go through for an NTK network with learning rates defined in Equation S33. Since
an NTK network with these learning rates exhibits identical training dynamics to a standard network with learning rate ηstd,
the result in Section 2.4 that sufficiently wide NTK networks are linear in their parameters throughout training also applies
to standard networks.

We can verify this property of networks with the standard parameterization experimentally. In Figure S1, we see that for
different choices of dataset, activation function and loss function, final performance of two different parameterization leads
to similar quality model for similar value of normalized learning rate ηstd = ηNTK/n. Also, in Figure S2, we observe that
our results is not due to the parameterization choice and holds for wide networks using the standard parameterization.

F. Bounding the discrepancy between the original and the linearized network: MSE loss
To simplify the notation, let glin(t) ≡ f lin

t (X )− Y and g(t) ≡ ft(X )− Y .

d

dt

(
exp(ηΘ0t)(g

lin(t)− g(t))
)

= η
(
Θ0 exp(ηΘ0t)(g

lin(t)− g(t)) + exp(ηΘ0t)(−Θ0g
lin(t) + Θtg(t))

)
(S34)

= η (exp(ηΘ0t)(Θt −Θ0)g(t)) (S35)

Integrating both sides and using the fact glin(0) = g(0),

(glin(t)− g(t)) = −
∫ t

0

η
(
exp(ηΘ0(s− t))(Θs −Θ0)(glin(s)− g(s))

)
ds (S36)

+

∫ t

0

η
(
exp(ηΘ0(s− t))(Θs −Θ0)glin(s)

)
ds (S37)
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Figure S2. Exact and experimental dynamics are nearly identical for network outputs, and are similar for individual weights
(Standard parameterization). Experiment is for a MSE loss, ReLU network with 5 hidden layers of width n = 2048, η = 0.005/2048

|D| = 256, k = 1, σ2
w = 2.0, and σ2

b = 0.1. All three panes in the first row show dynamics for a randomly selected subset of datapoints
or parameters. First two panes in the second row show dynamics of loss and accuracy for training and test points agree well between
original and linearized model. Bottom right pane shows the dynamics of RMSE between the two models on test points using empirical
kernel.

Let λ0 > 0 be the smallest eigenvalue of Θ0. Taking the norm gives

‖glin(t)− g(t)‖2 ≤η
(∫ t

0

‖ exp(Θ0η(s− t))‖op‖(Θs −Θ0)‖op‖glin(s)− g(s)‖2ds (S38)

+

∫ t

0

‖ exp(Θ0η(s− t))‖op‖(Θs −Θ0)‖op‖glin(s)‖2ds
)

(S39)

≤η
(∫ t

0

eηλ0(s−t)‖(Θs −Θ0)‖op‖glin(s)− g(s)‖2ds (S40)

+

∫ t

0

eηλ0(s−t)‖(Θs −Θ0)‖op‖glin(s)‖2ds
)

(S41)

Let

u(t) ≡ eλ0ηt‖glin(t)− g(t)‖2 (S42)

α(t) ≡ η
∫ t

0

eλ0ηs‖(Θs −Θ0)‖op‖glin(s)‖2ds (S43)

β(t) ≡ η‖(Θt −Θ0)‖op (S44)

The above can be written as

u(t) ≤ α(t) +

∫ s

0

β(s)u(s)ds (S45)

Note that α(t) is non-decreasing. Applying an integral form of the Grönwall’s inequality (see Theorem 1 in (Dragomir,
2003)) gives

u(t) ≤ α(t) exp

(∫ t

0

β(s)ds

)
(S46)
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Note that

‖glin(t)‖2 = ‖ exp (−ηΘ0t) g
lin(0)‖2 ≤ ‖ exp (−ηΘ0t) ‖op‖glin(0)‖2 = e−λ0ηt‖glin(0)‖2 . (S47)

Then

‖glin(t)− g(t)‖2 ≤ ηe−λ0ηt

∫ t

0

eλ0ηs‖Θs −Θ0‖op‖glin(s)‖2ds exp

(∫ t

0

η‖Θs −Θ0‖opds
)

(S48)

≤ ηe−λ0ηt‖glin(0)‖2
∫ t

0

‖(Θs −Θ0)‖opds exp

(∫ t

0

η‖Θs −Θ0‖opds
)

(S49)

Let σt = sup0≤s≤t ‖Θs −Θ0‖op. Then

‖glin(t)− g(t)‖2 . e−λ0ηt
(
ηtσte

ηtσt
)

(S50)

For a fixed amount of time T , if σT → 0 as min{n1, . . . , nL} → ∞, then

sup
0≤t≤T

eηtσt , sup
0≤t≤T

e−λ0ηtηt = O(1) (S51)

Therefore

sup
0≤t≤T

‖glin(t)− g(t)‖2 = O(σT )→ 0 (S52)

as min{n1, . . . , nL} → ∞.

Now we control the discrepancy on a test point x. Let y be its true label. Similarly,

d

dt

(
glin(t, x)− g(t, x)

)
= −η (Θ0(x,X )−Θt(x,X )) glin(t) + ηΘt(x,X )(g(t)− glin(t)). (S53)

Integrating over [0, t] and taking the norm imply

∥∥glin(t, x)− g(t, x)
∥∥

2
≤η
∫ t

0

‖Θ0(x,X )−Θs(x,X )‖2 ‖g
lin(s)‖2ds+ η

∫ t

0

‖Θs(x,X )‖2‖g(s)− glin(s)‖2ds (S54)

≤η‖glin(0)‖2
∫ t

0

‖Θ0(x,X )−Θs(x,X )‖2 e
−ηλ0sds (S55)

+ η

∫ t

0

(‖Θ0(x,X )‖2 + ‖Θs(x,X )−Θ0(x,X )‖2)‖g(s)− glin(s)‖2ds (S56)

For fixed T , assuming sup0≤t≤T ‖Θ0(x,X )−Θt(x,X )‖2 → 0 and ‖Θ0(x,X )‖2 is bounded as min{n1, . . . , nL} → ∞
and using Equation S52, ∥∥glin(t, x)− g(t, x)

∥∥
2
→ 0. (S57)

G. Additional plots
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Figure S3. Kernel convergence. Kernels from single hidden layer randomly initialized ReLU network convergence to analytic kernel
using Monte Carlo sampling (M samples).
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Figure S5. Logit deviation for cross entropy loss. Logits for models trained with cross entropy loss diverge at late times. If the deviation
between the logits of the linearized model and original model are large early in training, as shown for the narrower networks (first row),
logit deviation at late times can be significantly large. As network becomes wider (second row), the logit deviates at later point in training.
Fully connected tanh network L = 4 trained on binary CIFAR classification problem.


