

 MEAP Edition
 Manning Early Access Program

 Copyright 2010 Manning Publications

 For more information on this and other Manning titles go to
 www.manning.com

http://www.manning.com/

TABLE OF CONTENTS

PART1 Hadoop - A Distributed Programming Framework

CHAPTER 1 Introducing Hadoop

CHAPTER 2 Starting Hadoop

CHAPTER 3 Components of Hadoop

PART 2 - Hadoop in Action

CHAPTER 4 Writing basic MapReduce programs

CHAPTER 5 Advanced MapReduce

CHAPTER 6 Programming practices

CHAPTER 7 Cookbook

CHAPTER 8 Managing Hadoop

PART 3 - Hadoop Gone Wild

CHAPTER 9 Running Hadoop in the cloud

CHAPTER 10 Programming with Pig

CHAPTER 11 Hive and the Hadoop herd

CHAPTER 12 Case studies

APPENDIX HDFS file commands

Part 1

Hadoop–A Distributed
Programming Framework

Part 1 of this book introduces the basics for understanding and using Hadoop.
We describe the hardware components that make up a Hadoop cluster, as well
as the installation and confi guration to create a working system. We cover the
MapReduce framework at a high level and get your fi rst MapReduce program up
and running.

1

3

Introducing Hadoop

This chapter covers
 The basics of writing a scalable, ■

distributed data-intensive program

 Understanding Hadoop and MapReduce■

 Writing and running a basic MapReduce program■

Today, we’re surrounded by data. People upload videos, take pictures on their
cell phones, text friends, update their Facebook status, leave comments around
the web, click on ads, and so forth. Machines, too, are generating and keeping
more and more data. You may even be reading this book as digital data on your
computer screen, and certainly your purchase of this book is recorded as data with
some retailer.1

The exponential growth of data fi rst presented challenges to cutting-edge
businesses such as Google, Yahoo, Amazon, and Microsoft. They needed to go
through terabytes and petabytes of data to fi gure out which websites were popular,
what books were in demand, and what kinds of ads appealed to people. Existing
tools were becoming inadequate to process such large data sets. Google was the fi rst
to publicize MapReduce—a system they had used to scale their data processing needs.

1 Of course, you’re reading a legitimate copy of this, right?

4 CHAPTER 1 Introducing Hadoop

This system aroused a lot of interest because many other businesses were facing similar
scaling challenges, and it wasn’t feasible for everyone to reinvent their own proprietary
tool. Doug Cutting saw an opportunity and led the charge to develop an open source
version of this MapReduce system called Hadoop . Soon after, Yahoo and others
rallied around to support this effort. Today, Hadoop is a core part of the computing
infrastructure for many web companies, such as Yahoo , Facebook , LinkedIn , and
Twitter . Many more traditional businesses, such as media and telecom, are beginning
to adopt this system too. Our case studies in chapter 12 will describe how companies
including New York Times , China Mobile , and IBM are using Hadoop .

Hadoop, and large-scale distributed data processing in general, is rapidly becoming
an important skill set for many programmers. An effective programmer, today, must
have knowledge of relational databases, networking, and security, all of which were
considered optional skills a couple decades ago. Similarly, basic understanding of
distributed data processing will soon become an essential part of every programmer’s
toolbox. Leading universities, such as Stanford and CMU, have already started
introducing Hadoop into their computer science curriculum. This book will help you,
the practicing programmer, get up to speed on Hadoop quickly and start using it to
process your data sets.

This chapter introduces Hadoop more formally, positioning it in terms of
distributed systems and data processing systems. It gives an overview of the MapReduce
programming model. A simple word counting example with existing tools highlights
the challenges around processing data at large scale. You’ll implement that example
using Hadoop to gain a deeper appreciation of Hadoop’s simplicity. We’ll also discuss
the history of Hadoop and some perspectives on the MapReduce paradigm. But let me
fi rst briefl y explain why I wrote this book and why it’s useful to you.

1.1 Why “Hadoop in Action”?
Speaking from experience, I fi rst found Hadoop to be tantalizing in its possibilities, yet
frustrating to progress beyond coding the basic examples. The documentation at the
offi cial Hadoop site is fairly comprehensive, but it isn’t always easy to fi nd straightfor-
ward answers to straightforward questions.

The purpose of writing the book is to address this problem. I won’t focus on the nitty-
gritty details. Instead I will provide the information that will allow you to quickly create
useful code, along with more advanced topics most often encountered in practice.

1.2 What is Hadoop ?
Formally speaking, Hadoop is an open source framework for writing and running dis-
tributed applications that process large amounts of data. Distributed computing is a
wide and varied fi eld, but the key distinctions of Hadoop are that it is

 Accessible■ —Hadoop runs on large clusters of commodity machines or on cloud
computing services such as Amazon’s Elastic Compute Cloud (EC2).

 What is Hadoop? 5

Hadoop cluster

Client Client Client

Figure 1.1 A Hadoop cluster has many parallel machines that store and process large data
sets. Client computers send jobs into this computer cloud and obtain results.

 ■ Robust—Because it is intended to run on commodity hardware, Hadoop is archi-
tected with the assumption of frequent hardware malfunctions. It can gracefully
handle most such failures.

 Scalable■ —Hadoop scales linearly to handle larger data by adding more nodes to
the cluster.

 Simple■ —Hadoop allows users to quickly write effi cient parallel code.

Hadoop’s accessibility and simplicity give it an edge over writing and running large
distributed programs. Even college students can quickly and cheaply create their own
Hadoop cluster . On the other hand, its robustness and scalability make it suitable for
even the most demanding jobs at Yahoo and Facebook. These features make Hadoop
popular in both academia and industry.

Figure 1.1 illustrates how one interacts with a Hadoop cluster. As you can see, a
Hadoop cluster is a set of commodity machines networked together in one location.2
Data storage and processing all occur within this “cloud” of machines . Different users
can submit computing “jobs” to Hadoop from individual clients, which can be their
own desktop machines in remote locations from the Hadoop cluster.

Not all distributed systems are set up as shown in fi gure 1.1. A brief introduction to
other distributed systems will better showcase the design philosophy behind Hadoop.

2 While not strictly necessary, machines in a Hadoop cluster are usually relatively homogeneous x86 Linux
boxes. And they’re almost always located in the same data center, often in the same set of racks.

6 CHAPTER 1 Introducing Hadoop

1.3 Understanding distributed systems and Hadoop
Moore’s law suited us well for the past decades, but building bigger and bigger servers
is no longer necessarily the best solution to large-scale problems. An alternative that
has gained popularity is to tie together many low-end/commodity machines together
as a single functional distributed system .

To understand the popularity of distributed systems (scale-out) vis-à-vis huge
monolithic servers (scale-up), consider the price performance of current I/O
technology. A high-end machine with four I/O channels each having a throughput of
100 MB/sec will require three hours to read a 4 TB data set! With Hadoop, this same
data set will be divided into smaller (typically 64 MB) blocks that are spread among
many machines in the cluster via the Hadoop Distributed File System (HDFS). With
a modest degree of replication, the cluster machines can read the data set in parallel
and provide a much higher throughput. And such a cluster of commodity machines
turns out to be cheaper than one high-end server!

The preceding explanation showcases the effi cacy of Hadoop relative to monolithic
systems. Now let’s compare Hadoop to other architectures for distributed systems.
SETI@home , where screensavers around the globe assist in the search for extraterrestrial
life, represents one well-known approach. In SETI@home, a central server stores radio
signals from space and serves them out over the internet to client desktop machines
to look for anomalous signs. This approach moves the data to where computation will
take place (the desktop screensavers). After the computation, the resulting data is
moved back for storage.

Hadoop differs from schemes such as SETI@home in its philosophy toward data.
SETI@home requires repeat transmissions of data between clients and servers. This
works fi ne for computationally intensive work, but for data-intensive processing,
the size of data becomes too large to be moved around easily. Hadoop focuses on
moving code to data instead of vice versa. Referring to fi gure 1.1 again, we see both
the data and the computation exist within the Hadoop cluster. The clients send only
the MapReduce programs to be executed, and these programs are usually small (often
in kilobytes). More importantly, the move-code-to-data philosophy applies within the
Hadoop cluster itself. Data is broken up and distributed across the cluster, and as much
as possible, computation on a piece of data takes place on the same machine where
that piece of data resides.

This move-code-to-data philosophy makes sense for the type of data-intensive
processing Hadoop is designed for. The programs to run (“code”) are orders of
magnitude smaller than the data and are easier to move around. Also, it takes more
time to move data across a network than to apply the computation to it. Let the data
remain where it is and move the executable code to its hosting machine.

Now that you know how Hadoop fi ts into the design of distributed systems, let’s see
how it compares to data processing systems, which usually means SQL databases.

 Comparing SQL databases and Hadoop 7

1.4 Comparing SQL databases and Hadoop
Given that Hadoop is a framework for processing data, what makes it better than standard
relational databases, the workhorse of data processing in most of today’s applications?
One reason is that SQL (structured query language) is by design targeted at structured
data. Many of Hadoop’s initial applications deal with unstructured data such as text.
From this perspective Hadoop provides a more general paradigm than SQL.

For working only with structured data, the comparison is more nuanced. In
principle, SQL and Hadoop can be complementary, as SQL is a query language which
can be implemented on top of Hadoop as the execution engine. 3 But in practice, SQL
databases tend to refer to a whole set of legacy technologies, with several dominant
vendors, optimized for a historical set of applications. Many of these existing commercial
databases are a mismatch to the requirements that Hadoop targets.

With that in mind, let’s make a more detailed comparison of Hadoop with typical
SQL databases on specifi c dimensions.

SCALE-OUT INSTEAD OF SCALE-UP

Scaling commercial relational databases is expensive. Their design is more friendly
to scaling up. To run a bigger database you need to buy a bigger machine. In fact,
it’s not unusual to see server vendors market their expensive high-end machines as
“database-class servers.” Unfortunately, at some point there won’t be a big enough
machine available for the larger data sets. More importantly, the high-end machines
are not cost effective for many applications. For example, a machine with four times
the power of a standard PC costs a lot more than putting four such PCs in a cluster.
Hadoop is designed to be a scale-out architecture operating on a cluster of com-
modity PC machines. Adding more resources means adding more machines to the
Hadoop cluster. Hadoop clusters with ten to hundreds of machines is standard. In
fact, other than for development purposes, there’s no reason to run Hadoop on a
single server.

KEY/VALUE PAIRS INSTEAD OF RELATIONAL TABLES

A fundamental tenet of relational databases is that data resides in tables having rela-
tional structure defi ned by a schema . Although the relational model has great formal
properties, many modern applications deal with data types that don’t fi t well into this
model. Text documents, images, and XML fi les are popular examples. Also, large data
sets are often unstructured or semistructured. Hadoop uses key/value pairs as its ba-
sic data unit, which is fl exible enough to work with the less-structured data types. In
Hadoop, data can originate in any form, but it eventually transforms into (key/value)
pairs for the processing functions to work on.

FUNCTIONAL PROGRAMMING (MAPREDUCE) INSTEAD OF DECLARATIVE QUERIES (SQL)

SQL is fundamentally a high-level declarative language. You query data by stating the result
you want and let the database engine fi gure out how to derive it. Under MapReduce you

3 This is in fact a hot area within the Hadoop community, and we’ll cover some of the leading projects in
chapter 11.

8 CHAPTER 1 Introducing Hadoop

specify the actual steps in processing the data, which is more analogous to an execution
plan for a SQL engine . Under SQL you have query statements; under MapReduce
you have scripts and codes. MapReduce allows you to process data in a more general
fashion than SQL queries. For example, you can build complex statistical models from
your data or reformat your image data. SQL is not well designed for such tasks.

On the other hand, when working with data that do fi t well into relational structures,
some people may fi nd MapReduce less natural to use. Those who are accustomed to
the SQL paradigm may fi nd it challenging to think in the MapReduce way. I hope the
exercises and the examples in this book will help make MapReduce programming
more intuitive. But note that many extensions are available to allow one to take
advantage of the scalability of Hadoop while programming in more familiar paradigms.
In fact, some enable you to write queries in a SQL-like language, and your query is
automatically compiled into MapReduce code for execution. We’ll cover some of these
tools in chapters 10 and 11.

OFFLINE BATCH PROCESSING INSTEAD OF ONLINE TRANSACTIONS

Hadoop is designed for offl ine processing and analysis of large-scale data. It doesn’t
work for random reading and writing of a few records, which is the type of load for
online transaction processing. In fact, as of this writing (and in the foreseeable future),
Hadoop is best used as a write-once , read-many-times type of data store. In this aspect
it’s similar to data warehouses in the SQL world.

You have seen how Hadoop relates to distributed systems and SQL databases at a
high level. Let’s learn how to program in it. For that, we need to understand Hadoop’s
MapReduce paradigm.

1.5 Understanding MapReduce
You’re probably aware of data processing models such as pipelines and message
queues . These models provide specifi c capabilities in developing different aspects of
data processing applications. The most familiar pipelines are the Unix pipes . Pipelines
can help the reuse of processing primitives; simple chaining of existing modules cre-
ates new ones. Message queues can help the synchronization of processing primitives .
The programmer writes her data processing task as processing primitives in the form
of either a producer or a consumer. The timing of their execution is managed by
the system.

Similarly, MapReduce is also a data processing model . Its greatest advantage is the
easy scaling of data processing over multiple computing nodes. Under the MapReduce
model, the data processing primitives are called mappers and reducers . Decomposing a
data processing application into mappers and reducers is sometimes nontrivial. But,
once you write an application in the MapReduce form, scaling the application to run
over hundreds, thousands, or even tens of thousands of machines in a cluster is merely
a confi guration change. This simple scalability is what has attracted many programmers
to the MapReduce model.

 Understanding MapReduce 9

1.5.1 Scaling a simple program manually

Before going through a formal treatment of MapReduce, let’s go through an exercise
of scaling a simple program to process a large data set. You’ll see the challenges of
scaling a data processing program and will better appreciate the benefi ts of using a
framework such as MapReduce to handle the tedious
chores for you.

Our exercise is to count the number of times each word
occurs in a set of documents. In this example, we have a
set of documents having only one document with only one
sentence:

Do as I say, not as I do.

We derive the word counts shown to the right.
We’ll call this particular exercise word counting . When

the set of documents is small, a straightforward program
will do the job. Let’s write one here in pseudo-code :

defi ne wordCount as Multiset;
for each document in documentSet {
 T = tokenize(document);
 for each token in T {
 wordCount[token]++;
 }
}
display(wordCount);

The program loops through all the documents. For each document, the words are
extracted one by one using a tokenization process. For each word, its corresponding
entry in a multiset called wordCount is incremented by one. At the end, a display()
function prints out all the entries in wordCount.

Many ways to say MapReduce
Even though much has been written about MapReduce, one does not fi nd the name
itself written the same everywhere. The original Google paper and the Wikipedia
entry use the CamelCase version MapReduce. However, Google itself has used Map
Reduce in some pages on its website (for example, http://research.google.com/
roundtable/MR.html). At the offi cial Hadoop documentation site, one can fi nd links
pointing to a Map-Reduce Tutorial. Clicking on the link brings one to a Hadoop
Map/Reduce Tutorial (http://hadoop.apache.org/core/docs/current/mapred_
tutorial.html) explaining the Map/Reduce framework. Writing variations also exist
for the different Hadoop components such as NameNode (name node, name-
node, and namenode), DataNode, JobTracker, and TaskTracker. For the sake of
consistency, we’ll go with CamelCase for all those terms in this book. (That is, we will
use MapReduce, NameNode, DataNode, JobTracker, and TaskTracker.)

Word Count

as 2

do 2

i 2

not 1

say 1

10 CHAPTER 1 Introducing Hadoop

NOTE A multiset is a set where each element also has a count. The word count
we’re trying to generate is a canonical example of a multiset. In practice, it’s
usually implemented as a hash table .

This program works fi ne until the set of documents you want to process becomes large.
For example, you want to build a spam fi lter to know the words frequently used in the
millions of spam emails you’ve received. Looping through all the documents using a
single computer will be extremely time consuming. You speed it up by rewriting the
program so that it distributes the work over several machines. Each machine will pro-
cess a distinct fraction of the documents. When all the machines have completed this,
a second phase of processing will combine the result of all the machines. The pseudo-
code for the fi rst phase, to be distributed over many machines, is

defi ne wordCount as Multiset;
for each document in documentSubset {
 T = tokenize(document);
 for each token in T {
 wordCount[token]++;
 }
}
sendToSecondPhase(wordCount);

And the pseudo-code for the second phase is

defi ne totalWordCount as Multiset;
for each wordCount received from fi rstPhase {
 multisetAdd (totalWordCount, wordCount);
}

That wasn’t too hard, right? But a few details may prevent it from working as expected.
First of all, we ignore the performance requirement of reading in the documents. If
the documents are all stored in one central storage server, then the bottleneck is in
the bandwidth of that server. Having more machines for processing only helps up to a
certain point—until the storage server can’t keep up. You’ll also need to split up the
documents among the set of processing machines such that each machine will process
only those documents that are stored in it. This will remove the bottleneck of a central
storage server. This reiterates the point made earlier about storage and processing hav-
ing to be tightly coupled in data-intensive distributed applications.

Another fl aw with the program is that wordCount (and totalWordCount) are stored
in memory. When processing large document sets, the number of unique words can
exceed the RAM storage of a machine. The English language has about one million
words, a size that fi ts comfortably into an iPod, but our word counting program will deal
with many unique words not found in any standard English dictionary. For example,
we must deal with unique names such as Hadoop. We have to count misspellings even
if they are not real words (for example, exampel), and we count all different forms
of a word separately (for example, eat, ate, eaten, and eating). Even if the number of
unique words in the document set is manageable in memory, a slight change in the
problem defi nition can explode the space complexity. For example, instead of words

in documents, we may want to count IP addresses in a log fi le, or the frequency of
bigrams. In the case of the latter, we’ll work with a multiset with billions of entries,
which exceeds the RAM storage of most commodity computers.

NOTE A bigram is a pair of consecutive words. The sentence “Do as I say, not
as I do” can be broken into the following bigrams: Do as, as I, I say, say not, not
as, as I, I do. Analogously, trigrams are groups of three consecutive words. Both
bigrams and trigrams are important in natural language processing .

wordCount may not fi t in memory; we’ll have to rewrite our program to store this hash
table on disk. This means we’ll implement a disk-based hash table, which involves a
substantial amount of coding.

Furthermore, remember that phase two has only one machine, which will process
wordCount sent from all the machines in phase one. Processing one wordCount is
itself quite unwieldy. After we have added enough machines to phase one processing,
the single machine in phase two will become the bottleneck. The obvious question
is, can we rewrite phase two in a distributed fashion so that it can scale by adding
more machines?

The answer is, yes. To make phase two work in a distributed fashion, you must somehow
divide its work among multiple machines such that they can run independently. You
need to partition wordCount after phase one such that each machine in phase two only
has to handle one partition. In one example, let’s say we have 26 machines for phase
two. We assign each machine to only handle wordCount for words beginning with a
particular letter in the alphabet. For example, machine A in phase two will only handle
word counting for words beginning with the letter a. To enable this partitioning in
phase two, we need a slight modifi cation in phase one. Instead of a single disk-based
hash table for wordCount, we will need 26 of them: wordCount-a, wordCount-b,
and so on. Each one counts words starting with a particular letter. After phase one,
wordCount-a from each of the phase one machines will be sent to machine A of phase
two, all the wordCount-b’s will be sent to machine B, and so on. Each machine in
phase one will shuffl e its results among the machines in phase two.

Looking back, this word counting program is getting complicated. To make it work
across a cluster of distributed machines, we fi nd that we need to add a number of
functionalities:

 Store fi les over many processing machines (of phase one).■

 Write a disk-based hash table permitting processing without being limited by ■

RAM capacity.
 Partition the intermediate data■ (that is, wordCount) from phase one.
 Shuffl e the partitions to the appropriate machines in phase two.■

This is a lot of work for something as simple as word counting, and we haven’t even
touched upon issues like fault tolerance. (What if a machine fails in the middle of its
task?) This is the reason why you would want a framework like Hadoop. When you

 Understanding MapReduce 11

12 CHAPTER 1 Introducing Hadoop

write your application in the MapReduce model, Hadoop will take care of all that
scalability “plumbing” for you.

1.5.2 Scaling the same program in MapReduce

MapReduce programs are executed in two main phases, called mapping and reducing .
Each phase is defi ned by a data processing function, and these functions are called
mapper and reducer, respectively. In the mapping phase, MapReduce takes the input
data and feeds each data element to the mapper. In the reducing phase, the reducer
processes all the outputs from the mapper and arrives at a fi nal result.

In simple terms, the mapper is meant to fi lter and transform the input into something
that the reducer can aggregate over. You may see a striking similarity here with the two
phases we had to develop in scaling up word counting. The similarity is not accidental.
The MapReduce framework was designed after a lot of experience in writing scalable,
distributed programs. This two-phase design pattern was seen in scaling many programs,
and became the basis of the framework.

In scaling our distributed word counting program in the last section, we also had to
write the partitioning and shuffl ing functions. Partitioning and shuffl ing are common
design patterns that go along with mapping and reducing. Unlike mapping and
reducing, though, partitioning and shuffl ing are generic functionalities that are not too
dependent on the particular data processing application. The MapReduce framework
provides a default implementation
that works in most situations.

In order for mapping, reducing,
partitioning, and shuffl ing (and a
few others we haven’t mentioned)
to seamlessly work together, we need
to agree on a common structure for
the data being processed. It should
be fl exible and powerful enough to handle most of the targeted data processing
applications. MapReduce uses lists and (key/value) pairs as its main data primitives.
The keys and values are often integers or strings but can also be dummy values to
be ignored or complex object types. The map and reduce functions must obey the
following constraint on the types of keys and values.

In the MapReduce framework you write applications by specifying the mapper and
reducer. Let’s look at the complete data fl ow:

1 The input to your application must be structured as a list of (key/value) pairs ,
list(<k1, v1>). This input format may seem open-ended but is often quite
simple in practice. The input format for processing multiple fi les is usually
list(<String fi lename, String fi le_content>). The input format for
processing one large fi le, such as a log fi le, is list(<Integer line_number,
String log_event>).

Input Output

map <k1, v1> list(<k2, v2>)

reduce <k2, list(v2)> list(<k3, v3>)

2 The list of (key/value) pairs is broken up and each individual (key/value) pair,
<k1, v1>, is processed by calling the map function of the mapper. In practice,
the key k1 is often ignored by the mapper. The mapper transforms each <k1,
v1> pair into a list of <k2, v2> pairs. The details of this transformation largely
determine what the MapReduce program does. Note that the (key/value) pairs
are processed in arbitrary order. The transformation must be self-contained in
that its output is dependent only on one single (key/value) pair.
 For word counting, our mapper takes <String fi lename, String fi le_
content> and promptly ignores fi lename. It can output a list of <String
word, Integer count> but can be even simpler. As we know the counts will
be aggregated in a later stage, we can output a list of <String word, Integer
1> with repeated entries and let the complete aggregation be done later. That
is, in the output list we can have the (key/value) pair <”foo”, 3> once or we
can have the pair <”foo”, 1> three times. As we’ll see, the latter approach is
much easier to program. The former approach may have some performance
benefi ts, but let’s leave such optimization alone until we have fully grasped the
MapReduce framework.

3 The output of all the mappers are (conceptually) aggregated into one giant
list of <k2, v2> pairs. All pairs sharing the same k2 are grouped together into
a new (key/value) pair, <k2, list(v2)>. The framework asks the reducer to
process each one of these aggregated (key/value) pairs individually. Following
our word counting example, the map output for one document may be a list
with pair <”foo”, 1> three times, and the map output for another document
may be a list with pair <”foo”, 1> twice. The aggregated pair the reducer
will see is <”foo”, list(1,1,1,1,1)>. In word counting, the output of our
reducer is <”foo”, 5>, which is the total number of times “foo” has occurred
in our document set. Each reducer works on a different word. The MapReduce
framework automatically collects all the <k3, v3> pairs and writes them to
fi le(s). Note that for the word counting example, the data types k2 and k3 are
the same and v2 and v3 are also the same. This will not always be the case for
other data processing applications.

Let’s rewrite the word counting program in MapReduce to see how all this fi ts together
Listing 1.1 shows the pseudo-code.

Listing 1.1 Pseudo-code for map and reduce functions for word counting

map(String fi lename, String document) {
 List<String> T = tokenize(document);
 for each token in T {
 emit ((String)token, (Integer) 1);
 }
}
reduce(String token, List<Integer> values) {
 Integer sum = 0;

 Understanding MapReduce 13

14 CHAPTER 1 Introducing Hadoop

 for each value in values {
 sum = sum + value;
 }
 emit ((String)token, (Integer) sum);
}

We’ve said before that the output of both map and reduce function are lists. As you
can see from the pseudo-code, in practice we use a special function in the framework
called emit() to generate the elements in the list one at a time. This emit() function
further relieves the programmer from managing a large list.

The code looks similar to what we have in section 1.5.1, except this time it will
actually work at scale. Hadoop makes building scalable distributed programs easy,
doesn’t it? Now let’s turn this pseudo-code into a Hadoop program.

1.6 Counting words with Hadoop—running your fi rst program
Now that you know what the Hadoop and MapReduce framework is about, let’s get it
running. In this chapter, we’ll run Hadoop only on a single machine, which can be
your desktop or laptop computer. The next chapter will show you how to run Hadoop
over a cluster of machines, which is what you’d want for practical deployment. Run-
ning Hadoop on a single machine is mainly useful for development work.

Linux is the offi cial development and production platform for Hadoop, although
Windows is a supported development platform as well. For a Windows box, you’ll need
to install cygwin (http://www-cygwin.com/) to enable shell and Unix scripts.

NOTE Many people have reported success in running Hadoop in development
mode on other variants of Unix, such as Solaris and Mac OS X . In fact,
MacBook Pro seems to be the laptop of choice among Hadoop developers, as
they’re ubiquitous in Hadoop conferences and user group meetings.

Running Hadoop requires Java (version 1.6 or higher). Mac users should get it from
Apple. You can download the latest JDK for other operating systems from Sun at
http://java.sun.com/javase/downloads/index.jsp. Install it and remember the root of
the Java installation, which we’ll need later.

To install Hadoop, fi rst get the latest stable release at http://hadoop.apache.org/
core/releases.html. After you unpack the distribution, edit the script conf/hadoop-
env.sh to set JAVA_HOME to the root of the Java installation you have remembered
from earlier. For example, in Mac OS X, you’ll replace this line

export JAVA_HOME=/usr/lib/j2sdk1.5-sun

with this line

export JAVA_HOME=/Library/Java/Home

You’ll be using the Hadoop script quite often. Let’s run it without any arguments to
see its usage documentation:

 Counting words with Hadoop—running your fi rst program 15

bin/hadoop

We get

Usage: hadoop [--confi g confdir] COMMAND
where COMMAND is one of:
 namenode -format format the DFS fi lesystem
 secondarynamenode run the DFS secondary namenode
 namenode run the DFS namenode
 datanode run a DFS datanode
 dfsadmin run a DFS admin client
 fsck run a DFS fi lesystem checking utility
 fs run a generic fi lesystem user client
 balancer run a cluster balancing utility
 jobtracker run the MapReduce job Tracker node
 pipes run a Pipes job
 tasktracker run a MapReduce task Tracker node
 job manipulate MapReduce jobs
 version print the version
 jar <jar> run a jar fi le
 distcp <srcurl> <desturl> copy fi le or directories recursively
 archive -archiveName NAME <src>* <dest> create a hadoop archive
 daemonlog get/set the log level for each daemon
 or
 CLASSNAME run the class named CLASSNAME
Most commands print help when invoked w/o parameters.

We’ll cover the various Hadoop commands in the course of this book. For our current
purpose, we only need to know that the command to run a (Java) Hadoop program is
bin/hadoop jar <jar>. As the command implies, Hadoop programs written in Java
are packaged in jar fi les for execution.

Fortunately for us, we don’t need to write a Hadoop program fi rst; the default
installation already has several sample programs we can use. The following command
shows what is available in the examples jar fi le:

bin/hadoop jar hadoop-*-examples.jar

You’ll see about a dozen example programs prepackaged with Hadoop, and one
of them is a word counting program called... wordcount! The important (inner)
classes of that program are shown in listing 1.2. We’ll see how this Java program
implements the word counting map and reduce functions we had in pseudo-code
in listing 1.1. We’ll modify this program to understand how to vary its behavior. For
now we’ll assume it works as expected and only follow the mechanics of executing a
Hadoop program.

Without specifying any arguments, executing wordcount will show its usage
information:

bin/hadoop jar hadoop-*-examples.jar wordcount

which shows the arguments list:

wordcount [-m <maps>] [-r <reduces>] <input> <output>

16 CHAPTER 1 Introducing Hadoop

The only parameters are an input directory (<input>) of text documents you want to
analyze and an output directory (<output>) where the program will dump its output.
To execute wordcount, we need to fi rst create an input directory:

mkdir input

and put some documents in it. You can add any text document to the directory. For
illustration, let’s put the text version of the 2002 State of the Union address, obtained
from http://www.gpoaccess.gov/sou/. We now analyze its word counts and see the
results:

bin/hadoop jar hadoop-*-examples.jar wordcount input output
more output/*

You’ll see a word count of every word used in the document, listed in alphabetical or-
der. This is not bad considering you have not written a single line of code yet! But, also
note a number of shortcomings in the included wordcount program. Tokenization
is based purely on whitespace characters and not punctuation marks, making States,
States., and States: separate words. The same is true for capitalization, where States and
states appear as separate words. Furthermore, we would like to leave out words that
show up in the document only once or twice.

Fortunately, the source code for wordcount is available and included in the
installation at src/examples/org/apache/hadoop/examples/WordCount.java. We
can modify it as per our requirements. Let’s fi rst set up a directory structure for our
playground and make a copy of the program.

mkdir playground
mkdir playground/src
mkdir playground/classes
cp src/examples/org/apache/hadoop/examples/WordCount.java

➥ playground/src/WordCount.java

Before we make changes to the program, let’s go through compiling and executing
this new copy in the Hadoop framework.

javac -classpath hadoop-*-core.jar -d playground/classes

➥ playground/src/WordCount.java
jar -cvf playground/wordcount.jar -C playground/classes/ .

You’ll have to remove the output directory each time you run this Hadoop command,
because it is created automatically.

bin/hadoop jar playground/wordcount.jar

➥ org.apache.hadoop.examples.WordCount input output

Look at the fi les in your output directory again. As we haven’t changed any program
code, the result should be the same as before. We’ve only compiled our own copy
rather than running the precompiled version.

Now we are ready to modify WordCount to add some extra features. Listing 1.2 is
a partial view of the WordCount.java program. Comments and supporting code are
stripped out.

Listing 1.2 WordCount.java

public class WordCount extends Confi gured implements Tool {

 public static class MapClass extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 private fi nal static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(LongWritable key, Text value,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {
 String line = value.toString();
 StringTokenizer itr = new StringTokenizer(line); q
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken()); w
 output.collect(word, one);
 }
 }
 }

 public static class Reduce extends MapReduceBase
 implements Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterator<IntWritable> values,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {
 int sum = 0;
 while (values.hasNext()) {
 sum += values.next().get();
 }
 output.collect(key, new IntWritable(sum)); e
 }
 }

 ...
}

The main functional distinction between WordCount.java and our MapReduce pseudo-
code is that in WordCount.java, map() processes one line of text at a time whereas our
pseudo-code processes a document at a time. This distinction may not even be apparent
from looking at WordCount.java as it’s Hadoop’s default confi guration.

The code in listing 1.2 is virtually identical to our pseudo-code in listing 1.1 though
the Java syntax makes it more verbose. The map and reduce functions are inside inner
classes of WordCount. You may notice we use special classes such as LongWritable ,
IntWritable , and Text instead of the more familiar Long, Integer, and String
classes of Java. Consider these implementation details for now. The new classes have
additional serialization capabilities needed by Hadoop’s internal.

The changes we want to make to the program are easy to spot. We see q that
WordCount uses Java’s StringTokenizer in its default setting, which tokenizes based
only on whitespaces. To ignore standard punctuation marks, we add them to the
StringTokenizer’s list of delimiter characters:

StringTokenizer itr = new StringTokenizer(line, “ \t\n\r\f,.:;?![]`”);

 Counting words with Hadoop—running your fi rst program 17

18 CHAPTER 1 Introducing Hadoop

When looping through the set of tokens, each token is extracted and cast into a Text
object w. (Again, in Hadoop, the special class Text is used in place of String.) We
want the word count to ignore capitalization, so we lowercase all the words before turn-
ing them into Text objects.

word.set(itr.nextToken().toLowerCase());

Finally, we want only words that appear more than four times. We modify e to collect
the word count into the output only if that condition is met. (This is Hadoop’s equiva-
lent of the emit() function in our pseudo-code.)

if (sum > 4) output.collect(key, new IntWritable(sum));

After making changes to those three lines, you can recompile the program and ex-
ecute it again. The results are shown in table 1.1.

Table 1.1 Words with a count higher than 4 in the 2002 State of the Union Address

11th (5) citizens (9) its (6) over (6) to (123)

a (69) congress (10) jobs (11) own (5) together (5)

about (5) corps (6) join (7) page (7) tonight (5)

act (7) country (10) know (6) people (12) training (5)

afghanistan (10) destruction (5) last (6) protect (5) united (6)

all (10) do (6) lives (6) regime (5) us (6)

allies (8) every (8) long (5) regimes (6) want (5)

also (5) evil (5) make (7) security (19) war (12)

America (33) for (27) many (5) september (5) was (11)

American (15) free (6) more (11) so (12) we (76)

americans (8) freedom (10) most (5) some (6) we’ve (5)

an (7) from (15) must (18) states (9) weapons (12)

and (210) good (13) my (13) tax (7) were (7)

are (17) great (8) nation (11) terror (13) while (5)

as (18) has (12) need (7) terrorist (12) who (18)

ask (5) have (32) never (7) terrorists (10) will (49)

at (16) health (5) new (13) than (6) with (22)

be (23) help (7) no (7) that (29) women (5)

been (8) home (5) not (15) the (184) work (7)

best (6) homeland (7) now (10) their (17) workers (5)

budget (7) hope (5) of (130) them (8) world (17)

but (7) i (29) on (32) these (18) would (5)

by (13) if (8) one (5) they (12) yet (8)

 History of Hadoop 19

Table 1.1 Words with a count higher than 4 in the 2002 State of the Union Address (Continued)

camps (8) in (79) opportunity (5) this (28) you (12)

can (7) is (44) or (8) thousands (5)

children (6) it (21) our (78) time (7)

We see that 128 words have a frequency count greater than 4. Many of these words
appear frequently in almost any English text. For example, there is a (69), and (210),
i (29), in (79), the (184) and many others. We also see words that summarize the issues
facing the United States at that time: terror (13), terrorist (12), terrorists (10), security
(19), weapons (12), destruction (5), afghanistan (10), freedom (10), jobs (11), budget (7),
and many others.

1.7 History of Hadoop
Hadoop started out as a subproject of Nutch , which in turn was a subproject of Apache
Lucene . Doug Cutting founded all three projects, and each project was a logical pro-
gression of the previous one.

Lucene is a full-featured text indexing and searching library. Given a text collection,
a developer can easily add search capability to the documents using the Lucene engine .
Desktop search, enterprise search, and many domain-specifi c search engines have been
built using Lucene. Nutch is the most ambitious extension of Lucene. It tries to build
a complete web search engine using Lucene as its core component. Nutch has parsers
for HTML, a web crawler, a link-graph database, and other extra components necessary
for a web search engine. Doug Cutting envisions Nutch to be an open democratic
alternative to the proprietary technologies in commercial offerings such as Google.

Besides having added components like a crawler and a parser, a web search engine
differs from a basic document search engine in terms of scale. Whereas Lucene is
targeted at indexing millions of documents, Nutch should be able to handle billions of
web pages without becoming exorbitantly expensive to operate. Nutch will have to run
on a distributed cluster of commodity hardware. The challenge for the Nutch team
is to address scalability issues in software. Nutch needs a layer to handle distributed
processing, redundancy, automatic failover, and load balancing. These challenges are
by no means trivial.

Around 2004, Google published two papers describing the Google File System (GFS)
and the MapReduce framework . Google claimed to use these two technologies for
scaling its own search system. Doug Cutting immediately saw the applicability of these
technologies to Nutch, and his team implemented the new framework and ported
Nutch to it. The new implementation immediately boosted Nutch’s scalability. It started
to handle several hundred million web pages and could run on clusters of dozens of
nodes. Doug realized that a dedicated project to fl esh out the two technologies was
needed to get to web scale, and Hadoop was born. Yahoo! hired Doug in January

20 CHAPTER 1 Introducing Hadoop

2006 to work with a dedicated team on improving Hadoop as an open source project.
Two years later, Hadoop achieved the status of an Apache Top Level Project . Later, on
February 19, 2008, Yahoo! announced that Hadoop running on a 10,000+ core Linux
cluster was its production system for indexing the Web (http://developer.yahoo.
net/blogs/hadoop/2008/02/yahoo-worlds-largest-production-hadoop.html).
Hadoop had truly hit web scale!

What’s up with the names?
When naming software projects, Doug Cutting seems to have been inspired by his
family. Lucene is his wife’s middle name, and her maternal grandmother’s fi rst name.
His son, as a toddler, used Nutch as the all-purpose word for meal and later named
a yellow stuffed elephant Hadoop. Doug said he “was looking for a name that wasn’t
already a web domain and wasn’t trademarked, so I tried various words that were in
my life but not used by anybody else. Kids are pretty good at making up words.”

1.8 Summary
Hadoop is a versatile tool that allows new users to access the power of distributed com-
puting. By using distributed storage and transferring code instead of data, Hadoop
avoids the costly transmission step when working with large data sets. Moreover, the
redundancy of data allows Hadoop to recover should a single node fail. You have seen
the ease of creating programs with Hadoop using the MapReduce framework. What
is equally important is what you didn’t have to do—worry about partitioning the data,
determining which nodes will perform which tasks, or handling communication be-
tween nodes. Hadoop handles this for you, leaving you free to focus on what’s most
important to you—your data and what you want to do with it.

In the next chapter we’ll go into further details about the internals of Hadoop and
setting up a working Hadoop cluster.

1.9 Resources
The offi cial Hadoop website is at http://hadoop.apache.org/.

The original papers on the Google File System and MapReduce are well worth
reading. Appreciate their underlying design and architecture:

 The Google File System■ —http://labs.google.com/papers/gfs.html
 MapReduce: Simplifi ed Data Processing on Large Clusters■ —http://labs.google.com/

papers/mapreduce.html

2

21

Starting Hadoop

This chapter covers
 The architectural components of Hadoop■

 Setting up Hadoop and its three operating modes: ■

standalone, pseudo-distributed, and fully distributed

 Web-based tools to monitor your Hadoop setup■

This chapter will serve as a roadmap to guide you through setting up Hadoop. If you
work in an environment where someone else sets up the Hadoop cluster for you,
you may want to skim through this chapter. You’ll want to understand enough to
set up your personal development machine, but you can skip through the details of
confi guring the communication and coordination of various nodes.

After discussing the physical components of Hadoop in section 2.1, we’ll progress
to setting up your cluster in sections 2.2. and 2.3. Section 2.3 will focus on the three
operational modes of Hadoop and how to set them up. You’ll read about web-based
tools that assist monitoring your cluster in section 2.5.

2.1 The building blocks of Hadoop
We’ve discussed the concepts of distributed storage and distributed computation
in the previous chapter. Now let’s see how Hadoop implements those ideas. On

22 CHAPTER 2 Starting Hadoop

a fully confi gured cluster, “running Hadoop” means running a set of daemons, or
resident programs, on the different servers in your network. These daemons have
specifi c roles; some exist only on one server, some exist across multiple servers. The
daemons include

 NameNode■

 DataNode■

 Secondary NameNode■

 JobTracker■

 TaskTracker■

We’ll discuss each one and its role within Hadoop.

2.1.1 NameNode

Let’s begin with arguably the most vital of the Hadoop daemons—the NameNode .
Hadoop employs a master/slave architecture for both distributed storage and distrib-
uted computation. The distributed storage system is called the Hadoop File System , or
HDFS. The NameNode is the master of HDFS that directs the slave DataNode daemons
to perform the low-level I/O tasks. The NameNode is the bookkeeper of HDFS; it
keeps track of how your fi les are broken down into fi le blocks, which nodes store those
blocks, and the overall health of the distributed fi lesystem.

The function of the NameNode is memory and I/O intensive. As such, the
server hosting the NameNode typically doesn’t store any user data or perform any
computations for a MapReduce program to lower the workload on the machine. This
means that the NameNode server doesn’t double as a DataNode or a TaskTracker.

There is unfortunately a negative aspect to the importance of the NameNode—it’s
a single point of failure of your Hadoop cluster. For any of the other daemons, if their
host nodes fail for software or hardware reasons, the Hadoop cluster will likely continue
to function smoothly or you can quickly restart it. Not so for the NameNode.

2.1.2 DataNode

Each slave machine in your cluster will host a DataNode daemon to perform the grunt
work of the distributed fi lesystem—reading and writing HDFS blocks to actual fi les on
the local fi lesystem. When you want to read or write a HDFS fi le, the fi le is broken into
blocks and the NameNode will tell your client which DataNode each block resides in.
Your client communicates directly with the DataNode daemons to process the local
fi les corresponding to the blocks. Furthermore, a DataNode may communicate with
other DataNodes to replicate its data blocks for redundancy.

Figure 2.1 illustrates the roles of the NameNode and DataNodes. In this fi gure, we
show two data fi les, one at /user/chuck/data1 and another at /user/james/data2. The
data1 fi le takes up three blocks, which we denote 1, 2, and 3, and the data2 fi le consists
of blocks 4 and 5. The content of the fi les are distributed among the DataNodes. In

 The building blocks of Hadoop 23

3

5 4

2

3

5

1

5 3

2

4 1

1 4

2

File metadata:
/user/chuck/data1 -> 1,2,3
/user/james/data2 -> 4,5

NameNode

DataNodes

Figure 2.1 NameNode /DataNode interaction in HDFS. The NameNode keeps
track of the fi le metadata—which fi les are in the system and how each fi le is
broken down into blocks. The DataNodes provide backup store of the blocks
and constantly report to the NameNode to keep the metadata current.

this illustration, each block has three replicas. For example, block 1 (used for data1) is
replicated over the three rightmost DataNodes. This ensures that if any one DataNode
crashes or becomes inaccessible over the network, you’ll still be able to read the fi les.

DataNodes are constantly reporting to the NameNode. Upon initialization, each of
the DataNodes informs the NameNode of the blocks it’s currently storing. After this
mapping is complete, the DataNodes continually poll the NameNode to provide
information regarding local changes as well as receive instructions to create, move, or
delete blocks from the local disk.

2.1.3 Secondary NameNode

The Secondary NameNode (SNN) is an assistant daemon for monitoring the state of the
cluster HDFS. Like the NameNode, each cluster has one SNN, and it typically resides
on its own machine as well. No other DataNode or TaskTracker daemons run on the
same server. The SNN differs from the NameNode in that this process doesn’t receive or
record any real-time changes to HDFS. Instead, it communicates with the NameNode to
take snapshots of the HDFS metadata at intervals defi ned by the cluster confi guration.

As mentioned earlier, the NameNode is a single point of failure for a Hadoop cluster,
and the SNN snapshots help minimize the downtime and loss of data. Nevertheless, a
NameNode failure requires human intervention to reconfi gure the cluster to use the
SNN as the primary NameNode. We’ll discuss the recovery process in chapter 8 when
we cover best practices for managing your cluster.

24 CHAPTER 2 Starting Hadoop

2.1.4 JobTracker

The JobTracker daemon is the liaison between your application and Hadoop. Once
you submit your code to your cluster, the JobTracker determines the execution plan
by determining which fi les to process, assigns nodes to different tasks, and monitors all
tasks as they’re running. Should a task fail, the JobTracker will automatically relaunch
the task, possibly on a different node, up to a predefi ned limit of retries.

There is only one JobTracker daemon per Hadoop cluster. It’s typically run on a
server as a master node of the cluster.

2.1.5 TaskTracker

As with the storage daemons, the computing daemons also follow a master/slave archi-
tecture: the JobTracker is the master overseeing the overall execution of a MapReduce
job and the TaskTrackers manage the execution of individual tasks on each slave node.
Figure 2.2 illustrates this interaction.

Each TaskTracker is responsible for executing the individual tasks that the JobTracker
assigns. Although there is a single TaskTracker per slave node, each TaskTracker can
spawn multiple JVMs to handle many map or reduce tasks in parallel.

One responsibility of the TaskTracker is to constantly communicate with the
JobTracker. If the JobTracker fails to receive a heartbeat from a TaskTracker within a
specifi ed amount of time, it will assume the TaskTracker has crashed and will resubmit
the corresponding tasks to other nodes in the cluster.

JobTracker

Client

TaskTracker

Reduce

Map

TaskTracker

Reduce

Map

TaskTracker

Reduce

Map

TaskTracker

Reduce

Map

Figure 2.2 JobTracker and TaskTracker interaction. After a client calls the
JobTracker to begin a data processing job, the JobTracker partitions the work
and assigns different map and reduce tasks to each TaskTracker in the cluster.

 Setting up SSH for a Hadoop cluster 25

JobTracker

NameNode

DataNode

TaskTracker

DataNode

TaskTracker

DataNode

TaskTracker

DataNode

TaskTracker

Secondary NameNode

Figure 2.3 Topology of a typical Hadoop cluster . It’s a master/slave architecture
in which the NameNode and JobTracker are masters and the DataNodes and
TaskTrackers are slaves.

Having covered each of the Hadoop daemons, we depict the topology of one typical
Hadoop cluster in fi gure 2.3.

This topology features a master node running the NameNode and JobTracker
daemons and a standalone node with the SNN in case the master node fails. For small
clusters, the SNN can reside on one of the slave nodes. On the other hand, for large
clusters, separate the NameNode and JobTracker on two machines. The slave machines
each host a DataNode and TaskTracker, for running tasks on the same node where
their data is stored.

We’ll work toward setting up a complete Hadoop cluster of this form by fi rst
establishing the master node and the control channels between nodes. If a Hadoop
cluster is already available to you, you can skip the next section on how to set up Secure
Shell (SSH) channels between nodes. You also have a couple of options to run Hadoop
using only a single machine, in what are known as standalone and pseudo-distributed
modes. They’re useful for development. Confi guring Hadoop to run in these two modes
or the standard cluster setup (fully distributed mode) is covered in section 2.3.

2.2 Setting up SSH for a Hadoop cluster
When setting up a Hadoop cluster , you’ll need to designate one specifi c node as the
master node. As shown in fi gure 2.3, this server will typically host the NameNode and

26 CHAPTER 2 Starting Hadoop

JobTracker daemons. It’ll also serve as the base station contacting and activating the
DataNode and TaskTracker daemons on all of the slave nodes. As such, we need to
defi ne a means for the master node to remotely access every node in your cluster.

Hadoop uses passphraseless SSH for this purpose. SSH utilizes standard public key
cryptography to create a pair of keys for user verifi cation—one public, one private.
The public key is stored locally on every node in the cluster, and the master node
sends the private key when attempting to access a remote machine. With both pieces
of information, the target machine can validate the login attempt.

2.2.1 Defi ne a common account

We’ve been speaking in general terms of one node accessing another; more precisely
this access is from a user account on one node to another user account on the target
machine. For Hadoop, the accounts should have the same username on all of the nodes
(we use hadoop-user in this book), and for security purpose we recommend it being
a user-level account. This account is only for managing your Hadoop cluster. Once the
cluster daemons are up and running, you’ll be able to run your actual MapReduce jobs
from other accounts.

2.2.2 Verify SSH installation

The fi rst step is to check whether SSH is installed on your nodes. We can easily do this
by use of the “which” UNIX command:

[hadoop-user@master]$ which ssh
/usr/bin/ssh

[hadoop-user@master]$ which sshd
/usr/bin/sshd

[hadoop-user@master]$ which ssh-keygen
/usr/bin/ssh-keygen

If you instead receive an error message such as this,

/usr/bin/which: no ssh in (/usr/bin:/bin:/usr/sbin...

install OpenSSH (www.openssh.com/) via a Linux package manager or by downloading
the source directly. (Better yet, have your system administrator do it for you.)

2.2.3 Generate SSH key pair

Having verifi ed that SSH is correctly installed on all nodes of the cluster, we use ssh-
keygen on the master node to generate an RSA key pair . Be certain to avoid entering
a passphrase, or you’ll have to manually enter that phrase every time the master node
attempts to access another node.

[hadoop-user@master]$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter fi le in which to save the key (/home/hadoop-user/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:

 Running Hadoop 27

Your identifi cation has been saved in /home/hadoop-user/.ssh/id_rsa.
Your public key has been saved in /home/hadoop-user/.ssh/id_rsa.pub.

After creating your key pair, your public key will be of the form

[hadoop-user@master]$ more /home/hadoop-user/.ssh/id_rsa.pub
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEA1WS3RG8LrZH4zL2/1oYgkV1OmVclQ2OO5vRi0Nd
K51Sy3wWpBVHx82F3x3ddoZQjBK3uvLMaDhXvncJG31JPfU7CTAfmtgINYv0kdUbDJq4TKG/fuO5q
J9CqHV71thN2M310gcJ0Y9YCN6grmsiWb2iMcXpy2pqg8UM3ZKApyIPx99O1vREWm+4moFTg
YwIl5be23ZCyxNjgZFWk5MRlT1p1TxB68jqNbPQtU7fIafS7Sasy7h4eyIy7cbLh8x0/V4/mcQsY
5dvReitNvFVte6onl8YdmnMpAh6nwCvog3UeWWJjVZTEBFkTZuV1i9HeYHxpm1wAzcnf7az78jT
IRQ== hadoop-user@master

and we next need to distribute this public key across your cluster.

