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Plant density is useful variable that determines the fate of the wheat crop. Themost commonly usedmethod
for plant density quantification is based on visual counting from ground level. The objective of this study is
to develop and evaluate a method for estimating wheat plant density at the emergence stage based on high
resolution imagery taken fromUAV at very low altitude with application to high throughput phenotyping in
field conditions. A Sony ILCE α5100L RGB camera with 24 Mpixels and equipped with a 60 mm focal length
lens was flying aboard an hexacopter at 3 to 7 m altitude at about 1 m/s speed. This allows getting ground
resolution between 0.20mm to 0.45mm, while providing 59–77% overlap between images. The camera was
looking with 45° zenith angle in a compass direction perpendicular to the row direction to maximize the
cross section viewed of the plants and minimize the effect of the wind created by the rotors. Agisoft
photoscan software was then used to derive the position of the cameras for each image. Images were
then projected on the ground surface to finally extract subsamples used to estimate the plant density.
The extracted images were first classified to separate the green pixels from the background and the rows
were then identified and extracted. Finally, image object (group of connected green pixels) was identified
on each row and the number of plants they contain was estimated using a Support Vector Machine
whose training was optimized using a Particle Swarm Optimization.
Three experiments were conducted in Gréoux, Avignon and Clermont sites with some variability in the sowing
dates, densities, genotypes, flight altitude, and growth stage at the time of the image acquisition. The application
of themethod on the 270 samples available over the three sites provides a RMSE and relative RMSE on estimates
of 34.05 plants/m2 and 14.31% with a bias of 9.01 plants/m2. However, differences in performances were ob-
served between the three sites, mostly related to the growth stage at the time of the flight. Plants should have
between one to two leaves when images are taken. Further, a specific sensitivity analysis shows that the ground
resolution of the images should be better than 0.40mm. Finally, the repeatability of themethod is good especially
when images are taken from similar observational geometries. The current limits and possible improvements of
the method proposed are finally discussed.

© 2017 Elsevier Inc. All rights reserved.
Keywords:
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Computer vision algorithm
Particle swarm optimization (PSO)-support
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Winter wheat
1. Introduction

Plant density is a key factor influencing crop functioning with
consequences on many aspects including yield, water and fertilizer
requirements as well as susceptibility to pathogens. Previous re-
search on winter wheat showed that the plant density was related
to the green fraction, the accumulated dry matter and the yield
(Joseph et al., 1985; Whaley et al., 2000). However, the tillering ca-
pacity of wheat crops allows to partly compensate the variability in
plant density. This resilience to changes in plant density depends
on the environmental conditions as well as on the genotypic
26.com (X. Jin).
characteristics. Plant breeders are thus eager to characterize the til-
lering capacity of genotypes using the tillering coefficient, i.e. the av-
erage number of tillers per plant. It is generally computed at harvest
by dividing the number of ears per unit area by the corresponding
plant density. Plant density is therefore receiving great attention
within plant breeding programs.

The current methods used are based on visual plant counting in the
fields over a predefined sampling area. They are tedious, time consum-
ing and prone to human errors. Further, the soil conditions, particularly
in case of rainfall or frost, may limit the time slots when walking in the
field is possible without damaging the crop. Therefore, it is difficult to
measure the plant density using such manual method when applied
to large fields for documenting the spatial variability, or when applied
to large phenotyping experiments with several hundred to several
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thousands of microplots to be characterized. It is thus necessary to de-
velop alternativemethods to provide timely and accurate quantification
of the plant density.

The fast and recent development of sensors and computer vision al-
gorithms provides new opportunities to estimate plant density with
non-intrusive methods. Most studies on plant density estimation are
using ground level non-contact measurements, mainly focusing on rel-
atively large plants such asmaize that are further regularly spaced.Most
techniques are based on plant identification using RGB images (Jia et al.,
1991; Nakarmi and Tang, 2012; Nakarmi and Tang, 2014; Shrestha and
Steward, 2003; Shrestha and Steward, 2005; Tang and Tian, 2008a; Tang
and Tian, 2008b), or LiDAR systems (Shi et al., 2015). However, little at-
tentionwas paid to crops such aswheat having small and variable spac-
ing between plants on the row with relatively narrow leaves. Maertens
et al. (2003) used an ultrasonic transducer that was found to be both
sensitive to the volumetric density and to the crop architecture. Saeys
et al. (2009) used a LiDAR to estimate with success plant density of
small grain crops such as wheat. From our knowledge, no other studies
report attempts to estimate the plant density by non-destructive
methods over wheat crops.

