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Abstract—Collaborative representation methods, such as sparse sub-
space clustering (SSC) and sparse representation-based classification
(SRC), have achieved great success in face clustering and classification
by directly utilizing the training images as the dictionary bases. In this
paper, we reveal that the superior performance of collaborative repre-
sentation relies heavily on the sufficiently large class separability of the
controlled face datasets such as Extended Yale B. On the uncontrolled
or undersampled dataset, however, collaborative representation suffers
from the misleading coefficients of the incorrect classes. To address
this limitation, inspired by the success of linear discriminant analysis
(LDA), we develop a superposed linear representation classifier (SLRC)
to cast the recognition problem by representing the test image in term of
a superposition of the class centroids and the shared intra-class differ-
ences. In spite of its simplicity and approximation, the new SLRC largely
improves the generalization ability of collaborative representation, and
competes well with more sophisticated dictionary learning techniques,
on the experiments of AR and FRGC databases. Enforced with the
sparsity constraint, SLRC achieves the state-of-the-art performance on
FERET database using single sample per person.

Index Terms—Sparse representation, Collaborative representation, S-
parse subspace clustering, Face clustering, Face recognition.

1 INTRODUCTION

A fundamental assumption on image representation is that an
image can be encoded in term of a linear superposition of an
ensemble of basis images. The image code is determined by the
choice of basis images. The goal of efficient coding is to find a
set of basis images, which spans the image space, and results
in the coefficient values being as uncorrelated or independent
as possible over an ensemble of training images [1]. One line
of approach to this problem is based on principal compo-
nent analysis, well-known as Eigenfaces in computer vision
community, which aims to find a set of mutually orthogonal
basis images that capture the direction of maximum variance
in the face space and for which the coefficients are pairwise
uncorrelated [2]. Eigenfaces is an unsupervised coding method
for reconstruction but not for discrimination [3].

Started by the influential SRC [4], collaborative representa-
tion (CR) based approaches have achieved surprisingly good
performance on face clustering [5] and classification [4]. They
directly utilize the training images themselves as the basis
images, and assume that the test sample can be linearly repre-
sented by the training samples in the same class. It then admits
coding coefficients in the dictionary spanned by all training
samples from all classes, where major components are expected
to be found in the correct class. Although previous studies have
validated that the coefficient regularizer is not crucial [6][7],
it is still unclear why the (unsupervised) coding coefficients
based classification, such as SRC and CRC, can outperform
the state-of-the-art discriminative classifier such as SVM in face
recognition.

In this paper, we reveal that the discriminant nature of
the collaborative representation is determined by the class
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separability of the data dictionary, measured by the quantity
J = Tr{S†TSB} involving the inter-class scatter normalized
by the global scatter. On the controlled face datasets, the
class separability of data is sufficiently large for nearly perfect
clustering and classification, and the coding coefficients of the
collaborative representation become naturally discriminative.
This class separability of the facial images can be approximately
exploited by data whitening or discriminant analysis. As evi-
dence, we evaluate two baseline algorithms based on the simple
metrics that characterize the quantity of Tr{S†TSB}, followed by
the traditional clustering or classification methods. Empirical
results show that both the collaborative representation based
methods, such as SSC [5] and SRC [4], and our proposed
baseline methods can take advantage of the large class sepa-
rability of controlled dataset to obtain excellent clustering and
classification performance.

Unfortunately, on the uncontrolled and undersampled
datasets, CR based methods suffer from the misleading coding
coefficients of the incorrect classes. To address this limitation,
we propose to decompose the training sample of CR into
prototype (class centroid) and variation (sample-to-centroid d-
ifference) parts, and propose a superposed linear representation
that encodes the test sample as a superposition of the prototype
and variation dictionaries [8]. Experimental results on AR,
FRGC, and FERET databases show that the proposed SLRC
achieves better performance than current sophisticated dictio-
nary learning methods, using the undersampled and uncon-
trolled training data. Furthermore, enforced with the sparsity
constraint, SLRC achieves state-of-the-art single-sample based
face recognition performance using an overcomplete variation
dictionary.

2 DISCRIMINANT NATURE OF COLLABORATIVE REPRE-
SENTATION

This section introduces our finding that the collaborative rep-
resentation is discriminative because the controlled dataset has
sufficiently large class separability, and this class separability
can be equivalently exploited by traditional feature extraction
techniques such as data whitening and discriminant analysis.

2.1 Problem Definition

Given the training samples denoted by a matrix X =
[x1, x2, . . . , xn] ∈ Rd×n and a test sample denoted by a vector
y ∈ Rd×1, we consider the basic problem of representing the
test image y as a linear combination of the training image
ensemble, i.e. y = Xα. By assuming that training samples
have been projected into low-dimensional feature spaces, the
coefficient vector α is underspecified, i.e. many choices of α
lead to the same y. To avoid the complex effect induced by
regularization, we analyze the characteristics of coefficients of
the least-norm solution. Specifically, the least-square solution
considers the optimization problem

min ‖α‖2, s.t. y = Xα (1)

where optimal solution α = XT (XXT )−1y has the smallest
norm of any solution.

In mathematics, although the condition of feature matrix
X varies, an unique generalized solution to the collaborative
representation model always exists such that the squared recon-
struction error ‖y−Xα‖2 and the squared norm of the solution
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αtα are both minimized1. This unified and unique solution is
denoted by

α = X†y (2)

where X† is called the Pseudoinverse [9] of X . In particu-
lar, when X is full column rank, X† is computed as X† =
(XTX)−1XT with X†X = I . When X has full row rank, X† is
computed as X† = (XT (XXT )−1) with XX† = I .