2.2.4 Distribute public key and validate logins

Albeit a bit tedious, you’ll next need to copy the public key to every slave node as well
as the master node:

[hadoop-user@master]$ scp ~/.ssh/id_rsa.pub hadoop-user@target:~/master_key

Manually log in to the target node and set the master key as an authorized key (or
append to the list of authorized keys if you have others defi ned).

[hadoop-user@target]$ mkdir ~/.ssh
[hadoop-user@target]$ chmod 700 ~/.ssh
[hadoop-user@target]$ mv ~/master_key ~/.ssh/authorized_keys
[hadoop-user@target]$ chmod 600 ~/.ssh/authorized_keys

After generating the key, you can verify it’s correctly defi ned by attempting to log in to
the target node from the master:

[hadoop-user@master]$ ssh target
The authenticity of host ‘target (xxx.xxx.xxx.xxx)’ can’t be established.
RSA key fi ngerprint is 72:31:d8:1b:11:36:43:52:56:11:77:a4:ec:82:03:1d.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ‘target’ (RSA) to the list of known hosts.
Last login: Sun Jan 4 15:32:22 2009 from master

After confi rming the authenticity of a target node to the master node, you won’t be
prompted upon subsequent login attempts.

[hadoop-user@master]$ ssh target
Last login: Sun Jan 4 15:32:49 2009 from master

We’ve now set the groundwork for running Hadoop on your own cluster. Let’s discuss
the different Hadoop modes you might want to use for your projects.

2.3 Running Hadoop
We need to confi gure a few things before running Hadoop. Let’s take a closer look at
the Hadoop confi guration directory :

[hadoop-user@master]$ cd $HADOOP_HOME
[hadoop-user@master]$ ls -l conf/
total 100

28 CHAPTER 2 Starting Hadoop

-rw-rw-r-- 1 hadoop-user hadoop 2065 Dec 1 10:07 capacity-scheduler.xml
-rw-rw-r-- 1 hadoop-user hadoop 535 Dec 1 10:07 confi guration.xsl
-rw-rw-r-- 1 hadoop-user hadoop 49456 Dec 1 10:07 hadoop-default.xml
-rwxrwxr-x 1 hadoop-user hadoop 2314 Jan 8 17:01 hadoop-env.sh
-rw-rw-r-- 1 hadoop-user hadoop 2234 Jan 2 15:29 hadoop-site.xml
-rw-rw-r-- 1 hadoop-user hadoop 2815 Dec 1 10:07 log4j.properties
-rw-rw-r-- 1 hadoop-user hadoop 28 Jan 2 15:29 masters
-rw-rw-r-- 1 hadoop-user hadoop 84 Jan 2 15:29 slaves
-rw-rw-r-- 1 hadoop-user hadoop 401 Dec 1 10:07 sslinfo.xml.example

The fi rst thing you need to do is to specify the location of Java on all the nodes includ-
ing the master. In hadoop-env.sh defi ne the JAVA_HOME environment variable to point
to the Java installation directory. On our servers, we’ve it defi ned as

export JAVA_HOME=/usr/share/jdk

(If you followed the examples in chapter 1, you’ve already completed this step.)
The hadoop-env.sh fi le contains other variables for defi ning your Hadoop

environment, but JAVA_HOME is the only one requiring initial modifi cation. The default
settings on the other variables will probably work fi ne. As you become more familiar
with Hadoop you can later modify this fi le to suit your individual needs (logging
directory location, Java class path, and so on).

The majority of Hadoop settings are contained in XML confi guration fi les. Before
version 0.20, these XML fi les are hadoop-default.xml and hadoop-site.xml . As the
names imply, hadoop-default.xml contains the default Hadoop settings to be used
unless they are explicitly overridden in hadoop-site.xml. In practice you only deal with
hadoop-site.xml. In version 0.20 this fi le has been separated out into three XML fi les:
core-site.xml , hdfs-site.xml , and mapred-site.xml . This refactoring better aligns the
confi guration settings to the subsystem of Hadoop that they control. In the rest of this
chapter we’ll generally point out which of the three fi les used to adjust a confi guration
setting. If you use an earlier version of Hadoop, keep in mind that all such confi guration
settings are modifi ed in hadoop-site.xml.

In the following subsections we’ll provide further details about the different
operational modes of Hadoop and example confi guration fi les for each.

2.3.1 Local (standalone) mode

The standalone mode is the default mode for Hadoop. When you fi rst uncompress the
Hadoop source package, it’s ignorant of your hardware setup. Hadoop chooses to be
conservative and assumes a minimal confi guration. All three XML fi les (or hadoop-
site.xml before version 0.20) are empty under this default mode:

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”confi guration.xsl”?>

<!-- Put site-specifi c property overrides in this fi le. -->

<confi guration>

</confi guration>

 Running Hadoop 29

With empty confi guration fi les, Hadoop will run completely on the local machine.
Because there’s no need to communicate with other nodes, the standalone mode
doesn’t use HDFS, nor will it launch any of the Hadoop daemons. Its primary
use is for developing and debugging the application logic of a MapReduce pro-
gram without the additional complexity of interacting with the daemons. When
you ran the example MapReduce program in chapter 1, you were running it in
standalone mode.

2.3.2 Pseudo-distributed mode

The pseudo-distributed mode is running Hadoop in a “cluster of one” with all
daemons running on a single machine. This mode complements the standalone mode
for debugging your code, allowing you to examine memory usage, HDFS input/out-
put issues, and other daemon interactions. Listing 2.1 provides simple XML fi les to
confi gure a single server in this mode.

Listing 2.1 Example of the three confi guration fi les for pseudo-distributed mode

core-site.xml
<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”confi guration.xsl”?>

<!-- Put site-specifi c property overrides in this fi le. -->

<confi guration>

<property>
 <name>fs.default.name</name>
 <value>hdfs://localhost:9000</value>
 <description>The name of the default fi le system. A URI whose
 scheme and authority determine the FileSystem implementation.
 </description>
</property>

</confi guration>

mapred-site.xml
<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”confi guration.xsl”?>

<!-- Put site-specifi c property overrides in this fi le. -->

<confi guration>

<property>
 <name>mapred.job.tracker</name>
 <value>localhost:9001</value>
 <description>The host and port that the MapReduce job tracker runs
 at.</description>
</property>

</confi guration>

hdfs-site.xml
<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”confi guration.xsl”?>

30 CHAPTER 2 Starting Hadoop

<!-- Put site-specifi c property overrides in this fi le. -->

<confi guration>

<property>
 <name>dfs.replication</name>
 <value>1</value>
 <description>The actual number of replications can be specifi ed when the
 fi le is created.</description>
</property>

</confi guration>

In core-site.xml and mapred-site.xml we specify the hostname and port of the
NameNode and the JobTracker, respectively. In hdfs-site.xml we specify the default
replication factor for HDFS, which should only be one because we’re running on only
one node. We must also specify the location of the Secondary NameNode in the mas-
ters fi le and the slave nodes in the slaves fi le:

[hadoop-user@master]$ cat masters
localhost
[hadoop-user@master]$ cat slaves
localhost

While all the daemons are running on the same machine, they still communicate
with each other using the same SSH protocol as if they were distributed over a cluster.
Section 2.2 has a more detailed discussion of setting up the SSH channels, but for
single-node operation simply check to see if your machine already allows you to ssh
back to itself.

[hadoop-user@master]$ ssh localhost

If it does, then you’re good. Otherwise setting up takes two lines.

[hadoop-user@master]$ ssh-keygen -t dsa -P ‘’ -f ~/.ssh/id_dsa
[hadoop-user@master]$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

You are almost ready to start Hadoop. But fi rst you’ll need to format your HDFS by
using the command

[hadoop-user@master]$ bin/hadoop namenode -format

We can now launch the daemons by use of the start-all.sh script. The Java jps
command will list all daemons to verify the setup was successful.

[hadoop-user@master]$ bin/start-all.sh
[hadoop-user@master]$ jps
26893 Jps
26832 TaskTracker
26620 SecondaryNameNode
26333 NameNode
26484 DataNode
26703 JobTracker

 Running Hadoop 31

When you’ve fi nished with Hadoop you can shut down the Hadoop daemons by
the command

[hadoop-user@master]$ bin/stop-all.sh

Both standalone and pseudo-distributed modes are for development and debug-
ging purposes. An actual Hadoop cluster runs in the third mode, the fully distrib-
uted mode.

2.3.3 Fully distributed mode

After continually emphasizing the benefi ts of distributed storage and distributed
computation, it’s time for us to set up a full cluster. In the discussion below we’ll use
the following server names:

 master■ —The master node of the cluster and host of the NameNode and Job-
Tracker daemons

 backup■ —The server that hosts the Secondary NameNode daemon
 hadoop1, hadoop2, hadoop3, ...■ —The slave boxes of the cluster running both

DataNode and TaskTracker daemons

Using the preceding naming convention, listing 2.2 is a modifi ed version of the
pseudo-distributed confi guration fi les (listing 2.1) that can be used as a skeleton for
your cluster’s setup.

Listing 2.2 Example confi guration fi les for fully distributed mode

core-site.xml
<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”confi guration.xsl”?>

<!-- Put site-specifi c property overrides in this fi le. -->

<confi guration>

<property>
 <name>fs.default.name</name> q
 <value>hdfs://master:9000</value>
 <description>The name of the default fi le system. A URI whose
 scheme and authority determine the FileSystem implementation.
 </description>
</property>

</confi guration>

mapred-site.xml
<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”confi guration.xsl”?>

<!-- Put site-specifi c property overrides in this fi le. -->

<confi guration>

32 CHAPTER 2 Starting Hadoop

<property>
 <name>mapred.job.tracker</name> w
 <value>master:9001</value>
 <description>The host and port that the MapReduce job tracker runs
 at.</description>
</property>

</confi guration>

hdfs-site.xml
<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”confi guration.xsl”?>

<!-- Put site-specifi c property overrides in this fi le. -->

<confi guration>

<property>
 <name>dfs.replication</name> e
 <value>3</value>
 <description>The actual number of replications can be specifi ed when the
 fi le is created.</description>
</property>

</confi guration>

The key differences are

 We explicitly stated the hostname for location of the NameNode ■ q and
JobTracker w daemons.

 We increased the HDFS replication factor■ to take advantage of distributed
storage e. Recall that data is replicated across HDFS to increase availability and
reliability.

We also need to update the masters and slaves fi les to refl ect the locations of the other
daemons.

[hadoop-user@master]$ cat masters
backup
[hadoop-user@master]$ cat slaves
hadoop1
hadoop2
hadoop3
...

Once you have copied these fi les across all the nodes in your cluster, be sure to format
HDFS to prepare it for storage:

[hadoop-user@master]$ bin/hadoop namenode - format

Now you can start the Hadoop daemons:

[hadoop-user@master]$ bin/start-all.sh

and verify the nodes are running their assigned jobs.

[hadoop-user@master]$ jps
30879 JobTracker
30717 NameNode

 Running Hadoop 33

Switching between modes

A practice that I found useful when starting with Hadoop was to use symbolic links
to switch between Hadoop modes instead of constantly editing the XML fi les. To
do so, create a separate confi guration folder for each of the modes and place the
appropriate version of the XML fi les in the corresponding folder. Below is an example
directory listing:

[hadoop@hadoop_master hadoop]$ ls -l

total 4884

drwxr-xr-x 2 hadoop-user hadoop 4096 Nov 26 17:36 bin

-rw-rw-r- - 1 hadoop-user hadoop 57430 Nov 13 19:09 build.xml

drwxr-xr-x 4 hadoop-user hadoop 4096 Nov 13 19:14 c++

-rw-rw-r- - 1 hadoop-user hadoop 287046 Nov 13 19:09 CHANGES.txt

lrwxrwxrwx 1 hadoop-user hadoop 12 Jan 5 16:06 conf -> conf.cluster

drwxr-xr-x 2 hadoop-user hadoop 4096 Jan 8 17:05 conf.cluster

drwxr-xr-x 2 hadoop-user hadoop 4096 Jan 2 15:07 conf.pseudo

drwxr-xr-x 2 hadoop-user hadoop 4096 Dec 1 10:10 conf.standalone

drwxr-xr-x 12 hadoop-user hadoop 4096 Nov 13 19:09 contrib

drwxrwxr-x 5 hadoop-user hadoop 4096 Jan 2 09:28 datastore

drwxr-xr-x 6 hadoop-user hadoop 4096 Nov 26 17:36 docs

...

You can then switch between confi gurations by using the Linux ln command (e.g.,
ln -s conf.cluster conf). This practice is also useful to temporarily pull a node
out of the cluster to debug a MapReduce program in pseudo-distributed mode, but
be sure that the modes have different fi le locations for HDFS and stop all daemons
on the node before changing confi gurations.

30965 Jps
[hadoop-user@backup]$ jps
2099 Jps
1679 SecondaryNameNode
[hadoop-user@hadoop1]$ jps
7101 TaskTracker
7617 Jps
6988 DataNode

You have a functioning cluster!

Now that we’ve gone through all the settings to successfully get a Hadoop cluster up
and running, we’ll introduce the Web UI for basic monitoring of the cluster’s state.

34 CHAPTER 2 Starting Hadoop

2.4 Web-based cluster UI
Having covered the operational modes of Hadoop, we can now introduce the web
interfaces that Hadoop provides to monitor the health of your cluster. The browser in-
terface allows you to access information you desire much faster than digging through
logs and directories.

The NameNode hosts a general report on port 50070. It gives you an overview of
the state of your cluster’s HDFS. Figure 2.4 displays this report for a 2-node cluster
example. From this interface, you can browse through the fi lesystem, check the
status of each DataNode in your cluster, and peruse the Hadoop daemon logs to verify
your cluster is functioning correctly.

Hadoop provides a similar status overview of ongoing MapReduce jobs. Figure 2.5
depicts one hosted at port 50030 of the JobTracker.

Again, a wealth of information is available through this reporting interface. You
can access the status of ongoing MapReduce tasks as well as detailed reports about
completed jobs. The latter is of particular importance—these logs describe which
nodes performed which tasks and the time/resources required to complete each task.
Finally, the Hadoop confi guration for each job is also available, as shown in fi gure 2.6.
With all of this information you can streamline your MapReduce programs to better
utilize the resources of your cluster.

Figure 2.4 A snapshot of the HDFS web interface. From this interface you can browse through the
HDFS fi lesystem, determine the storage available on each individual node, and monitor the overall
health of your cluster.

 Web-based cluster UI 35

Figure 2.5 A snapshot of the MapReduce web interface. This tool allows you to monitor active
MapReduce jobs and access the logs of each map and reduce task. The logs of previously submitted
jobs are also available and are useful for debugging your programs.

Figure 2.6 Confi guration details for a specifi c MapReduce job. This information is potentially useful
when tuning parameters to optimize the performance of your programs.

36 CHAPTER 2 Starting Hadoop

Though the usefulness of these tools may not be immediately apparent at this stage,
they’ll come in handy as you begin to perform more sophisticated tasks on your
cluster. You’ll realize their importance as we study Hadoop more in depth.

2.5 Summary
In this chapter we’ve discussed the key nodes and the roles they play within the
Hadoop architecture. You’ve learned how to confi gure your cluster, as well as manage
some basic tools to monitor your cluster’s overall health.

Overall, this chapter focuses on one-time tasks. Once you’ve formatted the
NameNode for your cluster, you’ll (hopefully) never need to do so again. Likewise,
you shouldn’t keep altering the hadoop-site.xml confi guration fi le for your cluster
or assigning daemons to nodes. In the next chapter, you’ll learn about the aspects of
Hadoop you’ll be interacting with on a daily basis, such as managing fi les in HDFS.
With this knowledge you’ll be able to begin writing your own MapReduce applications
and realize the true potential that Hadoop has to offer.

3

37

Components of Hadoop

This chapter covers
 Managing fi les in HDFS■

 Analyzing components of the MapReduce framework■

 Reading and writing input and output data■

In the last chapter we looked at setting up and installing Hadoop. We covered what
the different nodes do and how to confi gure them to work with each other. Now
that you have Hadoop running, let’s look at the Hadoop framework from a pro-
grammer’s perspective. If the previous chapter is like teaching you how to connect
your turntable, your mixer, your amplifi er, and your speakers together, then this
chapter is about the techniques of mixing music.

We fi rst cover HDFS, where you’ll store data that your Hadoop applications will
process. Next we explain the MapReduce framework in more detail. In chapter 1
we’ve already seen a MapReduce program, but we discussed the logic only at the
conceptual level. In this chapter we get to know the Java classes and methods, as
well as the underlying processing steps. We also learn how to read and write using
different data formats.

38 CHAPTER 3 Components of Hadoop

3.1 Working with fi les in HDFS
HDFS is a fi lesystem designed for large-scale distributed data processing under frame-
works such as MapReduce. You can store a big data set of (say) 100 TB as a single fi le
in HDFS , something that would overwhelm most other fi lesystems. We discussed in
chapter 2 how to replicate the data for availability and distribute it over multiple ma-
chines to enable parallel processing. HDFS abstracts these details away and gives you
the illusion that you’re dealing with only a single fi le.

As HDFS isn’t a native Unix fi lesystem, standard Unix fi le tools, such as ls and cp
don’t work on it, 1 and neither do standard fi le read/write operations, such as fopen()
and fread(). On the other hand, Hadoop does provide a set of command line utilities
that work similarly to the Linux fi le commands. In the next section we’ll discuss those
Hadoop fi le shell commands, which are your primary interface with the HDFS system.
Section 3.1.2 covers Hadoop Java libraries for handling HDFS fi les programmatically.

NOTE A typical Hadoop workfl ow creates data fi les (such as log fi les) elsewhere
and copies them into HDFS using one of the command line utilities discussed
in the next section. Your MapReduce programs then process this data, but they
usually don’t read any HDFS fi les directly. Instead they rely on the MapReduce
framework to read and parse the HDFS fi les into individual records (key/
value pairs), which are the unit of data MapReduce programs do work on.
You rarely will have to programmatically read or write HDFS fi les except for
custom import and export of data.

3.1.1 Basic fi le commands

Hadoop fi le commands take the form of

hadoop fs -cmd <args>

where cmd is the specifi c fi le command and <args> is a variable number of arguments.
The command cmd is usually named after the corresponding Unix equivalent. For
example, the command for listing fi les is 2

hadoop fs –ls

Let’s look at the most common fi le management tasks in Hadoop, which include

 Adding fi les and directories■

 Retrieving fi les■

 Deleting fi les■

1 There are several ongoing projects that try to make HDFS mountable as a Unix fi lesystem. More details are
at http://wiki.apache.org/hadoop/MountableHDFS. As of this writing these projects aren’t offi cially part of
Hadoop and they may not have the reliability needed for some production systems.

2 Some older documentation shows fi le utilities in the form of hadoop dfs -cmd <args>. Both dfs and fs
are equivalent, although fs is the preferred form now.

 Working with fi les in HDFS 39

ADDING FILES AND DIRECTORIES

Before you can run Hadoop programs on data stored in HDFS, you’ll need to put the
data into HDFS fi rst. Let’s assume you’ve already formatted and started a HDFS fi lesys-
tem. (For learning purposes, we recommend a pseudo-distributed confi guration as a
playground.) Let’s create a directory and put a fi le in it.

HDFS has a default working directory of /user/$USER, where $USER is your login
user name. This directory isn’t automatically created for you, though, so let’s create
it with the mkdir command. For the purpose of illustration, we use chuck. You should
substitute your user name in the example commands.

hadoop fs –mkdir /user/chuck

URI for specifying exact fi le and directory location
Hadoop fi le commands can interact with both the HDFS fi lesystem and the local
fi lesystem. (And as we’ll see in chapter 9, it can also interact with Amazon S3 as a
fi lesystem.) A URI pinpoints the location of a specifi c fi le or directory. The full URI
format is scheme://authority/path. The scheme is similar to a protocol. It can be
hdfs or fi le, to specify the HDFS fi lesystem or the local fi lesystem, respectively. For
HDFS, authority is the NameNode host and path is the path of the fi le or directory of
interest. For example, for a standard pseudo-distributed confi guration running HDFS
on the local machine on port 9000, a URI to access the example.txt fi le under the
directory user/chuck will look like hdfs://localhost:9000/user/chuck/example.txt.
You can use the Hadoop cat command to show the content of that fi le:

hadoop fs -cat hdfs://localhost:9000/user/chuck/example.txt

As we’ll see shortly, most setups don’t need to specify the scheme://authority part
of the URI. When dealing with the local fi lesystem, you’ll probably prefer your standard
Unix commands rather than the Hadoop fi le commands. For copying fi les between
the local fi lesystem and HDFS, Hadoop commands, such as put and get use the
local fi lesystem as source and destination, respectively, without you specifying the
fi le:// scheme. For other commands, if you leave out the scheme://authority part of
the URI, the default from the Hadoop confi guration is used. For example, if you have
changed the conf/hadoop-site.xml fi le to the pseudo-distributed confi guration, your
fs.default.name property in the fi le should be

<property>
 <name>fs.default.name</name>
 <value>hdfs://localhost:9000</value>
</property>

Under this confi guration, shorten the URI hdfs://localhost:9000/user/chuck/example.
txt to /user/chuck/example.txt. Furthermore, HDFS defaults to a current working
directory of /user/$USER, where $USER is your login user name. If you’re logged
in as chuck, then shorten the URI hdfs://localhost:9000/user/chuck/example.txt to
example.txt. The Hadoop cat command to show the content of the fi le is

hadoop fs -cat example.txt

40 CHAPTER 3 Components of Hadoop

Hadoop’s mkdir command automatically creates parent directories if they don’t
already exist, similar to the Unix mkdir command with the -p option. So the preced-
ing command will create the /user directory too. Let’s check on the directories with
the ls command.

hadoop fs -ls /

You’ll see this response showing the /user directory at the root / directory.

Found 1 items
drwxr-xr-x - chuck supergroup 0 2009-01-14 10:23 /user

If you want to see all the subdirectories, in a way similar to Unix’s ls with the -r
option, you can use Hadoop’s lsr command .

hadoop fs -lsr /

You’ll see all the fi les and directories recursively.

drwxr-xr-x - chuck supergroup 0 2009-01-14 10:23 /user
drwxr-xr-x - chuck supergroup 0 2009-01-14 10:23 /user/chuck

Now that we have a working directory, we can put a fi le into it. Create some text fi le
on your local fi lesystem called example.txt. The Hadoop command put is used to copy
fi les from the local system into HDFS.

hadoop fs -put example.txt .

Note the period (.) as the last argument in the command above. It means that we’re put-
ting the fi le into the default working directory. The command above is equivalent to

hadoop fs -put example.txt /user/chuck

We can re-execute the recursive fi le listing command to see that the new fi le is added
to HDFS.

$ hadoop fs -lsr /
drwxr-xr-x - chuck supergroup 0 2009-01-14 10:23 /user
drwxr-xr-x - chuck supergroup 0 2009-01-14 11:02 /user/chuck
-rw-r--r-- 1 chuck supergroup 264 2009-01-14 11:02

➥/user/chuck/example.txt

In practice we don’t need to check on all fi les recursively, and we may restrict ourselves
to what’s in our own working directory. We would use the Hadoop ls command in its
simplest form:

$ hadoop fs -ls
Found 1 items
-rw-r--r-- 1 chuck supergroup 264 2009-01-14 11:02

➥/user/chuck/example.txt

The output displays properties, such as permission, owner, group, fi le size, and last
modifi cation date, all of which are familiar Unix concepts. The column stating “1” re-
ports the replication factor of the fi le. It should always be 1 for the pseudo-distributed

confi guration . For production clusters, the replication factor is typically 3 but can be
any positive integer. Replication factor is not applicable to directories, so they will only
show a dash (-) for that column.

After you’ve put data into HDFS, you can run Hadoop programs to process it. The
output of the processing will be a new set of fi les in HDFS, and you’ll want to read or
retrieve the results.

RETRIEVING FILES

The Hadoop command get does the exact reverse of put. It copies fi les from HDFS to
the local fi lesystem. Let’s say we no longer have the example.txt fi le locally and we want
to retrieve it from HDFS; we can run the command

hadoop fs -get example.txt .

to copy it into our local current working directory.
Another way to access the data is to display it. The Hadoop cat command allows us

to do that.

hadoop fs -cat example.txt

We can use the Hadoop fi le command with Unix pipes to send its output for further
processing by other Unix commands. For example, if the fi le is huge (as typical Hadoop
fi les are) and you’re interested in a quick check of its content, you can pipe the output
of Hadoop’s cat into a Unix head.

hadoop fs -cat example.txt | head

Hadoop natively supports a tail command for looking at the last kilobyte of a fi le.

hadoop fs -tail example.txt

After you fi nish working with fi les in HDFS, you may want to delete them to free up
space.

DELETING FILES

You shouldn’t be too surprised by now that the Hadoop command for removing fi les
is rm.

hadoop fs –rm example.txt

The rm command can also be used to delete empty directories.

LOOKING UP HELP

A list of Hadoop fi le commands, together with the usage and description of each com-
mand, is given in the appendix. For the most part, the commands are modeled after
their Unix equivalent. You can execute hadoop fs (with no parameters) to get a com-
plete list of all commands available on your version of Hadoop. You can also use help
to display the usage and a short description of each command. For example, to get a
summary of ls, execute

hadoop fs –help ls

 Working with fi les in HDFS 41

42 CHAPTER 3 Components of Hadoop

and you should see the following description:

-ls <path>: List the contents that match the specifi ed fi le pattern. If
 path is not specifi ed, the contents of /user/<currentUser>
 will be listed. Directory entries are of the form
 dirName (full path) <dir>
 and fi le entries are of the form
 fi leName(full path) <r n> size
 where n is the number of replicas specifi ed for the fi le
 and size is the size of the fi le, in bytes.

Although the command line utilities are suffi cient for most of your interaction with the
HDFS fi lesystem, they’re not exhaustive and there’ll be situations where you may want
deeper access into the HDFS API. Let’s see how to do so in the next section.

3.1.2 Reading and writing to HDFS programmatically

To motivate an examination of the HDFS Java API, we’ll develop a PutMerge program
for merging fi les while putting them into HDFS. The command line utilities don’t sup-
port this operation; we’ll use the API.

The motivation for this example came when we wanted to analyze Apache log
fi les coming from many web servers. We can copy each log fi le into HDFS, but in
general, Hadoop works more effectively with a single large fi le rather than a number of
smaller ones. (“Smaller” is relative here as it can still be tens or hundreds of gigabytes.)
Besides, for analytics purposes we think of the log data as one big fi le. That it’s spread
over multiple fi les is an incidental result of the physical web server architecture. One
solution is to merge all the fi les fi rst and then copy the combined fi le into HDFS.
Unfortunately, the fi le merging will require a lot of disk space in the local machine. It
would be much easier if we could merge all the fi les on the fl y as we copy them into
HDFS.

What we need is, therefore, a PutMerge-type of operation. Hadoop’s command line
utilities include a getmerge command for merging a number of HDFS fi les before
copying them onto the local machine. What we’re looking for is the exact opposite.
This is not available in Hadoop’s fi le utilities. We’ll write our own program using the
HDFS API.

The main classes for fi le manipulation in Hadoop are in the package org.apache.
hadoop.fs . Basic Hadoop fi le operations include the familiar open, read, write,
and close. In fact, the Hadoop fi le API is generic and can be used for working with
fi lesystems other than HDFS. For our PutMerge program, we’ll use the Hadoop fi le
API to both read the local fi lesystem and write to HDFS.

The starting point for the Hadoop fi le API is the FileSystem class . This is an abstract
class for interfacing with the fi lesystem, and there are different concrete subclasses
for handling HDFS and the local fi lesystem. You get the desired FileSystem
instance by calling the factory method FileSystem.get(Confi guration conf). The
 Confi guration class is a special class for holding key/value confi guration parameters.
Its default instantiation is based on the resource confi guration for your HDFS system.
We can get the FileSystem object to interface with HDFS by

Confi guration conf = new Confi guration();
FileSystem hdfs = FileSystem.get(conf);

To get a FileSystem object specifi cally for the local fi lesystem, there’s the FileSystem.
getLocal(Confi guration conf) factory method.

FileSystem local = FileSystem.getLocal(conf);

Hadoop fi le API uses Path objects to encode fi le and directory names and FileStatus
objects to store metadata for fi les and directories. Our PutMerge program will merge
all fi les from a local directory. We use the FileSystem’s listStatus () method to get
a list of fi les in a directory.

Path inputDir = new Path(args[0]);
FileStatus[] inputFiles = local.listStatus(inputDir);

The length of the inputFiles array is the number of fi les in the specifi ed directory.
Each FileStatus object in inputFiles has metadata information such as fi le length,
permissions, modifi cation time, and others. Of interest to our PutMerge program is
each fi le’s Path representation, inputFiles[i].getPath(). We can use this Path to
request an FSDataInputStream object for reading in the fi le.

FSDataInputStream in = local.open(inputFiles[i].getPath());
byte buffer[] = new byte[256];
int bytesRead = 0;
while((bytesRead = in.read(buffer)) > 0) {
 ...
}
in.close();

FSDataInputStream is a subclass of Java’s standard java.io.DataInputStream with ad-
ditional support for random access. For writing to a HDFS fi le, there’s the analogous
FSDataOutputStream object .

Path hdfsFile = new Path(args[1]);
FSDataOutputStream out = hdfs.create(hdfsFile);
out.write(buffer, 0, bytesRead);
out.close();

To complete the PutMerge program, we create a loop that goes through all the fi les in
inputFiles as we read each one in and write it out to the destination HDFS fi le. You
can see the complete program in listing 3.1.

Listing 3.1 A PutMerge program

import java.io.IOException;

import org.apache.hadoop.conf.Confi guration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;

public class PutMerge {

 Working with fi les in HDFS 43

44 CHAPTER 3 Components of Hadoop

 public static void main(String[] args) throws IOException {

 Confi guration conf = new Confi guration();
 FileSystem hdfs = FileSystem.get(conf);
 FileSystem local = FileSystem.getLocal(conf);

 Path inputDir = new Path(args[0]); q
 Path hdfsFile = new Path(args[1]);

 try {
 FileStatus[] inputFiles = local.listStatus(inputDir); w
 FSDataOutputStream out = hdfs.create(hdfsFile); e
 for (int i=0; i<inputFiles.length; i++) {
 System.out.println(inputFiles[i].getPath().getName());

 FSDataInputStream in =

 ➥ local.open(inputFiles[i].getPath()); r
 byte buffer[] = new byte[256];
 int bytesRead = 0;
 while((bytesRead = in.read(buffer)) > 0) {
 out.write(buffer, 0, bytesRead);
 }
 in.close();
 }
 out.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

The general fl ow of the program involves fi rst setting the local directory and the HDFS
destination fi le based on user-specifi ed arguments q. In w we extract information
about each fi le in the local input directory. We create an output stream to write to the
HDFS fi le in e. We loop through each fi le in the local directory, and r opens an in-
put stream to read that fi le. The rest of the code is standard Java fi le copy.

The FileSystem class also has methods such as delete() , exists() , mkdirs() ,
and rename() for other standard fi le operations. You can fi nd the most recent Javadoc
for the Hadoop fi le API at http://hadoop.apache.org/core/docs/current/api/org/
apache/hadoop/fs/package-summary.html.

We have covered how to work with fi les in HDFS. You now know a few ways to put
data into and out of HDFS. But merely having data isn’t terribly interesting. You want
to process it, analyze it, and do other things. Let’s conclude our discussion of HDFS
and move on to the other major component of Hadoop, the MapReduce framework,
and how to program under it.

3.2 Anatomy of a MapReduce program
As we have mentioned before, a MapReduce program processes data by manipulating
(key/value) pairs in the general form

map: (K1,V1) ➞ list(K2,V2)
reduce: (K2,list(V2)) ➞ list(K3,V3)

 Anatomy of a MapReduce program 45

Not surprisingly, this is an overly generic representation of the data fl ow. In this section
we learn more details about each stage in a typical MapReduce program. Figure 3.1
displays a high-level diagram of the entire process, and we further dissect each compo-
nent as we step through the fl ow.

Input DataInput Data

Node 1

Node 1

Node 2

Node 2

Input data is
distributed to nodes

Map Map

Reduce Reduce

Each map task works
on a “split” of data

Mapper outputs
intermediate data

Data exchange
between nodes in
a “shuffle” process

Intermediate data of
the same key goes to
the same reducer

Reducer output is
stored

Figure 3.1 The general MapReduce data fl ow. Note that after distributing input
data to different nodes, the only time nodes communicate with each other is at
the “shuffl e” step . This restriction on communication greatly helps scalability.

46 CHAPTER 3 Components of Hadoop

Before we analyze how data gets passed onto each individual stage, we should fi rst fa-
miliarize ourselves with the data types that Hadoop supports.

3.2.1 Hadoop data types

Despite our many discussions regarding keys and values, we have yet to mention their
types. The MapReduce framework won’t allow them to be an arbitrary class. For ex-
ample, although we can and often do talk about certain keys and values as integers,
strings, and so on, they aren’t exactly standard Java objects, such as Integer, String,
and so forth. This is because the MapReduce framework has a certain defi ned way of
serializing the key/value pairs to move them across the cluster’s network, and only
classes that support this kind of serialization can function as keys or values in the
framework.

More specifi cally, classes that implement the Writable interface can be values, and
classes that implement the WritableComparable<T> interface can be either keys
or values. Note that the WritableComparable<T> interface is a combination of the
Writable and java.lang.Comparable<T> interfaces . We need the comparability
requirement for keys because they will be sorted at the reduce stage, whereas values
are simply passed through.

Hadoop comes with a number of predefi ned classes that implement
WritableComparable, including wrapper classes for all the basic data types, as seen
in table 3.1.

Table 3.1 List of frequently used types for the key/value pairs . These classes all implement the
WritableComparable interface.

Class Description

BooleanWritable Wrapper for a standard Boolean variable

ByteWritable Wrapper for a single byte

DoubleWritable Wrapper for a Double

FloatWritable Wrapper for a Float

IntWritable Wrapper for a Integer

LongWritable Wrapper for a Long

Text Wrapper to store text using the UTF8 format

NullWritable Placeholder when the key or value is not needed

Keys and values can take on types beyond the basic ones which Hadoop natively sup-
ports. You can create your own custom type as long as it implements the Writable
(or WritableComparable<T>) interface. For example, listing 3.2 shows a class
that can represent edges in a network. This may represent a fl ight route between
two cities.

Listing 3.2 An example class that implements the WritableComparable interface

public class Edge implements WritableComparable<Edge>{

 private String departureNode;
 private String arrivalNode;

 public String getDepartureNode() { return departureNode;}

 @Override
 public void readFields(DataInput in) throws IOException { q
 departureNode = in.readUTF();
 arrivalNode = in.readUTF();
 }

 @Override
 public void write(DataOutput out) throws IOException { w
 out.writeUTF(departureNode);
 out.writeUTF(arrivalNode);
 }

 @Override
 public int compareTo(Edge o) { e
 return (departureNode.compareTo(o.departureNode) != 0)
 ? departureNode.compareTo(o.departureNode)
 : arrivalNode.compareTo(o.arrivalNode);
 }
}

The Edge class implements the readFields () q and write() w methods of the
Writable interface. They work with the Java DataInput and DataOutput classes to
serialize the class contents. Implement the compareTo() method e for the Comparable
interface. It returns -1, 0, or 1 if the called Edge is less than, equal to, or greater than
the given Edge .

With the data type interfaces now defi ned, we can proceed to the fi rst stage of the
data fl ow process as described in fi gure 3.1: the mapper.

3.2.2 Mapper

To serve as the mapper , a class implements from the Mapper interface and inherits the
MapReduceBase class . The MapReduceBase class, not surprisingly, serves as the base
class for both mappers and reducers. It includes two methods that effectively act as the
constructor and destructor for the class:

 ■ void confi gure(JobConf job) —In this function you can extract the parameters set
either by the confi guration XML fi les or in the main class of your application.
Call this function before any data processing begins.

 ■ void close ()—As the last action before the map task terminates, this function
should wrap up any loose ends—database connections, open fi les, and so on.

The Mapper interface is responsible for the data processing step. It utilizes Java generics
of the form Mapper<K1,V1,K2,V2> where the key classes and value classes implement
the WritableComparable and Writable interfaces, respectively. Its single method is
to process an individual (key/value) pair:

 Anatomy of a MapReduce program 47

48 CHAPTER 3 Components of Hadoop

void map(K1 key,
 V1 value,
 OutputCollector<K2,V2> output,
 Reporter reporter
) throws IOException

The function generates a (possibly empty) list of (K2, V2) pairs for a given (K1, V1)
input pair. The OutputCollector receives the output of the mapping process, and
the Reporter provides the option to record extra information about the mapper as
the task progresses.

Hadoop provides a few useful mapper implementations. You can see some of them
in the table 3.2.

Table 3.2 Some useful Mapper implementations predefi ned by Hadoop

Class Description

IdentityMapper<K,V> Implements Mapper<K,V,K,V> and maps inputs directly to outputs

InverseMapper<K,V> Implements Mapper<K,V,V,K> and reverses the key/value pair

RegexMapper<K> Implements Mapper<K,Text,Text,LongWritable> and generates a
(match, 1) pair for every regular expression match

TokenCountMapper<K> Implements Mapper<K,Text,Text,LongWritable> and generates a
(token, 1) pair when the input value is tokenized

As the MapReduce name implies, the major data fl ow operation after map is the re-
duce phase, shown in the bottom part of fi gure 3.1.

3.2.3 Reducer

As with any mapper implementation, a reducer must fi rst extend the MapReduce base
class to allow for confi guration and cleanup. In addition, it must also implement the
Reducer interface which has the following single method:

void reduce(K2 key,
 Iterator<V2> values,
 OutputCollector<K3,V3> output,
 Reporter reporter
) throws IOException

When the reducer task receives the output from the various mappers, it sorts the
incoming data on the key of the (key/value) pair and groups together all values of
the same key. The reduce() function is then called, and it generates a (possibly
empty) list of (K3, V3) pairs by iterating over the values associated with a given key. The
OutputCollector receives the output of the reduce process and writes it to an output
fi le. The Reporter provides the option to record extra information about the reducer
as the task progresses.

Table 3.3 lists a couple of basic reducer implementations provided by Hadoop.

Table 3.3 Some useful Reducer implementations predefi ned by Hadoop

Class Description

IdentityReducer<K,V> Implements Reducer<K,V,K,V> and maps inputs directly to outputs

LongSumReducer<K> Implements Reducer<K,LongWritable,K,LongWritable> and
determines the sum of all values corresponding to the given key

Although we have referred to Hadoop programs as MapReduce applications, there is
a vital step between the two stages: directing the result of the mappers to the different
reducers. This is the responsibility of the partitioner.

3.2.4 Partitioner— redirecting output from Mapper

A common misconception for fi rst-time MapReduce programmers is to use only a
single reducer. After all, a single reducer sorts all of your data before processing—
and who doesn’t like sorted data? Our discussions regarding MapReduce expose
the folly of such thinking. We would have ignored the benefi ts of parallel com-
putation . With one reducer, our compute cloud has been demoted to a compute
raindrop.

With multiple reducers, we need some way to determine the appropriate one to send
a (key/value) pair outputted by a mapper. The default behavior is to hash the key to
determine the reducer. Hadoop enforces this strategy by use of the HashPartitioner
class . Sometimes the HashPartitioner will steer you awry. Let’s return to the Edge
class introduced in section 3.2.1.

Suppose you used the Edge class to analyze fl ight information data to determine the
number of passengers departing from each airport. Such data may be

(San Francisco, Los Angeles) Chuck Lam
(San Francisco, Dallas) James Warren
...
If you used HashPartitioner, the two rows could be sent to different reducers.

The number of departures would be processed twice and both times erroneously.
How do we customize the partitioner for your applications? In this situation, we

want all edges with a common departure point to be sent to the same reducer. This is
done easily enough by hashing the departureNode member of the Edge :

public class EdgePartitioner implements Partitioner<Edge, Writable>
{
 @Override
 public int getPartition(Edge key, Writable value, int numPartitions)
 {
 return new Long(key.getDepartureNode()).hashCode() % numPartitions;
 }

 @Override
 public void confi gure(JobConf conf) { }
}

 Anatomy of a MapReduce program 49

50 CHAPTER 3 Components of Hadoop

A custom partitioner only needs to implement two functions: confi gure() and
getPartition() . The former uses the Hadoop job confi guration to confi gure the
partitioner, and the latter returns an integer between 0 and the number of reduce tasks
indexing to which reducer the (key/value) pair will be sent.

The exact mechanics of the partitioner may be diffi cult to follow. Figure 3.2 illustrates
this for better understanding.

Between the map and reduce stages, a MapReduce application must take the output
from the mapper tasks and distribute the results among the reducer tasks. This process
is typically called shuffl ing , because the output of a mapper on a single node may be
sent to reducers across multiple nodes in the cluster.

3.2.5 Combiner—local reduce

In many situations with MapReduce applications, we may wish to perform a “local
reduce ” before we distribute the mapper results. Consider the WordCount example of

IN IN IN IN IN IN IN IN IN

OUT OUT OUT

Map

Reduce

Figure 3.2 The MapReduce data fl ow, with an emphasis on partitioning and
shuffl ing. Each icon is a key/value pair. The shapes represents keys, whereas
the inner patterns represent values. After shuffl ing, all icons of the same shape
(key) are in the same reducer. Different keys can go to the same reducer, as seen
in the rightmost reducer. The partitioner decides which key goes where. Note that
 the leftmost reducer has more load due to more data under the “ellipse” key.

 Reading and writing 51

chapter 1 once more. If the job processes a document containing the word “the” 574
times, it’s much more effi cient to store and shuffl e the pair (“the”, 574) once instead
of the pair (“the”, 1) multiple times. This processing step is known as combining. We
explain combiners in more depth in section 4.6.

3.2.6 Word counting with predefi ned mapper and reducer classes

We have concluded our preliminary coverage of all the basic components of MapReduce.
Now that you’ve seen more classes provided by Hadoop, it’ll be fun to revisit the Word-
Count example (see listing 3.3), using some of the classes we’ve learned.

Listing 3.3 Revised version of the WordCount example

public class WordCount2 {
 public static void main(String[] args) {
 JobClient client = new JobClient();
 JobConf conf = new JobConf(WordCount2.class);

 FileInputFormat.addInputPath(conf, new Path(args[0]));
 FileOutputFormat.setOutputPath(conf, new Path(args[1]));

 conf.setOutputKeyClass(Text.class);
 conf.setOutputValueClass(LongWritable.class);
 conf.setMapperClass(TokenCountMapper.class); q
 conf.setCombinerClass(LongSumReducer.class);
 conf.setReducerClass(LongSumReducer.class); w
 client.setConf(conf);
 try {
 JobClient.runJob(conf);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

We have to write only the driver for this MapReduce program because we have used
Hadoop’s predefi ned TokenCountMapper class q and LongSumReducer class w. Easy,
isn’t it? Hadoop provides the ability to generate more sophisticated programs (this will
be the focus of part 2 of the book), but we want to emphasize that Hadoop allows you
to rapidly generate useful programs with a minimal amount of code.

3.3 Reading and writing
Let’s see how MapReduce reads input data and writes output data and focus on the
fi le formats it uses. To enable easy distributed processing, MapReduce makes certain
assumptions about the data it’s processing. It also provides fl exibility in dealing with a
variety of data formats.

Input data usually resides in large fi les, typically tens or hundreds of gigabytes or
even more. One of the fundamental principles of MapReduce’s processing power is
the splitting of the input data into chunks . You can process these chunks in parallel
using multiple machines. In Hadoop terminology these chunks are called input splits .

52 CHAPTER 3 Components of Hadoop

The size of each split should be small enough for a more granular parallelization .
(If all the input data is in one split, then there is no parallelization.) On the other
hand, each split shouldn’t be so small that the overhead of starting and stopping the
processing of a split becomes a large fraction of execution time.

The principle of dividing input data (which often can be one single massive fi le) into
splits for parallel processing explains some of the design decisions behind Hadoop’s
generic FileSystem as well as HDFS in particular. For example, Hadoop’s FileSystem
provides the class FSDataInputStream for fi le reading rather than using Java’s java.
io.DataInputStream . FSDataInputStream extends DataInputStream with random
read access, a feature that MapReduce requires because a machine may be assigned
to process a split that sits right in the middle of an input fi le. Without random access,
it would be extremely ineffi cient to have to read the fi le from the beginning until
you reach the location of the split. You can also see how HDFS is designed for storing
data that MapReduce will split and process in parallel. HDFS stores fi les in blocks
spread over multiple machines. Roughly speaking, each fi le block is a split. As different
machines will likely have different blocks, parallelization is automatic if each split/
block is processed by the machine that it’s residing at. Furthermore, as HDFS replicates
blocks in multiple nodes for reliability, MapReduce can choose any of the nodes that
have a copy of a split/block.

Input splits and record boundaries
Note that input splits are a logical division of your records whereas HDFS blocks are
a physical division of the input data. It’s extremely effi cient when they’re the same
but in practice it’s never perfectly aligned. Records may cross block boundaries.
Hadoop guarantees the processing of all records . A machine processing a particular
split may fetch a fragment of a record from a block other than its “main” block and
which may reside remotely. The communication cost for fetching a record fragment is
inconsequential because it happens relatively rarely.

You’ll recall that MapReduce works on key/value pairs. So far we’ve seen that Hadoop
by default considers each line in the input fi le to be a record and the key/value pair
is the byte offset (key) and content of the line (value), respectively. You may not have
recorded all your data that way. Hadoop supports a few other data formats and allows
you to defi ne your own.

3.3.1 InputFormat

The way an input fi le is split up and read by Hadoop is defi ned by one of the imple-
mentations of the InputFormat interface . TextInputFormat is the default Input-
Format implementation, and it’s the data format we’ve been implicitly using up to
now. It’s often useful for input data that has no defi nite key value, when you want to

get the content one line at a time. The key returned by TextInputFormat is the byte
offset of each line, and we have yet to see any program that uses that key for its data
processing.

POPULAR INPUTFORMAT CLASSES

Table 3.4 lists other popular implementations of InputFormat along with a descrip-
tion of the key/value pair each one passes to the mapper.

Table 3.4 Main InputFormat classes. TextInputFormat is the default unless an alternative is
specifi ed. The object type for key and value are also described.

InputFormat Description

TextInputFormat Each line in the text fi les is a record. Key is the byte
offset of the line, and value is the content of the line.

key: LongWritable
value: Text

KeyValueTextInputFormat Each line in the text fi les is a record. The fi rst separator
character divides each line. Everything before the
separator is the key, and everything after is the value.
The separator is set by the key.value.separator.in.input.
line property, and the default is the tab (\t) character.

key: Text
value: Text

SequenceFileInputFormat<K,V> An InputFormat for reading in sequence fi les. Key and
value are user defi ned. Sequence fi le is a Hadoop-
specifi c compressed binary fi le format. It’s optimized for
passing data between the output of one MapReduce job
to the input of some other MapReduce job.

key: K (user defi ned)
value: V (user defi ned)

NLineInputFormat Same as TextInputFormat, but each split is guaranteed
to have exactly N lines. The mapred.line.input.format.
linespermap property, which defaults to one, sets N.

key: LongWritable
value: Text

KeyValueTextInputFormat is used in the more structured input fi les where a pre-
defi ned character, usually a tab (\t), separates the key and value of each line (record).
For example, you may have a tab-separated data fi le of timestamps and URLs:

17:16:18 http://hadoop.apache.org/core/docs/r0.19.0/api/index.html
17:16:19 http://hadoop.apache.org/core/docs/r0.19.0/mapred_tutorial.html
17:16:20 http://wiki.apache.org/hadoop/GettingStartedWithHadoop
17:16:20 http://www.maxim.com/hotties/2008/fi nalist_gallery.aspx
17:16:25 http://wiki.apache.org/hadoop/

...

 Reading and writing 53

54 CHAPTER 3 Components of Hadoop

You can set your JobConf object to use the KeyValueTextInputFormat class to read
this fi le.

conf.setInputFormat(KeyValueTextInputFormat.class);

Given the preceding example fi le, the fi rst record your mapper reads will have a key
of “17:16:18” and a value of “http://hadoop.apache.org/core/docs/r0.19.0/api/
index.html”. The second record to your mapper will have a key of “17:16:19” and
a value of “http://hadoop.apache.org/core/docs/r0.19.0/mapred_tutorial.html.”
And so on.

Recall that our previous mappers had used LongWritable and Text as the
key and value types, respectively. LongWritable is a reasonable type for the key
under TextInputFormat because the key is a numerical offset. When using
KeyValueTextInputFormat, both the key and the value will be of type Text , and
you’ll have to change your Mapper implementation and map() method to refl ect the
new key type.

The input data to your MapReduce job does not necessarily have to be some
external data. In fact it’s often the case that the input to one MapReduce job is the
output of some other MapReduce job. As we’ll see, you can customize your output
format too. The default output format writes the output in the same format that
KeyValueTextInputFormat can read back in (i.e., each line is a record with key and
value separated by a tab character). Hadoop provides a much more effi cient binary
compressed fi le format called sequence fi le . This sequence fi le is optimized for Hadoop
processing and should be the preferred format when chaining multiple MapReduce
jobs. The InputFormat class to read sequence fi les is SequenceFileInputFormat .
The object type for key and value in a sequence fi le are defi nable by the user. The
output and the input type have to match, and your Mapper implementation and map()
method have to take in the right input type.