Recent technological advances resulted in a boom in the develop-
ment of Unmanned Aerial Vehicle (UAV). In addition, with the develop-
ment of versatile, lightweight, and low-cost portable sensors, UAVsmay
be transformed into remote sensing platforms that provide images with
high spatial resolution. Further, UAV allowsmoreflexibility in the acqui-
sition time with no constraints on the soil conditions that may limit
rover systems equipped with cameras or operator walking on the
ground for visual counting. Therefore, UAV is a promising remote sens-
ing platform that gained a lot of attention for a range of scientific or ap-
plication oriented uses. UAVs are becoming a standard tool for crop
productionmanagers who exploit the high spatial and temporal resolu-
tion to quantify in-field crops variation (Ehsani and Maja, 2013;
Gómez-Candón et al., 2014). A review of the use of UAVs for precision
agriculture was provided by Zhang and Kovacs (2012) while Sankaran
et al. (2015b) focused on phenotyping applications. Imagery from UAV
coming from different sensors [RGB (Red Green Blue) cameras, multi-
spectral imagery, hyperspectral imagery, and thermal camera] have
been used to estimate LAI (Hunt et al., 2008; Hunt et al., 2010; Verger
et al., 2014), the fraction of intercepted photosynthetically active radia-
tion (Guillen-Climent et al., 2012), biomass (Bendig et al., 2015; Hunt et
al., 2005), height (Bendig et al., 2015; Díaz-Varela et al., 2015), nitrogen
(Hunt et al., 2005), carotenoid (Zarco-Tejada et al., 2013), and temper-
ature (Sullivan et al., 2007; Zarco-Tejada et al., 2012). More recently,
Sankaran et al. (2015a) used a multispectral camera to evaluate emer-
gence and spring survival rates of wheat from UAV observations using
a vegetation index.

This brief reviewdemonstrates that only little attentionwas devoted
to non-invasive methods for estimating plant density in wheat crops.
Recently, Liu et al. (2017) have proposed a method for wheat plant
counting at emergence based on high spatial resolution RGB images
taken from the ground level either from a rover system or from hand-
held cameras. The transposition of this method to observations from
UAV would be very appealing to reach the high throughput required
for field phenotyping (Araus and Cairns, 2014; Furbank and Tester,
2011; Walter et al., 2015). Further, UAVs ensure the desired flexibility
needed for such application and is fully independent from the traffic-
ability of the soil.

The main objective of this study is to adapt to UAV observations the
method developed by Liu et al. (2017) for plant density estimation and
to evaluate the associated estimation accuracy. The experiments are
first presented along with the algorithm developed to estimate the
plant density. The performances of the method are then evaluated
with emphasis on repeatability and the impact of the spatial resolution
that may be a limiting factor for UAV observations. Finally, conclusions
are drawn on the adequacy of the proposed method for precision
farming and phenotyping applications.
2. Materials and methods

2.1. The experimental sites

Three experimental sites with winter wheat crops were considered:
Gréoux, Avignon and Clermont (Table 1). The Gréoux and Avignon sites
are in southeast France with a typical Mediterranean climate. The
Clermont site is in the center of France, with amore continental climate.
The Gréoux and Clermont sites were hosting genotype experiments
with respectively 111 and 2304 microplots. The microplots in Gréoux
were 10 m long with 13 rows. Those of Clermont were 2.5 m long
with 8 rows. A total of 37 and 228microplotswere sampled respectively
in Gréoux and Clermont. In Avignon, a single field with single genotype
was sampled over 30 microplots. The nominal sowing density, sowing
dates and row spacing are indicated in Table 1.