2.2 Close Relationship to Class Separability
The discriminant power of collaborative representation comes
from the coding coefficients, and we analyze their characteristic
by evaluating the class-specific summation of the coefficients.
Specifically, we sum up the coding coefficients associated with
the ith class, si =

∑ni
j=1 αi,j , and evaluate their deviation

from the ideal class-specific summation. For the simplicity of
analysis, the ideal class-specific summation of class i is set to 1
for the samples of the ith class, and set to 0 otherwise. We define
the discriminant power of the coefficients as the consistency
with this ideal case.

Formally, the discriminatory ability of the coding coeffi-
cients of sample x can be measured by squared error between
ideal and real concentration as follows.

e = ‖Ii − TX†x‖2, if x ∈ ωi (3)

while Ii = [0, . . . , 1, . . . , 0]t ∈ RC is a class indictor vector
whose only nonzero entry is the ith entry. For the whole
training set X , one can construct an indicator matrix T ∈ RC×n

whose nonzero entry in each column indicates the class label of
each sample. Finally, the discriminatory ability of the collabo-
rative coefficients of the whole training set could be measured
by the sum of “deviation from ideal concentration” over all
samples as follows.

E = ‖T − TX†X‖2 (4)

To simplify the analysis, we assume the training data are
centered, and denoted as X̂ , i.e. X̂T 1 = 0, and concentration
degree of the coefficients can be analyzed as follows.

E = ‖T − TX̂†X̂‖2 (5)

= Tr{(T̂ − T̂ X̂†X̂)(T̂ − T̂ X̂†X̂)t}
= Tr{T̂ T̂ t − T̂ X̂†X̂T̂ t − T̂ X̂t(X̂†)tT̂ t + T̂ X̂†X̂X̂t(X̂†)tT̂ t}
= Tr{T̂ T̂ t − T̂ X̂t(X̂X̂t)†X̂T̂ t}
= Tr{T̂ T̂ t} − Tr{(X̂X̂t)†X̂T̂ tT̂ X̂t}
= Tr{T̂ T̂ t} − Tr{S†TSB}

Note that the matrix X̂X̂t is the total scatter matrix ST , and
X̂T̂ tT̂ X̂t is the between-class scatter matrix, SB . Thus, since the
target matrix T is fixed, the minimum value of E is determined
by the trace of Tr{S†TSB}, which is widely used in discriminant
analysis to measure the class separability of the data. It is an
intrinsic property of data themselves, regardless of the solvers
of the least-square problem.

When the collaborative representation model is applied on
the data set with large Tr{S†TSB}, the least-square coding co-
efficients are naturally discriminative, and thus the algorithms
based on these coefficients, such as SRC and SSC, also naturally
become discriminative, without any special regularization. Fig.
1 shows two examples, i.e. (a) and (b), where both data sets

1. The side conditions used to define the Moore-Penrose pseudo-
inverse are that the squared representation error be minimized and,
if there is ambiguity (several solutions with the same minimum error),
the `2 norm of α also be minimized.

have the same large Tr{S†TSB}, and the two samples marked
by the dark cross have identical coding coefficients shown in
(c). One can see from the Fig 1(c) that the coding coefficients are
dense but discriminative: all the large coefficients concentrate on
the correct class. Indeed, regularized model may generate more
sparse or concentrated coefficients, but the resulting complex
computation might be not necessary.

2.3 Geometric Interpretation
It is easy to understand that least-square coding coefficients
are discriminative where the data classes are distributed far
apart such as those in Fig. 1(b). For face processing, however,
it is a common knowledge that “the variations between the
images of the same class due to illumination are almost al-
ways larger than image variations due to change in class”[10].
Why is the collaborative representation model still applicable
for both face clustering and classification? To investigate this
question, we analyze the physical meaning of the quantity
Tr{S†TSB} by its spectral decomposition. Specifically, let UB =
{ub1, . . . , ubq} and ΛB = {λb1, . . . , λbq} be the eigenvector and
eigenvalues of SBUB = UBΛB , and UT = {ut1, . . . , utp} and
ΛT = {λt1, . . . , λtp} be the eigenvector and eigenvalues of
STUT = UT ΛT , where q and p are the ranks of SB and ST

respectively, λb1 ≥ λb2 ≥ . . . ≥ λbq , λt1 ≥ λt2 ≥ . . . ≥ λtp, and
p ≥ q. In light of the similar formulation in [11], the quantity
can be decomposed as follows.

Tr{S†TSB} =

q∑
i=1

p∑
j=1

λbi

λtj

(
uT
tjubi

)
(6)

The spectral decomposition of the scatter matrices reveals that
the discriminant power of the coding coefficients is determined
by the sum of the inter-class variances normalized (divided)
by the total variances along the consistent directions. In other
words, on the cases where the inter-class variance is small but
the total variance is also small along the that direction, collabo-
rative representation model can recover the cluster separability
hidden in the high dimensional space, such as that in Fig.1(a).

In a typical ensemble of face images, the inter-class variance
comes from the subtle difference of the local texture and shape
around the facial features, but the intra-class variance is mainly
caused by global appearance change of illumination. In the im-
age space, the intra-class image differences are approximately
uncorrelated to the inter-class image differences [12]. Geometri-
cally speaking, the distinct distribution of inter-class and intra-
class changes makes the principal basis of SB and those of ST

are not conflict in the high dimensional image space [11], so
that the quantity of Tr{S†TSB} is sufficiently large. Therefore,
the subtle inter-class variance can be highlighted in the background
of dominant intra-class variance. Linear discriminant techniques
that aim to preserve class separability have been popular to the
classification of facial identity [13] and gender [14]. Further, by
handling the inter-/intra-class variations separately, previous
studies have reported very successful face-recognition results
using the Bayesian matching [12] and unified subspace analysis
[15] framework.