CREATING A CUSTOM INPUTFORMAT—INPUTSPLIT AND RECORDREADER

Sometimes you may want to read input data in a way different from the standard
InputFormat classes. In that case you’ll have to write your own custom InputFormat
class. Let’s look at what it involves. InputFormat is an interface consisting of only two
methods.

public interface InputFormat<K, V> {

 InputSplit[] getSplits(JobConf job, int numSplits) throws IOException;

 RecordReader<K, V> getRecordReader(InputSplit split,
 JobConf job,
 Reporter reporter) throws IOException;
}

The two methods sum up the functions that InputFormat has to perform:

 Identify all the fi les used as input data and divide them into input splits. Each ■

map task is assigned one split.

 Provide an object (■ RecordReader) to iterate through records in a given split,
and to parse each record into key and value of predefi ned types.

Who wants to worry about how fi les are divided into splits ? In creating your
own InputFormat class you should subclass the FileInputFormat class, which
takes care of fi le splitting. In fact, all the InputFormat classes in table 3.4 subclass
FileInputFormat. FileInputFormat implements the getSplits() method but
leaves getRecordReader() abstract for the subclass to fi ll out. FileInputFormat’s
getSplits() implementation tries to divide the input data into roughly the number
of splits specifi ed in numSplits , subject to the constraints that each split must have
more than mapred.min.split.size number of bytes but also be smaller than the
block size of the fi lesystem. In practice, a split usually ends up being the size of a block,
which defaults to 64 MB in HDFS.

FileInputFormat has a number of protected methods a subclass can overwrite to
change its behavior, one of which is the isSplitable(FileSystem fs, Path fi lename)
method. It checks whether you can split a given fi le. The default implementation always
returns true, so all fi les larger than a block will be split. Sometimes you may want a
fi le to be its own split, and you’ll overwrite isSplitable() to return false in those
situations. For example, some fi le compression schemes don’t support splits. (You
can’t start reading from the middle of those fi les.) Some data processing operations,
such as fi le conversion, will need to treat each fi le as an atomic record and one should
also not be able to split it.

In using FileInputFormat you focus on customizing RecordReader, which is
responsible for parsing an input split into records and then parsing each record into a
key/value pair . Let’s look at the signature of this interface.

public interface RecordReader<K, V> {
 boolean next(K key, V value) throws IOException;

 K createKey();
 V createValue();

 long getPos() throws IOException;
 public void close() throws IOException;
 fl oat getProgress() throws IOException;
}

Instead of writing our own RecordReader , we’ll again leverage existing classes pro-
vided by Hadoop. For example, LineRecordReader implements RecordReader
<LongWritable,Text> . It’s used in TextInputFormat and reads one line at a time,
with byte offset as key and line content as value. KeyValueLineRecordReader uses
KeyValueTextInputFormat . For the most part, your custom RecordReader will be
a wrapper around an existing implementation, and most of the action will be in the
next() method .

One use case for writing your own custom InputFormat class is to read records
in a specifi c type rather than the generic Text type. For example, we had previously
used KeyValueTextInputFormat to read a tab-separated data fi le of timestamps

 Reading and writing 55

56 CHAPTER 3 Components of Hadoop

and URLs. The class ends up treating both the timestamp and the URL as Text type.
For our illustration, let’s create a TimeUrlTextInputFormat that works exactly the
same but treats the URL as a URLWritable type 3. As mentioned earlier, we create
our InputFormat class by extending FileInputFormat and implementing the factory
method to return our RecordReader.

public class TimeUrlTextInputFormat extends

 ➥ FileInputFormat<Text, URLWritable> {

 public RecordReader<Text, URLWritable> getRecordReader(

 ➥ InputSplit input, JobConf job, Reporter reporter)
 ➥ throws IOException {

 return new TimeUrlLineRecordReader(job, (FileSplit)input);

 }
}

Our URLWritable class is quite straightforward:

public class URLWritable implements Writable {

 protected URL url;

 public URLWritable() { }

 public URLWritable(URL url) {
 this.url = url;
 }

 public void write(DataOutput out) throws IOException {
 out.writeUTF(url.toString());
 }

 public void readFields(DataInput in) throws IOException {
 url = new URL(in.readUTF());
 }

 public void set(String s) throws MalformedURLException {
 url = new URL(s);
 }
}

Our TimeUrlLineRecordReader will implement the six methods in the RecordReader
interface, in addition to the class constructor. It’s mostly a wrapper around KeyValue-
TextInputFormat, but converts the record value from Text to type URLWritable.

class TimeUrlLineRecordReader implements RecordReader<Text, URLWritable> {

 private KeyValueLineRecordReader lineReader;
 private Text lineKey, lineValue;

 public TimeUrlLineRecordReader(JobConf job, FileSplit split) throws

3 We may also want the time key to be some type other than Text. For example, we can make up a type
CalendarWritableComparable for it. We leave that as an exercise for the reader as we focus on a
simpler illustration.

 ➥ IOException {
 lineReader = new KeyValueLineRecordReader(job, split);

 lineKey = lineReader.createKey();
 lineValue = lineReader.createValue();
 }

 public boolean next(Text key, URLWritable value) throws IOException {
 if (!lineReader.next(lineKey, lineValue)) {
 return false;
 }

 key.set(lineKey);
 value.set(lineValue.toString());

 return true;
 }

 public Text createKey() {
 return new Text(“”);
 }

 public URLWritable createValue() {
 return new URLWritable();
 }

 public long getPos() throws IOException {
 return lineReader.getPos();
 }

 public fl oat getProgress() throws IOException {
 return lineReader.getProgress();
 }

 public void close() throws IOException {
 lineReader.close();
 }
}

Our TimeUrlLineRecordReader class creates a KeyValueLineRecordReader object
and passes the getPos() , getProgress() , and close() method calls directly to it.
The next () method casts the lineValue Text object into the URLWritable type.

3.3.2 OutputFormat

MapReduce outputs data into fi les using the OutputFormat class , which is analogous
to the InputFormat class. The output has no splits, as each reducer writes its output
only to its own fi le. The output fi les reside in a common directory and are typically
named part-nnnnn, where nnnnn is the partition ID of the reducer. RecordWriter
objects format the output and RecordReaders parse the format of the input.

Hadoop provides several standard implementations of OutputFormat, as shown
in table 3.5. Not surprisingly, almost all the ones we deal with inherit from the File
OutputFormat abstract class; InputFormat classes inherit from FileInputFormat.
You specify the OutputFormat by calling setOutputFormat () of the JobConf object
that holds the confi guration of your MapReduce job.

 Reading and writing 57

58 CHAPTER 3 Components of Hadoop

NOTE You may wonder why there’s a separation between OutputFormat
(InputFormat) and FileOutputFormat (FileInputFormat) when it
seems all OutputFormat (InputFormat) classes extend FileOutputFormat
(FileInputFormat). Are there OutputFormat (InputFormat) classes that
don’t work with fi les? Well, the NullOutputFormat implements OutputFormat
in a trivial way and doesn’t need to subclass FileOutputFormat. More impor-
tantly, there are OutputFormat (InputFormat) classes that work with databases
rather than fi les, and these classes are in a separate branch in the class hierarchy
from FileOutputFormat (FileInputFormat). These classes have specialized
applications, and the interested reader can dig further in the online Java docu-
mentation for DBInputFormat and DBOutputFormat.

Table 3.5 Main OutputFormat classes. TextOutputFormat is the default.

OutputFormat Description

TextOutputFormat<K,V> Writes each record as a line of text. Keys and values
are written as strings and separated by a tab (\t)
character, which can be changed in the mapred.
textoutputformat.separator property.

SequenceFileOutputFormat<K,V> Writes the key/value pairs in Hadoop’s proprietary
sequence fi le format. Works in conjunction with
SequenceFileInputFormat.

NullOutputFormat<K,V> Outputs nothing.

The default OutputFormat is TextOutputFormat, which writes each record as a line
of text. Each record’s key and value are converted to strings through toString() , and
a tab (\t) character separates them. The separator character can be changed in the
mapred.textoutputformat.separator property.

TextOutputFormat outputs data in a format readable by KeyValueTextInput-
Format. It can also output in a format readable by TextInputFormat if you make the
key type a NullWritable . In that case the key in the key/value pair is not written out,
and neither is the separator character. If you want to suppress the output completely,
then you should use the NullOutputFormat . Suppressing the Hadoop output is useful
if your reducer writes its output in its own way and doesn’t need Hadoop to write any
additional fi les.

Finally, SequenceFileOutputFormat writes the output in a sequence fi le format
that can be read back in using SequenceFileInputFormat. It’s useful for writing
intermediate data results when chaining MapReduce jobs.

3.4 Summary
Hadoop is a software framework that demands a different perspective on data process-
ing. It has its own fi lesystem, HDFS, that stores data in a way optimized for data-intensive
processing. You need specialized Hadoop tools to work with HDFS, but fortunately
most of those tools follow familiar Unix or Java syntax.

The data processing part of the Hadoop framework is better known as MapReduce.
Although the highlight of a MapReduce program is, not surprisingly, the Map and the
Reduce operations, other operations done by the framework, such as data splitting
and shuffl ing, are crucial to how the framework works. You can customize the other
operations, such as Partitioning and Combining. Hadoop provides options for reading
data and also to output data of different formats.

Now that we have a better understanding of how Hadoop works, let’s go on to
part 2 of this book and look at various techniques for writing practical programs using
Hadoop.

 Summary 59

Part 2

Hadoop in Action

Part 2 teaches the practical skills required to write and run data processing
programs in Hadoop. We explore various examples of using Hadoop to analyze a
patent data set, including advanced algorithms such as the Bloom fi lter. We also
cover programming and administration techniques that are uniquely useful to
working with Hadoop in production.

4

63

Writing basic
MapReduce programs

This chapter covers
 Patent data as an example data set to process with Hadoop■

 Skeleton of a MapReduce program■

 Basic MapReduce programs to count statistics■

 Hadoop’s Streaming API for writing MapReduce programs ■

using scripting languages

 Combiner to improve performance■

The MapReduce programming model is unlike most programming models you may
have learned. It’ll take some time and practice to gain familiarity. To help develop
your profi ciency, we go through many example programs in the next couple chap-
ters. These examples will illustrate various MapReduce programming techniques.
By applying MapReduce in multiple ways you’ll start to develop an intuition and a
habit of “MapReduce thinking.” The examples will cover simple tasks to advanced
uses. In one of the advanced applications we introduce the Bloom fi lter, a data struc-
ture not normally taught in the standard computer science curriculum. You’ll see
that processing large data sets, whether you’re using Hadoop or not, often requires
a rethinking of the underlying algorithms.

64 CHAPTER 4 Writing basic MapReduce programs

We assume you already have a basic grasp of Hadoop. You can set up Hadoop,
and you have compiled and run an example program, such as word counting from
chapter 1. Let’s use examples—from a real-world data set.

4.1 Getting the patent data set
 To do anything meaningful with Hadoop we need data. Many of our examples will use
patent data sets, both of which are available from the National Bureau of Economic
Research (NBER) at http://www.nber.org/patents/. The data sets were originally
compiled for the paper “The NBER Patent Citation Data File: Lessons, Insights and
Methodological Tools.”1 We use the citation data set cite75_99.txt and the patent
description data set apat63_99.txt.

NOTE The data sets are approximately 250 MB each, which are small enough
to make our examples runnable in Hadoop’s standalone or pseudo-distributed
mode . You can practice writing MapReduce programs using them even when
you don’t have access to a live cluster. The best part of Hadoop is that you
can be fairly sure your MapReduce program will run on clusters of machines
processing data sets 100 or 1,000 times larger with virtually no code changes.

A popular development tactic is to create a smaller, sampled subset of your
large production data and call it the development data set . This development
data set may only have several hundred megabytes. You develop your
program in standalone or pseudo-distributed mode with the development
data set. This gives your development process a fast turnaround time, the
convenience of running on your own machine, and an isolated environment
for debugging.

We have chosen these two data sets for our example programs because they’re
similar to most data types you’ll encounter. First of all, the citation data encodes a
graph in the same vein that web links and social networks are also graphs. Patents
are published in chronological order; some of their properties resemble time series .
Each patent is linked with a person (inventor) and a location (country of inventor).
You can view them as personal or geographical data . Finally, you can look at the
data as generic database relations with well-defi ned schemas, in a simple comma-
separated format. 2

4.1.1 The patent citation data

The patent citation data set contains citations from U.S. patents issued between 1975 and
1999. It has more than 16 million rows and the fi rst few lines resemble the following:

1 NBER Working Paper 8498, by Hall, B. H., A. B. Jaffe, and M. Tratjenberg (2001).
2 There are more common data types than two data sets can possibly represent. An important one that’s

missing here is text, but you’ve already seen text used in the word count example. Other missing types
include XML, image, and geolocation (the lat-long variety). Math matrix is not represented in general,
although the citation graph can be interpreted as a sparse 0/1 matrix.

 Getting the patent data set 65

“CITING”,”CITED”
3858241,956203
3858241,1324234
3858241,3398406
3858241,3557384
3858241,3634889
3858242,1515701
3858242,3319261
3858242,3668705
3858242,3707004
...

The data set is in the standard comma-separated values (CSV) format, with the
fi rst line a description of the columns. Each of the other lines record one particu-
lar citation. For example, the second line shows that patent 3858241 cites patent
956203. The fi le is sorted by the citing patent. We can see that patent 3858241 cites
fi ve patents in total. Analyzing the data more quantitatively will give us deeper in-
sights into it.

If you’re only reading the data fi le, the citation data appears to be a bunch of
numbers. You can “think” of this data in more interesting terms. One way is to
visualize it as a graph. In fi gure 4.1 we’ve shown a portion of this citation graph . We
can see that some patents are cited often whereas others aren’t cited at all. 3 Patents
like 5936972 and 6009552 cite a similar set of patents (4354269, 4486882, 5598422)
even though they don’t cite each other. We use Hadoop to derive descriptive
statistics about this patent data, as well as look for interesting patterns that aren’t
immediately obvious.

4.1.2 The patent description data

 The other data set we use is the patent description data. It has the patent number, the
patent application year, the patent grant year, the number of claims, and other meta-
data about patents. Look at the fi rst few lines of this data set. It’s similar to a table in a
relational database, but in CSV format. This data set has more than 2.9 million records.
As in many real-world data sets, it has many missing values .

“PATENT”,”GYEAR”,”GDATE”,”APPYEAR”,”COUNTRY”,”POSTATE”,”ASSIGNEE”,

➥ ”ASSCODE”,”CLAIMS”,”NCLASS”,”CAT”,”SUBCAT”,”CMADE”,”CRECEIVE”,

➥ ”RATIOCIT”,”GENERAL”,”ORIGINAL”,”FWDAPLAG”,”BCKGTLAG”,”SELFCTUB”,

➥ ”SELFCTLB”,”SECDUPBD”,”SECDLWBD”
3070801,1963,1096,,”BE”,””,,1,,269,6,69,,1,,0,,,,,,,
3070802,1963,1096,,”US”,”TX”,,1,,2,6,63,,0,,,,,,,,,
3070803,1963,1096,,”US”,”IL”,,1,,2,6,63,,9,,0.3704,,,,,,,
3070804,1963,1096,,”US”,”OH”,,1,,2,6,63,,3,,0.6667,,,,,,,
3070805,1963,1096,,”US”,”CA”,,1,,2,6,63,,1,,0,,,,,,,

3 As with any data analysis, we must be careful when interpreting with limited data. When a patent doesn’t
seem to cite any other patents, it may be an older patent for which we have no citation information.
On the other hand, more recent patents are cited less often because only newer patents can be aware
of their existence.

66 CHAPTER 4 Writing basic MapReduce programs

3070806,1963,1096,,”US”,”PA”,,1,,2,6,63,,0,,,,,,,,,
3070807,1963,1096,,”US”,”OH”,,1,,623,3,39,,3,,0.4444,,,,,,,
3070808,1963,1096,,”US”,”IA”,,1,,623,3,39,,4,,0.375,,,,,,,
3070809,1963,1096,,”US”,”AZ”,,1,,4,6,65,,0,,,,,,,,,

The fi rst row contains the name of a couple dozen attributes, which are meaningful
only to patent specialists. Even without understanding all the attributes, it’s still useful
to have some idea of a few of them. Table 4.1 describes the fi rst ten.

6009552

3909721

4354269

4486882 5598422

3697947

4395768

3566352

5771248 59319675936972

4201976 4205324

5193094

3891959

3728678

3868632

4052698

3800283851306

3958220

3519988 3629824 3675200 3697948

4375100521868952837914870645

6003144

5841795

46370214849976

4796261

5546409

5729647

Figure 4.1 A partial view of the patent citation data set as a graph. Each patent is shown as a
vertex (node), and each citation is a directed edge (arrow).

 Constructing the basic template of a MapReduce program 67

Table 4.1 Defi nition of the fi rst 10 attributes in the patent description data set

Attribute name Content

PATENT Patent number

GYEAR Grant year

GDATE Grant date, given as the number of days elapsed since January 1, 1960

APPYEAR Application year (available only for patents granted since 1967)

COUNTRY Country of fi rst inventor

POSTATE State of fi rst inventory (if country is U.S.)

ASSIGNEE Numeric identifi er for assignee (i.e., patent owner)

ASSCODE One-digit (1-9) assignee type. (The assignee type includes U.S. individual,
U.S. government, U.S. organization, non-U.S. individual, etc.)

CLAIMS Number of claims (available only for patents granted since 1975)

NCLASS 3-digit main patent class

Now that we have two patent data sets, let’s write Hadoop programs to process the data.

4.2 Constructing the basic template of a MapReduce program
We write most MapReduce programs in brief and as variations on a template. When
writing a new MapReduce program, you generally take an existing MapReduce program
and modify it until it does what you want. In this section, we write our fi rst MapReduce
program and explain its different parts. This program can serve as a template for future
MapReduce programs .

Our fi rst program will take the patent citation data and invert it. For each patent,
we want to fi nd and group the patents that cite it. Our output should be similar to the
following:

1 3964859,4647229
10000 4539112
100000 5031388
1000006 4714284
1000007 4766693
1000011 5033339
1000017 3908629
1000026 4043055
1000033 4190903,4975983
1000043 4091523
1000044 4082383,4055371
1000045 4290571
1000046 5918892,5525001
1000049 5996916

68 CHAPTER 4 Writing basic MapReduce programs

1000051 4541310
1000054 4946631
1000065 4748968
1000067 5312208,4944640,5071294
1000070 4928425,5009029

We have discovered that patents 5312208, 4944640, and 5071294 cited patent
1000067. For this section we won’t focus too much on the MapReduce data fl ow,
which we’ve already covered in chapter 3. Instead we focus on the structure of a
MapReduce program. We need only one fi le for the entire program as you can see
in listing 4.1.

Listing 4.1 Template for a typical Hadoop program

public class MyJob extends Confi gured implements Tool {

 public static class MapClass extends MapReduceBase
 implements Mapper<Text, Text, Text, Text> {

 public void map(Text key, Text value,
 OutputCollector<Text, Text> output,
 Reporter reporter) throws IOException {

 output.collect(value, key);
 }
 }

 public static class Reduce extends MapReduceBase
 implements Reducer<Text, Text, Text, Text> {

 public void reduce(Text key, Iterator<Text> values,
 OutputCollector<Text, Text> output,
 Reporter reporter) throws IOException {

 String csv = “”;
 while (values.hasNext()) {
 if (csv.length() > 0) csv += “,”;
 csv += values.next().toString();
 }
 output.collect(key, new Text(csv));
 }
 }

 public int run(String[] args) throws Exception {
 Confi guration conf = getConf();

 JobConf job = new JobConf(conf, MyJob.class);

 Path in = new Path(args[0]);
 Path out = new Path(args[1]);
 FileInputFormat.setInputPaths(job, in);
 FileOutputFormat.setOutputPath(job, out);

 job.setJobName(“MyJob”);
 job.setMapperClass(MapClass.class);
 job.setReducerClass(Reduce.class);

 job.setInputFormat(KeyValueTextInputFormat.class);

 Constructing the basic template of a MapReduce program 69

 job.setOutputFormat(TextOutputFormat.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(Text.class);
 job.set(“key.value.separator.in.input.line”, “,”);

 JobClient.runJob(job);

 return 0;
 }

 public static void main(String[] args) throws Exception {
 int res = ToolRunner.run(new Confi guration(), new MyJob(), args);

 System.exit(res);
 }
}

Our convention is that a single class, called MyJob in this case, completely defi nes each
MapReduce job. Hadoop requires the Mapper and the Reducer to be their own static
classes. These classes are quite small, and our template includes them as inner classes
to the MyJob class. The advantage is that everything fi ts in one fi le, simplifying code
management. But keep in mind that these inner classes are independent and don’t
interact much with the MyJob class. Various nodes with different JVMs clone and run
the Mapper and the Reducer during job execution , whereas the rest of the job class is
executed only at the client machine.

We investigate the Mapper and the Reducer classes in a while. Without those classes,
the skeleton of the MyJob class is

public class MyJob extends Confi gured implements Tool {

 public int run(String[] args) throws Exception {
 Confi guration conf = getConf();

 JobConf job = new JobConf(conf, MyJob.class);

 Path in = new Path(args[0]);
 Path out = new Path(args[1]);
 FileInputFormat.setInputPaths(job, in);
 FileOutputFormat.setOutputPath(job, out);

 job.setJobName(“MyJob”);
 job.setMapperClass(MapClass.class);
 job.setReducerClass(Reduce.class);

 job.setInputFormat(KeyValueTextInputFormat.class);
 job.setOutputFormat(TextOutputFormat.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(Text.class);
 job.set(“key.value.separator.in.input.line”, “,”);

 JobClient.runJob(job);

 return 0;
 }

 public static void main(String[] args) throws Exception {

70 CHAPTER 4 Writing basic MapReduce programs

 int res = ToolRunner.run(new Confi guration(), new MyJob(), args);

 System.exit(res);
 }
}

The core of the skeleton is within the run() method, also known as the driver. The
driver instantiates, confi gures, and passes a JobConf object named job to JobClient.
runJob() to start the MapReduce job. (The JobClient class, in turn, will communicate
with the JobTracker to start the job across the cluster.) The JobConf object will hold
all confi guration parameters necessary for the job to run. The driver needs to specify
in job the input paths, the output paths, the Mapper class, and the Reducer class—the
basic parameters for every job. In addition, each job can reset the default job proper-
ties, such as InputFormat, OutputFormat, and so on. One can also call the set()
method on the JobConf object to set up any confi guration parameter. Once you pass
the JobConf object to JobClient.runJob(), it’s treated as the master plan for the
job. It’s becomes the blueprint for how the job will be run.

 The JobConf object has many parameters, but we don’t want to program the driver
to set up all of them. The confi guration fi les of the Hadoop installation are a good
starting point. When starting a job from the command line, the user may also want to
pass extra arguments to alter the job confi guration. The driver can defi ne its own set
of commands and process the user arguments itself to enable the user to modify some
of the confi guration parameters. As this task is needed often, the Hadoop framework
provides ToolRunner , Tool , and Confi gured to simplify it. When used together in the
MyJob skeleton above, these classes enable our job to understand user-supplied options
that are supported by GenericOptionsParser . For example, we have previously
executed the MyJob class using this command line:

bin/hadoop jar playground/MyJob.jar MyJob input/cite75_99.txt output

Had we wanted to run the job only to see the mapper’s output (which you may want
to do for debugging purposes), we could set the number of reducers to zero with the
option -D mapred.reduce.tasks=0.

bin/hadoop jar playground/MyJob.jar MyJob -D mapred.reduce.tasks=0

➥ input/cite75_99.txt output

It works even though our program doesn’t explicitly understand the -D option. By us-
ing ToolRunner , MyJob will automatically support the options in table 4.2.

Table 4.2 Options supported by GenericOptionsParser

Option Description

-conf <confi guration fi le> Specify a confi guration fi le.

-D <property=value> Set value for a JobConf property.

-fs <local|namenode:port> Specify a NameNode, can be “local”.

 Constructing the basic template of a MapReduce program 71

Table 4.2 Options supported by GenericOptionsParser (Continued)

Option Description

-jt <local|jobtracker:port> Specify a JobTracker.

-fi les <list of fi les> Specify a comma-separated list of fi les to be used
with the MapReduce job. These fi les are automatically
distributed to all task nodes to be locally available.

-libjars <list of jars> Specify a comma-separated list of jar fi les to be included
in the classpath of all task JVMs.

-archives <list of archives> Specify a comma-separated list of archives to be
unarchived on all task nodes.

The convention for our template is to call the Mapper class MapClass and the
Reducer class Reduce . The naming would seem more symmetrical if we call the Mapper
class Map, but Java already has a class (interface) named Map. Both the Mapper and the
Reducer extend MapReduceBase , which is a small class providing no-op implementations
to the confi gure() and close() methods required by the two interfaces. We use the
confi gure() and close() methods to set up and clean up the map (reduce) tasks. We
won’t need to override them except for more advanced jobs.

The signatures for the Mapper class and the Reducer class are

public static class MapClass extends MapReduceBase
 implements Mapper<K1, V1, K2, V2> {

 public void map(K1 key, V1 value,
 OutputCollector<K2, V2> output,
 Reporter reporter) throws IOException { }
}

public static class Reduce extends MapReduceBase
 implements Reducer<K2, V2, K3, V3> {

 public void reduce(K2 key, Iterator<V2> values,
 OutputCollector<K3, V3> output,
 Reporter reporter) throws IOException { }
}

The center of action for the Mapper class is the map() method and for the Reducer
class the reduce() method. Each invocation of the map() method is given a key/value
pair of types K1 and V1, respectively . The key/value pairs generated by the mapper are
outputted via the collect() method of the OutputCollector object. Somewhere in
your map() method you need to call

output.collect((K2) k, (V2) v);

Each invocation of the reduce() method at the reducer is given a key of type K2 and
a list of values of type V2. Note that it must be the same K2 and V2 types used in the
Mapper. The reduce() method will likely have a loop to go through all the values of
type V2.

72 CHAPTER 4 Writing basic MapReduce programs

while (values.hasNext()) {
 V2? v = values.next();
 ...
}

The reduce() method is also given an OutputCollector to gather its key/value out-
put, which is of type K3/V3. Somewhere in the reduce() method you’ll call

output.collect((K3) k, (V3) v);

In addition to having consistent K2 and V2 types across Mapper and Reducer, you’ll
also need to ensure that the key and value types used in Mapper and Reducer are con-
sistent with the input format, output key class, and output value class set in the driver.
The use of KeyValueTextInputFormat means that K1 and V1 must both be type Text .
The driver must call setOutputKeyClass() and setOutputValueClass() with the
classes of K2 and V2, respectively.

Finally, all the key and value types must be subtypes of Writable , which ensures a
serialization interface for Hadoop to send the data around in a distributed cluster. In
fact, the key types implement WritableComparable , a subinterface of Writable. The
key types need to additionally support the compareTo() method, as keys are used for
sorting in various places in the MapReduce framework.

4.3 Counting things
 Much of what the layperson thinks of as statistics is counting, and many basic Hadoop
jobs involve counting. We’ve already seen the word count example in chapter 1. For
the patent citation data, we may want the number of citations a patent has received.
This too is counting. The desired output would look like this:

1 2
10000 1
100000 1
1000006 1
1000007 1
1000011 1
1000017 1
1000026 1
1000033 2
1000043 1
1000044 2
1000045 1
1000046 2
1000049 1
1000051 1
1000054 1
1000065 1
1000067 3

In each record, a patent number is associated with the number of citations it has re-
ceived. We can write a MapReduce program for this task. Like we said earlier, you
hardly ever write a MapReduce program from scratch. You have an existing MapReduce

 Counting things 73

program that processes the data in a similar way. You copy that and modify it until it fi ts
what you want.

We already have a program for getting the inverted citation index. We can modify
that program to output the count instead of the list of citing patents. We need the
modifi cation only at the Reducer. If we choose to output the count as an IntWritable,
we need to specify IntWritable in three places in the Reducer code. We called them
V3 in our previous notation.

public static class Reduce extends MapReduceBase
 implements Reducer<Text, Text, Text, IntWritable> {

 public void reduce(Text key, Iterator<Text> values,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {

 int count = 0;
 while (values.hasNext()) {
 values.next();
 count++;
 }
 output.collect(key, new IntWritable(count));
 }
}

By changing a few lines and matching class types, we have a new MapReduce
program. This program may seem a minor modifi cation. Let’s go through another
example that requires more changes, but you’ll see that the basic MapReduce program
structure remains.

After running the previous example, we now have a data set that counts the number
of citations for each patent. A neat exercise would be to count the counts. Let’s build
a histogram of the citation counts. We expect a large number of patents to have been
only cited once, and a small number may have been cited hundreds of times. It would
be interesting to see the distribution of the citation counts.

NOTE As the patent citation data set only covers patents issued between 1975
and 1999, the citation count is necessarily an underestimate. (Citations from
patents outside of that period aren’t counted.) We also don’t deal with patents
that supposedly have been cited zero times. Despite these caveats, the analysis
will be useful.

The fi rst step to writing a MapReduce program is to fi gure out the data fl ow. In this
case, as a mapper reads a record, it ignores the patent number and outputs an interme-
diate key/value pair of <citation_count, 1>. The reducer will sum up the number
of 1s for each citation count and output the total.

After fi guring out the data fl ow, decide on the types for the key/value pairs—K1, V1,
K2, V2, K3, and V3 for the input, intermediate, and output key/value pairs. Let’s use
the KeyValueTextInputFormat , which automatically breaks each input record into
key/value pairs based on a separator character. The input format produces K1 and V1

74 CHAPTER 4 Writing basic MapReduce programs

as Text . We choose to use IntWritable for K2, V2, K3, and V3 because we know those
data must be integers and it’s more effi cient to use IntWritable.

Based on the data fl ow and the data types, you’ll be able to see the fi nal program
shown in listing 4.2 and understand what it’s doing. You can see that it’s structurally
similar to the other MapReduce programs we’ve seen so far. We go into details about
the program after the listing.

Listing 4.2 CitationHistogram.java: count patents cited once, twice, and so on

public class CitationHistogram extends Confi gured implements Tool {

 public static class MapClass extends MapReduceBase
 implements Mapper<Text, Text, IntWritable, IntWritable> {

 private fi nal static IntWritable uno = new IntWritable(1);
 private IntWritable citationCount = new IntWritable();

 public void map(Text key, Text value,
 OutputCollector<IntWritable, IntWritable> output,
 Reporter reporter) throws IOException {

 citationCount.set(Integer.parseInt(value.toString()));
 output.collect(citationCount, uno);
 }
 }

 public static class Reduce extends MapReduceBase
 implements Reducer<IntWritable,IntWritable,IntWritable,IntWritable>
 {

 public void reduce(IntWritable key, Iterator<IntWritable> values,
 OutputCollector<IntWritable, IntWritable>output,
 Reporter reporter) throws IOException {

 int count = 0;
 while (values.hasNext()) {
 count += values.next().get();
 }
 output.collect(key, new IntWritable(count));
 }
 }

 public int run(String[] args) throws Exception {
 Confi guration conf = getConf();

 JobConf job = new JobConf(conf, CitationHistogram.class);

 Path in = new Path(args[0]);
 Path out = new Path(args[1]);
 FileInputFormat.setInputPaths(job, in);
 FileOutputFormat.setOutputPath(job, out);

 job.setJobName(“CitationHistogram”);
 job.setMapperClass(MapClass.class);
 job.setReducerClass(Reduce.class);

 job.setInputFormat(KeyValueTextInputFormat.class);
 job.setOutputFormat(TextOutputFormat.class);

 Counting things 75

 job.setOutputKeyClass(IntWritable.class);
 job.setOutputValueClass(IntWritable.class);

 JobClient.runJob(job);

 return 0;
 }

 public static void main(String[] args) throws Exception {
 int res = ToolRunner.run(new Confi guration(),
 new CitationHistogram(),
 args);

 System.exit(res);
 }
}

The class name is now CitationHistogram; all references to MyJob were changed to re-
fl ect the new name. The main() method is almost always the same. The driver is mostly
intact. The input format and output format are still KeyValueTextInputFormat
and TextOutputFormat , respectively. The main change is that the output key class
and the output value class are now IntWritable, to refl ect the new type for K2 and V2.
We’ve also removed this line:

job.set(“key.value.separator.in.input.line”, “,”);

 It sets the separator character used by KeyValueTextInputFormat to break each in-
put line into a key/value pair. Previously it was a comma for processing the original
patent citation data. By not setting this property it defaults to the tab character, which
is appropriate for the citation count data.

The data fl ow for this mapper is similar to that of the previous mappers, only here
we’ve chosen to defi ne and use a couple class variables—citationCount and uno.

public static class MapClass extends MapReduceBase
 implements Mapper<Text, Text, IntWritable, IntWritable> {

 private fi nal static IntWritable uno = new IntWritable(1);
 private IntWritable citationCount = new IntWritable();

 public void map(Text key, Text value,
 OutputCollector<IntWritable, IntWritable> output,
 Reporter reporter) throws IOException {

 citationCount.set(Integer.parseInt(value.toString()));
 output.collect(citationCount, uno);
 }
}

The map() method has one extra line for setting citationCount, which is for type
casting. The reason for defi ning citationCount and uno in the class rather than
inside the method is purely one of effi ciency. The map() method will be called as
many times as there are records (in a split, for each JVM). Reducing the number
of objects created inside the map() method can increase performance and reduce
garbage collection . As we pass citationCount and uno to output.collect(),

76 CHAPTER 4 Writing basic MapReduce programs

we’re relying on the output.collect() method’s contract to not modify those
two objects.4

The reducer sums up the values for each key. It seems ineffi cient because we know
all values are 1s (uno, to be exact). Why do we need to sum the count? We’ve chosen
this route because it will be easier for us later if we choose to add a combiner to enhance
performance. Unlike MapClass, the call to output.collect() in Reduce instantiates
a new IntWritable rather than reuse an existing one.

output.collect(key, new IntWritable(count));

We can improve performance by using an IntWritable class variable. But the number
of times reduce() is called is much smaller in this particular program, probably no
more than a thousand times (across all reducers). We don’t have much need to opti-
mize this particular code.

Running the MapReduce job on the citation count data will show the following
result. As we suspect, a large number (900K+) of patents have only one citation, whereas
some have hundreds of citations. The most popular patent has 779 citations.

1 921128
2 552246
3 380319
4 278438
5 210814
6 163149
7 127941
8 102155
9 82126
10 66634
...
411 1
605 1
613 1
631 1
633 1
654 1
658 1
678 1
716 1
779 1

As this histogram output is only several hundred lines long, we can put it into a spread-
sheet and plot it. Figure 4.2 shows the number of patents at various citation frequen-
cies. The plot is on a log-log scale. When a distribution shows as a line in a log-log plot,
it’s considered to be a power law distribution . The citation count histogram seems to
fi t the description, although its approximately parabolic curvature also suggests a log-
normal distribution .

As you’ve seen in our examples so far, a MapReduce program is often not very big,
and you can keep a certain structure across them to simplify development. Most of the
work is in thinking through the data fl ow.

4 We see in section 5.1.3 that this reliance will forbid the ChainMapper from using pass-by-reference.

 Adapting for Hadoop’s API changes 77

4.4 Adapting for Hadoop’s API changes
One of the main design goals driving toward Hadoop’s major 1.0 release is a
stable and extensible MapReduce API. As of this writing, version 0.20 is the latest
release and is considered a bridge between the older API (that we use throughout
this book) and this upcoming stable API. The 0.20 release supports the future
API while maintaining backward-compatibility with the old one by marking it
as deprecated. Future releases after 0.20 will stop supporting the older API. As
of this writing, we don’t recommend jumping into the new API yet for a couple
reasons:

1 Many of Hadoop’s own library classes in 0.20 aren’t rewritten under the new
API yet. You won’t be able to use those classes if your MapReduce code uses the
new API in 0.20.

2 Many still consider the most production-ready and stable version of Hadoop as
of this writing to be 0.18.3. Some users are warming up to version 0.20, but we
suggest you wait a little longer before going full production with it.5

By the time you read this the situation may be different. In this section we cover the
changes the new API presents. Fortunately, almost all the changes affect only the basic
MapReduce template. We rewrite the template under the new API to enable you to use
it in the future.

5 You may be wondering about version 0.19. The general consensus is that its initial release was problematic
and full of bugs. Some minor releases tried fi xing the problems, but the community seems to want to skip
straight to 0.20 instead.

Figure 4.2 Plotting the number of patents at different citation frequencies. Many
patents have one citation (or not at all, which is not shown on this graph). Some
patents have hundreds of citations. On a log-log graph, this looks close enough to
a straight line to be considered a power-law distribution.

78 CHAPTER 4 Writing basic MapReduce programs

The fi rst thing you’ll notice in the new API is that many classes in org.apache.
hadoop.mapred have been moved elsewhere. Many of them are now at org.apache.
hadoop.mapreduce, and the library classes are under one of the packages in org.
apache.hadoop.mapreduce.lib. After you’ve moved to the new API, you shouldn’t
have any import statements (or full references) to any classes under org.apache.
hadoop.mapred, all of which are to be deprecated.

The most meaningful change in the new API is the introduction of context objects.
Its most immediate impact is to replace the OutputCollector and Reporter objects
used in the map() and reduce() methods. You now output key/value pairs by
calling Context.write() instead of OutputCollector.collect(). The long-term
consequences are to unify communication between your code and the MapReduce
framework, and to stabilize the Mapper and Reducer API such that the basic method
signatures will not change when new functionalities are added. New functionalities
will only be additional methods on the context objects. Programs written before the
introduction of those functionalities will be unaware of the new methods, and they will
continue to compile and run against the newer releases.

The new map() and reduce() methods are contained in new abstract classes Mapper
and Reducer, respectively. They replace the Mapper and Reducer interfaces in the
original API (org.apache.hadoop.mapred.Mapper and org.apache.hadoop.mapred.
Reducer). The new abstract classes also replace the MapReduceBase class, which has
been deprecated.

The new map() and reduce() methods have a couple more minor changes.
They can throw InterruptedException instead of only IOException. In addition,
the reduce() method no longer accepts the list of values as an Iterator but as
an Iterable, which is easier to iterate through using Java’s foreach syntax. We can
summarize the changes we’ve discussed so far in the method signatures for MapClass
and Reduce. Recall the signatures under the original API:

public static class MapClass extends MapReduceBase
 implements Mapper<K1, V1, K2, V2> {

 public void map(K1 key, V1 value,
 OutputCollector<K2, V2> output,
 Reporter reporter) throws IOException { }
}

public static class Reduce extends MapReduceBase
 implements Reducer<K2, V2, K3, V3> {

 public void reduce(K2 key, Iterator<V2> values,
 OutputCollector<K3, V3> output,
 Reporter reporter) throws IOException { }
}

The new API has simplifi ed them somewhat:

public static class MapClass extends Mapper<K1, V1, K2, V2> {

 public void map(K1 key, V1 value, Context context)
 throws IOException, InterruptedException { }

 Adapting for Hadoop’s API changes 79

}

public static class Reduce extends Reducer<K2, V2, K3, V3> {

 public void reduce(K2 key, Iterable<V2> values, Context context)
 throws IOException, InterruptedException { }
}

You also need to change a few things in the driver to support the new API. JobConf
and JobClient classes have been replaced. Their functionalities have been pushed
to the Confi guration class (which was originally the parent class of JobConf) and a
new class Job. The Confi guration class purely confi gures a job, whereas the Job class
defi nes and controls the execution of a job. Methods such as setOutputKeyClass()
and setOutputValueClass() have moved from JobConf to Job. A job’s construction
and submission for execution are now under Job. Originally you would construct a job
using JobConf:

JobConf job = new JobConf(conf, MyJob.class);
job.setJobName(“MyJob”);

Now it’s done through Job:

Job job = new Job(conf, “MyJob”);
job.setJarByClass(MyJob.class);

Previously JobClient submitted a job for execution:

JobClient.runJob(job);

Now it’s also done through Job:

System.exit(job.waitForCompletion(true)?0:1);

Listing 4.3 is the template program from listing 4.1 rewritten to use the new API in
Hadoop 0.20. It incorporates all the changes we’ve mentioned in this section.

Listing 4.3 Template for basic Hadoop program (listing 4.1) rewritten for new API v 0.20

public class MyJob extends Confi gured implements Tool {

 public static class MapClass
 extends Mapper<LongWritable, Text, Text, Text> {

 public void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {

 String[] citation = value.toString().split(“,”);
 context.write(new Text(citation[1]), new Text(citation[0]));
 }
 }

 public static class Reduce extends Reducer<Text, Text, Text, Text> {

 public void reduce(Text key, Iterable<Text> values,
 Context context)
 throws IOException, InterruptedException {

 String csv = “”;

80 CHAPTER 4 Writing basic MapReduce programs

 for (Text val:values) {
 if (csv.length() > 0) csv += “,”;
 csv += val.toString();
 }

 context.write(key, new Text(csv));
 }
 }

 public int run(String[] args) throws Exception {
 Confi guration conf = getConf();

 Job job = new Job(conf, “MyJob”);
 job.setJarByClass(MyJob.class);

 Path in = new Path(args[0]);
 Path out = new Path(args[1]);
 FileInputFormat.setInputPaths(job, in);
 FileOutputFormat.setOutputPath(job, out);

 job.setMapperClass(MapClass.class);
 job.setReducerClass(Reduce.class);

 job.setInputFormatClass(TextInputFormat.class); q
 job.setOutputFormatClass(TextOutputFormat.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(Text.class);

 System.exit(job.waitForCompletion(true)?0:1);

 return 0;
 }

 public static void main(String[] args) throws Exception {
 int res = ToolRunner.run(new Confi guration(), new MyJob(), args);

 System.exit(res);
 }
}

The code performs the same inverted indexing function as listing 4.1, but under the
0.20 API. Unfortunately, the KeyValueTextInputFormat class we had used in listing
4.1 hasn’t been ported to the new API as of version 0.20. We have to rewrite the tem-
plate using TextInputFormat q. We expect all Hadoop classes to support the new
API when version 0.21 is released. To keep presentation of examples in the rest of this
book unifi ed, we continue to use the API before 0.20.

4.5 Streaming in Hadoop
We have been using Java to write all our Hadoop programs. Hadoop supports other
languages via a generic API called Streaming . In practice, Streaming is most useful
for writing simple, short MapReduce programs that are more rapidly developed in a
scripting language that can take advantage of non-Java libraries.

Hadoop Streaming interacts with programs using the Unix streaming paradigm.
Inputs come in through STDIN and outputs go to STDOUT. Data has to be text
based and each line is considered a record. Note that this is exactly how many

Iterable allows
foreach looping

Compatible
InputFormat class

 Streaming in Hadoop 81

Unix commands work, and Hadoop Streaming enables those commands to be used
as mappers and reducers. If you’re familiar with using Unix commands, such as
wc, cut, or uniq for data processing, you can apply them to large data sets using
Hadoop Streaming.

The overall data fl ow in Hadoop Streaming is like a pipe where data streams
through the mapper, the output of which is sorted and streamed through the reducer.
In pseudo-code using Unix’s command line notation, it’s

cat [input_fi le] | [mapper] | sort | [reducer] >[output_fi le]

The following examples will illustrate how to use Streaming with Unix commands.

4.5.1 Streaming with Unix commands

 In the fi rst example, let’s get a list of cited patents in cite75_99.txt.

bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar

 ➥ -input input/cite75_99.txt
 ➥ -output output
 ➥ -mapper ‘cut -f 2 -d ,’
 ➥ -reducer ‘uniq’

 That’s it! It’s a one-line command. Let’s see what each part of the command does.
The Streaming API is in a contrib package at contrib/streaming/hadoop-*-

streaming.jar. The fi rst part and the -input and the -output arguments specify
that we’re running a Streaming program with the corresponding input and output
fi le/directory. The mapper and reducer are specifi ed as arguments in quotes. We see
that for the mapper we use the Unix cut command to extract the second column,
where columns are separated by commas. In the citation data set this column is the
patent number of a cited patent. These patent numbers are then sorted and passed to
the reducer. The uniq command at the reducer will remove all duplicates in the sorted
data. The output of this command is

“CITED”
1
10000
100000
1000006
...
999973
999974
999977
999978
999983

The fi rst row has the column descriptor “CITED” from the original fi le. Note that the
rows are sorted lexicographically because Streaming processes everything as text and
doesn’t know other data types.

After getting the list of cited patents, we may want to know how many are there.
Again we can use Streaming to quickly get a count, using the Unix command wc –l.

82 CHAPTER 4 Writing basic MapReduce programs

bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar

 ➥ -input output
 ➥ -output output_a
 ➥ -mapper ‘wc -l’
 ➥ -D mapred.reduce.tasks=0

Here we use wc –l as the mapper to count the number of records in each split.
Hadoop Streaming (since version 0.19.0) supports the GenericOptionsParser . The
-D argument is used for specifying confi guration properties. We want the mapper to
directly output the record count without any reducer, so we set mapred.reduce.tasks
to 0 and don’t specify the -reducer option at all. 6 The fi nal count is 3258984. More
than 3 million patents have been cited according to our data.

4.5.2 Streaming with scripts

We can use any executable script that processes a line-oriented data stream from
STDIN and outputs to STDOUT with Hadoop Streaming. For example, the Python script
in listing 4.4 randomly samples data from STDIN. For those who don’t know Python,
the program has a for loop that reads STDIN one line at a time. For each line, we
choose a random integer between 1 and 100 and check against the user-given argu-
ment (sys.argv[1]). The comparison determines whether to pass that line on to the
output or ignore it. You can use the script in Unix to uniformly sample a line-oriented
data fi le, for example:

cat input.txt | RandomSample.py 10 >sampled_output.txt

The preceding command calls the Python script with an argument of 10; sampled_
output.txt will have (approximately) 10 percent of the records in input.txt. We can
in fact specify any integer between 1 and 100 to get the corresponding percentage of
data in the output.

Listing 4.4 RandomSample.py: a Python script printing random lines from STDIN

#!/usr/bin/env python
import sys, random

for line in sys.stdin:
 if (random.randint(1,100) <= int(sys.argv[1])):
 print line.strip()

We can apply the same script in Hadoop to get a smaller sample of a data set. A
sampled data set is often useful for development purposes, as you can run your
Hadoop program on the sampled data in standalone or pseudo-distributed mode
to quickly debug and iterate. Also, when you’re looking for some “descriptive”

6 You may notice that this approach counts the number of records in each split, not the entire fi le. With
a bigger fi le, or multiple fi les, the user will have to sum up the counts herself to get the overall total. To
fully automate a complete counting, the user will have to write a script at the reducer to sum up all the
partial counts.

 Streaming in Hadoop 83

information about your data, the speed and convenience in processing a smaller
data set generally outweigh any loss of precision. Finding data clusters is one ex-
ample of such descriptive information. Optimized implementations of a variety of
clustering algorithms are readily available in R, MATLAB, and other packages. It
makes a lot more sense to sample down the data and apply some standard software
package, instead of trying to process all data using some distributed clustering al-
gorithms in Hadoop.

WARNING The loss of precision from computing on a sampled data set may
or may not be important. It depends on what you’re trying to compute and
the distribution of your data set. For example, it’s usually fi ne to compute an
average from a sampled data set, but if the data set is highly skewed and the
average is dominated by a few values, sampling can be problematic. Similarly,
clustering on a sampled data set is fi ne if it’s used only to get a general
understanding of the data. If you were looking for small, anomalous clusters,
sampling may get rid of them. For functions such as maximum and minimum,
it’s not a good idea to apply them to sampled data.

Running RandomSample.py using Streaming is like running Unix commands using
Streaming, the difference being that Unix commands are already available on all nodes
in the cluster, whereas RandomSample.py is not. Hadoop Streaming supports a -fi le
option to package your executable fi le as part of the job submission. 7 Our command
to execute RandomSample.py is

bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar

 ➥ -input input/cite75_99.txt
 ➥ -output output
 ➥ -mapper ‘RandomSample.py 10’
 ➥ -fi le RandomSample.py
 ➥ -D mapred.reduce.tasks=1

In specifying the mapper to be ‘RandomSample.py 10’ we’re sampling at 10 percent.
Note that we’ve set the number of reducers (mapred.reduce.tasks) to 1. As we
haven’t specifi ed any particular reducer, it will use the default IdentityReducer. As
its name implies, IdentityReducer passes its input straight to output. In this case we
can set the number of reducers to any non-zero value to get an exact number of output
fi les. Alternatively, we can set the number of reducers to 0, and let the number of out-
put fi les be the number of mappers. This is probably not ideal for the sampling task as
each mapper’s output is only a small fraction of the input, and we may end up with a
number of small fi les. We can easily correct that later using the HDFS shell command
getmerge or other fi le manipulations to arrive at the right number of output fi les. The
approach to use is more or less a personal preference.

7 It’s also implicitly assumed that you have installed the Python language on all the nodes in your cluster.

84 CHAPTER 4 Writing basic MapReduce programs

The random sampling script was implemented in Python, although any scripting
language that works with STDIN and STDOUT would work. For illustration we’ve rewritten
the same script in PHP 8 (listing 4.5). Execute this Stream script with

bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar

 ➥ -input input/cite75_99.txt
 ➥ -output output
 ➥ -mapper ‘php RandomSample.php 10’
 ➥ -fi le RandomSample.php
 ➥ -D mapred.reduce.tasks=1

Listing 4.5 RandomSample.php.: a PHP script printing random lines from STDIN

<?php

while (!feof(STDIN)) {
 $line = fgets(STDIN);
 if (mt_rand(1,100) <= $argv[1]) {
 echo $line;
 }
}

 The random sampling scripts don’t require any custom reducer, but you can’t always
write a Streaming program like that. As you’ll use Streaming quite often in practice,
let’s see another exercise. This time we create a custom reducer.