2.2. UAV and flight characteristics

A hexacopter developed by Atechsys (http://atechsys.fr/) was used
to carry a high resolution RGB camera. The camera was viewing the
crop from a 45° zenith angle in a compass direction perpendicular to
the row direction to maximize the cross section of the plants. The cam-
era was set up on a 2 axes gimbal that maintains automatically the ori-
entation of the camera independently from the movement of the UAV.
Note that the 45° inclination of the camera allows the UAV to observe
the microplot from a horizontal distance equal to the altitude: the
wind created by the rotors was therefore blowing on anothermicroplot
rather than the one currently observed. The UAV trajectory was pre-
pared before the flight to get 59%–77% overlap of the image footprint
along and across tracks (Table 2). The trajectorywas then controlled au-
tomatically by the GPSwithin an accuracy around 2m for the horizontal
position and by the barometer for the altitude within around 0.5 m ac-
curacy. The UAVwas flying at about 1 m/s speed at an altitude of 3 m to
7 m depending on the sites (Table 2). The autonomy of the system is
around 12 min and several flights (2 to 4) were necessary to cover the
ensemble of microplots for the Gréoux and Clermont sites. Note that 2
flights were completed in Avignon with 2 different altitudes (Table 2).

Circular panels of 20 cm diameter were distributed in the field to be
used as ground control points (GCPs) to get more accurate positioning
of the images. The center of each panel was located with a centimeter
accuracy using a RTK GPS system (Trimble Geo 7×). The flights were
completed around Haun stage 1.0–2.5 (Haun, 1973) for the three sites
(Table 2). These early stages correspond to 1.0 to 2.5 visible leaves
when the overlap between neighbor plants is limited to ease plant iden-
tification. Measurements were completed mostly under cloudy illumi-
nation conditions, with light to moderate wind.

2.3. The camera and image extraction over microplots

A Sony ILCE α5100L RGB camera with 6024 × 4024 pixels
was installed on the UAV. The camera uses a CMOS sensor of
23.5 × 15.6 mm with a pixel size of 3.88 μm. The camera was
equipped with a 60 mm focal length lens to increase the spatial resolu-
tionwhile keeping at a reasonableflight altitude (3m, 5mand7m). The
camerawas set to speed priority with auto adjustment of the ISO up to a
maximum of ISO = 1600. The images were recorded in raw format
(ARW) on the SDmemory card. Imageswere acquired at 1 Hz frequency
using an intervalometer that triggers the camera. Images were then
downloaded after each flight and saved in TIF format using the open-
source DCRaw software (http://www.cybercom.net/~dcoffin/dcraw/).

For each experiment, the TIF images available were processed using
Agisoft Photoscan Professional edition (Version 1.2.2, Agisoft LLC., Rus-
sia). The software computes the position of the camera corresponding
to each image acquired if the overlap between images is larger than
60% (Agisoft LLC, 2016). The flight plan associated to the camera field
of view and image acquisition frequency was providing a sufficient

http://atechsys.fr/
http://www.cybercom.net/dcoffin/dcraw/


Table 1
Location of the Gréoux, Avignon and Clermont experimental sites, along with the sowing date, sowing density and row spacing.

Sites Latitude Longitude Number of microplots Sowing date Nominal sowing density (seeds/m2) Row spacing
(cm)

Gréoux 43°45′N 5°53′E 20 28/10/2014 300 17.5
Avignon 43°57′N 4°49′E 30 13/11/2015 395 15.2
Clermont 45°46′N 3°70′E 50 12/11/2015 280 16.4
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overlap onmost situations (Table 2). The software recognizes automat-
ically the circular panels used as GCP for absolute geopositioning of the
images and locates their center precisely on the images. The accuracy
achieved for the positioning of the images was around 2.3 cm as evalu-
ated over the GCPs using a cross validation leave-one out process. The
plant density estimation was completed over a subsample of each
microplot. The size of the subsample was varying among the three
sites (Table 2). The coordinates of the subsample over each microplot
were manually defined using the orthomosaic image generated by the
Agisoft Photoscan software. Note that several subsamples could be ex-
tracted from the samemicroplot. The orthomosaic degrades significant-
ly the quality of the original images which prevents from properly
identifying plants. It was therefore preferred towork on the original im-
ages. For this purpose, the Phenoscript software (Version 0.8.2, devel-
oped by our team) was used to extract the subsamples of the
microplot from each image and to project them onto the ground to
get orthorectified images, assuming that the ground surface was flat
and horizontal. Because of the ortho-rectification applied to the images,
distances in pixels in the image can be simply converted into actual
metric distances using the scale factor computed by Phenoscript. Each
undistorted (orthorectified) imagewas associated to the corresponding
ground resolution computed by Phenoscript. Several images may con-
tain the same subsample viewed from different positions. For each sub-
sample, the image extract providing the best quality (no blur), fully
containing the subsample and the closest to the targeted view direction
(45° zenith angle and compass orientation perpendicular to the row di-
rection) was selected. The flowchart of data processing for UAV image
data is shown in Fig. 1.