3 SUPERPOSED LINEAR REPRESENTATION BASED
CLASSIFICATION (SLRC)
Inspired by the decomposed representation in discriminant
analysis, this section introduces a superposed linear represen-
tation model that constructs dual dictionaries to separately ex-
ploit the inter-class and intra-class variability for collaborative
representation based classification.
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Fig. 1. Two-class examples with identical class separability, i.e. Tr{S†TSB}, where the points marked by crosses are the test samples to be
reconstructed. (a) The example with subtle inter-class variance, relative to the large total variance. Fortunately, the inter-class variance is
perpendicular to the principal direction of global variance. (b) The example with large inter-class variance, relative to the total variance. (c) The
coding coefficients of two test samples in (a) and (b) are identical, and very discriminative.

3.1 Decomposed Representation of Linear Discriminant
Analysis
Given a data set with multiple samples per class, the ni samples
of class i form a matrix Xi ∈ Rd×ni , i = 1, . . . , k,

∑k
i=1 ni = n.

Considering the class labels, we introduce three d × n basis
matrices

HW = [X1 − c1eT1 , X2 − c2eT2 , . . . , Xk − ckeTk ], (7)

HB = [(c1 − c)eT1 , (c2 − c)eT2 , . . . , (ck − c)eTk ], (8)

HT = X̂ = [(x1 − c), . . . , (xn − c)] = X − ceT , (9)

where ei = [1, . . . , 1]T ∈ Rni×1, e = [1, . . . , 1]T ∈ Rn×1, ci =
1
ni
Xiei is the geometric centroid of class i, and c = 1

n
Xie is

the global centroid. Interestingly, the basis matrices have the
relationship HT = HW +HB [16].

The classical PCA technique derives the subspace by the
eigenvectors of the total scatter matrix ST = HTH

T
T , which

is optimal for information-preserving and helpful for remov-
ing the unreliable dimension [17]. In contrast, LDA tries to
seek the subspace that best discriminates different classes by
maximizing the between-class scatter, while minimizing the
within-class scatter in the projective subspace. In the theory of
LDA, between-class scatter matrix SB = HBH

T
B characterizes

the relation between any two class centroids. The within-class
scatter matrix SW = HWHT

W characterizes sample variations
deviation from corresponding class centroid. In this respect,
LDA essentially first decomposes the centered data into two
parts as X̂ = HB + HW , and then find the projective bases by
the optimization criterion

J(w) = max
wTHBH

T
Bw

wTHWHT
Ww

. (10)

In the sense, we denote the relationship X̂ = HB + HW as
the decomposed representation of LDA: HB is an approximated
representation that characterizes the samples by corresponding
class centroids, and HW represents the residuals of each sample
deviated from the approximation HB .

3.2 Superposed Linear Representation based Classifica-
tion
Although having achieved the great success in robust face
recognition [4][7], collaborative representation suffers from the
undersampled problem: When the training images are insuf-
ficient or unrepresentative, the test sample has to be recon-
structed by the samples of other classes, and thus the cod-
ing coefficients generate misleading results. In essence, this

problem is caused by the mixture of the inter-class and intra-
class components in the dictionary bases, where the intra-
class components of the testing image are possibly borrowed
from the incorrect identities. To overcome this difficulty, we
attempt to decompose the collaborative dictionary in a manner
similar to the decomposed representation in LDA inspired by
its success in undersampled classification. Specifically, given a
sample x from one of the classes in the training set, we assume
it can be naturally reconstructed by two parts:

x = c(x) + (x− c(x)) (11)

where c(x) is the centroid of corresponding class, and x− c(x) is
the intra-class difference from the sample to its class centroid.
Applying this “naive” decomposition to each training sample,
we decompose the dictionary of collaborative representation
into prototype and variation dictionaries. Following previous
notations, the prototype dictionary can be represented as fol-
lows

P = [c1, . . . , ci, . . . , ck] ∈ Rd×k (12)

where ci is the centroid of class i. As the prototypes are repre-
sented by class centroids, the variation dictionary is naturally
constructed by the sample based difference to the centroids as
follows:

V = HW = [X1 − c1eT1 , . . . , Xk − ckeTk ] ∈ Rd×n (13)

Fig. 2 illustrates an typical example of the prototype and
variation dictionaries in the image form. One can see from
the figure that the class centroids are visualized as stabilized
average images [18][19], and the variation images separate out
the uncontrolled factors, such as lighting and sunglasses. With
the prototype and variation dictionaries, we propose the Super-
posed Linear Representation-based Classification (SLRC) that
casts the recognition problem as finding a linear representation
of the test image in term of a superposition of the class centroids
and the intra-class differences. It is interesting to point out the
similarities between LDA and SLRC as follows.

• Both the prototype dictionary and HB of LDA use
an approximated representation that characterizes the
samples by corresponding class centroids.

• The variation dictionary is identical to HW of LDA,
which is designed to represent the residuals of each
samples deviated from the centroid based approxima-
tion. Both SW = HWHT

W of LDA and the variation
dictionary are shared across all classes.
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(a)

(b)

Fig. 2. The illustrative examples of the “prototype plus variation” super-
posed linear representation model. (a) the randomly selected training
images from AR database. (b) the first column contains the “prototypes”
derived by averaging the images of the same subject, and the rest
columns are the “sample-to-centroid” variation images.