Suppose we’re interested in fi nding the most number of claims in a single patent. In
the patent description data set, the number of claims for a given patent is in the ninth
column. Our task is to fi nd the maximum value in the ninth column of the patent
description data.

Under Streaming, each mapper sees the entire stream of data, and it’s the mapper
that takes on the responsibility of breaking the stream into (line-oriented) records.
In the standard Java model, the framework itself breaks input data into records, and
gives the map() method only one record at a time. The Streaming model makes it
easy to keep state information across records in a split, which we take advantage of in
computing the maximum. The standard Java model, too, can keep track of state across
records in a split, but it’s more involved. We cover that in the next chapter.

In creating a Hadoop program for computing maximum, we take advantage of
the distributive property of maximum. Given a data set divided into many splits, the

8 You may have noticed in listing 4.5 that there’s no ending bracket ?> to close the opening bracket <?php.
Recall that PHP was originally designed to work within static HTML content. Anything outside the PHP
brackets <?php ... ?> is considered static content to be outputted. When using PHP as a pure scripting
language, you need to be careful that you leave no whitespaces outside the brackets. Otherwise they will be
outputted and may cause unintended behavior that is hard to debug. (It would appear whitespaces were
introduced in the output data out of nowhere.)
 It’s easy to ensure that there’s no whitespaces before the opening bracket <?php by putting the bracket at
the beginning of the script fi le. But, it’s easy to accidentally leave whitespaces after the closing bracket ?>,
as ending whitespaces don’t grab attention. When using a fi le as a PHP script, it’s safer to omit the closing
bracket ?>. The PHP interpreter will quietly read everything till the end-of-fi le as PHP commands rather
than static content.

 Streaming in Hadoop 85

global maximum is the maximum over the maxima of the splits. That sounded like a
mouthful, but a simple example will make it clear. If we have four records X1, X2, X3,
and X4, and they’re divided into two splits (X1, X2) and (X3, X4), we can fi nd the
maximum over all four records by looking at the maximum of each split, or

max(X1,X2,X3,X4) = max(max(X1,X2), max(X3,X4))

Our strategy is to have mapper calculate the maximum over its individual split. Each
mapper will output a single value at the end. We have a single reducer that looks at all
those values and outputs the global maximum. Listing 4.6 depicts the Python script for
a mapper to compute the maximum over a split.

Listing 4.6 AttributeMax.py: Python script to fi nd maximum value of an attribute

#!/usr/bin/env python

import sys

index = int(sys.argv[1])
max = 0
for line in sys.stdin:
 fi elds = line.strip().split(“,”)
 if fi elds[index].isdigit():
 val = int(fi elds[index])
 if (val > max):
 max = val
else:
 print max

The script is not complicated. It has a for loop to read one record at a time. It
tokenizes the record into fi elds and updates the maximum if the user-specifi ed fi eld
is bigger. Note that the mapper doesn’t output any value until the end, when it
sends out the maximum value of the entire split. This is different from what we’ve
seen before, where each record sends out one or more intermediate records to be
processed by the reducers.

Given the parsimonious output of the mapper, we can use the default
IdentityReducer to record the (sorted) output of the mappers.

bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar

 ➥ -input input/apat63_99.txt
 ➥ -output output
 ➥ -mapper ‘AttributeMax.py 8’
 ➥ -fi le playground/AttributeMax.py
 ➥ -D mapred.reduce.tasks=1

The mapper is ‘AttributeMax.py 8’. It outputs the maximum of the ninth column
in a split. The single reducer collects all the mapper outputs. Given seven mappers, the
fi nal output of the above command is this:

0
260
306

86 CHAPTER 4 Writing basic MapReduce programs

348
394
706
868

Each line records the maximum over a particular split. We see that one split has zero
claims in all its records. This sounds suspicious until we recall that the claim count at-
tribute is not available for patents before 1975.

We see that our mapper is doing the right thing. We can use a reducer that outputs
the maximum over the values outputted by the mappers. We have an interesting
situation here, due to the distributive property of maximum, where we can also use
AttributeMax.py as the reducer. Only now the reducer is trying to fi nd the maximum
in the “fi rst” column.

bin/hadoop jar contrib/streaming/hadoop-0.18.1-streaming.jar

 ➥ -input input/apat63_99.txt
 ➥ -output output
 ➥ -mapper ‘AttributeMax.py 8’
 ➥ -reducer ‘AttributeMax.py 0’
 ➥ -fi le AttributeMax.py
 ➥ -D mapred.reduce.tasks=1

The output of the above command should be a one-line fi le, and you’ll fi nd the maxi-
mum number of claims in a patent to be 868.

Classes of aggregation functions
We use aggregation functions to compute descriptive statistics. They’re generally
grouped into three classes: distributive , algebraic , and holistic . The maximum
function is an example of a distributive function. Other distributive functions
include minimum , sum , and count . As the name implies, distributive functions have
distributive properties. Similar to the maximum function, you can globally compute
these functions by iteratively applying them to smaller chunks of data.

Another class of aggregation functions is the algebraic functions. Examples of this
class include average and variance . They don’t follow the distributive property, and
their derivation will require some “algebraic” computation over simpler functions. We
get into examples of this in the next section.

Finally, functions such as median and K smallest/largest value belong to the holistic
class of aggregation functions. Readers interested in a challenge should try to
implement the median function in an effi cient manner using Hadoop.

4.5.3 Streaming with key/value pairs

At this point you may wonder what happened to the key/value pair way of encoding
records. Our discussion on Streaming so far talks about each record as an atomic unit

 Streaming in Hadoop 87

rather than as composed of a key and a value. The truth is that Streaming works on
key/value pairs just like the standard Java MapReduce model. By default, Streaming
uses the tab character to separate the key from the value in a record. When there’s no
tab character, the entire record is considered the key and the value is empty text. For
our data sets, which have no tab character, this provides the illusion that we’re process-
ing each individual record as a whole unit. Furthermore, even if the records do have
tab characters in them, the Streaming API will only shuffl e and sort the records in a
different order. As long as our mapper and reducer work in a record-oriented way, we
can maintain the record-oriented illusion.

Working with key/value pairs allows us to take advantage of the key-based shuffl ing
and sorting to create interesting data analyses. To illustrate key/value pair processing
using Streaming, we can write a program to fi nd the maximum number of claims in a
patent for each country. This would differ from AttributeMax.py in that this is trying
to fi nd the maximum for each key, rather than a maximum across all records. Let’s
make this exercise more interesting by computing the average rather than fi nding
the maximum. (As we see, Hadoop already includes a package called Aggregate that
contains classes that help fi nd the maximum for each key.)

First, let’s examine how key/value pairs work in the Streaming API for each step of
the MapReduce data fl ow.

1 As we’ve seen, the mapper under Streaming reads a split through STDIN and
extracts each line as a record. Your mapper can choose to interpret each input
record as a key/value pair or a line of text.

2 The Streaming API will interpret each line of your mapper’s output as a key/
value pair separated by tab. Similar to the standard MapReduce model, we
apply the partitioner to the key to fi nd the right reducer to shuffl e the record
to. All key/value pairs with the same key will end up at the same reducer.

3 At each reducer, key/value pairs are sorted according to the key by the
Streaming API. Recall that in the Java model, all key/value pairs of the same
key are grouped together into one key and a list of values. This group is then
presented to the reduce() method. Under the Streaming API your reducer is
responsible for performing the grouping. This is not too bad as the key/value pairs
are already sorted by key. All records of the same key are in one contiguous
chunk. Your reducer will read one line at a time from STDIN and will keep
track of the new keys.

4 For all practical purposes, the output (STDOUT) of your reducer is written to
a fi le directly. Technically a no-op step is taken before the fi le write. In this
step the Streaming API breaks each line of the reducer’s output by the tab
character and feeds the key/value pair to the default TextOutputFormat ,
which by default re-inserts the tab character before writing the result to a
fi le. Without tab characters in the reducer’s output it will show the same

88 CHAPTER 4 Writing basic MapReduce programs

no-op behavior. You can reconfi gure the default behavior to do something
different, but it makes sense to leave it as a no-op and push the processing
into your reducer.

To understand the data fl ow better, we write a Streaming program to compute the
average number of claims for each country. The mapper will extract the country and
the claims count for each patent and package them as a key/value pair. In accord
with the default Streaming convention, the mapper outputs this key/value pair with a
tab character to separate them. The Streaming API will pick up the key and the shuf-
fl ing will guarantee that all claim counts of a country will end up at the same reducer.
We can see the Python code in listing 4.7. For each record, the mapper extracts the
country (fi elds[4][1:-1]) as key and the claims count (fi elds[8]) as value. An extra
concern with our data set is that missing values do exist. We’ve added a conditional
statement to skip over records with missing claim counts.

Listing 4.7 AverageByAttributeMapper.py: output country and claim count of patents

#!/usr/bin/env python

import sys

for line in sys.stdin:
 fi elds = line.split(“,”)
 if (fi elds[8] and fi elds[8].isdigit()):
 print fi elds[4][1:-1] + “\t” + fi elds[8]

Before writing the reducer, let’s run the mapper in two situations: without any reducer,
and with the default IdentityReducer. It’s a useful approach now for learning as we
can see exactly what’s being outputted by the mapper (by using no reducer) and what’s
being inputted into the reducer (by using IdentityReducer). You’ll fi nd this handy
later when debugging your MapReduce program. You can at least check if the mapper
is outputting the proper data and if the proper data is being sent to the reducer. First
let’s run the mapper without any reducer.

bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar

 ➥ -input input/apat63_99.txt
 ➥ -output output
 ➥ -fi le playground/AverageByAttributeMapper.py
 ➥ -mapper ‘AverageByAttributeMapper.py’
 ➥ -D mapred.reduce.tasks=0

The output should consist of lines where a country code is followed by a tab followed
by a numeric count. The order of the output records is not sorted by (the new) key. In
fact, it’s in the same order as the order of the input records, although that’s not obvi-
ous from looking at the output.

The more interesting case is to use the IdentityReducer with a non-zero number
of reducers. We see how the shuffl ed and sorted records are presented to the reducer.
To keep it simple let’s try a single reducer by setting -D mapred.reduce.tasks=1 and
see the fi rst 32 records.

 Streaming in Hadoop 89

AD 9
AD 12
AD 7
AD 28
AD 14
AE 20
AE 7
AE 35
AE 11
AE 12
AE 24
AE 4
AE 16
AE 26
AE 11
AE 4

AE 23
AE 12
AE 16
AE 10
AG 18
AG 12
AG 8
AG 14
AG 24
AG 20
AG 7
AG 3
AI 10
AM 18
AN 5
AN 26

Under the Streaming API, the reducer will see these text data in STDIN. We have to code
our reducer to recover the key/value pairs by breaking each line at the tab character. Sort-
ing has “grouped” together records of the same key. As you read each line from STDIN,
you’ll be responsible for keeping track of the boundary between records of different
keys. Note that although the keys are sorted, the values don’t follow any particular order.
Finally, the reducer must perform its stated computation, which in this case is calculating
the average value across a key. Listing 4.8 gives the complete reducer in Python .

Listing 4.8 AverageByAttributeReducer.py

#!/usr/bin/env python

import sys

(last_key, sum, count) = (None, 0.0, 0)

for line in sys.stdin:
 (key, val) = line.split(“\t”)

 if last_key and last_key != key:
 print last_key + “\t” + str(sum / count)
 (sum, count) = (0.0, 0)

 last_key = key
 sum += fl oat(val)
 count += 1

print last_key + “\t” + str(sum / count)

The program keeps a running sum and count for each key. When it detects a new key
in the input stream or the end of the fi le, it computes the average for the previous key
and sends it to STDOUT. After running the entire MapReduce job, we can easily check
the correctness of the fi rst few results.

AD 14.0
AE 15.4
AG 13.25
AI 10.0
AM 18.0
AN 9.625

90 CHAPTER 4 Writing basic MapReduce programs

NOTE For those interested, the NBER website from where we get the patent
data also has a fi le (list_of_countries.txt) that shows the full country
name for each country code. Looking at the output of our job and the country
codes, we see that Andorra (AD) patents have an average 14 claims. Arab
Emirates (AE) patents average 15.4 claims. Antigua and Barbuda (AG) patents
average 13.25 claims, and so forth.

4.5.4 Streaming with the Aggregate package

 Hadoop includes a library package called Aggregate that simplifi es obtaining aggre-
gate statistics of a data set. This package can simplify the writing of Java statistics collec-
tors, especially when used with Streaming, which is the focus of this section.9

The Aggregate package under Streaming functions as a reducer that computes
aggregate statistics. You only have to provide a mapper that processes records and
sends out a specially formatted output. Each line of the mapper’s output looks like

function:key\tvalue

The output string starts with the name of a value aggregator function (from the set of
predefi ned functions available in the Aggregate package). A colon and a tab separated
key/value pair follows. The Aggregate reducer applies the function to the set of values
for each key. For example, if the function is LongValueSum , then the output is the sum
of values for each key. (As the function name implies, each value is treated as a Java
long type.) If the function is LongValueMax, then the output is the maximum value
for each key. You can see the list of aggregator functions supported in the Aggregate
package in table 4.3.

Table 4.3 List of value aggregator functions supported by the Aggregate package

Value aggregator Description

DoubleValueSum Sums up a sequence of double values.

LongValueMax Finds the maximum of a sequence of long values.

LongValueMin Finds the minimum of a sequence of long values.

LongValueSum Sums up a sequence of long values.

StringValueMax Finds the lexicographical maximum of a sequence of
string values.

StringValueMin Finds the lexicographical minimum of a sequence of
string values.

UniqValueCount Finds the number of unique values (for each key).

ValueHistogram Finds the count, minimum, median, maximum, average,
and standard deviation of each value. (See text for
further explanation.)

9 Using the Aggregate package in Java is explained in http://hadoop.apache.org/core/docs/current/api/
org/apache/hadoop/mapred/lib/aggregate/package-summary.html.

 Streaming in Hadoop 91

 Let’s go through an exercise using the Aggregate package to see how easy it is. We
want to count the number of patents granted each year. We can approach this prob-
lem in a way similar to the word counting example we saw in chapter 1. For each
record, our mapper will output the grant year as the key and a “1” as the value. The
reducer will sum up all the values (“1”s) to arrive at a count. Only now we’re using
Streaming with the Aggregate package. Our result will be the simple mapper shown
in listing 4.9.

Listing 4.9 AttributeCount.py

#!/usr/bin/env python

import sys

index = int(sys.argv[1])
for line in sys.stdin:
 fi elds = line.split(“,”)
 print “LongValueSum:” + fi elds[index] + “\t” + “1”

AttributeCount.py works for any CSV-formatted input fi le. The user only has to
specify the column index to count the number of records for each attribute in that
column. The print statement has the main “action” of this short program. It tells the
Aggregate package to sum up all the values (of 1) for each key, defi ned as the user-
specifi ed column (index). To count the number of patents granted each year, we run
this Streaming program with the Aggregate package, telling the mapper to use the
second column (index = 1) of the input fi le as the attribute of interest.

bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar

 ➥ -input input/apat63_99.txt
 ➥ -output output
 ➥ -fi le AttributeCount.py
 ➥ -mapper ‘AttributeCount.py 1’
 ➥ -reducer aggregate

You’ll fi nd most of the options of running the Streaming program familiar. The main
thing to point out is that we’ve specifi ed the reducer to be ‘aggregate’. This is the
signal to the Streaming API that we’re using the Aggregate package. The output of the
MapReduce job (after sorting) is

“GYEAR” 1
1963 45679
1964 47375
1965 62857
...
1996 109645
1997 111983
1998 147519
1999 153486

The fi rst row is anomalous because the fi rst row of the input data is a column descrip-
tion. Otherwise the MapReduce job neatly outputs the patent count for each year. As

92 CHAPTER 4 Writing basic MapReduce programs

shown in fi gure 4.3, we can plot the data to visualize it better. You’ll see that it has a
mostly steady upward trend.

Looking at the list of functions in the Aggregate package in table 4.3, you’ll fi nd that
most of them are combinations of maximum, minimum, and sum for atomic data type.
(For some reason DoubleValueMax and DoubleValueMin aren’t supported. They
would be trivial modifi cations of LongValueMax and LongValueMin and an added
advantage.) UniqValueCount and ValueHistogram are slightly different and we look
at some examples of how to use them.

UniqValueCount gives the number of unique values for each key. For example, we
may want to know whether more countries are participating in the U.S. patent system
over time. We can examine this by looking at the number of countries with patents
granted each year. We use a straightforward wrapper of UniqValueCount in listing
4.10 and apply it to the year and country columns of apat63_99.txt (column index
of 1 and 4, respectively).

bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar

 ➥ -input input/apat63_99.txt
 ➥ -output output
 ➥ -fi le UniqueCount.py
 ➥ -mapper ‘UniqueCount.py 1 4’
 ➥ -reducer aggregate

In the output we get one record for each year. Plotting it gives us fi gure 4.4. We can
see that the increasing number of patents granted from 1960 to 1990 (from fi gure 4.3)
didn’t come from more countries (fi gure 4.4). The same number of countries had
fi led more.

Figure 4.3 Using Hadoop to count patents published each year and Excel to plot the
result. This analysis using Hadoop quickly shows the annual patent output to have
almost quadrupled in 40 years.

 Streaming in Hadoop 93

Listing 4.10 UniqueCount.py: a wrapper around the UniqValueCount function

#!/usr/bin/env python

import sys

index1 = int(sys.argv[1])
index2 = int(sys.argv[2])
for line in sys.stdin:
 fi elds = line.split(“,”)
 print “UniqValueCount:” + fi elds[index1] + “\t” + fi elds[index2]

The aggregate function ValueHistogram is the most ambitious function in the Aggre-
gate package. For each key, it outputs the following:

1 The number of unique values
2 The minimum count
3 The median count
4 The maximum count
5 The average count
6 The standard deviation

In its most general form, it expects the output of the mapper to have the form

ValueHistogram:key\tvalue\tcount

We specify the function ValueHistogram followed by a colon, followed by a tab-
separated key, value, and count triplet. The Aggregate reducer outputs the six statistics
above for each key. Note that for everything except the fi rst statistics (number of
unique values) the counts are summed over each key/value pair. Outputting two
records from your mapper as

ValueHistogram:key_a\tvalue_a\t10
ValueHistogram:key_a\tvalue_a\t20

Figure 4.4 The number of countries with U.S. patents granted in each year. We performed
the computation with a MapReduce job and graphed the result with Excel.

94 CHAPTER 4 Writing basic MapReduce programs

is no different than outputting a single record with the sum

ValueHistogram:key_a\tvalue_a\t30

A useful variation is for the mapper to only output the key and value, without the count
and the tab character that goes with it. ValueHistogram automatically assumes a count
of 1 in this case. Listing 4.11 shows a trivial wrapper around ValueHistogram.

Listing 4.11 ValueHistogram.py: wrapper around Aggregate package’s ValueHistogram

#!/usr/bin/env python

import sys

index1 = int(sys.argv[1])
index2 = int(sys.argv[2])
for line in sys.stdin:
 fi elds = line.split(“,”)
 print “ValueHistogram:” + fi elds[index1] + “\t” + fi elds[index2]

We run this program to fi nd the distribution of countries with patents granted for
each year.

bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar

 ➥ -input input/apat63_99.txt
 ➥ -output output
 ➥ -fi le ValueHist.py
 ➥ -mapper ‘ValueHist.py 1 4’
 ➥ -reducer aggregate

The output is a tab-separated value (TSV) fi le with seven columns. The fi rst column,
the year of patent granted, is the key. The other six columns are the six statistics the
ValueHistogram is set to compute. A partial view of the output is here (we skip the
fi rst two rows for formatting reasons):

1964 58 1 7 38410 816.8103448275862 4997.413601595352
1965 67 1 5 50331 938.1641791044776 6104.779230296307
1966 71 1 5 54634 963.4507042253521 6443.625995189338
1967 68 1 8 51274 965.4705882352941 6177.445623039149
1968 71 1 7 45781 832.4507042253521 5401.229955880634
1969 68 1 8 50394 993.5147058823529 6080.713518728092
1970 72 1 7 47073 894.8472222222222 5527.883233761672
1971 74 1 9 55976 1058.337837837838 6492.837390992137

The fi rst column after the year is the number of unique values. This is exactly the same
as the output of UniqValueCount. The second, third, and fourth columns are the mini-
mum , median , and maximum , respectively. For the patent data set we used, we see
that (for every year) the country receiving the fewest granted patents (other than 0)
received 1. Looking specifi cally at the output for 1964, the country receiving the most
patents received 38410 patents, whereas half the countries received less than 7 patents.
The average number of patents a country received in 1964 is 816.8 with a standard devi-
ation of 4997.4. Needless to say, the number of patents granted to each country is highly
skewed , given the discrepancy between the median (7) and the average (816.8).

 Improving performance with combiners 95

 We’ve seen how using the Aggregate package under Streaming is a simple way to
get some popular metrics. It’s a great demonstration of Hadoop’s power in simplifying
the analysis of large data sets.

4.6 Improving performance with combiners
 We saw in AverageByAttributeMapper.py and AverageByAttributeReducer.py
(listings 4.7 and 4.8) how to compute the average for each attribute. The mapper
reads each record and outputs a key/value pair for the record’s attribute and count.
It shuffl es the key/value pairs across the network, and the reducer computes the aver-
age for each key. In our example of computing the average number of claims for each
country’s patents, we see at least two effi ciency bottlenecks:

1 If we have 1 billion input records, the mappers will generate 1 billion key/
value pairs that will be shuffl ed across the network. If we were computing a
function such as maximum, it’s obvious that the mapper only has to output
the maximum for each key it has seen. Doing so would reduce network traffi c
and increase performance. For a function such as average , it’s a bit more
complicated, but we can still redefi ne the algorithm such that for each mapper
only one record is shuffl ed for each key.

2 Using country from the patent data set as key illustrates data skew . The data is
far from uniformly distributed, as a signifi cant majority of the records would
have U.S. as the key. Not only does every key/value pair in the input map to a
key/value pair in the intermediate data, most of the intermediate key/value
pairs will end up at a single reducer, overwhelming it.

Hadoop solves these bottlenecks by extending the MapReduce framework with a com-
biner step in between the mapper and reducer. You can think of the combiner as a helper
for the reducer. It’s supposed to whittle down the output of the mapper to lessen the
load on the network and on the reducer. If we specify a combiner, the MapReduce
framework may apply it zero, one, or more times to the intermediate data. In order for
a combiner to work, it must be an equivalent transformation of the data with respect
to the reducer. If we take out the combiner, the reducer’s output will remain the same.
Furthermore, the equivalent transformation property must hold when the combiner is
applied to arbitrary subsets of the intermediate data.

If the reducer only performs a distributive function, such as maximum, minimum,
and summation (counting), then we can use the reducer itself as the combiner.
But many useful functions aren’t distributive. We can rewrite some of them, such as
averaging to take advantage of a combiner.

 The averaging approach taken by AverageByAttributeMapper.py is to output
only each key/value pair. AverageByAttributeReducer.py will count the number of
key/value pairs it receives and sum up their values, in order for a single fi nal division
to compute the average. The main obstacle to using a combiner is the counting
operation, as the reducer assumes the number of key/value pairs it receives is the

96 CHAPTER 4 Writing basic MapReduce programs

number of key/value pairs in the input data. We can refactor the MapReduce program
to track the count explicitly. The combiner becomes a simple summation function with
the distributive property.

Let’s fi rst refactor the mapper and reducer before writing the combiner, as the
operation of the MapReduce job must be correct even without a combiner. We write
the new averaging program in Java as the combiner must be a Java class.

NOTE The Streaming API allows you to specify a combiner using the
-combiner option. For versions up to at least 0.20, the combiner must still
be a Java class. It’s best to write your mapper and reducer in a Java language.
Fortunately, the Hadoop roadmap supports native Streaming scripts as
combiners. In practice, one can get the equivalent of a combiner by setting
the mapper to a Unix pipe ‘mapper.py | sort | combiner.py’. In addition,
if you’re using the Aggregate package, each value aggregator already has
a built-in (Java) combiner. The Aggregate package will automatically use
these combiners.

Let’s write a Java mapper (listing 4.12) that’s analogous to AverageByAttributeMapper.
py of listing 4.7.

Listing 4.12 Java equivalent of AverageByAttributeMapper.py

public static class MapClass extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, Text> {

 public void map(LongWritable key, Text value,
 OutputCollector<Text, Text> output,
 Reporter reporter) throws IOException {

 String fi elds[] = value.toString().split(“,”, -20);
 String country = fi elds[4];
 String numClaims = fi elds[8];
 if (numClaims.length() > 0 && !numClaims.startsWith(“\””)) {
 output.collect(new Text(country),
 new Text(numClaims + “,1”)); q
 }
 }
}

The crucial difference in this new Java mapper is that the output is now appended
with a count of 1 q. We could’ve defi ned a new Writable data type that holds both
the value and count, but things are simple enough that we’re just keeping a comma-
separated string in Text.

At the reducer, the list of values for each key are parsed. The total sum and count
are then computed by summation and divided at the end to get the average .

public static class Reduce extends MapReduceBase
 implements Reducer<Text, Text, Text, DoubleWritable> {

 public void reduce(Text key, Iterator<Text> values,

 OutputCollector<Text, DoubleWritable> output,
 Reporter reporter) throws IOException {

 double sum = 0;
 int count = 0;
 while (values.hasNext()) {
 String fi elds[] = values.next().toString().split(“,”);
 sum += Double.parseDouble(fi elds[0]);
 count += Integer.parseInt(fi elds[1]);
 }
 output.collect(key, new DoubleWritable(sum/count));
 }
}

The logic of the refactored MapReduce job was not too hard to follow, was it? We add-
ed an explicit count for each key/value pair. This refactoring allows the intermediate
data to be combined at each mapper before it’s sent across the network.

Programmatically, the combiner must implement the Reducer interface. The
combiner’s reduce() method performs the combining operation. This may seem like
a bad naming scheme, but recall that for the important class of distributive functions ,
the combiner and the reducer perform the same operations. Therefore, the combiner
has adopted the reducer’s signature to simplify its reuse. You don’t have to rename
your Reduce class to use it as a combiner class. In addition, because the combiner is
performing an equivalent transformation, the type for the key/value pair in its output
must match that of its input. In the end, we’ve created a Combine class that looks
similar to the Reduce class, except it only outputs the (partial) sum and count at the
end, whereas the reducer computes the fi nal average.

public static class Combine extends MapReduceBase
 implements Reducer<Text, Text, Text, Text> {

 public void reduce(Text key, Iterator<Text> values,
 OutputCollector<Text, Text> output,
 Reporter reporter) throws IOException {

 double sum = 0;
 int count = 0;
 while (values.hasNext()) {
 String fi elds[] = values.next().toString().split(“,”);
 sum += Double.parseDouble(fi elds[0]);
 count += Integer.parseInt(fi elds[1]);
 }
 output.collect(key, new Text(sum + “,” + count));
 }
}

To enable the combiner, the driver must specify the combiner’s class to the JobConf
object. You can do this through the setCombinerClass() method. The driver sets
the mapper, combiner, and the reducer:

 Improving performance with combiners 97

98 CHAPTER 4 Writing basic MapReduce programs

Job Counters

Counter Map Reduce Total

Map-Reduce Framework

File Systems

Data-local map tasks

Launched reduce tasks

Launched map tasks

Reduce input records

Reduce input groups

Map output records

Map input records

Combine output records

Reduce output records

Combine input records

Map output bytes

Map input bytes

HDFS bytes written

HDFS bytes read

Local bytes written

Local bytes read

0

0

0

0

0

1,984,055

2,923,923

1,063

0

1,984,625

18,862,764

236,903,179

0

236,915,470

20,554

21,112

0

0

0

151

151

0

0

151

151

493

0

0

2.658

0

2,510

2,510

4

2

4

151

151

1,984,055

2,923,923

1,214

151

1,985,118

18,862,764

236,903,179

2,658

236,915,470

23,064

23,622

Figure 4.5 Monitoring the effectiveness of the combiner in the
AveragingWithCombiner job

job.setMapperClass(MapClass.class);
job.setCombinerClass(Combine.class);
job.setReducerClass(Reduce.class);

 A combiner doesn’t necessarily improve performance. You should monitor the job’s
behavior to see if the number of records outputted by the combiner is meaningfully less
than the number of records going in. The reduction must justify the extra execution
time of running a combiner. You can easily check this through the JobTracker’s Web UI ,
which we’ll see in chapter 6.

Looking at fi gure 4.5, note that in the map phase, combine has 1,984,625 input
records and only 1,063 output records. Clearly the combiner has reduced the amount
of intermediate data. Note that the reduce side executes the combiner, though the
benefi t of this is negligible in this case.

4.7 Exercising what you’ve learned
 Practice is the path to profi ciency. You can try the following exercises to hone your
ability to think in the MapReduce paradigm.

1 Top K records—Change AttributeMax.py (or AttributeMax.php) to output
the entire record rather than only the maximum value. Rewrite it such that the
MapReduce job outputs the records with the top K values rather than only the
maximum.

 Exercising what you’ve learned 99

2 Web traffi c measurement—Take a web server log fi le and write a Streaming
program with the Aggregate package to fi nd the hourly traffi c to that site.

3 Inner product of two sparse vectors—A vector is a list of values. Given two vectors,
X = [x1, x2, ...] and Y = [y1, y2, ...], their inner product is Z = x1 * y1 +
x2 * y2 + When X and Y are long but have many elements with zero value,
they’re usually given in a sparse representation:
1,0.46
9,0.21
17,0.92
...
where the key (fi rst column) is the index into the vector. All elements not
explicitly specifi ed are considered to have a value of zero. Note that the
keys don’t need to be in a sorted order. In fact, the keys may not even be
numerical. (For natural language processing , the keys can be words in a
document, and the inner product is a measure of document similarity .)
Write a Streaming job to compute the inner product of two sparse vectors .
You can add a post-processing step after the MapReduce job to complete the
computation.

4 Time series processing—Consider time-series data, where each record has a
timestamp as key and a measurement (on that time period) as value. We want
an output that is a linear function of the time series in a form:
y(t) = a0 * x(t) + a1 * x(t-1) + a2 * x(t-2) + ... + aN *

x(t-N)

where t stands for time and a0,…,aN are known constants. In signal processing ,
this is known as an FIR fi lter . A particularly popular instance is the moving
average , where a0 = a1 = … = aN = 1/N. Each point in y is the average of the
previous N points in x. It’s a simple way to smooth out time series.
 Implement this linear fi lter in MapReduce. Be sure to use a combiner. If
you order the time series data chronologically (as they usually are) and N is
relatively small, what’s the reduction in network traffi c for shuffl ing when a
combiner is used? For extra credit, write your own partitioner so the output
stays ordered chronologically.
 For the more advanced practitioners, this example illustrates the difference
between scalability and performance. Implementing an FIR fi lter in Hadoop
makes it scalable to process terabytes or more of data. Students of signal
processing will recognize that a high performance implementation of an FIR
fi lter often calls for a technique known as Fast Fourier Transform (FFT). A
solution that is scalable and high performing would call for a MapReduce
implementation of FFT, which is beyond the scope of this book.

5 Commutative property—Recall from basic math that the commutative property
means the order of operation is irrelevant. For example, addition obeys the
commutative property, as a+b=b+a and a+b+c=b+a+c=b+c+a=c+a+b=c+b+a.

100 CHAPTER 4 Writing basic MapReduce programs

Is the MapReduce framework fundamentally designed for implementing
commutative functions? Why or why not?

6 Multiplication (product)—Many machine-learning and statistical-classifi cation
algorithms involve the multiplication of a large number of probability values.
Usually we compare the product of one set of probabilities to the product of a
different set, and choose a classifi cation corresponding to the bigger product.
We’ve seen that maximum is a distributive function. Is the product also
distributive ? Write a MapReduce program that multiplies all values in a data
set. For full credit, apply the program to a reasonably large data set.
Does implementing the program in MapReduce solve all scalability issues?
What should you do to fi x it?
 (Writing your own fl oating-point library is a popular answer, but not a
good one.)

7 Translation into fi ctional dialect—A popular assignment in introductory
computer science classes is to write a program that converts English to “pirate-
speak .” Many variations of the exercise exist for other semi-fi ctional dialects,
such as “Snoop Dogg ” and “E-40.” Usually the solution involves a dictionary
look-up for exact word matches (“for” becomes “fo,” “sure” becomes “sho,”
“the” becomes “da,” etc.), simple text rules (words ending in “ing” now ends in
“in’,” replace the last vowel of a word and everything after it with “izzle,” etc.),
and random injections (“kno’ wha’ im sayin’?”). Write such translations and
use Hadoop to apply it to a large corpus such as Wikipedia.

4.8 Summary
MapReduce programs follow a template. Often the whole program is defi ned within
a single Java class. Within the class, a driver sets up a MapReduce job’s confi guration
object, which is used as the blueprint for how the job is set up and run. You’ll fi nd the
map and reduce functions in subclasses of Mapper and Reducer, respectively. Those
classes are often no more than a couple dozen lines long, so they’re usually written as
inner classes for convenience.

Hadoop provides a Streaming API for writing MapReduce programs in a language
other than Java. Many MapReduce programs are much easier to develop in a scripting
language using the Streaming API, especially for ad hoc data analysis. The Aggregate
package, when used with Streaming, enables one to rapidly write programs for counting
and getting basic statistics.

MapReduce programs are largely about the map and the reduce functions, but
Hadoop allows for a combiner function to improve performance by “pre-reducing”
the intermediate data at the mapper before the reduce phase.

In standard programming (outside of the MapReduce paradigm), counting,
summing, averaging, and so on are usually done through a simple, single pass of the
data. Refactoring those programs to run in MapReduce, as we’ve done in this chapter,
is relatively straightforward conceptually. More complex data analysis algorithms call
for deeper reworking of the algorithms, which we cover in the next chapter.

 Further resources 101

4.9 Further resources
Although we’ve focused on the patent data sets in this chapter, there are other large
publicly accessible data sets that you can download and play around with. Below are a
few examples.

 http://www.netfl ixprize.com/index—Netfl ix■ is an online movie rental site. A
crucial part of its business is a recommendation engine that suggests new movies
to a user based on the user’s ratings of previous movies. As part of a competition,
it released a data set of user ratings to challenge people to develop better rec-
ommendation algorithms. The uncompressed data comes at 2 GB+. It contains
100 M+ movie ratings from 480 K users on 17 K movies.

 http://aws.amazon.com/publicdatasets/—Amazon■ has hosted for free several
large public data sets for its EC2 users. As of this writing, the data sets belong to
the three categories of biology, chemistry, and economics. For example, one of
the biological data sets is an annotated human genome data of roughly 550 GB.
Under economics you can fi nd data sets, such as the 2000 U.S. Census (approxi-
mately 200 GB).

 http://boston.lti.cs.cmu.edu/Data/clueweb09/—Carnegie Mellon University’s■
Language Technologies Institute has released the ClueWeb09 data set to aid
large-scale web research. It’s a crawl of a billion web pages in 10 languages. The
uncompressed data set takes up 25 TB. Given the size of the data set, the most
effi cient way to get it is in compressed form (which takes up 5 TB) shipped in
hard disk drives. (At a certain scale, shipping hard drives through FedEx has a
high “bandwidth.”) As of this writing, CMU charges US$790 to ship four 1.5 TB
drives with the compressed data.

5

102

Advanced MapReduce

This chapter covers

 Chaining multiple MapReduce jobs■

 Performing joins of multiple data sets■

 Creating Bloom fi lters■

As your data processing becomes more complex you’ll want to exploit different Hadoop
features. This chapter will focus on some of these more advanced techniques.

When handling advanced data processing, you’ll often fi nd that you can’t
program the process into a single MapReduce job. Hadoop supports chaining
MapReduce programs together to form a bigger job. You’ll also fi nd that advanced
data processing often involves more than one data set. We’ll explore various joining
techniques in Hadoop for simultaneously processing multiple data sets. You can
code certain data processing tasks more effi ciently when processing a group of
records at a time. We’ve seen how Streaming natively supports the ability to process
a whole split at a time, and the Streaming implementation of the maximum function
takes advantage of this ability. We’ll see that the same is true for Java programs.
We’ll discover the Bloom fi lter and implement it with a mapper that keeps state
information across records.

 Chaining MapReduce jobs 103

5.1 Chaining MapReduce jobs
 You’ve been doing data processing tasks which a single MapReduce job can accom-
plish. As you get more comfortable writing MapReduce programs and take on more
ambitious data processing tasks, you’ll fi nd that many complex tasks need to be broken
down into simpler subtasks, each accomplished by an individual MapReduce job. For
example, from the citation data set you may be interested in fi nding the ten most-
cited patents. A sequence of two MapReduce jobs can do this. The fi rst one creates the
“inverted” citation data set and counts the number of citations for each patent, and the
second job fi nds the top ten in that “inverted” data.

5.1.1 Chaining MapReduce jobs in a sequence

Though you can execute the two jobs manually one after the other, it’s more convenient
to automate the execution sequence. You can chain MapReduce jobs to run sequen-
tially, with the output of one MapReduce job being the input to the next. Chaining
MapReduce jobs is analogous to Unix pipes .

mapreduce-1 | mapreduce-2 | mapreduce-3 | ...

Chaining MapReduce jobs sequentially is quite straightforward. Recall that a driver
sets up a JobConf object with the confi guration parameters for a MapReduce job
and passes the JobConf object to JobClient.runJob() to start the job. As Job-
Client.runJob() blocks until the end of a job, chaining MapReduce jobs involves
calling the driver of one MapReduce job after another. The driver at each job will
have to create a new JobConf object and set its input path to be the output path of
the previous job. You can delete the intermediate data generated at each step of the
chain at the end.

5.1.2 Chaining MapReduce jobs with complex dependency

Sometimes the subtasks of a complex data processing task don’t run sequentially, and
their MapReduce jobs are therefore not chained in a linear fashion. For example,
mapreduce1 may process one data set while mapreduce2 independently processes an-
other data set. The third job, mapreduce3, performs an inner join of the fi rst two jobs’
output. (We’ll discuss data joining in the next sections.) It’s dependent on the other
two and can execute only after both mapreduce1 and mapreduce2 are completed. But
mapreduce1 and mapreduce2 aren’t dependent on each other.

Hadoop has a mechanism to simplify the management of such (nonlinear) job
dependencies via the Job and JobControl classes. A Job object is a representation
of a MapReduce job. You instantiate a Job object by passing a JobConf object to its
constructor. In addition to holding job confi guration information, Job also holds
dependency information, specifi ed through the addDependingJob() method. For
Job objects x and y,

x.addDependingJob(y)

104 CHAPTER 5 Advanced MapReduce

means x will not start until y has fi nished. Whereas Job objects store the confi guration
and dependency information, JobControl objects do the managing and monitoring of
the job execution. You can add jobs to a JobControl object via the addJob() method.
After adding all the jobs and dependencies, call JobControl’s run() method to spawn
a thread to submit and monitor jobs for execution. JobControl has methods like all-
Finished() and getFailedJobs() to track the execution of various jobs within the batch.

5.1.3 Chaining preprocessing and postprocessing steps

 A lot of data processing tasks involve record-oriented preprocessing and postprocess-
ing. For example, in processing documents for information retrieval , you may have
one step to remove stop words (words like a, the, and is that occur frequently but aren’t
too meaningful), and another step for stemming (converting different forms of a word
into the same form, such as fi nishing and fi nished into fi nish.) You can write a separate
MapReduce job for each of these pre- and postprocessing steps and chain them to-
gether, using IdentityReducer (or no reducer at all) for these steps. This approach is
ineffi cient as each step in the chain takes up I/O and storage to process the intermedi-
ate results. Another approach is for you to write your mapper such that it calls all the
preprocessing steps beforehand and the reducer to call all the postprocessing steps
afterward. This forces you to architect the pre- and postprocessing steps in a modular
and composable manner. Hadoop introduced the ChainMapper and the ChainReducer
classes in version 0.19.0 to simplify the composition of pre- and postprocessing.

You can think of chaining MapReduce jobs, as explained in section 5.1.1, symbolically
using the pseudo-regular expression:

[MAP | REDUCE]+

where a reducer REDUCE comes after a mapper MAP, and this [MAP | REDUCE] se-
quence can repeat itself one or more times, one right after another. The analogous
expression for a job using ChainMapper and ChainReducer would be

MAP+ | REDUCE | MAP*

The job runs multiple mappers in sequence to preprocess the data, and after running
reduce it can optionally run multiple mappers in sequence to postprocess the data.
The beauty of this mechanism is that you write the pre- and postprocessing steps as
standard mappers. You can run each one of them individually if you want. (This is
useful when you want to debug them individually.) You call the addMapper() method
in ChainMapper and ChainReducer to compose the pre- and postprocessing steps,
respectively. Running all the pre- and postprocessing steps in a single job leaves no
intermediate fi le and there’s a dramatic reduction in I/O.

Consider the example where there are four mappers (Map1, Map2, Map3, and Map4)
and one reducer (Reduce), and they’re chained into a single MapReduce job in
this sequence:

Map1 | Map2 | Reduce | Map3 | Map4

 Chaining MapReduce jobs 105

In this setup, you should think of Map2 and Reduce as the core of the MapReduce job,
with the standard partitioning and shuffl ing applied between the mapper and reducer.
You should consider Map1 as a preprocessing step and Map3 and Map4 as postprocess-
ing steps. The number of processing steps can vary. This is only an example.

You can specify the composition of this sequence of mappers and reducer with the
driver. See listing 5.1. You need to make sure the key and value outputs of one task
have matching types (classes) with the inputs of the next task.

Listing 5.1 Driver for chaining mappers within a MapReduce job

Confi guration conf = getConf();
JobConf job = new JobConf(conf);

job.setJobName(“ChainJob”);
job.setInputFormat(TextInputFormat.class);
job.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(job, in);
FileOutputFormat.setOutputPath(job, out);

JobConf map1Conf = new JobConf(false);
ChainMapper.addMapper(job,
 Map1.class,
 LongWritable.class,
 Text.class, q
 Text.class,
 Text.class,
 true,
 map1Conf);

JobConf map2Conf = new JobConf(false);
ChainMapper.addMapper(job,
 BMap.class,
 Text.class,
 Text.class, w
 LongWritable.class,
 Text.class,
 true,
 map2Conf);

JobConf reduceConf = new JobConf(false);
ChainReducer.setReducer(job,
 Reduce.class,
 LongWritable.class,
 Text.class, e
 Text.class,
 Text.class,
 true,
 reduceConf);

JobConf map3Conf = new JobConf(false);
ChainReducer.addMapper(job,
 Map3.class,
 Text.class, r
 Text.class,
 LongWritable.class,

Add Map1 step to job

Add Map2 step to job

Add Reduce step to job

Add Map3 step to job

106 CHAPTER 5 Advanced MapReduce

 Text.class,
 true, r
 map3Conf);

JobConf map4Conf = new JobConf(false);
ChainReducer.addMapper(job,
 Map4.class,
 LongWritable.class,
 Text.class, t
 LongWritable.class,
 Text.class,
 true,
 map4Conf);

JobClient.runJob(job);

The driver fi rst sets up the “global” JobConf object with the job’s name, input path,
output path, and so forth. It adds the fi ve steps of the chained job one at a time,
in the sequence of the steps’ execution. It adds all the steps before Reduce using
the static ChainMapper.addMapper() method. It sets the reducer with the static
ChainReducer.setReducer() method. Using the ChainReducer.addMapper()
method, it adds the last steps. The global JobConf object (job) is passed through all
fi ve add* methods. In addition, each mapper and the reducer have a local JobConf
object (map1Conf, map2Conf, map3Conf, map4Conf, and reduceConf) that takes pre-
cedence over the global one in confi guring the individual mapper/reducer. The
recommended local JobConf object is a new JobConf object initiated without
defaults — new JobConf(false).

Let’s look at the signature of the ChainMapper.addMapper() method to understand
in detail how to add each step to the chained job. The signature and function of
ChainReducer.setReducer() and ChainReducer.addMapper() are analogous and
we’ll skip them.

public static <K1,V1,K2,V2> void
 addMapper(JobConf job,
 Class<? extends Mapper<K1,V1,K2,V2>> klass,
 Class<? extends K1> inputKeyClass,
 Class<? extends V1> inputValueClass,
 Class<? extends K2> outputKeyClass,
 Class<? extends V2> outputValueClass,
 boolean byValue,
 JobConf mapperConf)

This method has eight arguments. The fi rst and last are the global and local
JobConf objects, respectively. The second argument (klass) is the Mapper class
that will do the data processing. The four arguments inputValueClass, inputKey-
Class, outputKeyClass, and outputValueClass are the input/output class types
of the Mapper class.

The argument byValue will need a little explanation. In the standard Mapper model ,
the output key/value pairs are serialized and written to disk,1 prepared to be shuffl ed

Add Map3 step to job

Add Map4 step to job

1 The key and value’s ability to be cloned and serialized is provided by them being implemented
as Writables.

 Joining data from different sources 107

to a reducer that may be at a completely different node. Formally this is considered to
be passed by value , as a copy of the key/value pair is sent over. In the current case where
we can chain one Mapper to another, we can execute the two in the same JVM thread.
Therefore, it’s possible for the key/value pairs to be passed by reference , where the output
of the initial Mapper stays in place in memory and the following Mapper refers to it
directly in the same memory location. When Map1 calls OutputCollector.collect
(K k, V v) , the objects k and v pass directly to Map2’s map() method. This improves
performance by not having to clone a potentially large volume of data between the
mappers. But doing this can violate one of the more subtle “contracts” in Hadoop’s
MapReduce API. The call to OutputCollector.collect(K k, V v) is guaranteed
to not alter the content of k and v. Map1 can call OutputCollector.collect(K k,
V v) and then use the objects k and v afterward, fully expecting their values to stay the
same. But if we pass those objects by reference to Map2, then Map2 may alter them and
violate the API’s guarantee. If you’re sure that Map1’s map() method doesn’t use the
content of k and v after calling OutputCollector.collect(K k, V v), or that Map2
doesn’t change the value of its k and v input, you can achieve some performance gains
by setting byValue to false. If you’re not sure of the Mapper’s internal code, it’s best to
play safe and let byValue be true, maintaining the pass-by-value model, and be certain
that the Mappers will work as expected.

5.2 Joining data from different sources
 It’s inevitable that you’ll come across data analyses where you need to pull in data from
different sources. For example, given our patent data sets, you may want to fi nd out
if certain countries cite patents from another country. You’ll have to look at citation
data (cite75_99.txt) as well as patent data for country information (apat63_99.
txt). In the database world it would just be a matter of joining two tables, and most
databases automagically take care of the join processing for you. Unfortunately, join-
ing data in Hadoop is more involved, and there are several possible approaches with
different trade-offs.

We use a couple toy data sets to better illustrate joining in Hadoop. Let’s take a
comma-separated Customers fi le where each record has three fi elds: Customer ID,
Name, and Phone Number. We put four records in the fi le for illustration:

1,Stephanie Leung,555-555-5555
2,Edward Kim,123-456-7890
3,Jose Madriz,281-330-8004
4,David Stork,408-555-0000

We store Customer orders in a separate fi le, called Orders. It’s in CSV format, with four
fi elds: Customer ID, Order ID, Price, and Purchase Date.

3,A,12.95,02-Jun-2008
1,B,88.25,20-May-2008

108 CHAPTER 5 Advanced MapReduce

2,C,32.00,30-Nov-2007
3,D,25.02,22-Jan-2009

If we want an inner join of the two data sets above, the desired output would look a
listing 5.2.

Listing 5.2 Desired output of an inner join between Customers and Orders data

1,Stephanie Leung,555-555-5555,B,88.25,20-May-2008
2,Edward Kim,123-456-7890,C,32.00,30-Nov-2007
3,Jose Madriz,281-330-8004,A,12.95,02-Jun-2008
3,Jose Madriz,281-330-8004,D,25.02,22-Jan-2009

Hadoop can also perform outer joins, although to simplify explanation we focus on
inner joins.

5.2.1 Reduce-side joining

 Hadoop has a contrib package called datajoin that works as a generic framework
for data joining in Hadoop. Its jar fi le is at contrib/datajoin/hadoop-*-datajoin.
jar. To distinguish it from other joining techniques, it’s called the reduce-side join,
as we do most of the processing on the reduce side. It’s also known as the reparti-
tioned join (or the repartitioned sort-merge join), as it’s the same as the database tech-
nique of the same name. Although it’s not the most effi cient joining technique, it’s
the most general and forms the basis of some more advanced techniques (such as
the semi-join).

Reduce-side join introduces some new terminologies and concepts, namely, data
source , tag , and group key . A data source is analogous to a table in relational databases.
We have two data sources in our toy example: Customers and Orders. A data source
can be a single fi le or multiple fi les. The important point is that all the records in a data
source have the same structure, analogous to a schema .

The MapReduce paradigm calls for processing each record one at a time in a stateless
manner. If we want some state information to persist, we have to tag the record with
such state. For example, given our two fi les, a record may look to a mapper like this:

3,Jose Madriz,281-330-8004

or:

3,A,12.95,02-Jun-2008

where the record type (Customers or Orders) is dissociated from the record itself. Tag-
ging the record will ensure that specifi c metadata will always go along with the record.
For the purpose of data joining, we want to tag each record with its data source.