2.4. Data processing

The data processing ismainly composed of three steps: (1) images of
the subsample extract are first classified and the rows extracted; (2)
then, image objects (group of connected green pixels) along the row
are identified and characterized by a set of features; (3) finally each
image object is classified according to the number of plants it includes.
These three steps are described hereafter and illustrated in Fig. 2.

2.4.1. Classification and row extraction
The selected subsample image was then first classified to separate

the green pixels from the background. This was achieved using the
method proposed by Meyer and Neto (2008) which was demonstrated
to perform better than the Otsu automatic thresholding (Otsu, 1979)
applied to a vegetation index as considered in Liu et al. (2017). A vege-
tation index calledMNVI is first computed for each pixel using the three
colors [R, G, B] of the RGB image:MNVI is the difference between the ex-
cess green (EGVI= 2G-R-B) and excess red (ERVI= 1.4R-B) vegetation
indices: MNVI = EGVI-ERVI = 2G-2B-2.4R. The positive MNVI values
Table 2
Summary of the main flight characteristics for three experimental sites.

Sites Date of flight Haun stage Altitude (m)

Gréoux @3 m 11/11/2014 1.5 3
Avignon @5 m 14/12/2015 2.5 5
Avignon @7 m 14/12/2015 2.5 7
Clermont @7 m 22/12/2015 1.0 7
correspond to the green pixels and negative values to the background.
The MNVI images were thus transformed into binary images using
MNVI = 0 as a threshold value and assigning 1 to the green pixels and
0 to the background. Possible weeds were eliminated from the binary
image by removing objects with b30 connected pixels using an area
opening algorithm (Ahmed et al., 2008).

The Hough transform (Hough, 1962) was applied to get the orienta-
tion of the main elements. The subsample image was then rotated ac-
cordingly using the nearest neighbor interpolation method, the row
direction being parallel to the x axis of the image. An example on the ro-
tated original image and the corresponding binary one is displayed in
Fig. 3. The row positions are then identified by the peaks across the
row direction of the sumof the green pixels computed along the rowdi-
rection. The three rows in the center of the image are then extracted
from each subsample image for Gréoux and Clermont, while only two
rowswere considered for theAvignon site forwhich the image footprint
was relatively small.

2.4.2. Object identification and characterization
Image objects are identified using the MATLAB function bwlabel

(Haralick and Shapiro, 1992). Each image object is then characterized
by a set of 13 features described in table and computed with the
regionprops function of MATLAB software (version 2015b, MathWorks,
USA).

2.4.3. Object classification
For each site, a supervised classification was conducted to estimate

the number of plants inside each image object. For this purpose, the
plants were identified by interactively clicking on the bottom of the
plants on the images of the 2 or 3 central rows considered. This process
although tedious was relatively easy due to the good quality of images
andwould be associated with very little uncertainties. A Support Vector
Machine (SVM) method (Vapnik, 2013; Vapnik and Vapnik, 1998) was
then trained to relate the 13 image object features (Table 3) to the num-
ber of plants inside each image object assessed visually. The SVM ma-
chine learning method was used here conversely to the neural
network approach proposed by Liu et al. (2017) because SVMs are rec-
ognized to generalize well in case of limited training dataset
(Mountrakis et al., 2011). A radial basis function was used because
this kernel adapts well to a large range of problems by varying the scal-
ing factor. The punishment (C) and kernel function parameters (γ) used
in the SVM algorithm were tuned using a particle swarm optimization
(PSO) algorithm (Kenndy and Eberhart, 1995). This iterative algorithm
starts with an ensemble of possible solutions called particles. Initial ve-
locities are also associated to each particle: they correspond to the
change of position of the particle in the solution space between two it-
erations. Trapping in a local minimum is avoided by considering both
the global minimum over all particles and the individual minimum of
Ground resolution (mm) Overlap (along/across) Size of subsample

0.20 38%/80% 1.5 m × 3rows
0.33 62%/80% 0.5 m × 2rows
0.45 73%/80% 0.5 m × 2rows
0.45 73%/80% 2.5 m × 3rows



Fig. 1. The flowchart of data preprocessing for UAV images.