While LDA emphasizes solely on discriminative dimension
reduction, SLRC simultaneously satisfies the needs for ade-
quate signal reconstruction and subsequent classification per-
formance using dual decomposed dictionaries, which provides
a flexible collaborative representation by imposing various reg-
ularization on the coefficients. Algorithm 1 below summarizes
the complete recognition procedure.

Algorithm 1. Superposed Linear Representation based
Classification (SLRC)

1: Input: a matrix of training samples A =
[A1, A2, . . . , Ak] ∈ Rd×n for k classes, and an
regularization parameter λ > 0. Compute the
prototype matrix P according to (12), and the variation
matrix V according to (13). When the sample size per
class is insufficient, the matrix V can be supplemented
from a set of generic samples outside the gallery.

2: Compute the projection matrix Φ ∈ Rd×p by applying
PCA on the training samples A, and project the proto-
type and variation matrices to the p-dimensional space.

P ← ΦTP, V ← ΦTV (14)

3: Normalize the columns of P and V to have unit `2-
norm, and solve the `1 or `2-minimization problem[

α̂1

β̂1

]
= arg min

∥∥∥∥[P, V ]

[
α
β

]
− y
∥∥∥∥2
2

+ λ

∥∥∥∥[ α
β

]∥∥∥∥
`

,

(15)
where α, α̂ ∈ Rk, β, β̂ ∈ Rn. The norm of coefficients
` ∈ {1, 2} in our experiment, and corresponding algo-
rithms are denoted as SLRC-`1 and SLRC-`2 respective-
ly.

4: Compute the residuals

ri(y) =

∥∥∥∥y − [P, V ]

[
δi(α̂1)

β̂1

]∥∥∥∥
2

, (16)

for i = 1, . . . , k, where δi(α̂1) ∈ Rn is a new vector
whose only nonzero entries are the entries in α̂1 that
are associated with class i.

5: Output: Identity(y) = arg mini ri(y).

When the number of samples per class is insufficient, and in
particular when only a single sample per class is available,
the intra-class variation matrix would become collapsed. To
address this difficulty, one can acquire the intra-class variation
bases from the generic subjects outside the gallery, which are
assumed to be shareable across different subjects.

There have been a number of dictionary learning methods
[20][21][22][23][24] [25] that effectively improve the generaliza-
tion ability of collaborative representation. The most similar
method is the SDR-SLR [26] that applies class-wise low-rank
decomposition to separate the identity and intra-class varia-
tion dictionaries, and derives sparse and dense coefficients for
two dictionaries respectively. Compared with SDR-SLR and
other learning methods, the “naive” centroid-based dictionary
decomposition of SLRC is much more simple, efficient, and
parameter-free. Actually, SLRC has not induced any new pa-
rameter compared to the classical SRC. Although the class
centroid is generally an approximated representation, SLRC
competes well with more sophisticated dictionary learning
techniques in our experiments.

4 EXPERIMENTAL STUDY

In this section, we first perform the study on the controlled
database to analyze the relationship between class separability
Tr{S†TSB} and collaborative representation methods. Then, we
further demonstrate the effectiveness of the proposed SLRC
on general recognition experiments of the AR, FRGC, and
FERET database with uncontrolled and undersampled training
datasets.

4.1 Face Clustering on Controlled Dataset
The Extended Yale B dataset consists of 192×168 pixel cropped
face images of 38 individuals, where there are around 64 frontal
face images for each subject acquired under controlled lighting
conditions. To reduce the computational cost and the memory
requirements of all algorithms, we downsample the images
to 48×42 pixels and treat each 2,016D vectorized image as a
data point. As the images are captured under strictly controlled
lightning conditions, it has been validated that the images of
each class approximately reside in a 9-dimensional subspace
[10]. In light of the quantity of Tr{S†TSB}, the class separability
can be directly measured by between-class scatter, if the data
is whitened, i.e. ST = I . Therefore, to better understand this
controlled dataset, we first present some geometric statistics
before and after whitening process.

First, we compute the smallest principal angle for each pair
of subspaces, and accumulate the percentage of the subspace
pairs whose smallest principal angle is below a certain value,
ranging from 0 to 90 degrees. Fig. 3(a) shows that the subspaces
before and after whitening process have dramatically different
principal angles. Before whitening, principal angles between
subspaces are between 10 and 20 degrees, which indicates that
the data between different subspaces are highly consistent and
correlated in the image space. In contrast, in the whitened
space, principal angles between subspaces are always larger
than 75 degrees.

Second, for each pair of subspaces, we accumulate the
percentage of data points that have one or more of their K-
nearest neighbors in the other subspaces. As shown in Fig. 3(b),
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Fig. 3. (a) Percentage of pairs of subspaces whose smallest principal
angle is smaller than a given value. (b) Average percentage of data
points in pairs of subspaces that have one or more of their K-nearest
neighbors in the other subspace.

TABLE 1
Clustering error (%) of different algorithms on the Extended Yale B

Database

Algorithm LSA SCC LRSC LRR-H SSC WSC[30] [31] [32] [33] [5]
5 Subjects

Mean 58.02 58.90 12.24 6.90 4.31 3.75
Median 56.87 59.38 11.25 5.63 2.50 3.44

8 Subjects
Mean 59.19 66.11 23.72 14.34 5.85 4.28

Median 58.59 64.65 28.03 10.06 4.49 3.52
10 Subjects

Mean 60.42 73.02 30.36 22.92 10.94 4.69
Median 57.50 75.78 28.75 23.59 5.63 3.59

a large proportion of data points have the nearest neighbors
come from the other subspace, and this percentage rapidly
increases as the number of nearest neighbors increases. This
clearly shows that the within-class variance is much larger than
the between-class variance, and the clustering of such data is a
challenging task. In contrast, in the whitened space, there are
much fewer nearest neighbors belong to other subspaces. This
observation is consistent with our previous studies [27][28][29]
that showed the whitening process largely enhanced the class
separability for face recognition.