 Joining data from different sources 109

The group key functions like a join key in a relational database. For our example,
the group key is the Customer ID. As the datajoin package allows the group key
to be any user-defi ned function, group key is more general than a join key in a
relational database.

Before explaining how to use the contrib package, let’s go through all the major
steps in a repartitioned sort-merge join of our toy datasets. After seeing how those
steps fi t together, we’ll see which steps are done by the datajoin package, and which
ones can we program. We’ll have code to see the hooks for integrating our code with
the datajoin package.

DATA FLOW OF A REDUCE-SIDE JOIN

Figure 5.1 illustrates the data fl ow of a repartitioned join on the toy data sets Custom-
ers and Orders, up to the reduce stage. We’ll go into more details later to see what
happens in the reduce stage.

First we see that mappers receive data from two fi les, Customers and Orders. Each
mapper knows the fi lename of the data stream it’s processing. The map() function is
called with each record, and the main goal of map() is to package each record such
that joining on the reduce side is possible.

Recall that in the MapReduce framework, map() outputs records as key/value pairs
that are partitioned on the key, and all records of the same key will end up in a single
reducer and be processed together. For joining, we would want the map() function to
output a record package where the key is the group key for joining—the Customer ID
in this case. The value in this key/value package will be the original record, tagged with
the data source (i.e., fi lename). For example, for the record

3,A,12.95,02-Jun-2008

from the Orders fi le, map() will output a key/value pair where the key is “3,”, the
Customer ID that will be used to join with records from the Customers fi le. The value
output by map() is the entire record wrapped by a tag “Orders”.

After map()packages each record of the inputs, MapReduce’s standard partition,
shuffl e, and sort takes place. Note that as the group key is set to the join key, reduce()
will process all records of the same join key together. The function reduce() will
unwrap the package to get the original record and the data source of the record by its
tag. We see that for group keys (Customer IDs) “1” and “2”, the reduce() function
gets two values. One value is tagged with “Customers” and the other value is tagged
with “Orders”. For the map output with (group) key “4”, reduce() will only see one
value, which is tagged with “Customers”. This is expected as there is no record in
Orders with a Customer ID of “4”. On the other hand, reduce() will see three values
for the (group) key “3”. This is due to one record from Customers and two more
from Orders.

110 CHAPTER 5 Advanced MapReduce

Customers
1,Stephanie Leung,555-555-5555
2,Edward Kim,123-456-7890
3,Jose Madriz,281-330-8004
4,David Stork,408-555-0000
...

Orders
3,A,12.95,02-Jun-2008
1,B,88.25,20-May-2008
2,C,32.00,30-Nov-2007
3,D,25.02,22-Jan-2009
...

Customers
1,Stephanie Leung,555-555-5555

1

Customers
2,Edward Kim,123-456-7890

2

Customers
3,Jose Madriz,281-330-8004

3

Customers
4,David Stork,408-555-0000

4

Orders
3,A,12.95,02-Jun-2008

3

Orders
1,B,88.25,20-May-2008

1

Orders
2,C,32.00,30-Nov-2007

2

Orders
3,D,25.02,22-Jan-2009

3

Group key Tag

Customers
4,David Stork,408-555-0000

4

Customers
1,Stephanie Leung,555-555-5555

1
Orders
1,B,88.25,20-May-2008

Customers
2,Edward Kim,123-456-7890

2
Orders
2,C,32.00,30-Nov-2007

Customers
3,Jose Madriz,281-330-8004

3 Orders
3,A,12.95,02-Jun-2008

Orders
3,D,25.02,22-Jan-2009

map() map()

shuffle()

reduce() reduce()

Figure 5.1 In repartitioned join , the mapper fi rst wraps each record with a group key
and a tag. The group key is the joining attribute, and the tag is the data source (table in
SQL parlance) of the record. The partition and shuffl e step will group all the records with
the same group key together. The reducer is called on the set of records with the same
group key.

The function reduce() will take its input and do a full cross-product on the values.
Reduce() creates all combinations of the values with the constraint that a combination
will not be tagged more than once. In cases where reduce() sees values of distinct tags,
the cross-product is the original set of values. In our example, this is the case for group

 Joining data from different sources 111

keys 1, 2, and 4. Figure 5.2 illustrates the cross product for group key 3. We have three
values, one tagged with Customers and two tagged with Orders. The cross-product cre-
ates two combinations. Each combination consists of the Customers value and one of
the Orders value.

NOTE Our toy example has an implicit schema that Customer ID identifi es a
unique record in Customers making the number of combinations in a cross-
product always the number of Orders records with the Customer ID (except

Customers
3,Jose Madriz,281-330-8004

3 Orders
3,A,12.95,02-Jun-2008

Orders
3,D,25.02,22-Jan-2009

Customers
3,Jose Madriz,281-330-8004

Orders
3,A,12.95,02-Jun-2008

Customers
3,Jose Madriz,281-330-8004

Orders
3,D,25.02,22-Jan-2009

reduce()

combine() combine()

3,Jose Madriz,281-330-8004,A,12.95,02-Jun-2008

3,Jose Madriz,281-330-8004,D,25.02,22-Jan-2009

Figure 5.2 The reduce side of a repartitioned join . For a given join key, the reduce task
performs a full cross-product of values from different sources. It sends each combination
to combine () to create an output record. The combine () function can choose to
not output any particular combination.

112 CHAPTER 5 Advanced MapReduce

when it’s zero, in which case the cross-product is the Customers record itself).
For more complicated settings, the number of combinations generated by
the cross-product is the product of the number of records under each tag.
If reduce() sees two Customers records and three Orders records together,
then the cross-product will create six (2 * 3) combinations. If there’s a third
data source (Accounts) with two records, then the cross-product will create
twelve (2 * 2 * 3) combinations.

It feeds each combination from the cross-product into a function called combine().
(Don’t confuse with combiners as explained in section 4.5.) Due to the nature of the
cross-product, combine() is guaranteed to see at most one record from each of the
data sources (tags), and all the records it sees have the same join key. It’s the combine()
function that determines whether the whole operation is an inner join , outer join , or
another type of join . In an inner join , combine() drops all combinations where not all
tags are present, such as our case with group key “4”. Otherwise combine() merges
the records from different sources into a single output record.

Now you see why we call this joining process the repartitioned sort-merge join. The
records in the original input sources can be in random order. They are repartitioned
onto the reducers in the right grouping. The reducer can then merge records of the
same join key together to create the desired join output. (The sort happens but it’s not
critical to understanding the operation.)

IMPLEMENTING JOIN WITH THE DATAJOIN PACKAGE

Hadoop’s datajoin package implements the datafl ow of a join as described previously.
We have certain hooks to handle the details of our particular data structure and a spe-
cial hook for us to defi ne the exact function of combine().

Hadoop ’s datajoin package has three abstract classes that we inherit and make
concrete: DataJoinMapperBase , DataJoinReducerBase , and TaggedMapOutput .
As the names suggest, our MapClass will extend DataJoinMapperBase, and our
Reduce class will extend DataJoinReducerBase. The datajoin package has already
implemented the map() and reduce() methods in these respective base classes to
perform the join datafl ow describe in the last section. Our subclass will only have to
implement a few new methods to confi gure the details.

Before explaining how to use DataJoinMapperBase and DataJoinReducerBase,
you need to understand a new abstract data type TaggedMapOutput that is used
throughout the code. Recall from the datafl ow description that the mapper outputs a
package with a (group) key and a value that is a tagged record. The datajoin package
specifi es the (group) key to be of type Text and the value (i.e., the tagged record) to be
of type TaggedMapOutput. TaggedMapOutput is a data type for wrapping our records
with a Text tag. It trivially implements a getTag() and a setTag(Text tag) method.
It specifi es an abstract method getData(). Our subclass will implement that method
to handle the type of the record. There’s no explicit requirement for the subclass
to have a setData() method but we must pass in the record data. The subclass can
implement such a setData() method for the sake of symmetry or take in a record in

 Joining data from different sources 113

the constructor. In addition, as the output of a mapper, TaggedMapOutput needs to be
Writable . Therefore, our subclass has to implement the readFields() and write()
methods. We created TaggedWritable , a simple subclass for handling any Writable
record type.

public static class TaggedWritable extends TaggedMapOutput {

 private Writable data;

 public TaggedWritable(Writable data) {
 this.tag = new Text(“”);
 this.data = data;
 }

 public Writable getData() {
 return data;
 }

 ...
}

Recall from the join datafl ow that the mapper’s main function is to package a record
such that it goes to the same reducer as other records with the same join key. Data-
JoinMapperBase performs all the packaging, but the class specifi es three abstract
methods for our subclass to fi ll in:

protected abstract Text generateInputTag(String inputFile);
protected abstract TaggedMapOutput generateTaggedMapOutput(Object value);
protected abstract Text generateGroupKey(TaggedMapOutput aRecord);

The generateInputTag() is called at the start of a map task to globally specify the tag
for all the records this map task will process. The tag is defi ned to be of type Text. Note
that we call the generateInputTag()with the fi lename of the records. The mapper
working on the Customers fi le will receive the string “Customers” as the argument to
generateInputTag(). As we’re using the tag to signify the data source, and our fi le-
name is set up to refl ect the data source, generateInputTag() is

protected Text generateInputTag(String inputFile) {
 return new Text(inputFile);
}

If a data source is spread out over several fi les (part-0000, part-0001, etc.), you would
not want the tag to be the complete fi lename, rather some prefi x of it. For example,
the tag (data source) can be the fi lename before the dash (-) sign.

protected Text generateInputTag(String inputFile) {
 String datasource = inputFile.split(‘-’)[0];
 return new Text(datasource);
}

We store the result of generateInputTag()in the DataJoinMapperBase object’s
inputTag variable for later use. We can also store the fi lename in DataJoinMapper-
Base’s inputFile variable if we want to refer to it again.

After the map task’s initialization, DataJoinMapperBase’s map() is called for each
record. It calls the two abstract methods that we have yet to implement.

114 CHAPTER 5 Advanced MapReduce

public void map(Object key, Object value,
 OutputCollector output, Reporter reporter) throws IOException
{
 TaggedMapOutput aRecord = generateTaggedMapOutput(value);
 Text groupKey = generateGroupKey(aRecord);
 output.collect(groupKey, aRecord);
}

The generateTaggedMapOutput() method wraps the record value into a Tagged-
MapOutput type. Recall the concrete implementation of TaggedMapOutput that we’re
using is called TaggedWritable. The method generateTaggedMapOutput() can re-
turn a TaggedWritable with any Text tag that we want. In principle, the tag can even
be different for different records in the same fi le. In the standard case, we want the tag
to stand for the data source that our generateInputTag() had computed earlier and
stored in this.inputTag.

protected TaggedMapOutput generateTaggedMapOutput(Object value) {
 TaggedWritable retv = new TaggedWritable((Text) value);
 retv.setTag(this.inputTag);
 return retv;
}

The generateGroupKey() method takes a tagged record (of type TaggedMapOutput)
and returns the group key for joining. For our current purpose, we unwrap the tagged
record and take the fi rst fi eld in the CSV-formatted value as the join key.

protected Text generateGroupKey(TaggedMapOutput aRecord) {
 String line = ((Text) aRecord.getData()).toString();
 String[] tokens = line.split(“,”);
 String groupKey = tokens[0];
 return new Text(groupKey);
}

In a more general implementation, the user will be able to specify which fi eld should be
the joining key and if the record separator may be some character other than a comma.

DataJoinMapperBase is a simple class, and much of the mapper code is in our
subclass. DataJoinReducerBase, on the other hand, is the workhorse of the datajoin
package, and it simplifi es our programming by performing a full outer join for us. Our
reducer subclass only has to implement the combine() method to fi lter out unwanted
combinations to get the desired join operation (inner join, left outer join, etc.). It’s
also in the combine() method that we format the combination into the appropriate
output format.

We give the combine() method one combination of the cross product of the tagged records
with the same join (group) key. This may sound complicated, but recall from the datafl ow
diagrams in fi gures 5.1 and 5.2 that the cross-product is simple for the canonical case
of two data sources. Each combination will have either two records (meaning there’s
at least one record in each data source with the join key) or one (meaning only one
data source has that join key).

Let’s look at the signature of combine():

 Joining data from different sources 115

protected abstract TaggedMapOutput

 ➥ combine(Object[] tags, Object[] values);

An array of tags and an array of values represent the combination. The size of those two
arrays is guaranteed to be the same and equal to the number of tagged records in the
combination. The fi rst tagged record in the combination is represented by tags[0]
and values[0], the second one is tags[1] and values[1], and so forth. Further-
more, the tags are always in sorted order.

As tags correspond to the data sources, in the canonical case of joining two data sources,
the tags array to combine() won’t be longer than two. Figure 5.2 shows combine()
being called twice. For the left side, the tags and values arrays are like this: 2

tags = {“Customers”, “Orders”};
values = {“3,Jose Madriz,281-330-8004”, “A,12.95,02-Jun-2008”};

For an inner join , combine() will ignore combinations where not all tags are present. It
does so by returning null. Given a legal combination, the role of combine() is to concat-
enate all the values into one single record for output. The order of concatenation is fully
determined by combine(). In the case of an inner join, the length of values[] is always
the number of data sources available (two in the canonical case), and the tags are always
in sorted order. It’s a sensible choice to loop through the values[] array to get the
default alphabetical ordering based on data source names.

DataJoinReducerBase, like any reducer, outputs key/value pairs. For each legal
combination, the key is always the join key and the value is the output of combine().
Note that the join key is still present in each element of the values[] array. The
combine() method should strip out the join key in those elements before concatenating
them. Otherwise the join key will be shown multiple times in one output record.

Finally, DataJoinReducerBase expects combine() to return a TaggedMapOutput .
It’s unclear why as DataJoinReducerBase ignores the tag in the TaggedMapOutput
object.

Listing 5.3 shows the complete code, including our reduce subclass.

Listing 5.3 Inner join of data from two fi les using reduce-side join

public class DataJoin extends Confi gured implements Tool {

 public static class MapClass extends DataJoinMapperBase {

 protected Text generateInputTag(String inputFile) {
 String datasource = inputFile.split(“-”)[0];
 return new Text(datasource);
 }

 protected Text generateGroupKey(TaggedMapOutput aRecord) {
 String line = ((Text) aRecord.getData()).toString();
 String[] tokens = line.split(“,”);
 String groupKey = tokens[0];
 return new Text(groupKey);

2 The tags array is of type Text[] and values is of type TaggedWritable[]. We ignore those details to
focus on the their contents.

116 CHAPTER 5 Advanced MapReduce

 }

 protected TaggedMapOutput generateTaggedMapOutput(Object value) {
 TaggedWritable retv = new TaggedWritable((Text) value);
 retv.setTag(this.inputTag);
 return retv;
 }
 }

 public static class Reduce extends DataJoinReducerBase {

 protected TaggedMapOutput combine(Object[] tags, Object[] values) {
 if (tags.length < 2) return null;
 String joinedStr = “”;
 for (int i=0; i<values.length; i++) {
 if (i > 0) joinedStr += “,”;
 TaggedWritable tw = (TaggedWritable) values[i];
 String line = ((Text) tw.getData()).toString();
 String[] tokens = line.split(“,”, 2);
 joinedStr += tokens[1];
 }
 TaggedWritable retv = new TaggedWritable(new Text(joinedStr));
 retv.setTag((Text) tags[0]);
 return retv;
 }
 }

 public static class TaggedWritable extends TaggedMapOutput {

 private Writable data;

 public TaggedWritable(Writable data) {
 this.tag = new Text(“”);
 this.data = data;
 }

 public Writable getData() {
 return data;
 }

 public void write(DataOutput out) throws IOException {
 this.tag.write(out);
 this.data.write(out);
 }

 public void readFields(DataInput in) throws IOException {
 this.tag.readFields(in);
 this.data.readFields(in);
 }
 }

 public int run(String[] args) throws Exception {
 Confi guration conf = getConf();

 JobConf job = new JobConf(conf, DataJoin.class);

 Path in = new Path(args[0]);
 Path out = new Path(args[1]);
 FileInputFormat.setInputPaths(job, in);
 FileOutputFormat.setOutputPath(job, out);

 Joining data from different sources 117

 job.setJobName(“DataJoin”);
 job.setMapperClass(MapClass.class);
 job.setReducerClass(Reduce.class);

 job.setInputFormat(TextInputFormat.class);
 job.setOutputFormat(TextOutputFormat.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(TaggedWritable.class);
 job.set(“mapred.textoutputformat.separator”, “,”);

 JobClient.runJob(job);
 return 0;
 }

 public static void main(String[] args) throws Exception {
 int res = ToolRunner.run(new Confi guration(),
 new DataJoin(),
 args);

 System.exit(res);
 }
}

Next we’ll look at another way of doing joins that is more effi cient in some common
applications.

5.2.2 Replicated joins using DistributedCache

The reduce-side join technique discussed in the last section is fl exible, but it can also
be quite ineffi cient. Joining doesn’t take place until the reduce phase. We shuffl e all
data across the network fi rst, and in many situations we drop the majority of this data
during the joining process. It would be more effi cient if we eliminate the unnecessary
data right in the map phase. Even better would be to perform the entire joining opera-
tion in the map phase.

The main obstacle to performing joins in the map phase is that a record being
processed by a mapper may be joined with a record not easily accessible (or even
located) by that mapper. If we can guarantee the accessibility of all the necessary data
when joining a record, joining on the map side can work. For example, if we know
that the two sources of data are partitioned into the same number of partitions and
the partitions are all sorted on the key and the key is the desired join key, then each
mapper (with the proper InputFormat and RecordReader) can deterministically
locate and retrieve all the data necessary to perform joining. In fact, Hadoop’s org.
apache.hadoop.mapred.join package contains helper classes to facilitate this map-
side join . Unfortunately, situations where we can naturally apply this are limited,
and running extra MapReduce jobs to repartition the data sources to be usable by
this package seems to defeat the effi ciency gain. Therefore, we’ll not pursue this
package further.

All hope is not lost though. There’s another data pattern that occurs quite frequently
that we can take advantage of. When joining big data, often only one of the sources
is big; the second source may be orders of magnitude smaller. For example, a local

118 CHAPTER 5 Advanced MapReduce

phone company’s Customers data may have only tens of millions of records (each
record containing basic information for one customer), but its transaction log can
have billions of records containing detailed call history. When the smaller source can
fi t in memory of a mapper, we can achieve a tremendous gain in effi ciency by copying
the smaller source to all mappers and performing joining in the map phase. This is
called replicated join in the database literature as one of the data tables is replicated
across all nodes in the cluster. (The next section will cover the case when the smaller
source doesn’t fi t in memory.)

Hadoop has a mechanism called distributed cache that’s designed to distribute fi les to
all nodes in a cluster. It’s normally used for distributing fi les containing “background”
data needed by all mappers. For example, if you’re using Hadoop to classify documents ,
you may have a list of keywords for each class. (Or better yet, a probabilistic model for
each class, but we digress…) You would use distributed cache to ensure all mappers
have access to the lists of keywords, the “background” data. For executing replicated
joins, we consider the smaller data source as background data.

Distributed cache is handled by the appropriately named class DistributedCache .
There are two steps to using this class. First, when confi guring a job, you call the static
method DistributedCache.addCacheFile() to specify the fi les to be disseminated
to all nodes. These fi les are specifi ed as URI objects, and they default to HDFS unless
a different fi lesystem is specifi ed. The JobTracker will take this list of URIs and
create a local copy of the fi les in all the TaskTrackers when it starts the job. In the
second step, your mappers on each individual TaskTracker will call the static method
DistributedCache.getLocalCacheFiles() to get an array of local fi le Paths where
the local copy is located. At this point the mapper can use standard Java fi le I/O
techniques to read the local copy.

Replicated joins using DistributedCache are simpler than reduce-side joins. Let’s
begin with our standard Hadoop template .

public class DataJoinDC extends Confi gured implements Tool {

 public static class MapClass extends MapReduceBase
 implements Mapper<Text, Text, Text, Text> {

 ...
 }

 public int run(String[] args) throws Exception {
 ...
 }

 public static void main(String[] args) throws Exception {
 int res = ToolRunner.run(new Confi guration(),
 new DataJoinDC(),
 args);

 System.exit(res);
 }
}

 Joining data from different sources 119

Note that we’ve taken out the Reduce class. We plan on performing the joining in
the map phase and will confi gure this job to have no reducers. You’ll fi nd our driver
method familiar too.

public int run(String[] args) throws Exception {
 Confi guration conf = getConf();
 JobConf job = new JobConf(conf, DataJoinDC.class);

 DistributedCache.addCacheFile(new Path(args[0]).toUri(), conf); q
 Path in = new Path(args[1]);
 Path out = new Path(args[2]);
 FileInputFormat.setInputPaths(job, in);
 FileOutputFormat.setOutputPath(job, out);

 job.setJobName(“DataJoin with DistributedCache”);
 job.setMapperClass(MapClass.class);
 job.setNumReduceTasks(0);

 job.setInputFormat(KeyValueTextInputFormat.class);
 job.setOutputFormat(TextOutputFormat.class);
 job.set(“key.value.separator.in.input.line”, “,”);

 JobClient.runJob(job);

 return 0;
}

The crucial addition here is q where we take the fi le specifi ed by the fi rst argument
and add it to DistributedCache. When we run the job, each node will create a local
copy of that fi le from HDFS. The second and third arguments denote the input and
output paths of the standard Hadoop job. Note that we’ve limited the number of data
sources to two. This is not an inherent limitation of the technique, but a simplifi cation
that makes our code easier to follow.

 Up to now our MapClass has only had to defi ne one method, map(). In fact, the
Mapper interface (and also the Reducer interface) has two more abstract methods,
confi gure() and close(). We call the method confi gure()when we fi rst instantiate
the MapClass, and the method close()when the mapper fi nishes processing its split.
The MapReduceBase class provides default no-op implementations for these methods.
Here we want to override confi gure() to load our join data into memory when a
mapper is fi rst initialized. This way we can have the data available each time we call
map()to process a new record.

public static class MapClass extends MapReduceBase
 implements Mapper<Text, Text, Text, Text> {

 private Hashtable<String, String> joinData =
 new Hashtable<String, String>();

 @Override
 public void confi gure(JobConf conf) {
 try {

120 CHAPTER 5 Advanced MapReduce

 Path [] cacheFiles = DistributedCache.getLocalCacheFiles(conf);
 if (cacheFiles != null && cacheFiles.length > 0) {
 String line;
 String[] tokens;

 BufferedReader joinReader = new BufferedReader(
 new FileReader(cacheFiles[0].toString()));
 try {
 while ((line = joinReader.readLine()) != null) {
 tokens = line.split(“,”, 2);
 joinData.put(tokens[0], tokens[1]);
 }
 } fi nally {
 joinReader.close();
 }
 }
 } catch (IOException e) {
 System.err.println(“Exception reading DistributedCache: “ + e);
 }
 }

 public void map(Text key, Text value,
 OutputCollector<Text, Text> output,
 Reporter reporter) throws IOException {

 String joinValue = joinData.get(key);
 if (joinValue != null) {
 output.collect(key,
 new Text(value.toString() + “,” + joinValue));
 }
 }
}

When we call confi gure(), we get an array of fi le paths to the local copy of fi les pushed
by DistributedCache. As our driver method has only pushed one fi le (given by our
fi rst argument) into DistributedCache, this should be an array of size one. We read
that fi le using standard Java fi le I/O. For our purpose, the program assumes each line
is a record, the key/value pair is comma separated, and the key is unique and will
be used for joining. The program reads this source fi le into a Java Hashtable called
joinData that’s available throughout the mapper’s lifespan.

The joining takes place in the map() method and is straightforward now that one of
the sources resides in memory in the form of joinData. If we don’t fi nd the join key
in joinData, we drop the record. Otherwise, we match the (join) key to the value in
joinData and concatenate the values. The result is outputted directly into HDFS as we
don’t have any reducer for further processing.

A not-infrequent situation in using DistributedCache is that the background
data (the smaller data source in our data join case) is in the local fi lesystem of the
client rather than stored in HDFS. One way to handle this is to add code to upload the
local fi le on the client to HDFS before calling DistributedCache.addCacheFile().
Fortunately, this process is natively supported as one of the generic Hadoop command
line arguments in GenericOptionsParser . The option is -fi les and it automatically

 Joining data from different sources 121

copies a comma-separated list of fi les to all the task nodes. Our command line
statement is

bin/hadoop jar -fi les small_in.txt DataJoinDC.jar big_in.txt output

Now that we don’t need to call DistributedCache.addCacheFile() ourselves any-
more, we no longer have to take in the fi lename of the smaller data source as one of
the arguments. The index to the arguments has shifted.

Path in = new Path(args[0]);
Path out = new Path(args[1]);

With these minor changes our DistributedCache join program will take a local fi le
on the client machine as one of the input sources.

5.2.3 Semijoin : reduce-side join with map-side fi ltering

One of the limitations in using replicated join is that one of the join tables has to be
small enough to fi t in memory. Even with the usual asymmetry of size in the input
sources, the smaller one may still not be small enough. You can solve this problem by
rearranging the processing steps to make them more effi cient. For example, if you’re
looking for the order history of all customers in the 415 area code, it’s correct but in-
effi cient to join the Orders and the Customers tables fi rst before fi ltering out records
where the customer is in the 415 area code. Both the Orders and Customers tables may
be too big for replicated join and you’ll have to resort to the ineffi cient reduce-side
join. A better approach is to fi rst fi lter out customers living in the 415 area code. We
store this in a temporary fi le called Customers415. We can arrive at the same end re-
sult by joining Orders with Customers415, but now Customers415 is small enough that
a replicated join is feasible. There is some overhead in creating and distributing the
Customers415 fi le, but it’s often compensated by the overall gain in effi ciency.

Sometimes you may have a lot of data to analyze. You can’t use replicated join no
matter how you rearrange your processing steps. Don’t worry. We still have ways to
make reduce-side joining more effi cient. Recall that the main problem with reduce-
side joining is that the mapper only tags the data, all of which is shuffl ed across the
network but most of which is ignored in the reducer. The ineffi ciency is ameliorated
if the mapper has an extra prefi ltering function to eliminate most or even all the
unnecessary data before it is shuffl ed across the network. We need to build this
fi ltering mechanism.

Continuing our example of joining Customers415 with Orders, the join key is
Customer ID and we would like our mappers to fi lter out any customer not from
the 415 area code rather than send those records to reducers. We create a data set
CustomerID415 to store all the Customer IDs of customers in the 415 area code.
CustomerID415 is smaller than Customers415 because it only has one data fi eld.
Assuming CustomerID415 can now fi t in memory, we can improve reduce-side join by
using distributed cache to disseminate CustomerID415 across all the mappers. When
processing records from Customers and Orders, the mapper will drop any record

122 CHAPTER 5 Advanced MapReduce

whose key is not in the set CustomerID415. This is sometimes called a semijoin , taking
the terminology from the database world.

Last but not least, what if the fi le CustomerID415 is still too big to fi t in memory? Or
maybe CustomerID415 does fi t in memory but it’s size makes replicating it across all
the mappers ineffi cient. This situation calls for a data structure called a Bloom fi lter. A
Bloom fi lter is a compact representation of a set that supports only the contain query.
(“Does this set contain this element?”) Furthermore, the query answer is not completely
accurate, but it’s guaranteed to have no false negatives and a small probability of false
positives. The slight inaccuracy is the trade-off for the data structure’s compactness. By
using a Bloom fi lter representation of CustomerID415, the mappers will pass through
all customers in the 415 area code. It still guarantees the correctness of the data join
algorithm. The Bloom fi lter will also pass a small portion of customers not in the 415
area code to the reduce phase. This is fi ne because those will be ignored in the reduce
phase. We’ll still have improved performance by reducing dramatically the amount
of traffi c shuffl ed across the network. The use of Bloom fi lters is in fact a standard
technique for joining in distributed databases, and it’s used in commercial products,
such as Oracle 11g. We’ll describe Bloom fi lter and its other applications in more
details in the next section.

5.3 Creating a Bloom fi lter
 If you use Hadoop for batch processing of large data sets, your data-intensive com-
puting needs probably include transaction-style processing as well. We won’t cover all
the techniques for running real-time distributed data processing (caching, sharding,
etc.). They aren’t necessarily Hadoop-related and are well beyond the scope of this
book. One lesser-known tool for real-time data processing is the Bloom fi lter, which
is a summary of a data set whose usage makes other data processing techniques more
effi cient. When that data set is big, Hadoop is often called in to generate the Bloom
fi lter representation. As we mentioned earlier, a Bloom fi lter is also sometimes used for
data joining within Hadoop itself. As a data processing expert, you’ll be well rewarded
to have the Bloom fi lter in your bag of tricks. In this section we’ll explain this data
structure in more detail and we’ll go through an online ad network example that will
build a Bloom fi lter using Hadoop.

5.3.1 What does a Bloom fi lter do?

At its most basic, a Bloom fi lter object supports two methods: add() and contains().
These two methods work in a similar way as in the Java Set interface. The method add()
adds an object to the set, and the method contains() returns a Boolean true/false
value denoting whether an object is in the set or not. But, for a Bloom fi lter, contains()
doesn’t always give an accurate answer. It has no false negatives . If contains() returns
false, you can be sure that the set doesn’t have the object queried. It does have a small
probability of false positives though. contains() can return true for some objects not in
the set. The probability of false positives depends on the number of elements in the set
and some confi guration parameters of the Bloom fi lter itself.

 Creating a Bloom fi lter 123

The major benefi t of a Bloom fi lter is that its size, in number of bits, is constant and is
set upon initialization. Adding more elements to a Bloom fi lter doesn’t increase its size.
It only increases the false positive rate. A Bloom fi lter also has another confi guration
parameter to denote the number of hash functions it uses. We’ll discuss the reason for
this parameter and how the hash functions are used later when we discuss the Bloom
fi lter’s implementation. For now, its main implication is that it affects the false positive
rate. The false positive rate is approximated by the equation

(1 – exp(-kn/m))k

where k is the number of hash functions used, m is the number of bits used to store the
Bloom fi lter, and n is the number of elements to be added to the Bloom fi lter. In practice,
m and n are determined by the requirement of the system, and therefore, k is chosen to
minimize the false positive rate given m and n, which (after a little calculus) is

k = ln(2) * (m/n) ≈ 0.7 * (m/n)

The false positive rate with the given k is 0.6185m/n, and k has to be an integer. The
false positive rate will only be an approximation. From a design point of view, one
should think in terms of (m/n), number of bits per element, rather than m alone. For
example, we have to store a set containing ten million URLs (n=10,000,000). Allocat-
ing 8 bits per URL (m/n=8) will require a 10 MB Bloom fi lter (m = 80,000,000 bits).
This Bloom fi lter will have a false positive rate of (0.6185)8, or about 2 percent. If we
were to implement the Set class by storing the raw URLs, and let’s say the average URL
length was 100 bytes, we would have to use 1 GB. Bloom fi lter has shrunk the storage
requirement by 2 orders of magnitude at the expense of only a 2 percent false positive
rate! A slight increase in storage allocated to the Bloom fi lter will reduce the false posi-
tive rate further. At 10 bits per URL, the Bloom fi lter will take up 12.5 MB and have a
false positive rate of only 0.8 percent.

In summary, the signature of our Bloom fi lter class will look like the following:

class BloomFilter<E> {
 public BloomFilter(int m, int k) { ... }
 public void add(E obj) { ... }
 public boolean contains(E obj) { ... }
}

More applications of the Bloom fi lter
 The Bloom fi lter found its fi rst successful applications back when memory was scarce.
One of its fi rst uses was in spellchecking. Not being able to store a whole dictionary
in memory, spellcheckers used a Bloom fi lter representation (of the dictionary) to
catch most misspellings. As memory size grew and became cheaper, such space
consideration waned. Bloom fi lter usage is fi nding a resurgence in large-scale data-
intensive operations as data is fast outgrowing memory and bandwidth.

We’ve already seen commercial products, such as Oracle 11g, using Bloom fi lters
to join data across distributed databases. In the networking world, one successful

124 CHAPTER 5 Advanced MapReduce

product using Bloom fi lters is the open source distributed web proxy called Squid .
Squid caches frequently accessed web content to save bandwidth and give users a
faster web experience. In a cluster of Squid servers, each one can cache a different
set of content. An incoming request should be routed to the Squid server holding a
copy of the requested content, or in case of a cache miss, the request is passed on
to the originating server. The routing mechanism needs to know what each of the
Squid servers contains. As sending a list of URLs for each Squid server and storing
it in memory is expensive, Bloom fi lters are used. A false positive means a request
is forwarded to the wrong Squid server, but that server would recognize it as a cache
miss and pass it on to the originating server, ensuring the correctness of the overall
operation. The small performance hit from a false positive is far outweighed by the
overall improvement.

Sharding systems are a similar application but more advanced. In a nutshell,
database sharding is the partitioning of a database across multiple machines such
that each machine only has to deal with a subset of records. Each record has some
ID that determines which machine it’s assigned to. In more basic designs, the ID
is hashed statically to one of a fi xed number of database machines. This approach
is infl exible to adding more shards or rebalancing existing ones. To add fl exibility, it
uses a dynamic look-up for each record ID, but unfortunately that adds processing
delay if the look-up is done through a database (i.e., using disk). Like Squid, more
advanced shard systems use in-memory Bloom fi lters as a fast look-up. It needs
some mechanism to handle false positives, but the occurrence is small enough to
not impact the overall performance improvement.

For online display ad networks, it’s important to be able to target an ad from the right
category to a visitor. Given the volume of traffi c a typical ad network receives and the
latency requirements, one can end up spending a lot of money on hardware to have
the capability of retrieving the category in real time. A design based on Bloom fi lters
can dramatically decrease that cost. Use an offl ine process to tag web pages (or
visitors) on a limited number of categories (sports, family-oriented, music, etc.). Build
a Bloom fi lter for each category and store it in memory at the ad servers. When an
ad request arrives, the ad servers can quickly and cheaply determine which category
of ads to show. The amount of false positives is negligible.

5.3.2 Implementing a Bloom fi lter

Conceptually the implementation of a Bloom fi lter is quite straightforward. We describe
its implementation in a single system fi rst before implementing it using Hadoop in a
distributed way. The internal representation of a Bloom fi lter is a bit array of size m. We
have k independent hash functions, where each hash function takes an object as input
and outputs an integer between 0 and m-1. We use the integer output as an index into
the bit array. When we “add” an element to the Bloom fi lter, we use the hash functions
to generate k indexes into the bit array. We set the k bits to 1. Figure 5.3 shows what
happens when we add several objects (x, y, and z) over time, in a Bloom fi lter that uses
three hash functions. Note that a bit will be set to 1 regardless of its previous state. The
number of 1s in the bit array can only grow.

 Creating a Bloom fi lter 125

When an object comes in and we want to check whether it has been previously added
to the Bloom fi lter, we use the same k hash functions to generate the bit array indexes
as we would do in adding the object. Now we check whether all those k bits in the bit
array are 1s. If all k bits are 1, we return true and claim that the Bloom fi lter contains
the object. Otherwise we return false. We see that if the object has in fact been added
before, then the Bloom fi lter will necessarily return true. There are no false negatives
(returning false when the object is truly in the set). The k bits corresponding to the
queried object can all be set to 1 even though the object has never been added to the
set. It may happen that adding other objects set those bits leading to false positives.3

Our implementation of a Bloom fi lter in Java would use the Java BitSet class as its
internal representation. We have a function getHashIndexes(obj) that takes an object
and returns an integer array of size k, containing indexes into the BitSet. The main
functions of the Bloom fi lter, add() and contains(), are quite straightforward:

class BloomFilter<E> {

 private BitSet bf;

 public void add(E obj) {
 int[] indexes = getHashIndexes(obj);

 for (int index : indexes) {
 bf.set(index);
 }
 }

 public boolean contains(E obj) {
 int[] indexes = getHashIndexes(obj);

 for (int index : indexes) {
 if (bf.get(index) == false) {
 return false;
 }
 }

3 For an accessible introduction to Bloom Filters, see http://en.wikipedia.org/wiki/Bloom_fi lter.

1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0

1 0 1 1 1 0 0 0 1 0 1 0 0 1 0 1

1 0 1 1 1 0 0 0 1 0 1 0 0 1 0 1

x

y

z

?

Figure 5.3 A Bloom fi lter is a bit array that
represents a set with some probability of false
positives. Objects (such as x, y, and z) are
deterministically hashed into positions in the
array, and those bits are set to 1. You can check
whether an object is in the set or not by hashing
and checking the values of those bit positions.

126 CHAPTER 5 Advanced MapReduce

 return true;
 }

 protected int[] getHashIndexes(E obj) { ... }
}

To implement getHashIndexes() such that it works truly as k independent hash func-
tions is nontrivial. Instead, in our Bloom fi lter implementation in listing 5.4, we use a
hack to generate k indexes that are roughly independent and uniformly distributed.
The getHashIndexes() method seeds the Java Random number generator with an
MD5 hash of the object and then takes k “random” numbers as indexes. The Bloom fi l-
ter class would benefi t from a more rigorous implementation of getHashIndexes(),
but our hack suffi ces for illustration purposes.

An ingenious way of creating a Bloom fi lter from the union of two sets is by OR’ing
the (bit array of the) Bloom fi lters of each individual set. As adding an object is setting
certain bits in a bit array to 1, it’s easy to see why this union rule is true:

public void union(BloomFilter<E> other) {
 bf.or(other.bf);
}

We’ll be exploiting this union trick to build Bloom fi lters in a distributed fashion. Each
mapper will build a Bloom fi lter based on its own data split. We’ll send the Bloom fi l-
ters to a single reducer, which will take a union of them and record the fi nal output.

As the Bloom fi lter will be shuffl ed around as the mappers’ output, the BloomFilter
class will have to implement the Writable interface, which consists of methods
write() and readFields(). For our purpose these methods transform between the
internal BitSet representation and a byte array such that the data can be serialized to
DataInput/DataOutput. The fi nal code is in listing 5.4.

Listing 5.4 Basic Bloom fi lter implementation

class BloomFilter<E> implements Writable {

 private BitSet bf;
 private int bitArraySize = 100000000;
 private int numHashFunc = 6;

 public BloomFilter() {
 bf = new BitSet(bitArraySize);
 }

 public void add(E obj) {
 int[] indexes = getHashIndexes(obj);

 for (int index : indexes) {
 bf.set(index);
 }
 }

 public boolean contains(E obj) {
 int[] indexes = getHashIndexes(obj);

 for (int index : indexes) {

 Creating a Bloom fi lter 127

 if (bf.get(index) == false) {
 return false;
 }
 }
 return true;
 }

 public void union(BloomFilter<E> other) {
 bf.or(other.bf);
 }

 protected int[] getHashIndexes(E obj) {
 int[] indexes = new int[numHashFunc];

 long seed = 0;
 byte[] digest;
 try {
 MessageDigest md = MessageDigest.getInstance(“MD5”);
 md.update(obj.toString().getBytes());
 digest = md.digest();

 for (int i = 0; i < 6; i++) {
 seed = seed | (((long)digest[i] & 0xFF))<<(8*i);
 }
 } catch (NoSuchAlgorithmException e) {}

 Random gen = new Random(seed);

 for (int i = 0; i < numHashFunc; i++) {
 indexes[i] = gen.nextInt(bitArraySize);
 }

 return indexes;
 }

 public void write(DataOutput out) throws IOException {
 int byteArraySize = (int)(bitArraySize / 8);

 byte[] byteArray = new byte[byteArraySize];
 for (int i = 0; i < byteArraySize; i++) {
 byte nextElement = 0;
 for (int j = 0; j < 8; j++) {
 if (bf.get(8 * i + j)) {
 nextElement |= 1<<j;
 }
 }

 byteArray[i] = nextElement;
 }
 out.write(byteArray);
 }

 public void readFields(DataInput in) throws IOException {
 int byteArraySize = (int)(bitArraySize / 8);
 byte[] byteArray = new byte[byteArraySize];

 in.readFully(byteArray);

 for (int i = 0; i < byteArraySize; i++) {
 byte nextByte = byteArray[i];

128 CHAPTER 5 Advanced MapReduce

 for (int j = 0; j < 8; j++) {
 if (((int)nextByte & (1<<j)) != 0) {
 bf.set(8 * i + j);
 }
 }
 }
 }
}

Next we’ll create the MapReduce program to make a Bloom fi lter using Hadoop. As
we said earlier, each mapper will instantiate a BloomFilter object and add the key
of each record in its split into the BloomFilter instance. (We’re using the key of the
record to follow our data joining example.) We’ll create a union of the BloomFilters
by collecting them into a single reducer.

The driver for the MapReduce program is straightforward. Our mappers will output
a key/value pair where the value is a BloomFilter instance.

job.setOutputValueClass(BloomFilter.class);

The output key will not matter in terms of partitioning because we only have a single
reducer.

job.setNumReduceTasks(1);

We want our reducer to output the fi nal BloomFilter as a binary fi le. Hadoop’s
OutputFormats outputs either text fi les or assumes a key/value pair. Our reducer,
therefore, won’t use Hadoop’s MapReduce output mechanism and instead we’ll write
the result out to a fi le ourselves.

job.setOutputFormat(NullOutputFormat.class);

WARNING In general life gets a little more dangerous when you deviate
from MapReduce’s input/output framework and start working with your
own fi les. Your tasks are no longer guaranteed to be idempotent and you’ll
need to understand how various failure scenarios can affect your tasks.
For example, your fi les may only be partially written when some tasks are
restarted. Our example here is safe(r) because all the fi le operations take
place together only once in the close() method and in only one reducer.
A more careful/paranoid implementation would check each individual fi le
operation more closely.

Recall that our strategy for the mapper is to build a single Bloom fi lter on the entire split
and output it at the end of the split to the reducer. Given that the map() method of the Map-
Class has no state information about which record in the split it’s processing, we should
output the BloomFilter in the close() method to ensure that all the records in the
split have been read. Although the map() method is passed an OutputCollector to col-
lect the mapper’s outputs, the close() method is not given one. The standard pattern

 Creating a Bloom fi lter 129

in Hadoop to get around this situation is for MapClass itself to hold on to a reference to
the OutputCollector when it’s passed into map(). This OutputCollector is known to
function even in the close() method. The MapClass looks like

public static class MapClass extends MapReduceBase
 implements Mapper<K1, V1, K2, V2> {

 OutputCollector<K2, V2> oc = null;

 public void map(K1 key, V1 value,
 OutputCollector<K2,V2> output,
 Reporter reporter) throws IOException {

 if (oc == null) oc = output;
 ...
 }

 public void close() throws IOException {
 oc.collect(k, v);
 }
}

The BloomFilters generated by all the mappers are sent to a single reducer. The
reduce() method in the Reduce class will do a Bloom fi lter union of all of them.

while (values.hasNext()) {
 bf.union((BloomFilter<String>)values.next());
}

As we mentioned earlier, we want the fi nal BloomFilter to be written out in a fi le of
our own format rather than one of Hadoop’s OutputFormats. We had already set the
reducer’s OutputFormat to NullOutputFormat in the driver to turn off that output
mechanism. Now the close() method will have to handle the fi le output itself. It
will have to know the output path as specifi ed by the user, which can be found in the
mapred.output.dir property of the JobConf object. But the close() is not given the
job confi guration object. We handle this oversight the same way we handled Output-
Collector in the mapper. We keep a reference to the JobConf object in the Reduce
class to be used by the close() method. The rest of the close() method will use
Hadoop’s fi le I/O to write out our BloomFilter in binary to a fi le in HDFS . The
complete code is in listing 5.5.

Listing 5.5 A MapReduce program to create a Bloom fi lter

public class BloomFilterMR extends Confi gured implements Tool {

 public static class MapClass extends MapReduceBase
 implements Mapper<Text, Text, Text, BloomFilter<String>> {

 BloomFilter<String> bf = new BloomFilter<String>();
 OutputCollector<Text, BloomFilter<String>> oc = null;

 public void map(Text key, Text value,
 OutputCollector<Text, BloomFilter<String>> output,
 Reporter reporter) throws IOException {

130 CHAPTER 5 Advanced MapReduce

 if (oc == null) oc = output;

 bf.add(key.toString());
 }

 public void close() throws IOException {
 oc.collect(new Text(“testkey”), bf);
 }
 }

 public static class Reduce extends MapReduceBase
 implements Reducer<Text, BloomFilter<String>, Text, Text> {

 JobConf job = null;
 BloomFilter<String> bf = new BloomFilter<String>();

 public void confi gure(JobConf job) {
 this.job = job;
 }

 public void reduce(Text key, Iterator<BloomFilter<String>> values,
 OutputCollector<Text, Text> output,
 Reporter reporter) throws IOException {

 while (values.hasNext()) {
 bf.union((BloomFilter<String>)values.next());
 }
 }

 public void close() throws IOException {
 Path fi le = new Path(job.get(“mapred.output.dir”) +
 “/bloomfi lter”);
 FSDataOutputStream out = fi le.getFileSystem(job).create(fi le);
 bf.write(out);
 out.close();
 }
 }

 public int run(String[] args) throws Exception {
 Confi guration conf = getConf();
 JobConf job = new JobConf(conf, BloomFilterMR.class);

 Path in = new Path(args[0]);
 Path out = new Path(args[1]);
 FileInputFormat.setInputPaths(job, in);
 FileOutputFormat.setOutputPath(job, out);

 job.setJobName(“Bloom Filter”);
 job.setMapperClass(MapClass.class);
 job.setReducerClass(Reduce.class);
 job.setNumReduceTasks(1);

 job.setInputFormat(KeyValueTextInputFormat.class);
 job.setOutputFormat(NullOutputFormat.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(BloomFilter.class);
 job.set(“key.value.separator.in.input.line”, “,”);

 JobClient.runJob(job);

 return 0;
 }

 Exercising what you’ve learned 131

 public static void main(String[] args) throws Exception {
 int res = ToolRunner.run(new Confi guration(),
 new BloomFilterMR(),
 args);

 System.exit(res);
 }
}

5.3.3 Bloom fi lter in Hadoop version 0.20+

Hadoop version 0.20 has a Bloom fi lter class in it. It plays a support role to some of
the new classes introduced in version 0.20, and it will likely stay around for future ver-
sions as well. It functions much like our BloomFilter class in listing 5.4, although it’s
much more rigorous in its implementation of the hashing functions. As a built-in class,
it can be a good choice for semijoin within Hadoop. But it’s not easy to separate this
class from the Hadoop framework to use it as a standalone class. If you’re building a
Bloom fi lter for non-Hadoop applications, Hadoop’s built-in BloomFilter may not
be appropriate.

5.4 Exercising what you’ve learned
 You can test your understanding of more advanced MapReduce techniques through
these exercises:

1 Anomaly detection —Take a web server log fi le . Write a MapReduce program to
aggregate the number of visits for each IP address. Write another MapReduce
program to fi nd the top K IP addresses in terms of visits. These frequent
visitors may be legitimate ISP proxies (shared among many users) or they
may be scrapers and fraudsters (if the server log is from an ad network). Chain
these two MapReduce jobs together such that they can be easily run on a
daily basis.

2 Filter out records in input—In both patent data sets we’ve used (cite75_99.
txt and apat63_99.txt), the fi rst row is metadata (column names). So far
we’ve had to explicitly or implicitly fi lter out that row in our mappers, or
interpret our results knowing that the metadata record has some deterministic
infl uence. A more permanent solution is to remove the metadata row from
the input data and keep track of it elsewhere. Another solution is to write a
mapper as a preprocessor that fi lters all records that look like metadata. (For
example, records that don’t start with a numeric patent number.) Write such
a mapper and use ChainMapper /ChainReducer to incorporate it into your
MapReduce programs.

3 Disjoint selection—Using the same Customers and Orders example for the
datajoin package , how will you change the code to output customers not in
the Orders data source? Perhaps the Orders data only contains orders made
within the last N months, and these customers haven’t purchased anything in

132 CHAPTER 5 Advanced MapReduce

that time period. A business may choose to re-engage these customers with
discounts or other incentives.

4 Calculating ratios—Ratios are often a better unit of analysis than raw numbers.
For example, say you have a data set of today’s stock prices and another data
set for stock prices from yesterday. You may be more interested in each stock’s
growth rate than its absolute price. Use the datajoin framework to write a
program that takes two data sources and output the ratio.

5 Product of a vector with a matrix—Look up your favorite linear algebra text on the
defi nition of matrix multiplication. Implement a MapReduce job to take the
product of a vector and a matrix. You should use DistributedCache to hold
the value of the vector. You may assume the matrix is in sparse representation .

6 Spatial join —Let’s get more adventurous. Consider a two-dimensional
space where both the x and y coordinates range from -1,000,000,000 to
+1,000,000,000. You have one fi le with the location of foos, and another fi le
with the location of bars. Each record in those fi les is a comma-separated (x,y)
coordinate. For example, a couple lines may look like
145999.32455,888888880.001
834478899.2,5656.87660922
Write a MapReduce job to fi nd all foos that are less than 1 unit distance from
a bar. Distance is measured using the familiar Euclidean distance, sqrt[(x1-
x2)2 + (y1-y2)2]. Although both foos and bars are relatively sparse in this 2D
space, their respective fi les are too big to be stored in memory. You can’t use
DistributedCache for this spatial join.
Hint: The datajoin package as it’s currently implemented doesn’t work that
well for this problem either, but you can solve it with your own mapper and
reducer that have a similar data fl ow as the datajoin package.
Hint #2: In all the MapReduce programs we’ve discussed up till now, the keys
are only extracted and passed around, whereas the values go through various
computations. You should consider computing the key for the mapper’s output.