Fig. 2. The schematic diagram of data processing for estimating plant density of winter wheat.
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Fig. 3. The classification result using an improved color vegetation index with an automatic thresholding: (a) original image and (b) classification binary image.
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each particle along its trajectory. At each iteration, the position of the
particles and associated velocities are updated up to the point when
the convergence criterion is satisfied. The PSO-SVM method used here
requires therefore three main steps:

(1) Initial configuration, including setting group size (25), number of
iterations (300), the velocity of initial particle (c1 = 1.5, c2 =
1.7), the minimum and maximum values of parameters C (0.01
b C b 1000) and γ (0.01 b γ b 1000) for the SVM;

(2) Each particle corresponding to a couple of [C,γ] values was used
to train the SVM prediction model. A fitness value is computed
to evaluate the corresponding performances;

(3) The particle providing the best prediction power is finally
selected.

Once the SVM is trained, it is applied to associate to each image ob-
ject the corresponding number of plants. Finally, the number of plants
for each subsample is then computed, and the corresponding density
calculated by dividing by the subsample area.

2.5. Statistical analysis

For each site, the dataset is randomly divided into a calibration and a
validation datasets using SPSS software (16.0, SPSS, Chicago, IBM, USA)
(Table 4): 2/3 of the total number of image objects is used to train the
classifier (Calibration); the remaining 1/3 image objects are used to
evaluate the performances (Validation).
Table 3
The 13 features used to characterize each image object.

Name Unit Meaning

Area Pixel2 Number of pixels for the connected component
(object).

Convexarea Pixel2 Number of pixels within the convex hull, referring to
the smallest convex polygon containing the region.

Eccentricity – Eccentricity of the ellipse that has the same
second-moments as the region.

Equivdiameter Pixel Diameter of a circle with the same area as the region.
Extent Pixel Ratio of pixels in the region to the total within the

bounding box, referring to the smallest rectangle
containing the region.

Filledarea Pixel2 Number of pixels for the object with all the gaps filled.
Majoraxislength Pixel Length of the major axis of the ellipse with the same

normalized second central moments as the region.
Minoraxislength Pixel Length of the minor axis of the ellipse with the same

normalized second central moments as the region.
Orientation ° Angle between the x-axis and the major axis of the

ellipse that has the same second-moments as the
region.

Solidity – Ratio of pixels in the region to the total within the
convex hull.

Lengthskelet Pixel Number of pixels for the skeleton.
Numend – Number of end points for the skeleton.
Numbranch – Number of branch points for the skeleton.
Performances were evaluated using the coefficient of determination
(R2) and root mean square error (RMSE), relative root mean square
error (RRMSE) (Wilson and Sagan, 1995). In addition, the index of
agreement (d) proposed by (Willmott, 1982) was calculated:

d ¼ 1−
∑n

i¼1 Ei−Mið Þ2

∑n
i¼1 Ei−M

�� ��þ Mi−M
�� ��� �2 ð1Þ

where n is the number of samples, Ei and Mi are respectively the esti-
mated and measured plant density values for sample i, and Mis the
mean of measured plant density.

To evaluate the repeatability of the developed method, thirty sub-
samples were selected from the Clermont experimental site where cen-
tral rows of these subsamples were imaged three times because of the
overlap between consecutive images. These three extracts were used
to evaluate the residuals quantified by the variability between the
three estimates of the plant density:

Residual ¼ Ei−E ð2Þ

where Eis themean estimated plant density from the three extracts Ei, 1
≤ i ≤ 3 of the same subsample.