In the following, we perform clustering experiment on
this controlled face dataset as detailed in [5]. Our clustering
baseline, called whitened spectral clustering (WSC), applies
conventional spectral clustering in the whitened PCA subspace.
Specifically, WSC first applies whitened PCA by retaining 98%
data variance, and then builds the 7-NN graph for spectral
clustering where the affinity matrix is calculated as follows.

S(zi, zj) = exp

(
−1− cos(zi, zj)

2× (0.33)2

)
(17)

The parameters of other methods follow the reference [5]. The
comparative clustering results are shown in Table 1, and one

can see from the table that the WSC baseline obtains lower
clustering errors than the state-of-the-art subspace clustering
algorithms. The average clustering error rates are as low as
3.75 percent and 4.69 percent average clustering error for 5 and
10 subjects, respectively. This excellent clustering performance
of WSC and the geometric findings in Fig. 3 (a) and (b) are
consistent. From the nearly perfect clustering accuracy, one
can conjecture that this controlled dataset indeed has large
class separability, measured by Tr{S†TSB}. For this reason, the
whitening process is able to dramatically improve the subspace
separability, and the conventional spectral clustering method
in the whitened space can achieve excellent performance. Al-
though collaborative representation based methods, such as
SSC and LRR, also take advantage of the large class separability,
but their coding coefficients are suboptimal to measure the
neighborhood closeness as indicated by the higher clustering
errors.

4.2 Face Classification on Controlled Dataset

This experiment strictly follows the experiment on the Ex-
tended Yale B database in the influential paper [4], which
concludes that SRC outperforms the state-of-the-art classifiers,
such as linear support vector machine (L-SVM) [34] and nearest
subspace (NS) [35], on various feature spaces. As in [4], we
randomly select 32 images for training for each subject (i.e.
about a half of the images per subject) and the other images
for testing. Three conventional features, namely Eigenfaces,
Laplacianfaces, Fisherfaces, and two unconventional features,
namely downsampled images and Randomfaces, are tested.
Following the experiment in [4], we compute the recognition
rates with feature space dimensions 30, 56, 120, 504. Note
that Fisherfaces is only available at dimension 30 limited by
the number of classes. To preserve the class separability, our
baseline algorithm, called linear discriminant analysis (LDA)
classifier, first projects the data into the low-dimensional sub-
space spanned by the eigenvectors of S†TSB , and then applies
the nearest neighbor classifier using cosine similarity measure.
LDA baseline is parameter-free, and the parameter settings of
other methods follow the reference [4].

Table 2 enumerates the comparative performance of tested
classifiers using various feature spaces. LDA baseline achieves
recognition rates between 91.6% and 96.1% for all 120D feature
spaces and a maximum rate of 99.4% with 504D Eigenfaces2. In
contrast, the maximum recognition rate for SRC is only 98.1%.
In high dimension, such as 504D, the performances of various
features in conjunction with both SRC and LDA converge, with
conventional features and unconventional features performing
similarly. Wright et al. [4] explained this accuracy coverage by
the theory of compressive sensing: 504 linear measurements
should suffice for sparse recovery in the EYB database. Howev-
er, even with the Randomfaces that is designate for compressive
sensing, the accuracy difference between LDA and SRC is less
than one percent (98.1% vs. 97.3% in 504D space). Moreover,

2. LDA in 504D eigenspace performs the best among all dimension
reduction approaches and among all classifiers. As suggested in [17],
PCA helps improve the classification accuracy because it has some
roles in removing the unreliable dimension. Specifically, due to the high
dimension and small sample size of the face dataset, the components
corresponding to small eigenvalues largely deviate from the population
variances [36], removing them by PCA not only circumvents the singu-
larity problem of the scatter matrices, but, more importantly, obtains a
more reliable estimation of the eigen-spectrum for discriminant analysis
[17]. This finding suggests that the accuracy of LDA can be further
improved by a selection of PCA features [37] or proper eigen-specturum
regularization [38].
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TABLE 2
Recognition rates (%) on the Extended Yale B Database

Features Classifiers Feature Dimension
30 56 120 504

Eigenfaces

NS 89.9 91.1 92.5 93.2
L-SVM 70.6 84.3 93.1 96.8
SRC 86.5 91.6 93.9 96.8
LDA 75.0 91.1 96.1 99.4

Laplacianfaces

NS 89.0 90.4 91.9 93.4
L-SVM 72.0 85.0 94.0 97.7
SRC 87.5 91.7 93.9 96.5
LDA 78.5 88.2 95.4 98.8

Fisherfaces

NS 81.9 N/A N/A N/A
L-SVM 86.7 N/A N/A N/A
SRC 86.1 N/A N/A N/A
LDA 98.8 N/A N/A N/A

Randomfaces

NS 87.3 91.5 93.9 94.1
L-SVM 48.8 68.6 83.4 91.4
SRC 82.6 91.5 95.5 98.1
LDA 86.9 90.2 91.6 97.3

Downsample

NS 80.8 88.2 91.1 93.4
L-SVM 48.9 69.5 79.0 91.6
SRC 74.6 86.2 92.1 97.1
LDA 77.8 86.9 92.5 96.4

it should be noted that LDA baseline is irrelevant to sparse
recovery, but achieves the three highest accuracies, i.e. 99.4%,
98.8%, 98.8%, over the whole experiment. These results clearly
suggest that the tested features can achieve high accuracy sim-
ply because they are effective to preserve the class separability
measured by Tr{S†TSB}.