7 Spatial join, enhanced with Bloom fi lter—After you’ve answered the last question,
fi gure out how you can use a Bloom fi lter to speed up the join operation.
Assume bars are much fewer in number than foos, but still too many to fi t all
their locations in memory.

5.5 Summary
We can often write the basic MapReduce programs as one job operating on one data
set. We may need to write the more advanced programs as multiple jobs or we may
operate them on multiple data sets. Hadoop has several different ways of coordinating
multiple jobs together, including sequential chaining and executing them according
to predefi ned dependencies. For the frequent case of chaining map-only jobs around
a full MapReduce job, Hadoop has special classes to do it effi ciently.

 Further resources 133

Joining is the canonical example for processing data from multiple data sources.
Though Hadoop has a powerful datajoin package for doing arbitrary joins, its generality
comes at the expense of effi ciency. A couple other joining methods can provide faster
joins by exploiting the relative asymmetry in data source sizes typical of most data joins.
One of these methods leverages the Bloom fi lter, a data structure that’s useful in many
data processing tasks.

At this point, your knowledge of MapReduce programming should enable you to
start writing your own programs. As all programmers know, programming is more
than writing code. You have various techniques and processes—from development to
deployment and testing and debugging. The nature of MapReduce programming and
distributed computing adds complexity and nuance to these processes, which we’ll
cover in the next chapter.

5.6 Further resources

 ■ http://portal.acm.org/citation.cfm?doid=1247480.1247602—MapReduce’s lack of
simple support for joining datasets is well-known. Many of the tools to enhance
Hadoop (such as Pig, Hive, and CloudBase) offer data joins as a fi rst-class op-
eration. For a more formal treatment, Hung-chih Yang and coauthors have
published a paper “Map-reduce-merge: simplifi ed relational data processing
on large clusters” that proposes a modifi ed form of MapReduce with an extra
“merge” step that supports data joining natively.

 http://umiacs.umd.edu/~jimmylin/publications/Lin_etal_TR2009.pdf■ —Section
5.2.2 describes the use of distributed cache to provide side data to tasks. The
limitation of this technique is that the side data is replicated to every Task-
Tracker, and the side data must fi t into memory. Jimmy Lin and colleagues ex-
plore the use of memcached , a distributed in-memory object caching system, to
provide global access to side data. Their experience is summarized in the paper
“Low-Latency, High-Throughput Access to Static Global Resources within the
Hadoop Framework.”

6

134

Programming Practices

This chapter covers
 Best practices unique to developing Hadoop programs■

 Debugging programs in local, pseudo-distributed, ■

and fully distributed modes

 Sanity checking and regression testing program outputs■

 Logging and monitoring■

 Performance tuning■

Now that you’ve gone through various programming techniques in MapReduce,
this chapter will step back and cover programming practices.

Programming on Hadoop differs from traditional programming mainly in two
ways. First, Hadoop programs are primarily about processing data. Second, Hadoop
programs are run over a distributed set of computers. These two differences will
change some aspects of your development and debugging processes, which we
cover in sections 6.1 and 6.2.

Performance tuning techniques tend to be specifi c to the programming platform,
and Hadoop is no different. We cover tools and approaches to optimizing Hadoop
programs in section 6.3.

 Developing MapReduce programs 135

Let’s start with the development techniques applicable to Hadoop. Presumably
you’re already familiar with standard Java software engineering techniques. We focus
on practices unique to data-centric programming within Hadoop.

6.1 Developing MapReduce programs
Chapter 2 discussed the three modes of Hadoop: local (standalone), pseudo-distributed ,
and fully distributed . They correspond roughly to development, staging, and produc-
tion setups. Your development process will go through each of the three modes. You’ll
have to be able to switch between confi gurations easily. In practice you may even have
more than one fully distributed cluster. Larger shops may, for example, have a “devel-
opment” cluster to further harden MapReduce programs before running them on the
real production cluster. You may have multiple clusters for different workloads. For
example, there can be an in-house cluster for running many small- to medium-sized
jobs and a cluster in the cloud that’s more cost effective for running large, infre-
quent jobs.

Section 2.3 discussed how you can have different versions of the hadoop-site.
xml confi guration fi le for different setups, and you switch a symlink to point to the
confi guration you want to work with at the moment. You can also specify the exact
confi guration fi le you want at each Hadoop command with the -conf option.
For example,

bin/hadoop fs -conf conf.cluster/hadoop-site.xml -lsr

will list all fi les in your fully distributed cluster, even though you may be currently work-
ing on a different mode or different cluster (assuming conf.cluster/hadoop-site.
xml is where your fully distributed cluster’s confi guration fi le is).

Before you run and test your Hadoop program, you’ll need to make data available
for the confi guration you’re running. Section 3.1 describes various ways to get data
into and out of HDFS. For local and pseudo-distributed modes, you’ll only want a
subset of your full data. Section 4.4 presents a Streaming program (RandomSample.
py) that can randomly sample a percentage of records from a data set in HDFS . As it’s
a Python script, you can also use it to sample down a local fi le with a Unix pipe:

cat datafi le | RandomSample.py 10

will give you a 10 percent sample of the fi le datafi le.
Now that you have all the different confi gurations set up and know how to put data

into each confi guration, let’s look at how to develop and debug in local and pseudo-
distributed modes. The techniques build on top of each other as you get closer to the
production environment. We defer the discussion of debugging on the fully distributed
cluster ‘till the next section.

6.1.1 Local mode

 Hadoop in local mode runs everything within one single Java Virtual Machine (JVM)
and uses the local fi lesystem (i.e., no HDFS). Running within one JVM allows you to

136 CHAPTER 6 Programming Practices

use all the familiar Java development tools, such as a debugger . Using fi les from the
local fi lesystem means you can quickly apply Unix commands or simple scripts on
the input and output data. Examining fi les in HDFS, on the other hand, is limited to
commands provided by the Hadoop command line. For example, to count how many
records are in an output fi le, you can use wc -l if the fi le is in the local fi lesystem. If
the fi le is in HDFS, then you’ll either have to write a MapReduce program or download
the fi le to local storage before applying the Unix commands. As you’ll see, being able
to access input and output fi les easily will be important to our development practices
under local mode.

NOTE Local mode closely adheres to Hadoop’s MapReduce programming
model, but it doesn’t support every feature. For example, it doesn’t support
distributed cache , and it only allows a maximum of one reducer.

A program running in local mode will output all log and error messages to the con-
sole. It will also summarize the amount of data processed at the end. For example,
running our skeleton MapReduce job (MyJob.java) to invert the patent citation data ,
the output is quite verbose, and fi gure 6.1 is a snapshot in the middle of the job.

At the end of the job, Hadoop will print out the values of various internal counters .
They’re the number of records and bytes going through the different stages of
MapReduce:

09/05/27 03:34:37 INFO mapred.TaskRunner: Task

➥ attempt_local_0001_r_000000_0’ done.
09/05/27 03:34:37 INFO mapred.TaskRunner: Saved output of task

➥ attempt_local_0001_r_000000_0’ to

➥ fi le:/Users/chuck/Projects/Hadoop/hadoop-0.18.1/output/test

Figure 6.1 Running a Hadoop program in local mode outputs all the log messages to the console.

 Developing MapReduce programs 137

09/05/27 03:34:37 INFO mapred.LocalJobRunner: reduce > reduce
09/05/27 03:34:37 INFO mapred.JobClient: Job complete: job_local_0001
09/05/27 03:34:37 INFO mapred.JobClient: Counters: 11
09/05/27 03:34:37 INFO mapred.JobClient: Map-Reduce Framework
09/05/27 03:34:37 INFO mapred.JobClient: Map output records=16522439
09/05/27 03:34:37 INFO mapred.JobClient: Reduce input records=33044878
09/05/27 03:34:37 INFO mapred.JobClient: Map output bytes=264075431
09/05/27 03:34:37 INFO mapred.JobClient: Map input records=16522439
09/05/27 03:34:37 INFO mapred.JobClient: Combine output records=0
09/05/27 03:34:37 INFO mapred.JobClient: Map input bytes=264075431
09/05/27 03:34:37 INFO mapred.JobClient: Combine input records=0
09/05/27 03:34:37 INFO mapred.JobClient: Reduce input groups=6517968
09/05/27 03:34:37 INFO mapred.JobClient: Reduce output records=6517968
09/05/27 03:34:37 INFO mapred.JobClient: File Systems
09/05/27 03:34:37 INFO mapred.JobClient: Local bytes written=4246405780
09/05/27 03:34:37 INFO mapred.JobClient: Local bytes read=4276658154

The input and output of the MapReduce job are both in the local fi lesystem. We can
examine them using standard Unix commands such as wc -l or head. As we are delib-
erately using smaller data sets during development, we can even load them into a text
editor or a spreadsheet. We can use the many features of those applications to sanity
check the correctness of our program.

SANITY CHECKING

 Most MapReduce programs involve at least some counting or arithmetic, and bugs
(especially typos) in mathematical programming don’t call attention to themselves in
the form of thrown exceptions or threatening error messages. Your math can be wrong
even though your program is technically “correct,” and everything will run smoothly,
but the end result will be useless. There’s no simple way to uncover arithmetic mis-
takes, but some sanity checking will go a long way. At a high level you can look at the
overall count, maximum, average, and so on, of various metrics and see if they match
expectation. At a low level you can pick a particular output record and verify that it
was produced correctly. For example, when we created the inverted citation graph, the
fi rst few lines were

“CITED” “CITING”
1 3964859,4647229
10000 4539112
100000 5031388
1000006 4714284
1000007 4766693
1000011 5033339
1000017 3908629
1000026 4043055
1000033 4190903,4975983

Our job concludes that patent number 1 is cited twice, by 3964859 and 4647229. We
can verify this claim by grepping over the sampled input data to look for records where
patent number 1 is cited.

grep “,1$” input/cite75_99.txt

138 CHAPTER 6 Programming Practices

We indeed get the two records as expected. You can verify a few more records to gain
confi dence in the correctness of your program’s math and logic.1

An eyesore about the output of this inverted citation graph is that the fi rst line is
not real data.

“CITED” “CITING”

It’s an artifact from the fi rst line of the input data being used as data defi nition. Let’s
add some code to our mapper to fi lter out non-numeric keys and values, and in the
process demonstrate regression testing.

REGRESSION TESTING

 Our data-centric approach to regression testing revolves around “diff ’ing” various out-
put fi les from before and after code changes . For our particular change, we should
only be taking out one line from the job’s output. To verify that this indeed is the case,
let’s fi rst save the output of our current job. In local mode, we have a maximum of only
one reducer, so the job’s output is only one fi le, which we call job_1_output.

For regression testing, it’s also useful to save the output of the map phase. This will
help us isolate bugs to either the map phase or the reduce phase. We can save the
output of the map phase by running the MapReduce job with zero reducers. We can
do this easily using the -D mapred.reduce.tasks=0 option . In this mapper-only job,
there will be multiple fi les as each map task will write its output to its own fi le. Let’s
copy all of them into a directory called job_1_intermediate.

Having stored away the output fi les, we can make the desired code changes to the
map() method in MapClass. The code itself is trivial. We focus on testing it.

public void map(Text key, Text value,
 OutputCollector<Text, Text> output,
 Reporter reporter) throws IOException {

 try
 {
 if (Integer.parseInt(key.toString()) > 0 &&
 Integer.parseInt(value.toString()) > 0)
 {
 output.collect(value, key);
 }
 } catch (NumberFormatException e) { }
}

Compile and execute the new code against the same input data. Let’s run it as a map-
only job fi rst and compare the intermediate data. As we’ve only changed the mapper,
any bug should fi rst manifest in differences in the intermediate data.

diff output/job_1_intermediate/ output/test/

1 In this case, you may suspect whether patent number 1 is really cited by those two patents. The number 1
feels wrong, an outlier in the range of patent numbers being cited. There can be mistakes in the original
input data. We have to track down the patents themselves if we want to verify this. In any case, ensuring data
quality is an important topic but is beyond our discussion of Hadoop.

 Developing MapReduce programs 139

We get the following output from the diff utility:

Binary fi les output/job_1_intermediate/.part-00000.crc and

➥ output/test/.part-00000.crc differ
diff output/job_1_intermediate/part-00000 output/test/part-00000
1d0
< “CITED” “CITING”

We found differences in the binary fi le .part-00000.crc. This is an internal fi le for
HDFS to keep checksums for the fi le part-00000. A difference in checksum means
that part-00000 has changed, and diff prints out the exact differences later. The new
intermediate fi le, under output/test, is missing the quoted fi eld descriptors. More
importantly, we fi nd no other changes. So far so good. If we run the whole job with one
reducer, we expect the fi nal output to differ by one line too.

Well, it turns out not to be the case. If you run the whole job with one reducer and
compare the fi nal output with job_1_output from the original run, you’ll fi nd many
differences. What do you think happened? Let’s look at the fi rst few lines of the diff
to fi nd out.

$ diff output/job_1_output output/test/part-00000 | head -n 15
1,2c1
< “CITED” “CITING”
< 1 3964859,4647229

> 1 4647229,3964859
19c18
< 1000067 5312208,4944640,5071294

> 1000067 4944640,5071294,5312208
22,23c21,22
< 1000076 4867716,5845593
< 1000083 5566726,5322091

> 1000076 5845593,4867716
> 1000083 5322091,5566726

We see that the line with the fi eld descriptors (“CITED” and “CITING”) are taken out
as expected. As to the rest of the differences, there’s a defi nite pattern.

In our reduce() method, we have concatenated the list of values for each key in
the order Hadoop has given them to us. Hadoop doesn’t provide any guarantee as
to the order of those values. We see that taking out one line in the intermediate data
impacts the order of the values for many keys at the reducer . As we know that this job’s
correctness is invariant to the ordering, we can ignore the differences. Regression
testing is inherently conservative and tends to set off false alarms. You should use it
with that in mind.

We have advocated the use of a sampled data set for development, because it is more
representative of the structure and properties of the data set we use in production. We
have used the same sampled data set for regression testing, but you can also manually
construct a separate input data set with edge cases that are atypical of the production
data. For example, you may put in empty values or extra tab characters or other unusual

140 CHAPTER 6 Programming Practices

records in this constructed data set. This test data set is for ensuring that your program
continues to handle the edge cases even as it evolves. This test data set doesn’t need to
have more than several dozen records. You can visually inspect the entire output to see
if your program still functions as expected.

CONSIDER USING LONG INSTEAD OF INT

Most Java programmers instinctively default to the int type (or Integer or IntWritable)
to represent integer values. In Java the int type can hold any integer between 231-1 and
-231, or between 2,147,483,647 and -2,147,483,648. This is adequate for most applica-
tions. Rarely do programmers put too much thought into it. When you’re processing
Hadoop-scale data, it’s not unusual for some counter variables to need a bigger range.
You won’t see this requirement under your development data set , which by design is
small. It may not even matter to your current production data, but as your business
operation grows, your data set will get bigger. It may get to a point where some vari-
ables will outgrow the int range and cause arithmetic errors. Take the canonical word
counting example. When processing millions of documents, you won’t have any word
count that goes beyond 2 billion,2 and an int is adequate. But as you grow to process
tens of millions or hundreds of millions of documents, counting frequent words like
the can cross the limit of an int type. Rather than wait for this kind of bug to creep up
on you in production, which is much harder to debug and costlier to fi x, now is the
time you should go through your code and carefully consider whether your numeric
variables should be long or LongWritable to handle future scale.3

6.1.2 Pseudo-distributed mode

 Local mode has none of the distributed characteristics of a production Hadoop cluster.
We may not see many bugs when running in local mode. Hadoop provides a pseudo-
distributed mode that has all the functionality and “nodes” of a production cluster—Name
Node , SecondaryNameNode , DataNode , JobTracker , and TaskTracker , each running on
a separate JVM. All the software components are distributed, and pseudo-distributed
mode differs from a production cluster at only the system-and-hardware level. It uses
only one physical machine—your own local computer. We should make sure our jobs
can run in pseudo-distributed mode before deploying them to a full production cluster.

Chapter 2 describes the confi guration and commands to start pseudo-distributed
mode. You’ll start all the daemons on your computer to make it function like a cluster.
You interface with it as if it is a distinct Hadoop cluster. You put data into its own HDFS
fi lesystem. You submit your jobs to it for running rather than run them in the same
user space. Most importantly, you now monitor it “remotely” through log fi les and the
web interface. You’ll use the same tools later to monitor a production cluster .

2 This is not absolutely true and will depend on your documents’ size and content.
3 The problem of exceeding a numeric range is not unique to Hadoop. You’ll remember the famous Y2K

problem where older programs only allocated two digits to represent year. More recently, almost all web
operations that have experienced explosive growth (such as Facebook, Twitter, and RockYou) have had to
retool their systems to handle a bigger range of user IDs or document IDs than they originally expected.

 Developing MapReduce programs 141

LOGGING

Let’s run in the pseudo-distributed cluster the same job we had in local mode. You put
the input fi le into HDFS using the hadoop fs command. Submit the job for running
using the same hadoop jar command as in local mode.

The fi rst thing you’ll notice is that you no longer have the torrent of messages on
your console. You only get a measure of progress in the map phase and reduce phase,
and the same summary of counters at the end as in local mode. You can see this in
fi gure 6.2.

Figure 6.2 In pseudo-distributed mode, the console only outputs a job’s progress and its counters at
the end.

142 CHAPTER 6 Programming Practices

Hadoop hasn’t stopped outputting debugging messages. In fact, it’s outputting much
more now. These messages don’t go to the console screen. Instead, they’re saved into
log fi les.

You can fi nd the log fi les under the /logs directory. Different services (NameNode,
JobTracker, etc.) create separate log fi les. The fi lename should distinguish the service
logging a fi le. Hadoop rotates log fi les daily. The most recent one ends in .log. It
further appends the older ones with their date. Under the default setting, Hadoop
doesn’t delete old log fi les automatically. You should proactively archive and delete
them to make sure they’re not taking up too much space.

Log fi les for the NameNode , SecondaryNameNode , DataNode , and JobTracker
are used for debugging the respective services. They’re not too important in pseudo-
distributed mode. In production clusters, you as a system administrator can look at
them to debug problems in those corresponding nodes. As a programmer, you are
always interested in the TaskTracker log though, as it records exceptions thrown.

Your MapReduce program can output to STDOUT and STDERR (System.out and
System.err in Java) its own logging messages. Hadoop records those under fi les
named stdout and stderr, respectively. There will be a distinct fi le for each task
attempt. (A task can have more than one attempt if the fi rst one fails.) These user log
fi les are under the /logs/userlogs subdirectory.

Besides logging to STDOUT and STDERR, your program can also send out live status
messages using the setStatus() method on the Reporter object being passed to the
map() and reduce() methods. (For Streaming programs, the status information is
updated by sending a string of the form reporter:status:message to STDERR.) This
is useful for long-running jobs where you can monitor them as they run. The status
message is shown on the JobTracker Web UI, to be described next.

JOBTRACKER WEB UI

 By defi nition events occur in many different places in a distributed program. This
makes monitoring more diffi cult. The system becomes more like a black box, and we
need specialized monitoring tools to peek into the various states within it. The Job-
Tracker provides a web interface for tracking the progress and various states of your
jobs. Under the default confi guration, you can set your browser to

http://localhost:50030/jobtracker.jsp

to view the starting page of the administration tool for your pseudo-distributed
cluster.4 It shows a summary of the Hadoop cluster, as well as lists of jobs that are running,
completed, and failed. See fi gure 6.3.

Hadoop tracks jobs internally by their job ID . A job ID is a string prefi xed with
job_, followed by the cluster ID (which is a timestamp of when the cluster was started),
followed by an auto-incremented job number. The web UI lists each job with the user
name and job name . In pseudo-distributed mode, it’s relatively easy to identify the job

4 In fully distributed mode, replace “localhost” with the domain of the JobTracker master.

 Developing MapReduce programs 143

Figure 6.3 The JobTracker Web UI main page

you’re currently working with, as you’ll run one job at a time. When you get to a multi-
user production environment, you’ll have to narrow down your jobs by looking for
your Hadoop user name and the name of your current job. The name of your job is set
using the setJobName() method in the JobConf object. The name for a Streaming job
is set through a confi guration property shown in table 6.1.

Table 6.1 Confi guration property for setting a job’s name

Property Description

mapred.job.name String property denoting the name of a job

144 CHAPTER 6 Programming Practices

In the administration page, you can see each job with the completion percentage of its
map phase. It shows the number of map tasks for the job and the number of completed
ones. You can see the same metrics for the reduce side. This gives you a rough summa-
ry of your job’s progress. To drill down more on a particular job, you can click on the
job ID, which is a link that’ll take you to the job’s administration page. See fi gure 6.4.

The job page shows the volume of various input/output due to the running of the
job. The page refreshes itself periodically but you can also refresh the page manually to
get the updated numbers. You can start exploring the various aspects of your job from
the many links on this page. For example, clicking on the map link will take you to a list
of all map tasks for the job. See fi gure 6.5.

Figure 6.4 The JobTracker ’s administration page for a single job

 Monitoring and debugging on a production cluster 145

Figure 6.5 List of tasks in the TaskTracker Web UI. This fi gure shows all the map tasks for a
single job. Each task can update its own status message.

Tasks are identifi ed by a task ID . To construct the task ID, you start with the job ID the
task runs under but replace the job_ prefi x with task_. You then append it with _m for a
map task or _r for a reduce task. You further append it with an auto-incremented number
within each group. In the TaskTracker Web UI, you’ll see each task with its status , which
you can programmatically set through the setStatus() method described earlier.

Clicking on a task ID will bring you to a page that further describes different attempts of
a task. Hadoop makes several retry attempts at a failed task before failing the entire job.

The JobTracker and TaskTracker UIs provide many other links and metrics. Most
should be self-explanatory.

KILLING JOBS

Unfortunately, sometimes a job goes awry after you’ve started it but it doesn’t actually
fail. It may take a long time to run or may even be stuck in an infi nite loop. In (pseudo-)
distributed mode you can manually kill a job using the command

bin/hadoop job -kill job_id

where job_id is the job’s ID as given in JobTracker’s Web UI.

6.2 Monitoring and debugging on a production cluster
After successfully running your job in a pseudo-distributed cluster, you’re ready to run
it on a production cluster using real data. We can apply all the techniques we’ve used
for development and debugging on the production cluster, although the exact usage
may be slightly different. Your cluster should still have a JobTracker Web UI, but the
domain is no longer localhost. It’s now the address of the cluster’s JobTracker. The
port number will still be 50030 unless it’s been confi gured differently.

146 CHAPTER 6 Programming Practices

In pseudo-distributed mode, when there’s only one node, all the log fi les are in a
single /logs directory that you can access locally. In a fully distributed cluster, each
node has its own /logs directory to keep its log fi les. You can diagnose problems on a
node through the log fi les of that particular node.

In addition to the development and testing techniques we’ve mentioned so far, you
also have monitoring and debugging techniques that are more useful in a production
cluster on real data, which we explore in this section.

6.2.1 Counters

 You can instrument your Hadoop job with counters to profi le its overall operation. Your
program defi nes various counters and increments their counts in response to specifi c
events. Hadoop automatically sums the same counter from all tasks (of the same job)
so that it refl ects the profi le of the overall job. It displays the value of your counters in
the JobTracker’s Web UI along with Hadoop’s internal counters.

The canonical application of counters is for tracking different input record types,
particularly for tracking “bad” records. Recall from section 4.4 our example for fi nding
the average number of claims for patents from each country. We know the number of
claims is not available for many records. Our program skips over those records, and it’s
useful to know the number of records we’re skipping. Beyond satisfying our curiosity,
such instrumentation allows us to understand the program’s operation and do some
“reality checks” for its correctness.

We use counters through the Reporter.incrCounter() method. The Reporter
object is passed to the map() and reduce() methods. You call incrCounter() with the
name of the counter and the amount to increment. You use uniquely named counters
for each different event. When you call incrCounter() with a new counter name, that
counter is initialized and takes on the increment value.

The Reporter.incrCounter() method has two signatures, depending on how you
want to specify a counter’s name:

public void incrCounter(String group, String counter, long amount)
public void incrCounter(Enum key, long amount)

The fi rst form is more general in that it allows you to specify the counter name with
dynamic strings at run time. The combination of two strings, group and counter,
uniquely defi nes a counter. When counters are reported (in the Web UI or as text at
the end of a job run), counters of the same group are reported together.

The second form uses a Java enum to specify counter names, which forces you
to have them defined at compile time, but it also allows for type checking. The
enum’s name is used as the group string, whereas the enum’s field is used as the
counter string.

Listing 6.1 is the MapClass from listing 4.12 rewritten with counters to track the
number of missing values and “quoted” values. (Only the fi rst row of column description
should be a “quoted” value.) An enum called ClaimsCounters is defi ned with values
MISSING and QUOTED. Logic in the code increments the counters to refl ect the
record it’s processing.

 Monitoring and debugging on a production cluster 147

Listing 6.1 A MapClass with Counters to count the number of missing values

public static class MapClass extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, Text> {

 static enum ClaimsCounters { MISSING, QUOTED };

 public void map(LongWritable key, Text value,
 OutputCollector<Text, Text> output,
 Reporter reporter) throws IOException {

 String fi elds[] = value.toString().split(“,”, -20);
 String country = fi elds[4];
 String numClaims = fi elds[8];

 if (numClaims.length() == 0) {
 reporter.incrCounter(ClaimsCounters.MISSING, 1);
 } else if (numClaims.startsWith(“\””)) {
 reporter.incrCounter(ClaimsCounters.QUOTED, 1);
 } else {
 output.collect(new Text(country), new Text(numClaims + “,1”));
 }
 }
}

After running the program, we can see the defi ned counters along with Hadoop’s
internal counters in the JobTracker’s Web UI . See fi gure 6.6.

Figure 6.6 JobTracker ’s Web UI collects and shows the counter information.

148 CHAPTER 6 Programming Practices

We see that the enum’s fully qualifi ed Java name (with $ to separate out the inner class
hierarchy) is used as the group name. The fi elds MISSING and QUOTED are used
to defi ne separate counters. As expected, it increments the QUOTED counter only
once and the MISSING counter 939,867 times. Does the data set have that many rows
with missing claim counts? The originator of the data set stated that claim counts are
missing for patents granted before 1975. Merely eyeballing fi gure 4.3, we guess that
about a third of all the patents in our data set are granted before 1975. Looking at
the map input records count (from fi gure 6.6) we see there’s a total of 2.9M+ records.
The numbers seem consistent and we can feel more confi dent about the correctness
of the processing.

A Streaming process can also use counters. It needs to send a specially formatted
line to STDERR in the form of

reporter:counter:group,counter,amount

where group, counter, and amount are the corresponding arguments one would’ve passed to
incrCounter() in Java. For example, in Python one can increment the ClaimsCounters.
MISSING counter with

sys.stderr.write(“reporter:counter:ClaimsCounters,MISSING,1\n”)

Be sure to include the newline character (“ \n”) at the end. Hadoop Streaming will not
properly interpret the string without that.

6.2.2 Skipping bad records

 When dealing with large data sets, it is inevitable that some records will have errors. It’s
not unusual to focus several iterations of your development cycle on making the pro-
gram robust to unexpected data.5 Your program may never be completely foolproof,
though. Your program will process new data, and new data will think of new ways to
misbehave. You may even be using a parser that depends on third-party libraries you
have no control over. While you should make your program as robust as possible to
malformed records, you should also have a recovery mechanism to handle the cases
you couldn’t plan for. You don’t want your whole job to fail only because it fails to
handle one bad record.

Hadoop’s mechanism for recovering from hardware failures doesn’t work for
recovering from deterministic software failures caused by bad records. Instead it
provides a feature for skipping over records that it believes to be crashing a task. If
this skipping feature is on, a task will enter into skipping mode after the task has been
retried several times. Once in skipping mode, the TaskTracker will track and determine
which record range is causing failure. The TaskTracker will then restart the task but
skip over the bad record range.

5 Unexpected data are not always mistakes. Someone once told me he had a program that was crashing in
processing users’ geographical information. Further digging revealed that one user was from a real city
named Null.

 Monitoring and debugging on a production cluster 149

CONFIGURING RECORD SKIPPING IN JAVA

 The skipping feature is available starting with version 0.19, but it’s disabled by default.
In Java, the feature is controlled through the class SkipBadRecords, which consists
entirely of static methods. The job driver needs to call one or both methods:

public static void setMapperMaxSkipRecords(Confi guration conf,
 long maxSkipRecs)
public static void setReducerMaxSkipGroups(Confi guration conf,
 long maxSkipGrps)

to turn on record skipping for map tasks and reduce tasks, respectively. The driver calls
the methods with the confi guration object and the maximum number of records in a
skip range. If the maximum skip range size is set to 0 (default), then record skipping is
disabled. Hadoop fi nds the skip range using a divide-and-conquer approach. It executes
the task with the skip range halved each time, and determines the half with the bad
record(s). The process iterates until the skip range is within the acceptable size. This is
a rather expensive operation, particularly if the maximum skip range size is small. You
may need to increase the maximum number of task attempts in Hadoop’s normal task
recovery mechanism to accommodate the extra attempts. You can do this using the
methods JobConf.setMaxMapAttempts() and JobConf.setMaxReduceAttempts() ,
or set the equivalent properties mapred.map.max.attempts and mapred.reduce.
max.attempts .

If skipping is enabled, Hadoop enters skipping mode after the task has failed
twice. You can set the number of task failures needed to trigger skipping mode in
SkipBadRecords’s setAttemptsToStartSkipping() method:

public static void setAttemptsToStartSkipping(Confi guration conf,
 int attemptsToStartSkipping)

Hadoop will log skipped records to HDFS for later analysis. They’re written as se-
quence fi les in the _log/skip directory. We cover sequence fi les in more detail in
section 6.3.3. For now you can think of it as a Hadoop-specifi c compressed format. It
can be uncompressed and read using the command:

bin/hadoop fs -text <fi lepath>

You can change the log directory for skipped records from _log/skip using the meth-
od SkipBadRecords.setSkipOutputPath(JobConf conf, Path path). If path
is set to null or to a Path with a string value of “none”, Hadoop will not record the
skipped records.

CONFIGURING RECORD SKIPPING OUTSIDE OF JAVA

Although you can set the record-skipping feature in Java by calling methods in Skip-
BadRecords in your driver, sometimes you may want to set this feature using the ge-
neric options available in GenericOptionsParser instead. This is because the person
running the program can have a better idea about the range of bad records to expect
and set the parameters more appropriately than the original developer. Furthermore,
Streaming programs can’t access SkipBadRecords; the record skipping features must

150 CHAPTER 6 Programming Practices

be confi gured using Streaming’s -D property (-jobconf in version 0.18). Table 6.2
shows the JobConf properties being set by the SkipBadRecords method calls.

Table 6.2 Equivalent JobConf properties to method calls in SkipBadRecords

SkipBadRecords method JobConf property

setAttemptsToStartSkipping() mapred.skip.attempts.to.start.
skipping

setMapperMaxSkipRecords() mapred.skip.map.max.skip.records

setReducerMaxSkipGroups() mapred.skip.reduce.max.skip.groups

setSkipOutputPath() mapred.skip.out.dir

setAutoIncrMapperProcCount() mapred.skip.map.auto.incr.proc.count

setAutoIncrReducerProcCount() mapred.skip.reduce.auto.incr.proc.
count

We haven’t explained the last two properties yet. Their default values are fi ne for most
Java programs but we need to change them for Streaming ones.

In determining the record range to skip, Hadoop needs an accurate count of the
number of records a task has processed. Hadoop uses an internal counter and by default
it’s incremented after each call to the map (reduce) function. For Java programs this is
a good approach to track the number of records processed. It can break down in some
cases, such as programs that process records asynchronously (say, by spawning threads)
or buffer them to process in chunks, but it usually works. In Streaming programs,
this default behavior wouldn’t work at all because there’s no equivalent of the map
(reduce) function that gets called to process each record. In those situations you have
to disable the default behavior by setting the Boolean properties to false, and your task
has to update the record counters itself.

In Python, the map task can update the counter with

sys.stderr.write(

 ➥ ”reporter:counter:SkippingTaskCounters,MapProcessedRecords,1\n”)

and the reduce task can use

sys.stderr.write(

 ➥ ”reporter:counter:SkippingTaskCounters,ReduceProcessedGroups,1\n”)

Java programs that cannot depend on the default record counting should use

reporter.incrCounter(SkipBadRecords.COUNTER_GROUP,
 SkipBadRecords.COUNTER_MAP_PROCESSED_RECORDS, 1);

and

reporter.incrCounter(SkipBadRecords.COUNTER_GROUP,
 SkipBadRecords.COUNTER_REDUCE_PROCESSED_GROUPS, 1);

when it has processed a key/value pair in its Mapper and Reducer, respectively.

 Monitoring and debugging on a production cluster 151

6.2.3 Rerunning failed tasks with IsolationRunner

Debugging through log fi les is about reconstructing events using generic historical
records. Sometimes there’s not enough information in the logs to trace back the cause
of failure. Hadoop has an IsolationRunner utility that functions like a time machine
for debugging. This utility can isolate and rerun the failed task with the exact same
input on the same node. You can attach a debugger to monitor the task as it runs and
focus on gathering evidence specifi c to the failure.

To use the IsolationRunner feature, you must run your job with the confi guration
property keep.failed.tasks.fi les set to true. This tells every TaskTracker to keep
all the data necessary to rerun the failed tasks.

When a job fails, you use the JobTracker Web UI to locate the node, the job ID, and
the task attempt ID of the failed task. You log into the node where the task failed and
go to the work directory under the directory for the task attempt. Go to

local_dir/taskTracker/jobcache/job_id/attempt_id/work

where job_id and attempt_id are the job ID and task attempt ID of the failed task. (The
job ID should start with “job_” and the task attempt ID should start with “attempt_”.)
The root directory local_dir is what is set in the confi guration property mapred.local.
dir . Note that Hadoop allows a node to use multiple local directories (by setting
mapred.local.dir to a comma-separated list of directories) to spread out disk I/O
among multiple drives. If the node is confi gured that way, you’ll have to look in all the
local directories to fi nd the one with the right attempt_id subdirectory.

Within the work directory you can execute IsolationRunner to rerun the failed task
with the same input that it had before. In the rerun, we want the JVM to be enabled
for remote debugging. As we’re not running the JVM directly but through the bin/
hadoop script, we specify the JVM debugging options through HADOOP_OPTS:

export HADOOP_OPTS=”-agentlib:jdwp=transport=dt_socket,

 ➥ server=y,address=8000”

It tells the JVM to listen for the debugger at port 8000 and to wait for the debugger
getting attached before running any code.6 We now use IsolationRunner to rerun
the task:

bin/hadoop org.apache.hadoop.mapred.IsolationRunner ../job.xml

The job.xml fi le contains all the confi guration information IsolationRunner needs.
Given our specifi cation, the JVM will wait for a debugger’s attachment before execut-
ing the task. You can attach to the JVM any Java debugger that supports the Java Debug
Wire Protocol (JDWP). All the major Java IDEs do so. For example, if you’re using jdb ,
you can attach it to the JVM via

jdb -attach 8000

6 Options to confi gure the Sun JVM for debugging are further explained in Sun’s documentation: http://
java.sun.com/javase/6/docs/technotes/guides/jpda/conninv.html#Invocation.

152 CHAPTER 6 Programming Practices

(Of course, this is only an example. I hope you’re using something better than jdb!)
Consult your IDE’s documentation for how to connect its debugger to a JVM.

6.3 Tuning for performance
After you have developed your MapReduce program and fully debugged it, you may
want to start tuning it for performance. Before doing any optimization, note that one
of the main attractions of Hadoop is its linear scalability . You can speed up many jobs
by adding more machines. This makes economic sense when you have a small cluster.
Consider the value of time it takes to optimize your program to gain a 10 percent im-
provement. For a 10-node cluster, you can get the same 10 percent performance gain
by adding one machine (and this gain applies to all jobs on that cluster). The cost of
your development time may well be higher than the cost of the additional computer.
On the other hand, for a 1,000-node cluster, squeezing a 10 percent improvement
through hardware will take 100 new machines. At that scale the brute force approach
of adding hardware to boost performance may be less cost effective.

Hadoop has a number of specifi c levers and knobs for tuning performance, some
of which boost the effectiveness of the cluster as a whole. We cover those in the next
chapter when we discuss system administration issues. In this section we examine
techniques that can be applied on a per-job basis.

6.3.1 Reducing network traffi c with combiner

Combiner can reduce the amount of data shuffl ed between the map and reduce phases,
and lower network traffi c improves execution time. The details and the benefi ts of
using combiner are thoroughly described in section 4.6. We mention it here again for
the sake of completeness.

6.3.2 Reducing the amount of input data

When processing large data sets , sometimes a nontrivial portion of the processing time
is spent scanning data from disk. Reducing the number of bytes to read can enhance
overall throughput. There are several ways to do this.

The simplest way to reduce the amount of bytes processed is to reduce the amount
of data processed. We can choose to process only a sampled subset of the data. This
is a viable option for certain analytics applications. For those applications, sampling
reduces precision but not accuracy. Their results remain useful for many decision
support systems.

Often your MapReduce jobs don’t use all the information in the input data set.
Recall our patent description data set from chapter 4. It has almost a couple dozen
fi elds, yet most of our jobs access only a few common ones. It’s ineffi cient for every
job on that data set to read the unused fi elds every time. One can “refactor” the input
data into several smaller data sets. Each has only the fi elds necessary for a particular
type of data processing. The exact refactoring will be application dependent. This
technique is similar in spirit to vertical partitioning and column-oriented databases in
the relational database management system (RDBMS) world .

 Tuning for performance 153

Finally, you can reduce the amount of disk and network I/O by compressing your
data. You can apply this technique to the intermediate as well as output data sets.
Hadoop has many options for data compression, and we devote the next subsection
to this topic.

6.3.3 Using compression

 Even with the use of a combiner, the output of the map phase can be large. This inter-
mediate data has to be stored on disk and shuffl ed across the network. Compressing
this intermediate data will improve performance for most MapReduce jobs, and it’s
easy too.

Hadoop has built-in support for compression and decompression. Enabling
compression on the mapper’s output involves setting two confi guration properties, as
you can see in table 6.3.

Table 6.3 Confi guration properties to control the compression of mapper ’s output

Property Description

mapred.compress.map.output Boolean property denoting whether the output of
mapper should be compressed

mapred.map.output.
compression.codec

Class property denoting which CompressionCodec
to use for compressing mapper’s output

To enable compression on the mapper’s output, you set mapred.compress.map.
output to true. In addition, you should set mapred.map.output.compression.codec to
the appropriate codec class. All codec classes in Hadoop implement the Compression-
Codec interface. Hadoop supports a number of compression codecs (see table 6.4). For
example, to use GZIP compression, you can set the confi guration object:

conf.setBoolean(“mapred.compress.map.output”, true);
conf.setClass(“mapred.map.output.compression.codec”,
 GzipCodec.class,
 CompressionCodec.class);

You can also use the convenience methods setCompressMapOutput() and set-
MapOutputCompressorClass() in JobConf instead of setting the properties directly.

Table 6.4 List of codecs available under the org.apache.hadoop.io.compress package

Codec Hadoop version Description

DefaultCodec 0.18, 0.19, 0.20 Works with fi les in the zlib format. By Hadoop convention
fi lenames for these fi les end in .defl ate.

GzipCodec 0.18, 0.19, 0.20 Works with fi les in the gzip format. These fi les have a
fi lename extension of .gz.

BZip2Codec 0.19, 0.20 Works with fi les in the bzip2 format. These fi les have a
fi lename extension of .bz2. This compression format is
unique in that it’s splittable for Hadoop, even when used
outside the sequence fi le format.

154 CHAPTER 6 Programming Practices

 Data output from the map phase of a job is used only internally to the job, so en-
abling compression for this intermediate data is transparent to the developer and is
a no-brainer. As many MapReduce applications involve multiple jobs, it makes sense
for jobs to be able to output and input in compressed form. It’s highly recommended
that data that are passed between Hadoop jobs use the Hadoop-specifi c sequence
fi le format.

Sequence fi le is a compressable binary fi le format for storing key/value pairs.
It is designed to support compression while remaining splittable . Recall that one
of the parallelisms of Hadoop is its ability to split an input fi le for reading and
processing by multiple map tasks. If the input fi le is in a compressed format, Hadoop
will have to be able to split the fi le such that each split can be decompressed by
the map tasks independently. Otherwise parallelism is destroyed if Hadoop has to
decompress the fi le as a whole fi rst. Not all compressed fi le formats are designed
for splitting and decompressing in chunks. Sequence fi les were specially developed
to support this feature. The fi le format provides sync markers to Hadoop to denote
splittable boundaries.7

In addition to its compressability and splittability, sequence fi les support binary keys
and values. Therefore, a sequence fi le is often used for processing binary documents,
such as images, and it works great for text documents and other large key/value objects
as well. Each document is considered a record within the sequence fi le.

You can make a MapReduce job output a sequence fi le by setting its output format
to SequenceFileOutputFormat . You’ll want to change its compression type from the
default RECORD to BLOCK. With record compression, each record is compressed
separately. With block compression, a block of records is compressed together and
achieves a higher compression ratio. Finally, you have to call the static methods
setCompressOutput() and setOutputCompressorClass() in FileOutputFormat
(or SequenceFileOutputFormat , which inherits those methods) to enable output
compression using a specifi c codec. The supported codecs are the same as those given
in table 6.4. You add these lines to the driver:

conf.setOutputFormat(SequenceFileOutputFormat.class);
SequenceFileOutputFormat.setOutputCompressionType(conf,

 ➥ CompressionType.BLOCK);
FileOutputFormat.setCompressOutput(conf, true);
FileOutputFormat.setOutputCompressorClass(conf, GzipCodec.class);

Table 6.5 lists the equivalent properties for confi guring for sequence fi le output.
A Streaming program can output sequence fi les when given the following options:

-outputformat org.apache.hadoop.mapred.SequenceFileOutputFormat
-D mapred.output.compression.type=BLOCK
-D mapred.output.compress=true
-D mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCode

7 All the input fi les we’ve seen so far are uncompressed text fi les where each record is a line. The newline
character (\n) can trivially be thought of as the sync marker pointing out to both splittable boundaries and
record boundaries.

 Tuning for performance 155

Table 6.5 Confi guration properties for outputting compressed sequence fi le

Property Description

mapred.output.
compression.type

String property to denote the sequence fi le’s compression type.
Can be one of NONE, RECORD, or BLOCK. Default is RECORD
but BLOCK almost always compresses better.

Convenience method:

SequenceFileOutputFormat.
 ➥ setOutputCompressionType()

mapred.output.compress Boolean property on whether to compress the job’s output.

Convenience method:

FileOutputFormat.setCompressOutput()

mapred.output.
compression.codec

Class property that is used to specify which compression codec
to use for compressing the job’s output.

Convenience method:

FileOutputFormat.
 ➥ setOutputCompressorClass()

To read a sequence fi le as input, set the input format to SequenceFileInputFormat .
Use

conf.setInputFormat(SequenceFileInputFormat.class);

or

-inputformat org.apache.hadoop.mapred.SequenceFileInputFormat

for Streaming . There’s no need to confi gure the compression type or codec class,
as the SequenceFile.Reader class (used by SequenceFileRecordReader) will auto-
matically determine those settings from the fi le header.

6.3.4 Reusing the JVM

 By default, the TaskTracker runs each Mapper and Reducer task in a separate JVM as a
child process. This necessarily incurs the JVM start-up cost for each task. If the mapper
does its own initialization, such as reading into memory a large data structure (see the
example of joining using distributed cache in section 5.2.2), that initialization is part
of the start-up cost as well. If each task runs only briefl y, or if the mapper initialization
takes a long time, then the start-up cost can be a signifi cant portion of a task’s total
run time.

Starting with version 0.19.0, Hadoop allows the reuse of a JVM across multiple tasks
of the same job. The start-up cost can, therefore, be amortized across many tasks. A
new property, mapred.job.reuse.jvm.num.tasks , specifi es the maximum number
of tasks (of the same job) a JVM can run. The default value is 1; JVM is not reused. You
can enable JVM reuse by setting the property to a higher number. You can also set it to

156 CHAPTER 6 Programming Practices

-1, which means there’s no limit to the number of tasks a JVM can be reused for. The
JobConf object has a convenience method, setNumTasksToExecutePerJvm(int) , to
set the property for a job. This is summarized in table 6.6.

Table 6.6 Confi guration property for enabling JVM reuse

Property Description

mapred.job.reuse.jvm.num.tasks Integer property for setting the maximum number of
tasks a JVM can run. A value of -1 means no limit.

6.3.5 Running with speculative execution

 One of the original design assumptions of MapReduce (as stated in the Google
MapReduce paper) is that nodes are unreliable and the framework must handle
the situation where some nodes fail in the middle of a job. Under this assumption,
the original MapReduce framework specifi es the map tasks and the reduce tasks to
be idempotent . This means that when a task fails, Hadoop can restart that task and
the overall job will end up with the same result. Hadoop can monitor the health of
running nodes and restart tasks on failed nodes automatically. This makes fault toler-
ance transparent to the developer.

Often nodes don’t suddenly fail but experience slowdown as I/O devices go bad. In
such situations everything works but the tasks run slower. Sometimes tasks also run slow
because of temporary congestion. This doesn’t affect the correctness of the running
job but certainly affects its performance. Even one slow-running task will delay the
completion of a MapReduce job. Until all mappers have fi nished, none of the reducers
will start running. Similarly, a job is not considered fi nished until all the reducers
have fi nished.

Hadoop uses the idempotency property again to mitigate the slow-task problem.
Instead of restarting a task only after it has failed, Hadoop will notice a slow-running
task and schedule the same task to be run in another node in parallel. Idempotency
guarantees the parallel task will generate the same output. Hadoop will monitor the
parallel tasks. As soon as one fi nishes successfully, Hadoop will use its output and kill
the other parallel tasks. This entire process is called speculative execution.

Note that speculative execution of map tasks will take place only after all map tasks
have been scheduled to run, and only for map tasks that are making much less progress
than is average on the other map tasks. It’s the same case for speculative execution of
reduce tasks. Speculative execution does not “race” multiple copies of a task to get the
best completion time. It only prevents the slow tasks from dragging down the job’s
completion time.

By default, speculative execution is enabled. One can turn it off for map tasks and
reduce tasks separately. To do this, set one or both of the properties in table 6.7 to
false. They’re applied on a per-job basis, but you can also change the cluster-wide
default by setting them in the cluster confi guration fi le.

 Tuning for performance 157

Table 6.7 Confi guration properties for enabling and disabling speculative execution

Property Description

mapred.map.tasks.speculative.
execution

Boolean property denoting whether speculative
execution is enabled for map tasks

mapred.reduce.tasks.speculative.
execution

Boolean property denoting whether speculative
execution is enabled for reduce tasks

You should leave speculative execution on in general. The primary reason to turn it off
is if your map tasks or reduce tasks have side effects and are therefore not idempotent.
For example, if a task writes to external fi les, speculative execution can cause multiple
copies of a task to collide in attempting to create the same external fi les. You can turn
off speculative execution to ensure that only one copy of a task is being run at a time.

NOTE If your tasks have side effects, you should also think through how
Hadoop’s recovery mechanism would interact with those side effects. For
example, if a task writes to an external fi le, it’s possible that the task dies right
after writing to the external fi le. In that case, Hadoop will restart the task,
which will try to write to that external fi le again. You need to make sure your
tasks’ operation remains correct in such situations.

6.3.6 Refactoring code and rewriting algorithms

If you’re willing to rewrite your MapReduce programs to optimize performance, some
straightforward techniques and some nontrivial, application-dependent rewritings can
speed things up.

One straightforward technique for a Streaming program is to rewrite it for Hadoop
Java. Streaming is great for quickly creating a MapReduce job for ad hoc data analysis,
but it doesn’t run as fast as Java under Hadoop. Streaming jobs that start out as one-off
queries but end up being run frequently can gain from a Java re-implementation.

If you have several jobs that run on the same input data, there are probably
opportunities to rewrite them into fewer jobs. For example, if you’re computing the
maximum as well as the minimum of a data set , you can write a single MapReduce job
that computes both rather than compute them separately using two different jobs. This
may sound obvious, but in practice many jobs are originally written to do one function
well. This is a good design practice. A job’s conciseness makes it widely applicable
to different data sets for different purposes. Only after some usage should you start
looking for job groupings that you can rewrite to be faster.

One of the most important things you can do to speed up a MapReduce program
is to think hard about the underlying algorithm and see if a more effi cient algorithm
can compute the same results faster. This is true for any programming, but it is more
signifi cant for MapReduce programs. Standard text books on algorithm and data

158 CHAPTER 6 Programming Practices

structure (sorting, lists, maps, etc.) comprehensively cover design choices for most
traditional programming. Hadoop programs, on the other hand, tend to touch on
“exotic” areas, such as distributed computing, functional programming, statistics, and
data-intensive processing, where best practices are less known to most programmers
and there is still exciting research today to explore new approaches.

One example we’ve already seen that leverages a new data structure to speed up
MapReduce programs is the use of Bloom fi lters in semi-joins (section 5.3). The Bloom
fi lter is well-known in the distributed computing community but relatively unknown
outside of it.