3. Results and discussion

3.1. Evaluation of performances at the highest spatial resolution available

The performances evaluated over the validation data sets show only
a slight degradation as compared to the calibration data set, providing
some confidence on the robustness of the PSO-SVM method (Fig. 4
and Table 5). The estimated plant density is in good agreement with
the corresponding measured one derived from visual identification of
the plants in the image extracts for the Gréoux and Clermont sites
(Fig. 4a, c and Table 5). However, performances of estimates degrade
for the Avignon site (Fig. 4b). The bias between the estimated and the
measured density values ranged from 2.59 plants/m2 (Gréoux) to
Table 4
Summary of the measured plant density (plants/m2) of winter wheat at the Gréoux, Avi-
gnon and Clermont experimental sites.

Sites Dataset Nb.
subsamples

Min Mean Max Range SDa CVb

(%)

Gréoux Calibration 40 90 204 297 207 59 29
@3 m Validation 20 79 184 297 218 61 33
Avignon Calibration 40 200 326 388 188 52 16
@5 m Validation 20 223 306 388 165 45 15
Clermont Calibration 100 133 230 278 145 36 16
@7 m Validation 50 142 232 279 137 41 18
All Calibration 180 90 245 388 298 64 26

Validation 90 79 238 388 309 62 22

a SD, standard deviation.
b CV, coefficient of variation.



Fig. 4. Comparison between the estimated plant density using the highest spatial resolution RGB imagery with the corresponding measured values by visually identifying plants in the
images. Data for the three experimental sites where calibration and validation data sets are well identified: (a) Gréoux @3 m, (b) Avignon @5 m, (c) Clermont @7 m, and (d) All.
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15.90 plants/m2 for Avignon (Table 5). The poorer performances ob-
served in Avignon are mainly explained by the later Haun stage (2.5)
when the UAV was flying over the crops as compared to Gréoux (1.5)
and Clermont (1.0). The higher number of leaves corresponding to
these later development stages makes more overlap between adjacent
plants along the row. In these conditions, the image objects identified
contain more plants and are thus more difficult to classify. This aspect
may be even re-enforced by the fact that the plant density was signifi-
cantly higher in the Avignon site (Table 4). The results suggested that
the images should be taken at a Haun stage between 1 and 2 to mini-
mize plant overlapping. The results of Jin and Tang (2009) also sug-
gested that it was important to select the optimal growth stage to get
accurate estimation of the plant density in maize crops.
Table 5
Relationships between the estimated and measured plant density for winter wheat at three ex

Experimental sites Dataset Sample size Slope Intercept

Gréoux @3 m Calibration 40 0.94 10.07
Validation 20 0.95 5.49

Avignon @5 m Calibration 40 0.69 89.02
Validation 20 0.57 121.84

Clermont @7 m Calibration 100 0.85 32.29
Validation 50 0.83 34.41

All Calibration 180 0.83 43.73
Validation 90 0.80 53.91
The results showed that themaximumplant density estimated value
is very consistent with the nominal sowing density (Tables 2 and 4,
Fig. 4). The nominal sowing density targeted provides the potential
density value. The actual density may decrease from the potential
value depending on the emergence conditions. The difference between
the estimated plant density and the measured one (Fig. 5) shows that
the accuracy of estimated plant density degrades for the higher plant
density. This is probably due to the increase overlap between consecu-
tive plants that increases the number of image objects containing
several plants which introduces additional difficulties and thus uncer-
tainties as explained already earlier.

Our results are in very good agreement with those recently present-
ed by Liu et al. (2017) based on RGB imagery taken from the ground
perimental sites.

R2 RMSE (plants/m2) RRMSE (%) d Bias (plants/m2)

0.88 27.30 13.45 0.89 2.59
0.90 28.11 15.25 0.90 3.68
0.80 50.62 15.52 0.81 15.90
0.81 52.35 17.12 0.80 15.48
0.89 21.66 9.24 0.90 3.78
0.91 28.18 12.15 0.92 7.85
0.86 33.19 13.55 0.87 7.42
0.87 34.05 14.31 0.87 9.01



Fig. 5.Difference between the estimated plant density using the highest spatial resolution
RGB imagery with the corresponding measured values at three experimental sites.