An additional evidence to support our claim is that, in the
30D Fisherfaces feature space, LDA baseline achieves 98.8%
accuracy while SRC only 86.3%. This is because that the low-
dimensional Fisherfaces features preserve the class separability,
but discard most reconstructive information [39]. Clearly, be-
sides the prerequisite discriminatory information, SRC requires
enough reconstructive information to assure the coding coef-
ficients meaningful. In this experiment, SRC implicitly takes
advantage of the class separability that resides in the recon-
structive bases to achieve nearly perfect accuracy.

To ensure the equitable comparison, we have conducted an
additional experiment using the Eigenfaces feature as suggest-
ed in [40]. In the training stage, we apply the 10-fold cross
validation to select the optimum values of the parameters
(subspace dimension d of NS, C of L-SVM, and λ in SRC) at
the uniformly sampled intermediate PCA dimensions (p), i.e.
100, 200, . . . 1000. We find that the performance of all classifiers
become steady when the retained PCA dimension is larger than
500. The best testing accuracy of the NS, L-SVM, SRC, LDA
classifiers are 93.6% (p=800, d=20), 97.1% (p=900, C=10000),
97.2% (p=1000, λ=0.001), and 99.8% (p=800) respectively. These
best accuracies are similar to the ones using 504D eigenspace,
which validates our observations on Table 2.

In summary, LDA, SRC, and L-SVM all achieve excellent
performance on this controlled dataset with large class separa-
bility. One should pay more attention to the general problem
with uncontrolled and undersampled training set.

4.3 Recognition with Contaminative Training Set
The AR database consists of over 3,000 frontal images of 126
individuals. There are 26 images of each individual, taken at

TABLE 3
Comparative recognition rates of SLRC and other recognition methods.

The results of the first four rows are cited from [6] under identical
experimental settings.

Algorithms Dictionary Size Accuracy
`2[6] 300×1300 94.39±1.35%
Nearest Subspace [35] 300×1300 90.24±2.16%
Random OMP [6] 300×1300 84.85±3.43%
Hash OMP [6] 300×1300 86.92±3.44%
CRC [7] 300×1300 93.76±0.92%
SRC [4] 300×1300 92.82±0.95%
LDA 300×1300 96.55±0.25%
ESRC [42] 300×2600 96.88±0.71%
LR+SI [43] 300×1300 96.98±0.81%
SDR-SLR [26] (41×30)×2600 98.15±0.54%
SLRC-`2 300×1400 97.25±0.64%
SLRC-`1 300×1400 98.31±0.44%

two different occasions [41]. The faces in AR contain variations
such as illumination change, expressions and facial disguises
(i.e. sun glasses or scarf). We randomly select 100 subjects
(50 male and 50 female) for our experiments, and the images
are cropped with dimension 165×120. For each subject, the
26 images are randomly permuted and then the first half is
taken for training and the rest for testing. In this way, we
have 1300 training images and 1300 test images. For statistical
stability, 10 different training and test set pairs are generated
by randomly permuting, and averaged accuracy and standard
deviation are reported. Except the SDR-SLR method that works
on the downsampled images, all tested methods are applied on
the 300 dimensional PCA space following the setting in [6].

While SRC achieves nearly perfect accuracy on the con-
trolled EYB database, it yields only an average accuracy of
92.82% that is notably worse than the 94.39% accuracy of basic
`2 approach [6]. As suggested by Wright et al.[44], SRC suffers
from the corrupted and occluded training images occlusion that
would break the sparsity assumption. In this situation, class-
specific concentration of coefficients is violated. For example,
the test images wearing sunglasses tend to induce large coding
coefficients on the subjects also with sunglasses. `2 regulariza-
tion based CRC performs slightly better than SRC. These results
are consistent with that found by Shi et al. [6]. Furthermore,
LDA baseline outperforms both SRC and CRC by a large mar-
gin, which shows that the collaborative representations cannot
fully exploit the class separability residing in the uncontrolled
training images.

However, one should not deny the usefulness of the col-
laborative representation solely based on the inferiority of
the training image dictionary. We find that the discrimination
power of coding coefficients relies heavily on the suitable choice
of dictionary bases. Specifically, Table 3 fairly compares SRC,
Extended SRC (ESRC) [42], Low-rank recovery with structure
incoherence (LR+SI) [43], SLRC-`2 and SLRC-`1 in the 300
dimensional PCA space. By simply re-construct the dictionary
by the class centroids based decomposition, the SLRC-`2 dra-
matically boosts the recognition accuracy to about 97%. The
ESRC method, which appends an intra-class dictionary to the
training samples, also increases the accuracy to about 97%, but
using a much larger dictionary of 2600 bases. When imposed to
superposed representation, SLRC-`1 outperforms SLRC-`2 by a
margin nearly two times standard deviation. Clearly, sparsity
constraint is useful in selecting the intra-class variation bases of
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Fig. 4. The recognition performance as the dimension of the intermedi-
ate PCA subspace increases on the AR dataset.

Fig. 5. Some sample images from the FRGC 2.0 database

superposed representation.
The recently proposed SDR-SLR method also achieves sim-

ilar accuracy to SLRC, in which the supervised low-rank dic-
tionary learning is effective to separate the intra-class variation.
Note that the centroids based dictionary of SLRC is parameter-
free and very efficiently to construct, and the size of dictionary
for classification is similar to collaborative representation. In
comparison to SDR-SLR, SLRC provides a more simple and
efficient solution to the contaminative training set. Its supe-
rior accuracy indicates that class centroid indeed provides a
stabilized prototype by feature averaging, and the separated
contaminative variation can be shared across classes.