Another classic example of using a new algorithm to speed up a MapReduce
program comes from statistics in the calculation of variance . Non-statisticians may
compute variance using its canonical defi nition:

(1/N) * Sum
i
[(X

i
 – X

avg
)2]

where Sumi denotes summation over the data set. The variable Xavg is the average of
the data set. If we don’t know that average ahead of time, then a non-statistician may
decide to run one MapReduce job to fi nd the average fi rst, and a second MapReduce
job to compute the variance. Someone more familiar with computing statistics will use
an equivalent defi nition:

(1/N) * Sum
i
[(X

i
)2] – ((1/N) * Sum

i
[X

i
])2

From this defi nition one needs the sum of X as well as the sum of X2, but you can
compute both sums together in one scan of the data, using only a single MapReduce
job. (This is analogous to the example of calculating maximum and minimum in a
single job.) A little statistical background has halved the processing time in comput-
ing variance.8

You should also pay attention to the computational complexity of your algorithms .
Hadoop provides “only” linear scalability , and you can still bring it to its knees
with large data sets running under computationally intensive algorithms that are
quadratic or worse. You certainly should look for more effi cient algorithms in
those cases, and sometimes you may have to settle for faster algorithms that only
give approximate results.

6.4 Summary
Development methodologies for Hadoop build on top of best practices for Java pro-
gramming, such as unit testing and test-driven development. Hadoop’s central role
of processing data calls for more data-centric testing processes. Math and logic errors
are more prevalent in data-intensive programs and they’re often inconspicuous. The

8 There’s a lot of nuisance in numerical computation over large data. In this variance calculation example we
note our refactored MapReduce job has lower numerical precision and is more likely to run into overfl ow
problems.

 Summary 159

distributed nature of Hadoop makes debugging much harder. To lessen the burden,
you should test in stages, from a nondistributed (i.e., local) mode to a single-node
pseudo-distributed mode, and fi nally to a fully distributed mode.

The famous computer scientist Donald Knuth once said that “premature
optimization is the root of all evil.” You should tune your Hadoop program for
performance only after it’s been fully debugged. Beyond thinking through general
algorithmic and computational issues, performance enhancement is platform-specifi c,
and Hadoop has a number of specifi c techniques to make jobs run more effi ciently.

7

160

Cookbook

This chapter covers
 Passing custom parameters to tasks■

 Retrieving task-specifi c information■

 Creating multiple outputs■

 Interfacing with relational databases■

 Making output globally sorted■

This book so far has covered the core techniques for making a MapReduce pro-
gram. Hadoop is a big framework that supports many more functionalities than
those core techniques. In this age of Bing and Google, you can look up specialized
MapReduce techniques rather easily, and we don’t try to be an encyclopedic refer-
ence. In our own usage and from our discussion with other Hadoop users, we’ve
found a number of techniques generally useful, techniques such as being able to
take a standard relational database as input or output to a MapReduce job. We’ve
collected some of our favorite “recipes” in this cookbook chapter.

7.1 Passing job-specifi c parameters to your tasks
In writing your Mapper and Reducer , you often want to make certain aspects con-
fi gurable. For example, our joining program in chapter 5 is hardcoded to take the

 Passing job-specifi c parameters to your tasks 161

fi rst data column as the join key. The program can be more generally applicable if the
column for the join key can be specifi ed by the user at run time. Hadoop itself uses a
confi guration object to store all the confi guration properties for a job. You can use the
same object to pass parameters to your Mapper and Reducer.

We’ve seen how the MapReduce driver confi gures the JobConf object with
properties, such as input format, output format, mapper class, and so forth. To
introduce your own property, you give your property a unique name and set it with
a value in the same confi guration object. This confi guration object is passed to all
TaskTrackers , so the properties in the confi guration object are available to all tasks
in that job. Your Mapper and Reducer can read the confi guration object and retrieve
the property value.

The Confi guration class (parent of JobConf) has a number of generic setter
methods. Properties are key/value pairs, where key has to be a String, but value can
be one of a number of common types. Signature for the common setter methods are

public void set(String name, String value)
public void setBoolean(String name, boolean value)
public void setInt(String name, int value)
public void setLong(String name, long value)
public void setStrings(String name, String... values)

Note that Hadoop stores all properties internally as strings. All the other setter
methods are convenience methods for set(String, String). For example, the
setStrings(String, String...) method takes a String array , turns it into a
single comma-separated String, and sets that String as the property value. The get-
Strings() retrieval method similarly splits the concatenated string back into an array.
With that in mind, don’t keep any commas in the strings in the original array. If you
want commas, you should use your own string-encoding function.

Your driver will fi rst set the properties in the confi guration object to make them
available to all tasks. Your Mapper and Reducer have access to the confi guration
object in the confi gure() method. When a task initializes, it calls confi gure(),
which you override to retrieve and store your properties . Your map() and reduce()
methods will access your copy of those properties later. In the following example we
call our new property myjob.myproperty, and it takes an integer value specifi ed by
the user.

public int run(String[] args) throws Exception {

 Confi guration conf = getConf();
 JobConf job = new JobConf(conf, MyJob.class);

 ...

 job.setInt(“myjob.myproperty”, Integer.parseInt(args[2]));

 JobClient.runJob(job);
 return 0; q
}

In MapClass , the confi gure() method retrieves the property value and stores it in
the object’s scope. The getter methods of the Confi guration class require specifying

Set custom
property

162 CHAPTER 7 Cookbook

default values, which will be returned if the requested property is not set in the con-
fi guration object. For this example we use a default of 0:

public static class MapClass extends MapReduceBase
 implements Mapper<Text, Text, Text, Text> {

 int myproperty;

 public void confi gure(JobConf job) {
 myproperty = job.getInt(“myjob.myproperty”, 0);
 }

 ... q
}

If you want to use the property in the Reducer, it will also have to retrieve the
property.

public static class Reduce extends MapReduceBase
 implements Reducer<Text, Text, Text, Text> {

 int myproperty;

 public void confi gure(JobConf job) {
 myproperty = job.getInt(“myjob.myproperty”, 0);
 }

 ...
}

The Confi guration class has a larger list of getter methods than setter methods,
although they are largely self-explanatory. Almost all the getter methods require a
default value as argument. The exception is get(String) , which returns null if the
property with the specifi ed name is not set.

public String get(String name)
public String get(String name, String defaultValue)
public boolean getBoolean(String name, boolean defaultValue)
public fl oat getFloat(String name, fl oat defaultValue)
public int getInt(String name, int defaultValue)
public long getLong(String name, long defaultValue)
public String[] getStrings(String name, String... defaultValue)

Given that our job class implements the Tool interface and uses ToolRunner , we can
also let the user set custom properties directly using the generic options syntax, in the
same way the user would set Hadoop confi guration properties.

bin/hadoop jar MyJob.jar MyJob -D myjob.myproperty=1 input output

We can remove the line in the driver that requires the user to always specify the value
of this property as an argument. This is more convenient for the user when the default
value would work most of the time.

public int run(String[] args) throws Exception {

 Confi guration conf = getConf();
 JobConf job = new JobConf(conf, MyJob.class);

Get custom
property

 Probing for task -specifi c information 163

 ...

 int myproperty = job.getInt(“myjob.myproperty”, 0);
 if (myproperty < 0) {
 System.err.println(“Invalid myjob.myproperty: “ + myproperty);
 System.exit(0);
 }

 JobClient.runJob(job);
 return 0;
}

When you allow the user to specify custom properties, it’s good practice for the driver
to validate any user input. The example above ensures that the user will not be allowed
to specify a negative value for myjob.myproperty.

7.2 Probing for task -specifi c information
In addition to retrieving custom properties and global confi guration, we can also use
the getter methods on the confi guration object to obtain certain state information
about the current task and job. For example, in the Mapper you can grab the map.
input.fi le property to get the fi le path to the current map task. This is exactly what
the confi gure() method in the datajoin package’s DataJoinMapperBase does to
infer a tag for the data source.

this.inputFile = job.get(“map.input.fi le”);
this.inputTag = generateInputTag(this.inputFile);

Table 7.1 lists some of the other task-specifi c state information.

Table 7.1 Task-specifi c state information one can get in the confi guration object

Property Type Description

mapred.job.id String The job ID

mapred.jar String The jar location in job directory

job.local.dir String The job’s local scratch space

mapred.tip.id String The task ID

mapred.task.id String The task attempt ID

mapred.task.is.map boolean Flag denoting whether this is a map task

mapred.task.partition int The ID of the task within the job

map.input.fi le String The fi le path that the mapper is reading from

map.input.start long The offset into the fi le of the start of the current
mapper’s input split

map.input.length long The number of bytes in the current
mapper’s input split

mapred.work.output.dir String The task’s working (i.e., temporary) output directory

164 CHAPTER 7 Cookbook

Confi guration properties are also available to Streaming programs through environment
variables. Before executing a script, the Streaming API will have added all confi gura-
tion properties to the running environment. The property names are reformatted such
that non-alphanumeric characters are replaced with an underscore (_). For example, a
Streaming script should look at the environment variable map_input_fi le for the full
fi le path that the current mapper is reading from.

import os

fi lename = os.environ[“map_input_fi le”]
localdir = os.environ[“job_local_dir”]

The preceding code shows how one would access confi guration properties in Python.

7.3 Partitioning into multiple output fi les
Up ‘till now all the MapReduce jobs we’ve seen output a single set of fi les. However,
there are often cases where it’s more convenient to output multiple sets of fi les, or split
a data set into multiple data sets . A popular example is the partitioning of a large log
fi le into distinct sets of log fi les for each day.

MultipleOutputFormat provides a simple way of grouping similar records into
separate data sets. Before writing each output record, this OutputFormat class calls
an internal method to determine the fi lename to write to. More specifi cally, you
will extend a particular subclass of MultipleOutputFormat and implement the
generateFileNameForKeyValue() method. The subclass you extend will determine
the output format. For example, MultipleTextOutputFormat will output text fi les
whereas MultipleSequenceFileOutputFormat will output sequence fi les. In either
case, you’ll override the following method to return the fi lename for each output key/
value pair:

protected String generateFileNameForKeyValue(K key, V value, String name)

The default implementation returns the argument name, which is the leaf fi lename.
You can make the method return a fi lename that’s dependent on the content of
the record.

For our example here, we take the patent metadata and partition it by country. All
patents from U.S. inventors will go into one set of fi les, all patents from Japan into
another pile, and so forth. The skeleton of this example program is a map-only job that
takes its input and immediately outputs it. The main change we’ve made is to create
our own subclass of MultipleTextOutputFormat called PartitionbyCountryMTOF.
(Note that MTOF is an acronym for MultipleTextOutputFormat .) Our subclass will
store each record to a location based on the inventing country listed in that record.
As we treat the value returned by generateFileNameForKeyValue() as a fi le path,
we’re able to create a subdirectory for each country by returning country + “/” +
fi lename. See listing 7.1.

 Partitioning into multiple output fi les 165

Listing 7.1 Partition patent metadata into multiple directories based on country

public class MultiFile extends Confi gured implements Tool {

 public static class MapClass extends MapReduceBase
 implements Mapper<LongWritable, Text, NullWritable, Text> {

 public void map(LongWritable key, Text value,
 OutputCollector<NullWritable, Text> output,
 Reporter reporter) throws IOException {

 output.collect(NullWritable.get(), value);
 }
 }

 public static class PartitionByCountryMTOF
 extends MultipleTextOutputFormat<NullWritable,Text>
 {
 protected String generateFileNameForKeyValue(NullWritable key,
 Text value,
 String fi lename)
 {
 String[] arr = value.toString().split(“,”, -1);
 String country = arr[4].substring(1,3);
 return country + “/” + fi lename;
 }
 }

 public int run(String[] args) throws Exception {
 Confi guration conf = getConf();

 JobConf job = new JobConf(conf, MultiFile.class);

 Path in = new Path(args[0]);
 Path out = new Path(args[1]);
 FileInputFormat.setInputPaths(job, in);
 FileOutputFormat.setOutputPath(job, out);

 job.setJobName(“MultiFile”);
 job.setMapperClass(MapClass.class);

 job.setInputFormat(TextInputFormat.class);
 job.setOutputFormat(PartitionByCountryMTOF.class);
 job.setOutputKeyClass(NullWritable.class);
 job.setOutputValueClass(Text.class);

 job.setNumReduceTasks(0);

 JobClient.runJob(job);

 return 0;
 }

 public static void main(String[] args) throws Exception {
 int res = ToolRunner.run(new Confi guration(),
 new MultiFile(),
 args);

 System.exit(res);
 }
}

166 CHAPTER 7 Cookbook

After executing the preceding program, we can see that the output directory now has
a separate directory for each country.

ls output/
AD BN CS GE IN LC MT PH SV VE
AE BO CU GF IQ LI MU PK SY VG
AG BR CY GH IR LK MW PL SZ VN
AI BS CZ GL IS LR MX PT TC VU
AL BY DE GN IT LT MY PY TD YE
AM BZ DK GP JM LU NC RO TH YU
AN CA DO GR JO LV NF RU TN ZA
AR CC DZ GT JP LY NG SA TR ZM
AT CD EC GY KE MA NI SD TT ZW
AU CH EE HK KG MC NL SE TW
AW CI EG HN KN MG NO SG TZ
AZ CK ES HR KP MH NZ SI UA
BB CL ET HT KR ML OM SK UG
BE CM FI HU KW MM PA SM US
BG CN FO ID KY MO PE SN UY
BH CO FR IE KZ MQ PF SR UZ
BM CR GB IL LB MR PG SU VC

And within the directory for each country are fi les with only records (patents) created
by those countries.

ls output/AD
part-00003 part-00005 part-00006

head output/AD/part-00006
5765303,1998,14046,1996,”AD”,””,,1,12,42,5,59,11,1,0.4545,0,0,1,67.3636,,,,
5785566,1998,14088,1996,”AD”,””,,1,9,441,6,69,3,0,1,,0.6667,,4.3333,,,,
5894770,1999,14354,1997,”AD”,””,,1,,82,5,51,4,0,1,,0.625,,7.5,,,,

We’ve written this simple partitioning exercise as a map-only program. You can apply
the same technique to the output of reducers as well. Be careful not to confuse this
with the partitioner in the MapReduce framework. That partitioner looks at the keys
of intermediate records and decides which reducer will process them. The partitioning
we’re doing here looks at the key/value pair of the output and decides which fi le to
store to.

MultipleOutputFormat is simple, but it’s also limited. For example, we were able to
split the input data by row, but what if we want to split by column? Let’s say we want to create
two data sets from the patent metadata: one containing time-related information (e.g.,
publication date) for each patent and another one containing geographical information
(e.g., country of invention). These two data sets may be of different output formats
and different data types for the keys and values. We can look to MultipleOutputs,
introduced in version 0.19 of Hadoop, for more powerful capabilities.

The approach taken by MultipleOutputs is different from MultipleOutputFormat.
Rather than asking for the fi lename to output each record, MultipleOutputs creates
multiple OutputCollectors . Each OutputCollector can have its own OutputFormat
and types for the key/value pair. Your MapReduce program will decide what to output
to each OutputCollector. Listing 7.2 shows a program that takes our patent metadata

 Partitioning into multiple output fi les 167

and outputs two data sets. One has chronological information, such as issued date. The
other data set has geographical information associated with each patent. This, too, is
a map-only program, but you can apply the multiple output collectors to reducers in a
straightforward way.

Listing 7.2 Program to project different columns of input data to different fi les

public class MultiFile extends Confi gured implements Tool {

 public static class MapClass extends MapReduceBase
 implements Mapper<LongWritable, Text, NullWritable, Text> {

 private MultipleOutputs mos;
 private OutputCollector<NullWritable, Text> collector;

 public void confi gure(JobConf conf) {
 mos = new MultipleOutputs(conf);
 }

 public void map(LongWritable key, Text value,
 OutputCollector<NullWritable, Text> output,
 Reporter reporter) throws IOException {

 String[] arr = value.toString().split(“,”, -1);
 String chrono = arr[0] + “,” + arr[1] + “,” + arr[2];
 String geo = arr[0] + “,” + arr[4] + “,” + arr[5];

 collector = mos.getCollector(“chrono”, reporter);
 collector.collect(NullWritable.get(), new Text(chrono));
 collector = mos.getCollector(“geo”, reporter);
 collector.collect(NullWritable.get(), new Text(geo));
 }

 public void close() throws IOException {
 mos.close();
 }
 }

 public int run(String[] args) throws Exception {
 Confi guration conf = getConf();

 JobConf job = new JobConf(conf, MultiFile.class);

 Path in = new Path(args[0]);
 Path out = new Path(args[1]);
 FileInputFormat.setInputPaths(job, in);
 FileOutputFormat.setOutputPath(job, out);

 job.setJobName(“MultiFile”);
 job.setMapperClass(MapClass.class);

 job.setInputFormat(TextInputFormat.class);
 job.setOutputKeyClass(NullWritable.class);
 job.setOutputValueClass(Text.class);
 job.setNumReduceTasks(0);

 MultipleOutputs.addNamedOutput(job,
 “chrono”,
 TextOutputFormat.class,
 NullWritable.class,
 Text.class);

168 CHAPTER 7 Cookbook

 MultipleOutputs.addNamedOutput(job,
 “geo”,
 TextOutputFormat.class,
 NullWritable.class,
 Text.class);

 JobClient.runJob(job);

 return 0;
 }

 public static void main(String[] args) throws Exception {
 int res = ToolRunner.run(new Confi guration(),
 new MultiFile(),
 args);

 System.exit(res);
 }
}

To use MultipleOutputs, the driver of the MapReduce program must set up the output
collectors it expects to use. Creating the collectors involves a call to MultipleOutputs’
static method addNamedOutput(). We’ve created one output collector called chrono
and another one called geo. We’ve created them both to use TextOutputFormat and
have the same key/value types, but we can choose to use different output formats or
data types.

After setting up the output collectors in the driver, we need to get the
MultipleOutputs object that tracks them when the mapper is initialized in the
confi gure() method. This object must be available throughout the duration of
the map task. In the map() function itself, we call the getCollector() method on the
MultipleOutputs object to get back the chrono and the geo OutputCollectors. We
will write out different data that’s appropriate for each output collector.

We have given a name to each output collector in MultipleOutputs , and
MultipleOutputs will automatically generate the output fi lenames. We can look at
the fi les outputted by our script to see how MultipleOutputs generates the output
names:

ls -l output/
total 101896
-rwxrwxrwx 1 Administrator None 9672703 Jul 31 06:28 chrono-m-00000
-rwxrwxrwx 1 Administrator None 7752888 Jul 31 06:29 chrono-m-00001
-rwxrwxrwx 1 Administrator None 6884496 Jul 31 06:29 chrono-m-00002
-rwxrwxrwx 1 Administrator None 6933561 Jul 31 06:29 chrono-m-00003
-rwxrwxrwx 1 Administrator None 7164558 Jul 31 06:29 chrono-m-00004
-rwxrwxrwx 1 Administrator None 7273561 Jul 31 06:29 chrono-m-00005
-rwxrwxrwx 1 Administrator None 8281663 Jul 31 06:29 chrono-m-00006
-rwxrwxrwx 1 Administrator None 9428951 Jul 31 06:28 geo-m-00000
-rwxrwxrwx 1 Administrator None 7464690 Jul 31 06:29 geo-m-00001
-rwxrwxrwx 1 Administrator None 6580482 Jul 31 06:29 geo-m-00002
-rwxrwxrwx 1 Administrator None 6448648 Jul 31 06:29 geo-m-00003
-rwxrwxrwx 1 Administrator None 6432392 Jul 31 06:29 geo-m-00004
-rwxrwxrwx 1 Administrator None 6546828 Jul 31 06:29 geo-m-00005
-rwxrwxrwx 1 Administrator None 7450768 Jul 31 06:29 geo-m-00006

 Inputting from and outputting to a database 169

-rwxrwxrwx 1 Administrator None 0 Jul 31 06:28 part-00000
-rwxrwxrwx 1 Administrator None 0 Jul 31 06:28 part-00001
-rwxrwxrwx 1 Administrator None 0 Jul 31 06:29 part-00002
-rwxrwxrwx 1 Administrator None 0 Jul 31 06:29 part-00003
-rwxrwxrwx 1 Administrator None 0 Jul 31 06:29 part-00004
-rwxrwxrwx 1 Administrator None 0 Jul 31 06:29 part-00005
-rwxrwxrwx 1 Administrator None 0 Jul 31 06:29 part-00006

We have a set of fi les prefi xed with chrono and another set of fi les prefi xed with geo.
Note that the program created the default output fi les part-* even though it wrote
nothing explicitly. It’s entirely possible to write to these fi les using the original
OutputCollector passed in through the map() method. In fact, if this was not a
map-only program, records written to the original OutputCollector, and only those
records, would be passed to the reducers for processing.

One of the trade-offs with MultipleOutputs is that it has a rigid naming structure
compared to MultipleOutputFormat. Your output collector’s name cannot be part,
because that’s already in use for the default. The output fi lename is also strictly defi ned
as the output collector’s name followed by m or r depending on whether the output was
collected at the mapper or the reducer. It’s fi nally followed by a partition number.

head output/chrono-m-00000
“PATENT”,”GYEAR”,”GDATE”
3070801,1963,1096
3070802,1963,1096
3070803,1963,1096
3070804,1963,1096
3070805,1963,1096
3070806,1963,1096
3070807,1963,1096
3070808,1963,1096
3070809,1963,1096

head output/geo-m-00000
“PATENT”,”COUNTRY”,”POSTATE”
3070801,”BE”,””
3070802,”US”,”TX”
3070803,”US”,”IL”
3070804,”US”,”OH”
3070805,”US”,”CA”
3070806,”US”,”PA”
3070807,”US”,”OH”
3070808,”US”,”IA”
3070809,”US”,”AZ”

Looking at the output fi les, we see that we’ve successfully projected out the columns on
the patent data set into distinct fi les.

7.4 Inputting from and outputting to a database
Although Hadoop is useful for processing large data, relational databases remain
the workhorse of many data processing applications. Oftentimes Hadoop will need to
interface with databases.

170 CHAPTER 7 Cookbook

Although it’s possible to set up a MapReduce program to take its input by directly
querying a database rather than reading a fi le in HDFS , the performance is less than
ideal. More often you would copy a data set from a database to HDFS. You can easily
do it with a standard database dump utility to get a fl at fi le. You then upload to HDFS
using its fi le put shell command.

But sometimes it is sensible having a MapReduce program write directly to a
database. Many MapReduce programs take large data sets and process them into a
manageable size for databases to handle. For example, we often use MapReduce in the
ETL-like process of taking humongous log fi les and computing a much smaller and
more manageable set of statistics for analysts to look at.

The DBOutputFormat is the crucial class for accessing databases. In your driver
you set the output format to this class. You’ll need to specify the confi guration for
connecting to your database. You can do this through the static confi gureDB() method
in DBConfi guration :

public static void confi gureDB(JobConf job, String driverClass,

 ➥ String dbUrl, String userName, String passwd)

After that, you’ll specify what table you’re writing to and what fi elds are there. This is
done with the static setOutput() method in DBOutputFormat.

public static void setOutput(JobConf job, String tableName,

 ➥ String... fi eldNames)

Your driver should have a few lines that look like this:

conf.setOutputFormat(DBOutputFormat.class);
DBConfi guration.confi gureDB(job,
 “com.mysql.jdbc.Driver”,
 “jdbc:mysql://db.host.com/mydb”,
 “username”,
 “password”)
DBOutputFormat.setOutput(job, “Events”, “event_id”, “time”);

Using DBOutputFormat forces your output key to implement the DBWritable in-
terface. Only the key is written to the database. As usual, the keys have to imple-
ment Writable. The signatures for Writable and DBWritable are similar; only the
argument types are different. The write() method in Writable takes a DataOutput,
whereas write() in DBWritable takes a PreparedStatement. Similarly the read-
Fields() method for Writable takes a DataInput, whereas readFields() for
DBWritable takes a ResultSet. Unless you plan on fetching input data straight
from the database using DBInputFormat, readFields() in DBWritable will never
be called.

public class EventsDBWritable implements Writable, DBWritable {
 private int id;
 private long timestamp;

 public void write(DataOutput out) throws IOException {
 out.writeInt(id);
 out.writeLong(timestamp);

 Keeping all output in sorted order 171

 }

 public void readFields(DataInput in) throws IOException {
 id = in.readInt();
 timestamp = in.readLong();
 }

 public void write(PreparedStatement statement) throws SQLException {
 statement.setInt(1, id);
 statement.setLong(2, timestamp);
 }

 public void readFields(ResultSet resultSet) throws SQLException {
 id = resultSet.getInt(1);
 timestamp = resultSet.getLong(2);
 }
}

We want to emphasize again that reading and writing to databases from within Hadoop
is only appropriate for data sets that are relatively small by Hadoop standards. Unless
your database setup is as parallel as Hadoop (which can be the case if your Hadoop
cluster is relatively small while you have many shards in your database system), your
DB will be the performance bottleneck, and you may not gain any scalability advan-
tage from your Hadoop cluster. Oftentimes, it’s better to bulk load data into a data-
base rather than make direct writes from Hadoop. You’ll need custom solutions for
extremely large-scale databases.1

7.5 Keeping all output in sorted order
The MapReduce framework guarantees the input to each reducer to be in sorted
order based on key. In many cases, the reducer only does a simple computation on
the value part of a key/value pair. The output also stays in sorted order. Keep in mind
that the MapReduce framework does not guarantee the sorted order of the reducer
output. Rather, it’s a byproduct of the sorted input and the typical type of operations
reducers perform.

For some applications, the sorted order is unnecessary, and sometimes questions
are raised about turning off the sorting operation to eliminate an unnecessary step
in the reducer. The truth is that the sorting operation is not so much about enforcing
the sorted order of the reducer’s input. Rather, sorting is an effi cient way to group
all records of the same key together. If the grouping function is unnecessary, then
we can directly generate an output record from a single input record. In that case,
you’ll be able to improve performance by eliminating the entire reduce phase. You
can do this by setting the number of reducers to 0, making the application a map-
only job.

1 LinkedIn has an interesting blog post on challenges faced in moving massive amounts of data resulting from
offl ine processes (i.e., Hadoop) into live systems: http://project-voldemort.com/blog/2009/06/building-a-
1-tb-data-cycle-at-linkedin-with-hadoop-and-project-voldemort/.

172 CHAPTER 7 Cookbook

On the other hand, for some applications it’s desirable that all output is sorted
in total . Each output fi le (generated by one reducer) is already in sorted order; it would
be nice to also have all the records in part-00000 be smaller than records in part-
00001, and part-00001 be smaller than part-00002, and so forth. The key to doing
this is the partitioner operation in the framework.

The job of the partitioner is to deterministically assign a reducer to each key. All
records of the same key are grouped and processed together in the reduce stage. An
important design requirement of the partitioner is to balance load across reducers;
no one reducer is given many more keys than other reducers. Without any prior
information about the distribution of keys, the default partitioner uses a hashing
function to uniformly assign keys to reducers. This often works well in distributing
work evenly across reducers, but the assignment is intentionally arbitrary and not
in any order. If we have prior knowledge that the keys are approximately uniformly
distributed, we can use a partitioner that assigns key ranges to each reducer and still
be certain that the reducers’ loads are fairly balanced.

TIP The hash partitioner can also fail to evenly distribute work if certain keys
take much more time to process than others. For example, in highly skewed
data sets, a signifi cant number of records may have the same key. If possible,
you should use a combiner to lessen the load at the reduce phase by doing as
much preprocessing as possible at the map phase. In addition, you can also
choose to write a special partitioner to distribute keys unevenly in such a way
that it balances out the inherent skew of the data and its processing.

The TotalOrderPartitioner is a partitioner that ensures sortedness between
output partitions, not only within. Sorting of large-scale data (i.e., the TeraSort
benchmark) originally used a similar version of this class. This class takes a sequence
fi le with a sorted partition keyset and proceeds to partition keys in different ranges
to the reducers.

7.6 Summary
This chapter discussed many tools and techniques to make your Hadoop job more
user-friendly or make it interface better with other components of your data process-
ing infrastructure. The full extent of the capabilities available in a Hadoop job is doc-
umented in the Hadoop API: http://hadoop.apache.org/common/docs/current/
api/index.html. You may also want to check out additional abstractions such as Pig and
Hive to simplify your programming. We’ll cover these tools in chapters 10 and 11.

If your role involves administrating a Hadoop cluster, you will fi nd the tips on
managing a Hadoop cluster in the next chapter useful.

8

173

Managing Hadoop

This chapter covers
 Confi guring for a production system■

 Maintaining the HDFS fi lesystem■

 Setting up a job scheduler■

The installation instructions in chapter 2 produced a running Hadoop cluster fairly
quickly. The confi guration was relatively simple, but unfortunately it’s not good for
a production cluster, which will be under heavy sustained use. There are various
confi guration parameters that you would want to tune for a production cluster, and
section 8.1 will cover those parameters.

In addition, like any system, a Hadoop cluster will change over time and you (or
some administrator) will have to know how to maintain it to keep it running in good
shape. This is particularly true for the HDFS fi lesystem. In sections 8.2 through
8.5, we cover various standard fi lesystem maintenance tasks, such as checking its
health, setting permissions, quotas, and recovering deleted fi les (trash). Sections
8.6 through 8.10 will cover the bigger but rarer administrative tasks more specifi c

174 CHAPTER 8 Managing Hadoop

to HDFS. These include adding/removing nodes (capacity) and recovery from
NameNode failure. We end the chapter with a section on setting up a scheduler to
manage multiple running jobs.

8.1 Setting up parameter values for practical use
Hadoop has many different parameters. Their default values tend to target running in
standalone mode. They also tend to veer toward being idiotproof. The default values
are more likely to work on more systems without causing any errors. However, often-
times they’re far from optimal in a production cluster. Table 8.1 shows some of the
system properties that you’ll want to change for a production cluster.

Table 8.1 Hadoop properties that you can tune for a production cluster

Property Description Suggested value

dfs.name.dir Directory in NameNode’s local fi lesystem to
store HDFS’s metadata

/home/hadoop/
dfs/name

dfs.data.dir Directory in a DataNode’s local fi lesystem to
store HDFS’s fi le blocks

/home/hadoop/
dfs/data

mapred.system.dir Directory in HDFS for storing shared MapReduce
system fi les

/hadoop/
mapred/system

mapred.local.dir Directory in a TaskNode’s local fi lesystem to
store temporary data

mapred.
tasktracker.
{map|reduce}
.tasks.maximum

Maximum number of map and reduce tasks that
can run simultaneously in a TaskTracker

hadoop.tmp.dir Temporary Hadoop directories /home/hadoop/
tmp

dfs.datanode.du
.reserved

Minimum amount of free space a DataNode
should have

1073741824

mapred.child.
java.opts

Heap size allocated to each child task -Xmx512m

mapred.reduce.
tasks

Number of reduce tasks for a job

The default values for dfs.name.dir and dfs.data.dir point to directories under
/tmp, which is intended only for temporary storage in almost all Unix systems. You will
defi nitely want to change those properties for a production cluster. 1 In addition, these
properties can take comma-separated lists of directories. In the case of dfs.name.
dir, multiple directories are good for backup purposes. If a DataNode has multiple
drives, you should have a data directory in each one and list them all in dfs.data.dir.

1 The rationale for using /tmp illustrates how default values are idiotproof. Every Unix system has the /tmp
directory so you won’t get a “directory not found” error.

 Setting up parameter values for practical use 175

The DataNode will use them all in parallel to speed up I/O.2 You should also specify
directories in multiple drives for mapred.local.dir to speed up processing of tem-
porary data.

The default confi guration for Hadoop’s temporary directories, hadoop.tmp.dir,
is dependent on the user name. You should avoid having any Hadoop property that
depends on a user name, as there can be mismatches between the user name used
to submit a job and the user name used to start a Hadoop node. You should set it
to something like /home/hadoop/tmp to be independent of any user name. Another
problem with the default value of hadoop.tmp.dir is that it points to the /tmp
directory. Although that’s an appropriate place for temporary storage, most default
Linux confi gurations have a quota on /tmp that is too small for Hadoop. Rather than
increase the quota for /tmp, it’s better to point hadoop.tmp.dir to a directory that’s
known to have a lot of space.

By default, HDFS doesn’t require DataNodes to have any reserved free space. In
practice, most systems have questionable stability when the amount of free space gets
too low. You should set dfs.datanode.du.reserved to reserve 1 GB of free space in a
DataNode. A DataNode will stop accepting block writes when its amount of free space
falls below the reserved amount.

Each TaskTracker is allowed to run a confi gurable maximum number of map and
reduce tasks. Hadoop’s default is four tasks (two map tasks and two reduce tasks).
The right number depends on many factors, although most setups call for one to
two tasks per core. You can set a quad core machine to have a maximum of six map
and reduce tasks (three each), because there will already be one task each allocated
for TaskTracker and DataNode, to make a total of eight. Similarly, you can set up
a dual quad core machine to have a maximum of fourteen map and reduce tasks.
This predicates on most MapReduce jobs being I/O heavy. You should reduce the
maximum number of tasks allowed if you expect more CPU-intensive loads .

In considering the number of tasks allowed, you should also consider the amount
of heap memory allocated to each task. Hadoop’s default of 200 MB per task is
quite underwhelming. Many setups bump up the default to 512 MB, some even at
1 GB. This is not a fi nal property. Each job can request more (or less) heap space
per task. Be sure that you have suffi cient usable memory in your machines for your
confi guration parameters. Keep in mind that DataNode and TaskTracker each
already uses 1 GB of RAM.

Although you can set the number of reduce tasks per each individual MapReduce
job, it’s desirable to have a default that works well most of the time. Hadoop’s

2 There’s been some discussion in the Hadoop forums about whether one should confi gure multiple hard
drives in a DataNode as RAID or JBOD. Hadoop doesn’t need RAID’s data redundancy because HDFS
already replicates data across machines. Furthermore, Yahoo has stated that they were able to get noticeable
performance improvement using JBOD. The stated reason is that hard drives, even of the same model,
have high variance in their speed. A RAID confi guration would slow down the I/O to the slowest drive. On
the other hand, letting each drive function independently will allow each one to operate at its top speed,
making the overall throughput of the system higher.

176 CHAPTER 8 Managing Hadoop

default of one reduce task per job is certainly suboptimal in most cases. The general
recommendation is to set the default to either 0.95 or 1.75 times the maximum
number of reduce TaskTrackers in the cluster. This means that the number of reduce
tasks in a job should be 0.95 or 1.75 multiplied by number of worker nodes multiplied by
mapred.tasktracker.reduce.tasks.maximum. A factor of 0.95 will have all the reduce
tasks launched immediately and start copying map tasks’ output as they fi nish. At a
factor of 1.75, some reduce tasks will be able to launch immediately whereas others
will wait. The faster nodes will fi nish the fi rst round of reduce tasks earlier and start on
the second round. The slowest nodes won’t need to process any reduce tasks from the
second round. This can result in better load balancing.

8.2 Checking system’s health
Hadoop provides a fi lesystem checking utility called fsck . You call it with a fi le path
and it’ll recursively check the health of all the fi les under that path. Call it with the
argument / and it’ll check the entire fi lesystem. An example output looks like this:

bin/hadoop fsck /
Status: HEALTHY
 Total size: 143106109768 B
 Total dirs: 9726
 Total fi les: 41532
 Total blocks (validated): 42419 (avg. block size 3373632 B)
 Minimally replicated blocks: 42419 (100.0 %)
 Over-replicated blocks: 0 (0.0 %)
 Under-replicated blocks: 0 (0.0 %)
 Mis-replicated blocks: 0 (0.0 %)
 Default replication factor: 3
 Average block replication: 3.0
 Corrupt blocks: 0
 Missing replicas: 0 (0.0 %)
 Number of data-nodes: 8
 Number of racks: 1

Most of the information should be self-explanatory. By default fsck will ignore fi les
still open for writing by a client. You can get a list of such fi les by running fsck with
the -openforwrite argument.

As fsck checks the fi lesystem, it will print out a dot for each fi le it found healthy
(not shown in the above output). It’ll print out a message for each fi le that is less than
healthy, including ones that have over-replicated blocks , under-replicated blocks , mis-
replicated blocks , corrupt blocks , and missing replicas . Over-replicated blocks, under-
replicated blocks, and mis-replicated blocks are not too alarming as HDFS is self-healing.
But, corrupt blocks and missing replicas mean that data has been permanently lost. By
default fsck doesn’t act on those corrupt fi les, but you can run fsck with the -delete
option to remove them. Better yet is to run fsck with the -move option, which moves
corrupted fi les into the /lost+found directory for salvaging.

You can tell fsck to print out more information by adding -fi les, -blocks,
-locations, and -racks options to fsck. Each successive option requires the

 Checking system’s health 177

preceding option be used as well. The -blocks option requires the -fi les option be
used. The -locations option requires both -fi les and -blocks options be used,
and so forth. The -fi les option tells fsck to print out, for each fi le it checks, a line of
information containing the fi le’s path, the fi le’s size in bytes and blocks, and the fi le’s
status. The -blocks option tells fsck to go further and print out a line of information
for each block in the fi le. This line will include the block’s name, its length, and its
number of replicas. The -locations option will include in each line the location
of the block’s replicas. The -racks option will add the rack name to the location
information. For example, a short one-block fi le will have its report as

bin/hadoop fsck /user/hadoop/test -fi les -blocks -locations -racks
/user/hadoop/test/part-00000 35792 bytes, 1 block(s): OK
0. blk_-4630072455652803568_97605 len=35792 repl=3

➥ [/default-rack/10.130.164.71:50010, /default-rack/10.130.164.177:50010,

➥ /default-rack/10.130.164.186:50010]

Status: HEALTHY
 Total size: 35792 B
 Total dirs: 0
 Total fi les: 1
 Total blocks (validated): 1 (avg. block size 35792 B)
 Minimally replicated blocks: 1 (100.0 %)
 Over-replicated blocks: 0 (0.0 %)
 Under-replicated blocks: 0 (0.0 %)
 Mis-replicated blocks: 0 (0.0 %)
 Default replication factor: 3
 Average block replication: 3.0
 Corrupt blocks: 0
 Missing replicas: 0 (0.0 %)
 Number of data-nodes: 8
 Number of racks: 1

While fsck reports on each fi le in HDFS, there is a dfsadmin command for report-
ing on each DataNode. You can get it through the -report option on the dfsadmin
command:

bin/hadoop dfsadmin -report
Total raw bytes: 535472824320 (498.7 GB)
Remaining raw bytes: 33927731366 (31.6 GB)
Used raw bytes: 379948188541 (353.85 GB)
% used: 70.96%

Total effective bytes: 0 (0 KB)
Effective replication multiplier: Infi nity

Datanodes available: 8

Name: 123.45.67.89:50010
State : In Service
Total raw bytes: 76669841408 (71.4 GB)
Remaining raw bytes: 2184594843(2.03 GB)
Used raw bytes: 56598956650 (52.71 GB)
% used: 73.82%
Last contact: Sun Jun 21 16:13:32 PDT 2009

178 CHAPTER 8 Managing Hadoop

Name: 123.45.67.90:50010
State : In Service
Total raw bytes: 76669841408 (71.4 GB)
Remaining raw bytes: 6356175381(5.92 GB)
Used raw bytes: 54220537856 (50.5 GB)
% used: 70.72%
Last contact: Sun Jun 21 16:13:33 PDT 2009

Name: 123.45.67.91:50010
State : In Service
Total raw bytes: 76669841408 (71.4 GB)
Remaining raw bytes: 6106387206(5.69 GB)
Used raw bytes: 52412190091 (48.81 GB)
% used: 68.36%
Last contact: Sun Jun 21 16:13:33 PDT 2009

...

To look at the NameNode ’s current activity, you can use the -metasave option
in dfsadmin:

bin/hadoop dfsadmin -metasave fi lename

This will save some of NameNode’s metadata into its log directory under fi lename.
In this metadata, you’ll fi nd lists of blocks waiting for replication, blocks being repli-
cated, and blocks awaiting deletion. For replication each block will also have a list of
DataNodes being replicated to. Finally, the metasave fi le will also have summary
statistics on each DataNode.

8.3 Setting permissions
HDFS has a basic fi le permission system similar to the POSIX model. Each fi le has
nine permission settings: the read (r), write (w), and execute (x) permissions for each
of the fi le’s associated owner, group, and other users. Not all permission settings are
meaningful. Under HDFS, we can’t execute fi les; so we can’t set the x permission.

Permission settings for directories also closely follow the POSIX model. The r
permission allows listing of the directory. The w permission allows creation or deletion
of fi les or directories. The x permission allows one to access children of the directory.

Current HDFS releases don’t provide much in terms of security. You should use the
HDFS permission system only to prevent accidental misuse and overwriting of data among
trusted users sharing a Hadoop cluster. HDFS doesn’t authenticate users and believes the
user identity to be whatever the host operating system says it is. Your Hadoop username
is your login name, which is equivalent to what’s shown by whoami . Your group list is
equivalent to bash -c groups. An exception is the username that started the name node.
That username has a special Hadoop username superuser . This superuser can perform any
fi le operation regardless of permission settings. In addition, the administrator can specify
members in a supergroup through the confi guration parameter dfs.permissions.
supergroup . All members of the supergroup are also superusers.

 Enabling trash 179

You can change permission settings and ownership using bin/hadoop fs -chmod,
-chown, and -chgrp. They behave similarly to Unix commands of the same name.

8.4 Managing quotas
By default HDFS doesn’t have any quota to limit how much you can put in a direc-
tory. You can enable and specify name quotas on specifi c directories, which place a
hard limit on the number of fi le and directory names under that directory. The main
use case for name quotas is to prevent users from generating too many small fi les
and overwork the NameNode . The following commands are for setting and clearing
name quotas:

bin/hadoop dfsadmin -setQuota <N> directory [...directory]
bin/hadoop dfsadmin -clrQuota directory [...directory]

Starting with version 0.19, HDFS also supports space quotas on a per directory basis.
This helps manage the amount of storage a user or application can take up.

bin/hadoop dfsadmin -setSpaceQuota <N> directory [...directory]
bin/hadoop dfsadmin -clrSpaceQuota directory [...directory]

The setSpaceQuota command takes an argument for the number of bytes as each
directory’s quota. The argument can have a suffi x to represent unit. For example,
20g will mean 20 gigabytes, and 5t would mean 5 terabytes. All replicas count towards
the quota.

To get the quotas associated with a directory as well as a count of the number of
names and bytes it uses, use the HDFS shell command count with the -q option.

bin/hadoop fs -count -q directory [...directory]

8.5 Enabling trash
In addition to fi le permissions, an additional safeguard against accidental deletion of
fi les in HDFS is the trash - feature. By default this feature is disabled. When this feature
is enabled, the command line utilities for deleting fi les don’t delete fi les immediately.
Instead, they move the fi les temporarily to a .Trash/ folder under the user’s working
directory. The fi les are not permanently removed until after a user-confi gurable time
delay. As long as a fi le is still in the .Trash/ folder, you can restore it by moving it back
to its original location.

To enable the trash feature and set the time delay for the trash removal, set the
fs.trash.interval property in core-site.xml to the delay (in minutes). For example,
if you want users to have 24 hours (1,440 minutes) to restore a deleted fi le, you should
have in core-site.xml

<property>
 <name>fs.trash.interval</name>
 <value>1440</value>
</property>

Setting the value to 0 will disable the trash feature.

180 CHAPTER 8 Managing Hadoop

8.6 Removing DataNodes
You may want to remove DataNodes from your HDFS cluster at some point. For
example, you want to take a machine offl ine for upgrade or maintenance. Remov-
ing nodes in Hadoop can be straightforward. Although it’s not recommended, you
can kill the nodes or disconnect them from the cluster. HDFS is designed to be re-
silient. Taking one or two DataNodes offl ine will not affect ongoing operation. The
NameNode will detect their death and will initiate replication of blocks that have
fallen below the desired replication factor. For a smoother and safer operation, par-
ticularly when retiring large number of DataNodes, you should use Hadoop’s decom-
missioning feature. Decommissioning ensures that all blocks will have the desired
replication factor among the remaining active nodes. In order to use this feature,
you must create an (initially empty) exclude fi le in the NameNode’s local fi le- system,
and the confi guration parameter dfs.hosts.exclude must point to this fi le during
NameNode’s startup. When you want to retire DataNodes, list them in the exclude
fi le, one node per line. You have to specify the nodes using the full hostname, IP, or
IP:port format. Execute

bin/hadoop dfsadmin -refreshNodes

to force the NameNode to reread the exclude fi le and start the decommissioning pro-
cess. Messages like “Decommission complete for node 172.16.1.55:50010” will appear
in the NameNode log fi les when it fi nishes decommissioning, at which point you can
remove the nodes from the cluster.

If you have started HDFS without setting dfs.hosts.exclude to point to an exclude
fi le, the proper way to decommission DataNodes is this: Shut down the NameNode.
Set dfs.hosts.exclude to point to an empty exclude fi le. Restart NameNode. After
NameNode has successfully restarted, follow the procedure above. Note that if you list
the retiring DataNodes in the exclude fi le before restarting NameNode, the NameNode
will be confused and throw messages like “ProcessReport from unregistered node:
node055:50010” in its logs. The NameNode thinks that it is being contacted by a
DataNode outside the system rather than a node to be decommissioned.

If the decommissioned machines may rejoin the cluster at some later point,
you should remove them from the exclude fi le and rerun bin/hadoop dfsadmin

-refreshNodes now to update the NameNode. When the machines are ready to rejoin
the cluster, you can add them using the procedure described in the next section.

8.7 Adding DataNodes
Besides bringing back a machine from offl ine maintenance, you may want to add
DataNodes to your Hadoop cluster as you use it for more processing jobs with more
data. On the new node, install Hadoop and set up the confi guration fi les as you would
any DataNode in the cluster. Start the DataNode daemon manually (bin/hadoop
datanode). It will automatically contact the NameNode and join the cluster. You
should also add the new node to the conf/slaves fi le in the master server. The script-
based commands will recognize the new node.

 Managing NameNode and Secondary NameNode 181

When you add a new DataNode, it will initially be empty, whereas existing DataNodes
will already be fi lled to some capacity. The fi lesystem is considered unbalanced. New fi les
will likely go to the new node, but their replicated blocks will still go to the old nodes.
One should proactively start the HDFS balancer to balance the cluster for optimal
performance. Run the balancer script:

bin/start-balancer.sh

The script will run in the background until the cluster is balanced. An administrator
can also terminate it earlier by running

bin/stop-balancer.sh

A cluster is considered balanced when the utilization rates of all the DataNodes are
within the range of the average utilization rate plus or minus a threshold. This thresh-
old is 10 percent by default. You can specify a different threshold when you start the
balancer script. For example, to set the threshold to 5 percent for a more evenly
distributed cluster, start the balancer with

bin/start-balancer.sh -threshold 5

As balancing can be network intensive, we recommend doing it overnight or over a
weekend when your cluster may be less busy. Alternatively, you can set the dfs.balance.
bandwidthPerSec confi guration parameter to limit the bandwidth devoted to balancing.

8.8 Managing NameNode and Secondary NameNode
NameNode is one of the most important components in the HDFS architecture. It
holds the fi lesystem’s metadata and caches the cluster’s blockmap in RAM for rea-
sonable performance. When you have anything other than a tiny cluster, you should
dedicate a machine to run as NameNode and don’t put any DataNode, JobTracker, or
TaskTracker service on it. This NameNode machine should be the most powerful ma-
chine in the cluster. Give it as much RAM as possible. Although DataNodes may have
higher performance with JBOD disk drives, you should defi nitely use RAID drives in
your NameNode for higher reliability against any single drive failure.

One approach to reducing the burden on the NameNode is to reduce the amount
of fi lesystem metadata by increasing the block size. Doubling the block size will almost
half the amount of metadata. Unfortunately, this also decreases parallelism for fi les that
are not large. The ideal block size will depend on your specifi c deployment. The block
size is set in the confi guration parameter dfs.block.size . For example, to double the
block size from the default 64 MB to 128 MB, set dfs.block.size to 134217728.

By default, the Secondary NameNode3 and the NameNode run on the same
machine. For moderate size clusters (10 or more nodes), you should separate the

3 As of this writing, the Secondary NameNode is slated to be deprecated by version 0.21 of Hadoop, which
should be released as this book goes to press. The Secondary NameNode will be replaced by a more robust
design for warm standby. You should check the online documentation of the version of Hadoop you’re
using to confi rm whether it’s still using Secondary NameNode or not. The particular patch for this change
is at https://issues.apache.org/jira/browse/HADOOP-4539.

182 CHAPTER 8 Managing Hadoop

Secondary NameNode into its own machine, the spec of which should be comparable
to the NameNode. But, before going into how to set up a separate server as a
Secondary NameNode, I should explain what the Secondary NameNode does and
doesn’t do, and in turn some of NameNode’s underlying mechanics.

Due to its unfortunate naming, the Secondary NameNode (SNN) is sometimes
confused with a failover backup for NameNode. It most certainly is not. The SNN
only serves to periodically clean up and tighten the fi lesystem’s state information in
NameNode, helping NameNode become more effi cient. NameNode manages the
fi lesystem’s state information using two fi les, FsImage and EditLog . The fi le FsImage is
a snapshot of the fi lesystem at some checkpoint, and EditLog records each incremental
change (delta) to the fi lesystem after that checkpoint. These two fi les can completely
determine the current state of the fi lesystem. When you initialize NameNode, it merges
these two fi les to create a new snapshot. At the end of NameNode’s initialization,
FsImage will contain the new snapshot and EditLog will be empty. Afterward any
operation that changes the state of HDFS is appended to EditLog, whereas FsImage will
remain unchanged. When you shut down NameNode and restart it, the consolidation
will take place again and make a new snapshot. Note that the two fi les are only for
retaining the fi lesystem’s state information while NameNode is not running (either
intentionally shut down or due to system malfunction). NameNode keeps in memory
a constantly maintained copy of the fi lesystem’s state information to quickly answer
queries about the fi lesystem.