Fig. 6. Histogram (blue rectangles) showing the frequency of residual values of the
estimates of plant density from the three different image extracts of the same
subsample. The red curve shows the fitted normal distribution. The n is the number of
dataset. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. Distribution of absolute value of differences between images extracts of the same
subsample. The blue (respectively red and green) line corresponds to image extracts
coming from the same track (respectively adjacent and non-adjacent tracks). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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level and reporting performances with RMSE ≈ 30 plants/m2. It con-
firms that the same quality of images can be obtained from a UAV plat-
form when flying at low altitude and speed. Improvement in the
method for images with best quality and resolutionwould comemainly
from the identification of the number of plants per image object. Our
method is based on the morphological attributes of the image objects.
Adding the RGB information would probably lead to marginal improve-
ment since leaves at emergence appear to have a relatively homogenous
green color. Further, their orientation close to the vertical induces only
small variation in brightness. The representative features from images
should be extracted using the more effective feature extracting
methods. In addition, improvement would come from enhanced ma-
chine learning methods requiring larger training database.

Because of the relatively small number of samples, it was not possi-
ble to conduct a rigorous analysis of the residuals as a function of the ge-
notypes. However, our visual observations indicate that only little
variability is observed between genotypes at these early stages. Further,
the training completed over the range of genotypes present in the trial
would partly account for possible genotypic variability in the plant iden-
tification process. Additional studies should be carried out to propose a
set of features that are little sensitive to possible genotypic differences.

3.2. Repeatability

Thirty subsamples with three different image extracts of the sub-
sample were selected in the Clermont site to evaluate the repeatability
of the estimation when images are taken under slightly different geo-
metrical conditions. A very good consistency between the three extracts
is observed (Fig. 6) with residuals showing a normal distributionwith a
standard deviation of about 16.57 plants/m2.

A more detailed inspection of the repeatability shows that it depends
whether images belong to the sameUAV track or not. For each subsample,
the absolute values of the differences between the three image extracts
noted Rx with x= [1, 2, 3] were computed, providing 3 possible couples:
Δ12= ∣R1−R2 ∣, Δ13= ∣R1−R3 ∣ and Δ23= ∣R2−R3 ∣. The resulting 90 Δij

computed over the 30 subsamples available were split into three groups:
image extracts belonging to the same tracks (48 couples), image extracts
belonging to two adjacent tracks (27 couples) and image extracts belong-
ing to twonon-adjacent tracks (15 couples). Results (Fig. 7) show that the
absolute values of the differences are smaller when the image extracts
came from the same tracks with an average value of (Δsame =
16.46 plants/m2). This is explained by the geometry of observation
which is relatively similar. Conversely, when image extracts come from
two different tracks, the observation geometry is more variable, inducing
larger differences in the plant density estimation (Δadjacent =
21.44 plants/m2). This effect is even increased when the image extracts
belong to non-adjacent tracks (Δnon−adjacent = 35.20 plants/m2) corre-
sponding to larger differences in the observation geometry. These results
suggest therefore that each subsample should be imagedwith similar ob-
servational geometry to get more consistent plant density estimation.

3.3. Impact of the spatial resolution on the performances

A simulation study was first conducted to analyze the impact of the
spatial resolution on the performances of the method. The Gréoux



Fig. 9. Comparison between the estimated and the measured plant density for winter
wheat using the 7 m height UAV imagery data at the Avignon experimental site.
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experiment with its very high resolution (0.20mm)was used for this
purpose. Its original spatial resolution was degraded to 0.40, 0.60,
0.80 and 1.00 mm using a simple aggregation technique: the mean
of 2 × 2, 3 × 3, 4 × 4 and 5 × 5 groups of pixels was computed. The
complete data processing was applied to each of the 4 degraded spa-
tial resolution images, including the automatic classification and the
training of the PSO-SVM to identify the number of plants per image
object. Results show that the estimation accuracy of the model is de-
creasing linearly with the spatial resolution of images (Fig. 8a). Ex-
amples of different spatial resolution images are showed in Fig. 8b.
Best performances are obtained for the original 0.20 mm resolution
with RMSE = 28.11 plants/m2 and RRMSE = 15.25%. This is in
good agreement with results from Liu et al. (2017) who get a spatial
resolution of 0.2 mm from ground based RGB imagery. Conversely,
very poor estimates are observed for the 1 mm resolution with
RMSE= 93.89 plants/m2 and RRMSE= 51.03%. When the resolution
of images is degrading, the classification is less accurate, particularly
when leaves from adjacent plants are close together. Further, the
image objects are losing progressively details which impact the
value of the features, making the identification of the number of
plants per image objects more difficult.