Inspired by the previous finding that a good choice
of retained PCA greatly improves the LDA performance
[13][45][14], we investigate how the PCA dimension affects
the recognition performance of collaborative representation (on
the first out of the ten training/test partitions). Fig. 4 confirms
that, on this AR dataset with relatively large sample size and
controlled variations, the performance of the classifier does
not depend so much on the dimension of the intermediate
PCA subspace. In this experiment, we can safely select all
dimensions of this subspace. Moreover, SLRC displays a steady
improvement on the SRC/CRC and LDA in all dimensionality,
clearly suggesting that the proposed superposed representation suc-
cessfully overlays the advantages of the stability of the collaborative
representation, and the discrimination ability of the LDA (by the
decomposed representation).

4.4 Recognition with Small Uncontrolled Training Set

The FRGC version 2.0 is a large-scale face database established
under uncontrolled indoor and outdoor settings [46]. We used a
subset (316 subjects with no less than ten samples, 7,318 images
in total) of the query face dataset, which has large lighting,
accessory (e.g. glasses), expression variations and image blur,

TABLE 4
The face recognition rates (%) of competing methods on the FRGC 2.0

database with N training samples per person

Algorithms N = 3 N = 4 N = 5
SRC [4] 80.4±0.6 87.0±0.6 87.7±0.4
CRC [7] 82.6±0.6 87.4±0.6 89.7±0.3
LDA 79.0±0.8 87.0±0.7 90.2±0.7
NSC [35] 54.7±0.7 63.0±0.6 69.3±0.6
SVM [34] 57.1±0.7 66.2±0.7 72.9±0.7
DKSVD [23] 72.2±0.6 77.2±0.7 79.7±0.7
LCKSVD [22] 75.7±0.6 78.1±0.5 79.8±0.8
DLSI [24] 86.7±0.6 91.4±0.5 93.5±0.3
COPAR [21] 81.3±0.6 86.9±0.6 89.5±0.6
JDL [20] 83.0±0.7 88.2±0.5 91.2±0.5
SDR-SLR [26] 89.5±0.8 93.1±0.4 94.2±0.4
FDDL [25] 89.0±0.8 92.9±0.3 95.1±0.3
SLRC-`2 85.0±0.6 91.1±0.5 92.8±0.3
SLRC-`1 90.0±0.7 93.6±0.6 95.2±0.4

etc. We randomly chose 3-5 samples per subject as the training
set, and used the remaining images for testing. The aligned im-
ages are downsampled to 42×32 and the experiments were run
10 times to calculate the mean and standard deviation. Some
downsampled images are shown in Fig. 5. We compare the pro-
posed SLRC with seven latest dictionary learning based meth-
ods including joint dictionary learning (JDL) [20], dictionary
learning with commonality and particularity (COPAR) [21],
label consistent KSVD (LCKSVD) [22], discriminative KSVD
(DKSVD) [23], dictionary learning with structure incoherence
(DLSI) [24], Fisher discrimination dictionary learning (FDDL)
[25], sparse- and dense-hybrid representation framework with
supervised low-rank dictionary (SDR-SLR) [26]. Except the
SDR-SLR method that works on the downsampled images, all
tested methods are applied on the 300 dimensional PCA space
following the setting in [25].

The comparative results are listed in Table 4. SLRC-`1 per-
forms better than SLRC-`2 in all the three cases. This suggests
the sparsity constraint is crucial for the superposed linear
representation. It can be seen that in most cases SLRC-`1 can
have visible improvement over all the other methods. SLRC
outperforms SRC by about 8.6%, 6.6%, and 5.1% when there
are 3, 4, and 5 training images per person. This clearly shows
the effectiveness of the “naive” parameter-free decomposition
of the centroid and intra-class variation in SLRC, especially on
the small sample size cases. By this simple decomposition, SLR-
C also outperforms seven state-of-the-art dictionary learning
methods with sophisticated settings.

The COPAR method [21] also considers the common and
particular components in the dictionary, but the learned dictio-
nary cannot extract the accurate inter/intra-class components
as indicated by its inferior accuracy. The SDR-SLR method [26],
which develops a class-wise supervised low rank decompo-
sition to learn the intra-class dictionary, achieves comparable
accuracy that is better than SLRC-`2 but slightly worse than
SLRC-`1. This may be because that the dense coefficients of
SDR-SLR are not optimal for a dictionary of uncontrolled over-
complete intra-class variation bases. Compared with these so-
phisticated dictionary learning methods, SLRC indeed provides
a simple but powerful solution to generalize the collaborative
representation to the uncontrolled face recognition problem.

As in the AR experiment, we investigate how the choice
of retained PCA dimension affects the recognition performance
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Fig. 6. The recognition performance as the dimension of the intermediate PCA subspace increases on the FRGC dataset using (a)3 (b)4 (c)5
training samples per person.

(a)

(b)

Fig. 7. (a) The cropped images of some gallery images and correspond-
ing probe images in the FERET database. (b) Example images of the
differences to the class centroid computed from the FRGC version 2
database.