These simulation results were verified over the Avignon site where
images were acquired both at 5 m and 7 m altitude, corresponding re-
spectively to 0.33 mm and 0.45 mm spatial resolution. The degraded
spatial resolution (0.45 mm) induces a significant decrease of the per-
formances (Fig. 9) with a difference in RMSE and RRMSE values close
to 30 plants/m2 and 10%, respectively (Table 6). The effect of the in-
crease by 0.12 mm of the pixel size impacts more largely the perfor-
mances of plant density estimation as compared to what was
observed previously from the simulations on the Gréoux site. This
may be explained by the slightly later Haun stage and higher plant
density that makes more overlap between plants with increasing dif-
ficulties when estimating the number of plants within image objects.
Note however that the bias seems almost unchanged between the 2
resolutions (Table 6). A spatial resolution of RGB images better than
0.40 mm seems required to obtain a good estimation of the plant
density. These results agree with Zhang and Kovacs (2012) and
Sankaran et al. (2015b) who concluded that high spatial resolution
images could be better used for precision agriculture and crop phe-
notyping applications.
Fig. 8. The impact of different spatial resolution on the estimation accuracy of model (a) a
4. Conclusion

This study presents a first attempt to estimate plant density ofwheat
crop at emergence from RGB imagery taken from a UAV. Under the var-
iable conditions experienced, the retrieval performances of the plant
density provide RMSE between 21.66 and 52.35 plants/m2 for densities
spanning from 79 to 388 plants/m2. It corresponds to a relative RMSE
values ranging from 9.24% to 17.12%, i.e. close to the 10% uncertainties
often considered as the target accuracy to be reached. Best perfor-
mances require a spatial resolution better than 0.40 mm to ease the
classification of the green pixels and the retrieval of the number of
plants per image objects made of several overlapping plants.

The needed low altitude flights induce potential source of problems
for the photogrammetric techniques used to retrieve the precise posi-
tions of the cameras when the image is acquired. Alternatively, the
use of an onboard centimetric accuracy geopositioning system
nd example of different spatial resolution images (b) at the Gréoux experimental site.



Table 6
Performances of the estimation of plant density over the Avignon experimental site for the two altitudes tested.

Altitude (m) Dataset Sample size Slope Intercept R2 RMSE (plants/m2) RRMSE (%) d Bias
(plants/m2)

Avignon Calibration 40 0.69 89.02 0.80 50.62 15.52 0.81 15.90
@5 m Validation 20 0.57 121.84 0.81 52.35 17.12 0.80 15.48
Avignon Calibration 40 0.57 133.18 0.73 80.48 24.63 0.69 15.96
@7 m Validation 20 0.49 145.52 0.75 77.84 25.41 0.72 17.05
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combined with the IMU (Inertial Measurement Unit) information on
camera orientation will allow to directly project the image onto the
ground surface with sufficient accuracy: because of the low altitude,
the uncertainties on the orientation of the camera coming from the
IMUwill translate into limited positioning errors. This will considerably
simplify the image acquisition and primary processing. It was also dem-
onstrated that the geometry of observation significantly impacts the
plant density estimates. Caution should therefore be taken to ensure
consistent acquisition geometry over each subsample or plot. Further,
the selection of the image the closest to the targeted direction is there-
fore a very important step. Finally, because of the relatively easy and au-
tomatic way to collect and process the images, plant density estimation
could be applied over large samples: such extensive sampling area con-
trastswith the classical techniques based on groundmeasurements that
are generally applied on a restricted sample size.

Themethod developed here requires a specific training for each new
data set to account for possible changes due to the Haun stage or other
acquisition conditions includingwind. However,merging the individual
training datasets to build a classification algorithm that associates with
a good accuracy the number of plants contained in each image object
will make the method much easy to use. However, this will require
very efficient machine learning techniques to get robust results against
the large diversity of situations encountered. In this study, we only used
the original images collection for a given plot based on our developed
method. However, a basic edition of the mosaic (via selecting the best
images to take part in the mosaic) could also render similar results
and avoid the potential shortcoming of this method while allowing an
exhaustive coverage of the whole study area. Finally, the method
could be adapted to other crops having relatively small elements,
sown unevenly along the row andwith limited spacing between plants.
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