(on the first out of the ten training/test partitions). Different
from the observation on AR dataset, Fig. 6 shows that LDA
achieves comparable performance with SRC/CRC within the
200-400 dimension, but deteriorates dramatically as the dimen-
sionality becomes higher. This observation on curse of dimen-
sionality is consistent with previous studies [14] on the small
size dataset. This is because the trivial components are enlarged
by the whitening process of LDA, and these components tend to
be noisy when the training samples are insufficient. In contrast,
even on this small size dataset with uncontrolled variations,
the four collaborative representation methods achieve steady
accuracy across varying retained PCA dimensions. Their ac-
curacies steadily increase when the dimension is larger than
300. Identical to the results on the AR database, SLRC inherits
the stability of CR and displays a steady improvement on the
SRC/CRC and LDA in all dimensionality.

4.5 Recognition with Single Sample Per Person

The final experiment aims to evaluate the applicability of SLRC
with only a single training sample per person. The experiment
follows the standard data partitions of the FERET database [47].
The images are first normalized by a similarity transformation
that sets the centers of the eyes at the settled coordinates.
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Fig. 8. The recognition rates of SLRC with `1-regularization (plotted by
thick symbols) and `2-regularization (plotted by the thin symbols) as a
function of the value of λ.

Fig. 7(a) shows some cropped images which are used in our
experiments. Note that the images of FERET database contain
complex intra-class variability, since they are acquired in mul-
tiple sessions during several years. As there is only a single
sample per gallery class, we construct the intra-class variation
matrix from the standard training image set of the FRGC
Version 2 database [46], which contains 12,766 frontal images
of 222 people taken in the uncontrolled conditions. Fig. 7(b)
shows some intra-class differences computed by (13) from this
image set. Note that the collection of the FRGC database is
totally independent from the FERET database. Hence, in this
experiment, the variation dictionary is required to universal-
ly represent the complex facial variations under uncontrolled
conditions.

As the performance of SLRC increases stably with higher the
PCA dimension, we select the PCA dimension as high as 1000,
and investigate the regularization effects on the uncontrolled
and over-complete variation dictionary. Specifically, we first test
the performance of the SLRC-`2 by increasing the parameter
λ from 0.000001 to 100, as shown in Fig. 8. When the value
of λ is relatively large in the range of [0.1, 10], `2-norm
regularization obtains its optimal performance. However, the
optimal performance of `2-norm regularization is significantly
lower than that of SLRC-`1 tested with limited number of
λ = {0.0005, 0.005, 0.01}. The superiority of SLRC-`1 seems
more apparent on the dup1 and dup2 set. A large margin over
10% accuracy is observed on dup1 set when comparing SLRC-
`1 with SLRC-`2. This implies that sparse coefficients indeed
play a crucial role in face recognition given an uncontrolled
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TABLE 5
Comparative recognition rates of SRC and SLRC on FERET Database

using Single Training Sample per Person.

Features Methods fb fc dup1 dup2

Intensity SRC 85.2 76.3 63.9 57.3
SLRC-`1 87.9 91.8 68.6 67.5

Gabor [13] SRC 93.0 97.4 73.0 78.6
SLRC-`1 96.7 99.5 80.7 85.5

LBP [48] SRC 96.9 93.8 87.7 85.0
SLRC-`1 98.0 99.5 90.6 90.2

PCANet [49] SRC 98.8 99.0 94.9 92.3
SLRC-`1 99.4 100.0 96.3 95.7

and over-complete dictionary.
For comprehensive results, we also extract the Gabor fea-

ture, LBP feature and PCANet [49] feature for classification
besides the pixel intensity. For each feature, we test the recog-
nition performance in the reduced PCA dimension of 1000. In
total, there are 16 test cases (4 probes×4 features) and Table 5
lists the comparative performance between SRC and SLRC in
all cases. Although the variation dictionary is constructed from
the FRGC database, SLRC improves the recognition rates on the
FERET database in all the 16 test cases, indicating that the intra-
class variability of face is sharable even when the generic data
are collected from different conditions and camera set-ups. Our
results also suggest that the superposed linear representation
model is feasible for various feature representations, and thus
it can be integrated with more informative features to address
uncontrolled face recognition problem. When applied on the
PCANet feature, SLRC achieves state-of-the-art performance
on FERET database with a single training sample per person.
The improvement is visible on the dup1 and dup2 probe sets,
which indicates the sparse coding can play an important role
on selecting bases to represent the real-world age variation.

5 CONCLUSIONS

The experiments suggest a number of conclusions:

1. The class superability of the controlled face dataset,
such as Extended Yale B database, is sufficiently large.
Both the traditional baseline algorithms that character-
ize the quantity of Tr{S†TSB}, and the collaborative
representation methods, such as SSC and SRC, can
achieve excellent clustering and classification perfor-
mance. The research should pay more attention to the
general problem with uncontrolled and undersampled
datasets.

2. By the “naive” centroid based dictionary decomposi-
tion, the new SLRC successfully overlays the advan-
tages of the robustness of the collaborative representa-
tion, and the discrimination ability of the LDA (by the
decomposed representation).

3. Although the class centroid is generally an approximat-
ed representation, in practice SLRC competes well with
more sophisticated dictionary learning techniques in
our experiments. Moreover, SLRC does not substantial-
ly increase computation and storage compared to basic
collaborative representation methods such as SRC and
CRC.

4. By constructing intra-class dictionary from the generic
dataset, SLRC is effective to address the recognition
problem with single sample per person. Thanks to its
simple representation assumption, it is also applicable

to various feature descriptors besides pixel intensity, by
which state-of-the-art face recognition performance can
be achieved.

5. When the variation dictionary is overcomplete, sparse
coefficient regularizer plays a crucial role on recogni-
tion: SLRC with `1-sparsity lasso solution outperforms
`2 ridge regression solution by a large margin for face
recognition.
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