For a busy cluster , the EditLog fi le will grow quite large, and the next restart of
NameNode will take a long time to merge EditLog into FsImage. For busy clusters,
it can also be a long time in between NameNode restarts, and you may want more
frequent snapshots for archival purposes. This is where SNN comes in. It consolidates
FsImage and EditLog into a new snapshot and leaves the NameNode alone to serve
live traffi c. Therefore, it’s more appropriate to think of the SNN as a checkpointing
server. Merging FsImage and EditLog is memory intensive, requiring an amount of
memory on the same order as normal NameNode operation. It’s best for the SNN to
be on a separate server that is as powerful as the primary NameNode.

To confi gure HDFS to use a separate server as the SNN, fi rst list that server’s host
name or IP address in the conf/masters fi le. Unfortunately, this fi le name is also
confusing. The masters in Hadoop (NameNode and JobTracker) are whichever
machine you run bin/start-dfs.sh and bin/start-mapred.sh on. What’s listed in
conf/masters is the SNN, not any of the masters.

You should also modify the conf/hdfs-site.xml fi le on the SNN such that the dfs.
http.address property points to port 50070 of the NameNode’s host address, like

<property>
 <name>dfs.http.address</name>
 <value>namenode.hadoop-host.com:50070</value>
</property>

You should set this property because the SNN retrieves FsImage and EditLog from the
NameNode by sending HTTP Get requests to the URLs:

 Recovering from a failed NameNode 183

 ■ FsImage—http://namenode.hadoop-host.com:50070/getimage?getimage=1
 ■ EditLog—http://namenode.hadoop-host.com:50070/getimage?getedit=1

The SNN also updates the NameNode with the merged metadata using the same ad-
dress and port.

8.9 Recovering from a failed NameNode
Failures happen, and Hadoop has been designed to be quite resilient. The NameNode,
unfortunately, remains a weak point. HDFS is out of commission if the NameNode is
down. A common design for setting up a backup NameNode server is by reusing the SNN.4
After all, the SNN has similar hardware specs as the NameNode, and Hadoop should’ve
already been installed with the same directory confi gurations. If we do some additional
work of maintaining the SNN to be a functional mirror image of the NameNode, we can
quickly start this backup machine as a NameNode instance in the case of a NameNode
failure. Some manual intervention and time are necessary to start the backup node as the
new NameNode, but at least we wouldn’t lose any data.

NameNode keeps all the fi lesystem’s metadata, including the FsImage and EditLog
fi les, under the dfs.name.dir directory. Note that the SNN server doesn’t use that
directory at all. It downloads the system’s metadata into the fs.checkpoint.dir directory
and proceeds to merge FsImage and EditLog there. As the dfs.name.dir directory
on the SNN is unused, we can expose it to the NameNode via the Network File System
(NFS). We instruct the NameNode to always write to this mounted directory in addition to
writing to the NameNode’s local metadata directory. HDFS supports this ability to write the
metadata to multiple directories. You have to specify dfs.name.dir on the NameNode
with a comma separated list, like

<property>
 <name>dfs.name.dir</name>
 <value>/home/hadoop/dfs/name,/mnt/hadoop-backup</value>
 <fi nal>true</fi nal>
</property>

This works, assuming the local dfs.name.dir directory at both the NameNode and the
Secondary NameNode are at /home/hadoop/dfs/name, and that the directory on the
SNN is mounted to the NameNode at /mnt/hadoop-backup. When HDFS sees a comma-
separated list in dfs.name.dir, it writes its metadata to every directory on the list.

Given this setup, when the NameNode dies, the local dfs.name.dir directory at
both the NameNode and the backup node (SNN) should have the same content. To
have the backup node serve as the replacement NameNode, you’ll have to switch its
IP address to the original NameNode’s IP address. (Unfortunately, changing only the
hostname is not suffi cient as the DataNodes cache the DNS entry.) You’ll also have to
run the backup node as a NameNode by executing bin/start-dfs.sh on it.

4 Unfortunately, this common design also contributes to the misperception of the Secondary NameNode as a
backup node. You can set up the backup node in a totally different machine from the NameNode and SNN,
but that machine would be idle almost all the time.

184 CHAPTER 8 Managing Hadoop

To be safer, this new NameNode should also have a backup node set up before you
start it. Otherwise you’ll be in trouble if this new NameNode fails too. If you don’t have
a machine readily available as a backup, you should at least set up an NFS-mounted
directory. This way the fi lesystem’s state information is in more than one location.

As HDFS writes its metadata to all directories listed in dfs.name.dir, if your
NameNode has multiple hard drives, you can specify directories from different drives
to hold replicas of the metadata. This way if one drive fails, it’s easier to restart the
NameNode without the bad drive than to switch over to the backup node, which
involves moving the IP address, setting up a new backup node, and so on.

Recall that the SNN creates a snapshot of the fi lesystem’s metadata in the
fs.checkpoint.dir directory. As it checkpoints only periodically (once an hour
under the default setup), the metadata is too stale to rely on for failover. But it’s still a
good idea to archive this directory periodically over to remote storage . In catastrophic
situations, recovering from stale data is better than no data at all. This can be true if
both the NameNode and the backup fail simultaneously (say, a power surge affecting
both machines). Another unfortunate scenario is if the fi lesystem’s metadata has been
corrupted (say, by human error or a software bug) and has poisoned all the replicas.
Recovering from a checkpoint image is explained in http://issues.apache.org/jira/
browse/HADOOP-2585.

HDFS’s backup and recovery mechanism is undergoing active improvements as
of this writing. You should check with HDFS’s online documentation for the latest
news. There have also been applications of specialized Linux software such as DRBD 5
to Hadoop clusters for high availability. You can fi nd one example in http://www.
cloudera.com/blog/2009/07/22/hadoop-ha-confi guration/.

8.10 Designing network layout and rack awareness
 When your Hadoop cluster gets big, the nodes will be spread out in more than one
rack and the cluster’s network topology starts to affect reliability and performance.
You may want the cluster to survive the failure of an entire rack. You should place your
backup server for NameNode, as described in the previous section, in a separate rack
from the NameNode itself. This way the failure of any one rack will not destroy all cop-
ies of the fi lesystem’s metadata.

 With more than one rack, the placement of both block replicas and tasks becomes
more complex. Replicas of a block should be placed in separate racks to reduce the
potential of data loss. For the standard replication value of 3, the default placement
policy for writing a block is this: If the client performing the write operation is part of
the Hadoop cluster, place the fi rst replica on the DataNode where the client resides.
Otherwise randomly place the replica in the cluster. Place the second replica on a
random rack different from the rack where the fi rst replica resides. Write the third
replica to a different node on the same rack as the second replica. For replication
values higher than 3, place the subsequent replicas on random nodes. As of this

5 http://www.drbd.org.

 Designing network layout and rack awareness 185

writing, this block placement policy is baked into the NameNode. A pluggable policy
is targeted for version 0.21.6

Besides block placement, task placement is also rack aware . A task is usually placed
on a node that has a copy of the block the task is assigned to process. When no such
node is available to take on the new task, the task is randomly assigned to a node on a
rack where a copy of the block is available somewhere on that rack. That is, when data
locality can’t be enforced at a node level, Hadoop tries to enforce it at the rack level.
Failing that, a task would be randomly assigned to one of the remaining nodes.

At this point you may wonder how Hadoop knows which rack a node is at. It requires
you to tell it. It assumes a hierarchical network topology for your Hadoop cluster,
structurally similar to fi gure 8.1. Each node has a rack name similar to a fi le path.
For example, the nodes H1, H2, and H3 in fi gure 8.1 all have a rack name of /D1/R1.
Figure 8.1 shows a case where you have multiple datacenters (D1 and D2) each with
multiple racks (R1 to R4). In most cases you’ll be dealing with multiple racks co-located
together. Your rack names will be in a fl at namespace, such as /R1 and /R2.

To help Hadoop know the location of each node, you have to provide an executable
script that can map IP addresses into rack names. This network topology script must reside
on the master node and its location is specifi ed in the topology.script.fi le.name
property in core-site.xml. Hadoop will call this script with a set of IP addresses as
separate arguments. The script should print out (through STDOUT) the rack name
corresponding to each IP address in the same order, separated by whitespace. The
topology.script.number.args property controls the maximum number of IP
addresses Hadoop will ask for at any one time . It’s convenient to simplify your script by
setting that value to 1. Here is an example a network topology script.

/

D1

R1

H1

D2

R2 R3 R4

H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

Figure 8.1 A cluster with a hierarchical network topology. This cluster spans
multiples datacenters (D1 and D2). Each datacenter has multiple racks (R), and
each rack has multiple machines.

6 See http://issues.apache.org/jira/browse/HDFS-385 for the description of this change.

186 CHAPTER 8 Managing Hadoop

#!/bin/bash

ipaddr=$1
segments=`echo $ipaddr | cut --delimiter=. --fi elds=4`
if [“$segments” -lt 128]; then
 echo /rack-1
else
 echo /rack-2
fi

This bash script takes an IPv4 address and looks at the last of the four octets (assuming
dot-decimal notation). The node is considered in rack 1 if the last octet is less than
128, and the node is considered in rack 2 otherwise. A table lookup may make more
sense for more complex cluster topologies. On the other hand, if there is no net-
work topology script, Hadoop assumes a fl at topology where all nodes are assigned to
/default-rack.

8.11 Scheduling jobs from multiple users
 As you have more and more jobs coming from multiple users for your Hadoop cluster,
you’ll need some control to prevent contention. Under Hadoop’s default FIFO sched-
uler , as soon as a job is sent to Hadoop for execution, the JobTracker will assign as
many TaskTrackers as necessary to process that job. This works fairly well when things
are not busy and you have a good amount of processing capacity to spare. But some big
Hadoop jobs can easily tie up the cluster for a long time and force the smaller jobs to
wait. Wouldn’t it be great if something akin to an express checkout existed for smaller
jobs in a Hadoop cluster?

8.11.1 Multiple JobTracker s

Back in the days before Hadoop version 0.19, you had to physically set up multiple
MapReduce clusters to provide rudimentary CPU allocation among jobs. To keep
storage utilization reasonably effi cient though, there would still be one single HDFS
cluster. Let’s say, you have Z slave nodes available for your Hadoop cluster. You’ll
have a single NameNode that takes all Z nodes as DataNodes. All Z nodes will also
be TaskTrackers. Until now, all these TaskTrackers would point to the same/only
JobTracker.

The trick in making a multicluster setup is having multiple JobTrackers, and each
JobTracker controls a (mutually exclusive) subset of TaskTrackers. For example, to
create two MapReduce clusters, you have X TaskTrackers point to one JobTracker (via
the mapred.job.tracker property) and Y TaskTrackers confi gured to use the second
JobTracker. The slave nodes between the two MapReduce clusters are distinct to give
X+Y=Z. To use this setup, you submit certain jobs to one JobTracker, whereas other
jobs go to the other JobTracker. This limits the number of TaskTrackers available to
each type of job. The job type need not necessarily determine the assignment of jobs
to the MapReduce pool. More typical is to allocate each MapReduce pool to one user
group. This enforces a limit to how much resource one group can take up.

 Scheduling jobs from multiple users 187

Physically setting up multiple MapReduce clusters this way has many drawbacks. It’s
not very user-friendly as one has to remember which pool to use. It’s less likely that
a task is data-local. (It may be the case that all replicas are in DataNodes outside of
one’s pool.) The setup is not fl exible to changing resource requirements. Fortunately,
starting with version 0.19, Hadoop has a pluggable architecture for the scheduler, and
two new schedulers have become available for resolving job contention. One is the Fair
Scheduler developed at Facebook, and another one is the Capacity Scheduler developed
at Yahoo.

8.11.2 Fair Scheduler

The Fair Scheduler introduced the notion of pools . Jobs are tagged to belong to specifi c
pools, and each pool is confi gured to have a guaranteed capacity of a certain number
of map slots and a certain number of reduce slots. When task slots are freed up, the Fair
Scheduler will allocate them to meet these minimum guarantees fi rst. After it meets
the guarantees, slots are allocated between jobs using “fair sharing,” such that each job
gets roughly an equal amount of compute resource. You can set priority on jobs to give
more capacity to higher priority jobs. (Some jobs are more equal than others.)

The Fair Scheduler is available as the jar fi le hadoop-*-fairscheduler.jar under
the contrib/fairscheduler directory of the Hadoop installation. To install it, you
can move the jar fi le directly into Hadoop’s lib/ directory. Alternatively, you can
modify HADOOP_CLASSPATH in the script conf/hadoop-env.sh to include this jar.

You’ll need to set a few properties in hadoop-site.xml to fully enable and confi gure
the Fair Scheduler. You fi rst instruct Hadoop to use the Fair Scheduler instead of the
default one by setting mapred.jobtracker.taskScheduler to org.apache.hadoop.
mapred.FairScheduler. You then confi gure a few Fair Scheduler properties. The
most important is mapred.fairscheduler.allocation.fi le, which points to the fi le
that defi nes the different pools. This fi le is typically named pools.xml and specifi es
each pool’s name and capacity. The mapred.fairscheduler.poolnameproperty
defi nes the jobconf property the scheduler will use to determine which pool to use
for a job. A useful confi guration pattern is to set this to a new property, say pool.name,
and assign pool.name to have a default value of ${user.name}. The Fair Scheduler
automatically gives each user her own individual pool. This particular pool.name
will by default assign each job to its owner’s pool. You can change the pool.name
property in a job’s jobconf to assign the job to a different pool.7 Finally, the mapred.
fairscheduler.assignmultiple property, when set to true, allows the scheduler to
assign both a map task and a reduce task on each heartbeat, which improves ramp-up
speed and throughput. To summarize, your mapred-site.xml will have the following
properties set:

7 Yes, you can run your job in another user’s pool, but that’s not very polite. The main usage is to assign
special jobs to specifi c pools. For example, you may want all cron jobs to go to a single pool rather than have
them run under each individual user’s pool.

188 CHAPTER 8 Managing Hadoop

<property>
 <name>mapred.jobtracker.taskScheduler</name>
 <value>org.apache.hadoop.mapred.FairScheduler</value>
</property>
<property>
 <name>mapred.fairscheduler.allocation.fi le</name>
 <value>HADOOP_CONF_DIR/pools.xml</value>
</property>
<property>
 <name>mapred.fairscheduler.assignmultiple</name>
 <value>true</value>
</property>
<property>
 <name>mapred.fairscheduler.poolnameproperty</name>
 <value>pool.name</value>
</property>
<property>
 <name>pool.name</name>
 <value>${user.name}</value>
</property>

The allocation fi le pools.xml defi nes the pools for the scheduler. It gives each pool
a name and capacity constraints. The constraints can include the minimum number
of map slots or reduce slots. They can also include the maximum number of running
jobs. In addition, you can set the maximum number of running jobs per user, and also
override this maximum for specifi c users. An example pools.xml looks like this:

<?xml version=”1.0”?>
<allocations>
 <pool name=”ads”>
 <minMaps>2</minMaps>
 <minReduces>2</minReduces>
 </pool>
 <pool name=”hive”>
 <minMaps>2</minMaps>
 <minReduces>2</minReduces>
 <maxRunningJobs>2</maxRunningJobs>
 </pool>
 <user name=”chuck”>
 <maxRunningJobs>6</maxRunningJobs>
 </user>
 <userMaxJobsDefault>3</userMaxJobsDefault>
</allocations>

This pools.xml defi nes two special pools, “ads” and “hive”. Each is guaranteed to have
at least two map slots and two reduce slots. The “hive” pool is limited to running at
most two jobs at once. To use these pools, you set the pool.name property in a job’s
confi guration to either “ads” or “hive”. This pools.xml also caps the number of simul-
taneous running jobs a user can have to three, but the user “chuck” is given a higher
cap of six.

Note that the pools.xml fi le is reread every 15 seconds. You can modify this fi le and
dynamically reallocate capacity at run time. Any pool not defi ned in this fi le has no
guaranteed capacity and no limit on number of jobs running at once.

 Summary 189

Figure 8.2 The Web UI to monitor Hadoop’s fair scheduler. The top table shows all the available
pools and each pool’s usage. The table showing “Running Jobs” has a Pool column where you can
monitor or change the pool of each job.

When you have your Hadoop cluster running with the Fair Scheduler , there’s a Web
UI available to administer the scheduler . The page is at http://<jobtracker URL>/
scheduler. Besides letting you know how the jobs are scheduled, it also allows you to
change the pool a job belongs to and the job’s priority. Figure 8.2 shows an example
screenshot of this page.

The Capacity Scheduler shares similar goals with the Fair Scheduler. The Capacity
Scheduler works on queues rather than pools. The interested reader can learn more
about the Capacity Scheduler from the online documentation at http://hadoop.
apache.org/common/docs/r0.20.0/capacity_scheduler.html.

8.12 Summary
Managing distributed clusters is complicated and Hadoop is no different. We’ve
covered many common administrative tasks in this chapter. If you have a complex setup
and have more sophisticated questions, a useful resource is the Hadoop mailing lists.8
Many Hadoop administrators with deep expertise are active on those mailing lists, and
chances are that one of them will have encountered your situation. On the other hand,
if you mostly want a basic Hadoop cluster without all the hassle of administration, you
may want to consider using the Cloudera distribution9 or checking out one of the
Hadoop cloud services, which we cover in the next chapter.

8 http://hadoop.apache.org/common/mailing_lists.html.
9 http://www.cloudera.com/distribution.

Part 3

Hadoop Gone Wild

Part 3 explores the larger ecosystem around Hadoop. Cloud services provide
an alternative to buying and hosting your own hardware to create a Hadoop clus-
ter. Many add-on packages provide higher-level programming abstractions over
MapReduce. We show several case studies where Hadoop solves real business
problems in practice.

193

9Running Hadoop
in the cloud

This chapter covers
 Setting up a compute cloud with Amazon Web Services (AWS)■

 Running Hadoop in the AWS cloud■

 Transferring data into and out of an AWS Hadoop cloud■

Depending on your data processing needs, your Hadoop workload can vary widely
over time. You may have a few large data processing jobs that occasionally take ad-
vantage of hundreds of nodes, but those same nodes will sit idle the rest of the time.
You may be new to Hadoop and want to get familiar with it fi rst before investing in
a dedicated cluster. You may own a startup that needs to conserve cash and wants
to avoid the capital expense of a Hadoop cluster. In these and other situations, it
makes more sense to rent a cluster of machines rather than buy it.

The general paradigm of provisioning compute resources as a remote service in a
fl exible, cost-effective manner is called cloud computing. The best-known infrastructure
service platform for cloud computing is Amazon Web Services (AWS). You can rent
computing and storage services from AWS on demand as your requirement scales.
As of this writing, renting a compute unit with the equivalent power of a 1.0 GHz

194 CHAPTER 9 Running Hadoop in the cloud

32-bit Opteron with 1.7 GB RAM and 160 GB disk storage costs $0.10 per hour. Using a
cluster of 100 such machines for an hour will cost a measly $10! It wasn’t too long ago
that only a select few had access to clusters on this scale. Thanks to AWS and other such
services, large-scale compute power is available to many people today.

Because of its fl exibility and cost effectiveness, running Hadoop on the AWS cloud is a
popular setup, and we learn how to install and confi gure this confi guration in this chapter.

9.1 Introducing Amazon Web Services
Learning all the capabilities of Amazon Web Services is worthy of a book itself. Amazon
is constantly adding new services and features. We recommend you to explore the AWS
website (http://aws.amazon.com) to get more details and the latest offerings. We only
cover enough basics here to get a Hadoop cluster running.

Of all the services AWS offers, its Elastic Compute Cloud (EC2) and Simple Storage
Service (S3) are the two core services you need to understand to run Hadoop in the
cloud . The EC2 service provides compute capacity for running Hadoop nodes. You can
think of EC2 as a large farm of virtual machines. An EC2 instance is the AWS terminology
for a virtual compute unit. Each Hadoop node will take up an EC2 instance. You rent
an EC2 instance for only as long as you need and pay on an hourly basis.

A car rental company throws out whatever you leave in the trunk when you return it.
Similarly, all your data on an EC2 instance is deleted when you terminate the instance.
If you want the data to be around for future use, you have to ensure that it’s in some
persistent storage. The Amazon S3 service is a cloud storage service that you may use
for such purposes.

Each EC2 instance functions like a commodity Intel machine that you can access
and control over the internet. You boot up an instance using an Amazon Machine
Image , also known as an AMI or an image. More demanding users can create their own
images, but most users are well served by one of the many preconfi gured ones. Some
images are only basic bare-bones operating systems. Supported operating systems on
EC2 include more than six variants of Linux, plus Windows Server and OpenSolaris.
Other images include one of the operating systems plus pre-installed software, such as
database server, Apache HTTP server, Java application server, and others. AWS offers
preconfi gured images of Hadoop running on Linux, and Hadoop has built-in support
for working with both EC2 and S3.

9.2 Setting up AWS
This section is a quick introduction to setting up AWS. We only cover the essentials to
get a Hadoop cluster running. If you are already familiar with launching and using EC2
instances, you should skip directly to the next section on setting up Hadoop on AWS.

To start using AWS, you fi rst have to sign up for an account. Go to http://aws.
amazon.com/ and click on the button urging you to “Sign Up Now.” The process is
self-explanatory. It’s no more complicated than buying a book from Amazon. The
sign-up process sets up your Amazon account (which you may already have if you have
bought stuff from Amazon before) and activates it to pay for your usage of AWS.

 Setting up AWS 195

NOTE Amazon has introduced the Elastic MapReduce (EMR) service that vastly
simplifi es the use of Hadoop on AWS. The most important simplifi cation is that
you no longer have to set up and launch your own cluster of EC2 instances.
The trade-off is that you lose some control over how the cluster works and you
have to pay extra for this EMR service. We discuss EMR in section 9.6. But we
highly encourage you to keep on reading and understand how to set up your
own EC2 cluster running Hadoop, even if you don’t go through the process of
setting it up. At the very least, knowing more details about how Hadoop runs
on an EC2 cluster will clarify what EMR is doing underneath the hood.

After you have activated your Amazon account for AWS, there are three more steps
before you can start creating machine instances and using them:

1 Obtain your account IDs and your authentication keys and certifi cates. You’ll
set these up on your local machine to secure your communication with AWS.
These security mechanisms ensure that only you can rent compute resources
with your account.

2 Download and set up command line tools to manage your EC2 instances. These
include special programs to start and stop EC2 instances in your virtual cluster.

3 Generate an SSH key pair. After you have started an EC2 instance, you’ll log
into it using SSH (either directly or indirectly through the use of special tools).
The default SSH mechanism uses the SSH key pair to authenticate you to your
EC2 instance in lieu of using a password.

We go through each step in a subsection below.

9.2.1 Getting your AWS authentication credentials

AWS supports two types of authentication mechanisms: the AWS Access Key Identifi er
and X.509 certifi cate . To run Hadoop on AWS you’ll need both mechanisms, and they
can be set up from the Access Identifi ers page where you manage your AWS account
(http://aws.amazon.com/account/). The AWS Access Key Identifi er consists of an Access
Key ID and a Secret Access Key. Figure 9.1 shows a section of the Access Identifi ers
page. An Access Key ID is a 20-character alphanumeric sequence whereas a Secret Ac-
cess Key is a 40-character sequence. Don’t share your Secret Access Key with anyone.
The web page requires an extra click on Show to display it (in case anyone is looking
over your shoulder). You should generate a new Secret Access Key if the one you have
has been compromised. You’ll need to specify your Access Key ID and Secret Access
Key later when you set up the Hadoop cluster.

TIP In some situations when you want Hadoop to access S3, you’ll tell Hadoop
your AWS Access Key ID and Secret Access Key in a specially formatted URI.
Unfortunately, AWS allows slashes (/) in its Secret Access Keys, which will
cause confusion inside a URI. Although there are ways you can tell Hadoop
your AWS Access Key ID without using a URI, it may be more convenient to
regenerate your Secret Access Key until you get one without a slash (/) in it.

196 CHAPTER 9 Running Hadoop in the cloud

Figure 9.1 Getting AWS Access Key ID and Secret Access Key

Setting up the X.509 Certifi cate involves a bit more work. At the same Access Identi-
fi ers page is a section titled X.509 Certifi cate, as seen in fi gure 9.2. You click on Create
New to generate a new X.509 certifi cate. A certifi cate has two keys: a public key and a
private key. Unlike the Access Key ID and the Secret Access Key, the public and private
keys in your X.509 certifi cate are hundreds of characters long, and they have to be
stored and managed as fi les. After creating a new X.509 certifi cate, you’ll arrive at a
page to download both keys/fi les. See fi gure 9.3.

Figure 9.2 Managing your X.509 certifi cate. You can upload your own, or ask AWS to create one.

Figure 9.3 Download the private key and certifi cate fi le of your X.509 Certifi cate.

The public key is also called a certifi cate fi le . Your private key, as the name implies,
should not be shared with anyone. Even Amazon itself doesn’t store a copy of it. AWS
specifi es fi lenames for the certifi cate and the private key , and you should keep those
names when you save them. The fi lenames for the certifi cate and the private key are
prefi xed with cert- and pk-, respectively, and they have the .pem fi le extension. You
should create a directory called .ec2 under your home directory on your local machine
and save those two fi les in the new directory. On Linux you’ll have saved the following
fi les to your local machine:

~/.ec2/cert-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem
~/.ec2/pk-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem

Finally, you should also note your AWS Account Number . It’s near the top right side
of the Access Identifi ers page, and it’s a 12-digit hyphenated number that looks like
“4952-1993-3132.” Your Account ID is the unhyphenated version of that—something
like “495219933132.” Your Account ID is what you’ll use in setting up Hadoop on EC2.

 Setting up AWS 197

198 CHAPTER 9 Running Hadoop in the cloud

You may think these are a lot of values to generate and write down. To summarize,
here are the fi ve values you should have at this point:

 Your 20-character, alphanumeric Access Key ID■
 Your 40-character Secret Access Key■
 Your X.509 Certifi cate■ fi le under the .ec2 directory
 Your X.509 private key■ fi le under the .ec2 directory
 Your 12-digit (unhyphenated) AWS Account■ ID

You’ll use these values later to authenticate yourself to AWS and control your
Hadoop cluster.

9.2.2 Getting command line tools

After getting all the security credentials, you should download and confi gure the AWS
command line tools to instantiate and manage your EC2 instances. These tools are
written in Java, which presumably is already installed on your local machine.

The EC2 command line tools are self-contained in one downloadable ZIP fi le from
the AWS EC2 Resource Center.1 Unzip the fi le into a directory you use for your AWS
work. In the unzipped fi les you’ll see the Java tools plus shell scripts for Windows,
Linux, and Mac OS X.

You don’t have to confi gure the command line tools, but you do have to set a
few environment variables before using them. The environment variable EC2_HOME
should be a path pointing to the directory where the command line tools were
unzipped. Unless you have renamed that directory, its name is ec2-api-tools-A.B-nnnn,
where A, B, and n are version/release numbers. You should also set EC2_CERT and
EC2_PRIVATE_KEY to point to your X.509 certifi cate and private key fi les, respectively.
I’ve found it useful to have a script for setting up all the necessary environment variables
to use the AWS command line tools. A version for Linux, Unix, and Mac OS X, called
ec2-init.sh, is in listing 9.1. You run this script before using any AWS related tools
by executing

source ec2-init.sh

or

. ec2-init.sh

Listing 9.1 ec2-init.sh: a Unix script setting up variables for EC2 tools

export JAVA_HOME = /Library/Java/Home
export EC2_HOME = ~/Projects/Hadoop/aws/ec2-api-tools-1.3-30349
export PATH = $PATH:$EC2_HOME/bin:$HADOOP_HOME/src/contrib/ec2/bin
export EC2_PRIVATE_KEY = ~/.ec2/pk-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem
export EC2_CERT = ~/.ec2/cert-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem

1 http://developer.amazonwebservices.com/connect/entry.jspa?externalID=351&categoryID=88.

An analogous version for Windows is in listing 9.2. You can run it in a command prompt
by executing ec2-init.bat.

Listing 9.2 ec2-init.bat: a Windows script setting up variables for EC2 tools

set JAVA_HOME = "C:\Program Files\Java\jdk1.6.0_08"
set EC2_HOME = "C:\Program Files\Hadoop\aws\ec2-api-tools-1.3-30349"
set PATH = %PATH%;%EC2_HOME%\bin;%HADOOP_HOME%\src\contrib\ec2\bin
set EC2_PRIVATE_KEY = c:\ec2\pk-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem
set EC2_CERT = c:\ec2\cert-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem

If you’ll be working with AWS often, you may choose to not use a separate script and
instead integrate it directly into your operating system’s start-up script (for example,
.profi le and autoexec.bat).

The pathnames in the script will be different for your particular installation. The
environment variable JAVA_HOME needs to be set for the AWS command line tools
to work. We set it here although most likely it has already been set elsewhere. The
script adds the command line tools’ bin directory to your system PATH. This makes
executing the tools much easier, as you don’t need to specify the full path every time.
The Hadoop EC2 tools’ directory is also added to PATH, although we won’t cover them
until the next section.

AWS has machines located in different regions of the world. As of this writing, AWS
supports two regions, the U.S. and the E.U. As an optional step, you can choose which
region to run your EC2 instances to reduce latency. After you have run the preceding
script to set up the environment variables, let’s run our fi rst AWS command line tool
to ask Amazon what regions are currently available:

ec2-describe-regions

You’ll get back something like this:

REGION us-east-1 us-east-1.ec2.amazonaws.com
REGION eu-west-1 eu-west-1.ec2.amazonaws.com

The second column is the region names (us-east-1 and eu-west-1) and the third
column is the corresponding service endpoints. The default region is us-east-1. Set the
environment variable EC2_URL to the service endpoint of a different region if you
choose to. You can do this within the preceding AWS initialization shell script.

TIP Besides the offi cial command line tools, there are also GUI tools for
managing your EC2 and S3 usage. These GUI tools tend to be more user-
friendly. Two of the more popular ones are both Firefox extensions: Elasticfox
and S3Fox. Elasticfox (http://developer.amazonwebservices.com/connect/
entry.jspa?entryID=609) provides basic EC2 management features, such
as launching new EC2 instances and listing currently running ones. S3Fox
(http://www.suchisoft.com/ext/s3fox.php) is a third-party tool for organizing
your S3 storage. It functions much like a GUI-based FTP client in managing
remote storage.

 Setting up AWS 199

200 CHAPTER 9 Running Hadoop in the cloud

9.2.3 Preparing an SSH key pair

After starting an EC2 instance, you’ll want to log into it to run programs and services.
The default login mechanism (of public images) uses SSH with a key pair. Half of this
key pair (public key) is embedded in the EC2 instance, and the other half (private key)
is in your local machine. Together, the key pair secures the communication between
your local machine and the EC2 instance.

NOTE Some of you may be more familiar with logging into a remote machine
using SSH with a password. Using SSH with a key pair is an alternative
mechanism. Instead of a password, you authenticate yourself with a private key
that’s stored as a fi le on your local machine. Like your password, your private
key fi le should not be accessible by unauthorized people.

Each SSH key pair has a key name to identify it. When requesting Amazon EC2 to cre-
ate an instance, you have to specify the public key to be embedded in that instance by
its corresponding key name. The SSH public key has to exist and be registered with
Amazon before creating any EC2 instances.

The following command generates an SSH public/private key pai r and registers the
public key to Amazon EC2 under the key name gsg-keypair.

ec2-add-keypair gsg-keypair

Interestingly, the command doesn’t save the private key to a local fi le. Instead, it
generates a standard output (stdout) similar to fi gure 9.4, part of which is the pri-
vate key. You’ll have to manually save it to a fi le using a text editor. Specifi cally, copy
and paste the output between the following two lines, inclusive, to a new fi le named
id_rsa-gsg-keypair.

-----BEGIN RSA PRIVATE KEY-----
-----END RSA PRIVATE KEY-----

For ease of management, you should save the fi le to the same .ec2 directory for your
X.509 private key and certifi cate. You’ll also need to lock down the fi le permission
such that it’s only readable by you. On Linux and other Unix-based systems, use the
following command:

chmod 600 ~/.ec2/id_rsa-gsg-keypair

All EC2 instances in a single Hadoop cluster will have the same public key . A single
private key can log into any node in the cluster, and only one SSH key pair is needed.
You can also choose to use more than one SSH key pair when working with multiple
Hadoop clusters, or when you use extra EC2 instances outside of your Hadoop cluster.

At this point you have fi nished the one-time setup of credentials and certifi cates to
start a compute cluster in the Amazon cloud. You can manually use the AWS tools to
launch EC2 instances and log into them to launch your Hadoop cluster . This approach
is time consuming and error prone, though. Fortunately, Hadoop has included tools
to work with AWS, which we discuss in the next section. Before we fi nish this section, we

 Setting up Hadoop on EC2 201

Figure 9.4 Example output of ec2-add-keypair. The fi rst line is a key signature and the rest is the
private key.

do recommend that you spend some time reading the EC2 documentation, includ-
ing the Getting Started Guide.2 EC2 has many confi guration and customization
options. Understanding them will come in handy when you start to tune your AWS
Hadoop cluster.

9.3 Setting up Hadoop on EC2
To run Hadoop on an EC2 cluster, you fi rst need to install Hadoop on your local ma-
chine and be able to run it in standalone mode. Your local Hadoop installation con-
tains scripts to help you launch and log into an EC2 Hadoop cluster. These scripts are
in the directory src/contrib/ec2/bin under your Hadoop installation.

9.3.1 Confi guring security parameters

You must confi gure the single initialization script at src/contrib/ec2/bin/hadoop-
ec2-env.sh. Inside that script, set the following three variables to values you obtained
in section 9.2.1:

 ■ AWS_ACCOUNT_ID—Your 12-digit AWS account ID

2 http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/

202 CHAPTER 9 Running Hadoop in the cloud

 ■ AWS_ACCESS_KEY_ID—Your 20-character, alphanumeric Access Key ID
 ■ AWS_SECRET_ACCESS_KEY—Your 40-character Secret Access Key

The tools for Hadoop on EC2 get the other security parameters from environment
variables (which should be set when you source aws-init.sh) or are based on
defaults that should work fi ne if you have followed the AWS setup in section 9.2.

9.3.2 Confi guring cluster type

You’ll need to specify the confi guration of your Hadoop cluster in hadoop-ec2-env.
sh. You need to set three main parameters: HADOOP_VERSION, INSTANCE_TYPE, and
S3_BUCKET. Before telling you how to set these parameters, let’s go over a little
background.

Before the creation of an instance, Amazon EC2 must know the instance type and
the image used to boot up the instance. Instance type is the physical confi guration of
the virtual machine (CPU, RAM, disk space, etc.). As of this writing, fi ve instance types
are available, grouped into two families: standard and high-CPU. High-CPU types are
for compute-intensive work. Rarely are they used for Hadoop applications, which tend
to be data-intensive. The standard family has three instance types, and table 9.1 lists
their attributes.

Table 9.1 Specifi cation for various EC2 instance types

Type CPU Memory Storage Platform I/O Name

Small 1 EC2 Compute Unit 1.7 GB 160 GB 32-bit Moderate m1.small

Large 4 EC2 Compute Unit 7.5 GB 850 GB 64-bit High m1.large

Extra Large 8 EC2 Compute Unit 15 GB 1690 GB 64-bit High m1.xlarge

The more powerful instance types cost more, and you should look up the AWS website
to fi nd the latest pricing.

Only Amazon’s S3 storage service can store images for booting up EC2 instance.
Many existing images are available for all kinds of setups. You can use one of the public
images, or pay for special custom images, or even create your own. Similar images are
stored in the same S3 bucket .3 The standard public Hadoop images are either in the
hadoop-ec2-images bucket or the hadoop-images bucket. In fact, we only use the hadoop-
images bucket because the newer versions of Hadoop (after 0.17.1) aren’t available in
the hadoop-ec2-images bucket. The Hadoop team puts new EC2 images in the hadoop-
images bucket when signifi cant versions of Hadoop are released. At any point in time,
execute the following EC2 command to see the available Hadoop images:

ec2-describe-images -x all | grep hadoop-images

3 An S3 bucket is the top-level partition in S3’s namespace. A bucket is owned by exactly one AWS account
and must have a globally unique name.

Figure 9.5 Some of the available Hadoop images in AWS.

Figure 9.5 shows an example output from the previous command. Each row describes
one available EC2 image. Each image lists eleven properties, most of which are useful
only for advanced AWS users. For our purpose, all the information we need can be read
from the third column, also known as the manifest location of the image. These are ex-
pressed in a two-level hierarchy, in which the top level is the S3 bucket where the image
resides. As mentioned earlier, the hadoop-images bucket is the one we focus on.

The manifest location includes the Hadoop version number. The manifest
location also includes a term that’s either i386 or x86_64. This tells you whether
the image is for a 32-bit instance or a 64-bit instance. An example image that’s
available as of this writing has a manifest location of hadoop-images/hadoop-0.19.0-
i386.manifest.xml. That image uses Hadoop version 0.19.0 and can run on 32-bit
EC2 instances.

After seeing the available Hadoop images, we’re ready to set HADOOP_VERSION,
INSTANCE_TYPE, and S3_BUCKET in hadoop-ec2-env.sh. Unless you’re using a
custom image, you should set S3_BUCKET to hadoop-images. INSTANCE_TYPE defaults
to m1.small, which should work fi ne. The main point to remember is that the instance
type directly specifi es whether the CPU is 32-bit or 64-bit and must be booted from
a compatible image (i386 or x86_64). Finally, HADOOP_VERSION should be set to the
Hadoop version you want to use. The particular combination of HADOOP_VERSION,
INSTANCE_TYPE, and S3_BUCKET has to be available as seen in the output of the
ec2-describe-images command.

9.4 Running MapReduce programs on EC2
The Hadoop EC2 tools are in the directory src/contrib/ec2/bin under your Hadoop
installation. Recall that our ec2-init.sh script has already added that directory to your
system PATH. Within that directory is hadoop-ec2, which is a meta-command for execut-
ing other commands. To launch a Hadoop cluster on EC2, use

hadoop-ec2 launch-cluster <cluster-name> <number-of-slaves>

This fi rst launches a master EC2 instance. After this it boots the requested number
of slave nodes to point to the master node. When this command returns, it will print
out the public DNS name to the master node, which we denote <master-host>. At
this point, not all slave nodes necessarily have been fully booted. You can view the
master node’s JobTracker web interface at http://<master-host>:50030/ to monitor
the cluster and the operational status of the slave nodes.

 Running MapReduce programs on EC2 203

204 CHAPTER 9 Running Hadoop in the cloud

NOTE New EC2 users can’t run more than 20 concurrent instances. You can
request a higher limit through the Amazon EC2 Instance Request Form at
http://www.amazon.com/gp/html-forms-controller/ec2-request.

After launching a Hadoop cluster, you’re ready to log into the master node and use the
cluster as if you’ve set it up on your own machines. To log in, use this command:

hadoop-ec2 login <cluster-name>

The $HADOOP_HOME for a Hadoop EC2 instance is /usr/local/hadoop-x.y.z, where
x.y.z is the Hadoop version number. We run a quick test to show that Hadoop is running
in this cluster:

cd /usr/local/hadoop-*
bin/hadoop jar hadoop-*-examples.jar pi 10 10000000

For the rest of this chapter, a hash mark (#) character in the beginning of a command
line denotes that line should be executed in the master node of your Hadoop EC2 cluster,
rather than at your local machine. The commands above run an example Hadoop program
to estimate the value of pi. You can monitor the job at http://<master-host>:50030/.

9.4.1 Moving your code to the Hadoop cluster

All Hadoop applications consist of two components: code and data. We fi rst move our
code to the Hadoop cluster. In the next subsection we discuss making our data acces-
sible (which may or may not involve moving data to the cluster).

You’ll copy your application code to the master node in your Hadoop EC2 cluster
using scp. Execute the following commands from your local machine:

source hadoop-ec2-env.sh
scp $SSH_OPTS <local-fi lepath> root@$MASTER_HOST:<master-fi lepath>

where <local-fi lepath> points to the application code on your local machine and
<master-fi lepath> points to the destination fi le path on the master node.

9.4.2 Accessing your data from the Hadoop cluster

As the Hadoop EC2 cluster is being rented, data stored in the cluster (including in
HDFS) is not persistent. Your input data has to persist somewhere else and be brought
into the EC2 cluster for processing. Many options exist for where to put your data and
bring it into the Hadoop cluster, and each option has its trade-offs.

MOVING DATA DIRECTLY INTO HDFS

When the input data is small (<100 GB) and is processed only once, the simplest
approach is to copy the data into the master node and then copy it from there to
the cluster’s HDFS. Copying data into the master node is no different than copying
application code into the master node (see section 9.4.1). Once the data is in the
master node, you log into the master node and copy the data into HDFS using the
standard Hadoop command:

bin/hadoop fs –put <master-fi lepath> <hdfs-fi lepath>

Figure 9.6 Transferring data to the Hadoop EC2 cloud directly

The data fl owpath is depicted graphically in fi gure 9.6. Some issues are worth noting
in this data fl owpath. One is that AWS charges for bandwidth between AWS and the
outside world (in addition to hourly charges of each EC2 instance), but bandwidth
within AWS is free. In this case there’s a monetary cost to copying data into the mas-
ter node but not the copying of the data from the master node into HDFS. (There’s
also no cost to any of the communication within MapReduce processing and between
MapReduce and HDFS.) Whichever way you get data into the Hadoop cluster, you’ll
incur this bandwidth cost at least once. The time it takes to move data into the master
node will also be relatively long, as the connection between your machine and AWS is
much slower than the connections within AWS. Again, this sunk time will be incurred
at least once no matter how you architect the datafl ow. The problem with the current
datafl ow architecture is that you’ll incur the time and monetary costs each time you
bring up the Hadoop cluster. If the input data will be processed in different ways over
multiple sessions, this datafl ow is not recommended.

Another shortcoming to the existing fl owpath is the size limitation on the input
data. All the data must be able to reside at the master node fi rst, and a small EC
instance only has 150 GB of disk partition. You can overcome this limitation if you
can divide your input data over several chunks and move one chunk at a time. You
may also choose to use bigger instances, which have multiple 420 GB disk partitions.
But before trying these more complicated schemes, you should consider using S3 in
your datapath.

MOVING DATA INTO HDFS THROUGH S3

S3 is a cloud storage service offered by AWS. You’ve already seen it in action as storage
for EC2 images. Storing data in S3 is charged by bandwidth for data I/O with non-
AWS machines, plus a monthly storage charge based on the size of the data. The cost

 Running MapReduce programs on EC2 205

206 CHAPTER 9 Running Hadoop in the cloud

model makes it an attractive storage service for many applications. More particularly,
it’s well suited for use with Hadoop EC2 clusters.

You can see the datafl ow model in fi gure 9.7. The main change from the datafl ow of
fi gure 9.6 is that your input data is fi rst transferred to the S3 cloud instead of the master
node. Note that, unlike the master node, the S3 cloud storage persists independently of
your Hadoop EC2 cluster. You can create and terminate multiple Hadoop EC2 clusters
over time, and they can all read the same input data from S3. The benefi t of this setup
is that you incur the monetary and time costs of copying your input data into AWS only
once, when it’s copied into S3, whereas in the datafl ow of fi gure 9.6 they’re incurred
on every session of the Hadoop EC2 cluster. After the input data is copied into S3,
copying it from the S3 cloud to the cluster’s HDFS is fast and free, because both S3 and
EC2 are managed within the AWS system. There’s now an additional monthly storage
cost for hosting your input data in S3, but it’s usually minimal. If you need to have a
scalable archival storage for your data, S3 can function in that role under this datafl ow
architecture, further justifying its cost model.

The default Hadoop installation has built-in support for using S3. There’s a special
Hadoop fi lesystem for S3, called S3 Block FileSystem , built on top of S3 to enable large
fi le sizes. (S3 imposes a fi le size limit of 5 GB.) You’ll need to consider the S3 Block
FileSystem a separate fi lesystem from S3, just as HDFS is treated distinctly from the
underlying Unix fi lesystem.

The S3 Block FileSystem requires a dedicated S3 bucket . Once you’ve created that
S3 bucket, you can move your data from the local machine to S3:

bin/hadoop fs –put <local-fi lepath>

➥ s3://<access-key-id>:<secret-access-key>@<s3-bucket>/<s3-fi lepath>

Figure 9.7 Using Hadoop on AWS with both S3 and HDFS

 Running MapReduce programs on EC2 207

Recall that <access-key-id> and <secret-access-key> are authentication param-
eters from section 9.2.1, and <s3-bucket> is the name of the S3 bucket you’ve created
for the S3 Block FileSystem.

After your data is in S3, you can copy it to any Hadoop EC2 cluster. From the master
node of the cluster, run

bin/hadoop distcp s3://<access-key-id>:<secret-access-key>@<s3-bucket>/

➥ <s3-fi lepath> <hdfs-fi lepath>

After the data is in HDFS, you can run your Hadoop program in the cluster in the
usual fashion.

ACCESSING DATA DIRECTLY FROM S3

Up ’till now we’ve always copied data into the cluster’s HDFS before running our
Hadoop applications. This preserves data locality between storage and the MapReduce
program. For very small jobs, you may choose to bypass HDFS and forego data locality,
in return for skipping the copying of data from S3 to HDFS. You can see this datapath
in fi gure 9.8.

To work in this architecture, specify S3 as the input fi lepath when executing your
Hadoop application:

bin/hadoop jar <app-jar-fi lepath> s3://<access-key-id>:

➥ <secret-access-key>@<s3-bucket>/<s3-fi lepath> <hdfs-fi lepath>

The preceding command will store the output fi le in HDFS, but you can change that
to be S3 as well.

MORE OPTIONS IN USING S3 FOR HADOOP

There are a couple of variations on how you can use S3 that may be useful in some
situations.

Figure 9.8 Hadoop running on EC2 can directly access data in S3.

208 CHAPTER 9 Running Hadoop in the cloud

Up ’till now we’ve used a special Hadoop S3 fi lesystem (the S3 Block FileSystem) to
store data in S3. An alternative is to use S3’s native fi lesystem. The main disadvantage
with the native system is a limitation on fi le size of 5 GB. If the fi les for your input data
are smaller than that limit, the native system can be an excellent option. It’s compat-
ible with all the standard S3 tools, whereas Hadoop’s S3 fi lesystem is in a special and
unique format. Standard S3 tools make the S3 native fi lesystem more transparent and
easier to understand. To use the S3 native fi lesystem instead of the S3 Block FileSystem,
substitute s3 with s3n when specifying fi le locations. For example, use

s3n://<access-key-id>:<secret-access-key>@<s3-bucket>/<s3-fi lepath>

in place of

s3://<access-key-id>:<secret-access-key>@<s3-bucket>/<s3-fi lepath>

If you’re using S3 often, you’ll fi nd it cumbersome to type out the long URI for
each fi le you want to access. One way to shorten it is to add the following to your
conf/core-site.xml fi le:

<property>
 <name>fs.s3.awsAccessKeyId</name>
 <value>AWS_ACCESS_KEY_ID</value>
</property>

<property>
 <name>fs.s3.awsSecretAccessKey</name>
 <value>AWS_SECRET_ACCESS_KEY</value>
</property>

Note that you have to replace AWS_ACCESS_KEY_ID with your 20-character Access Key
ID and AWS_SECRET_ACCESS_KEY with your 40-character Secret Access Key . After add-
ing the two properties to core-site.xml, the URI for S3 fi les can be shortened to

s3://<s3-bucket>/<s3-fi lepath>

or

s3n://<s3-bucket>/<s3-fi lepath>

for the native S3 fi lesystem.

NOTE If you’re unfortunate enough to be stuck using a Secret Access Key
that has a slash (/) in it, you can’t embed the secret key inside a URI. The
only way to use that AWS/S3 account is by embedding the secret key in core-
site.xml as described before. (Some documentation has suggested escaping
the secret key by replacing the slash (/) with the string %2F inside a URI,
although that doesn’t seem to work in practice.)

For an additional shortcut, it may be appropriate to make S3 your default fi lesystem ,
in place of HDFS. To do this, change the fs.default.name property in conf/core-
site.xml after adding the two properties above:

<property>
 <name>fs.default.name</name>

 <value>s3://S3_BUCKET</value>
</property>

where S3_BUCKET is the S3 bucket you had chosen to use as your Hadoop S3 Block
FileSystem (which we had denoted <s3-bucket> earlier).

9.5 Cleaning up and shutting down your EC2 instances
Hadoop stores the output data of your Hadoop job in the cluster’s HDFS by default,
and you should save it to somewhere more persistent. The options for retrieving out-
put data are the same as the options for copying input data into the Hadoop EC2
cluster, only running in reverse. The main difference is that the output data is usually
orders of magnitude smaller than the input data. Given generally small output data,
copying through the master node may turn out to be your best option.

As you’re renting your EC2 instances from AWS on an hourly basis, it’s important
that you shut down the instances when you’re done and tell AWS to stop charging you.
It’s easy to log out of a cluster and forget that the instances are still running and you’re
being charged! To properly terminate a cluster, use the following command:

bin/hadoop-ec2 terminate-cluster <cluster-name>

All the EC2 instances in the cluster will shut down and data in them lost. No further
cleanup is necessary.

9.6 Amazon Elastic MapReduce and other AWS services
Amazon Web Services is constantly adding new capabilities, many of which will make
life easier for Hadoop developers. Two of the newest services that they’ve announced
during the writing of this book include Amazon Elastic MapReduce (EMR) and AWS
Import/Export.

9.6.1 Amazon Elastic MapReduce

 For a small extra fee, the EMR service will launch a preconfi gured Hadoop cluster for
you to run your MapReduce programs. The major simplifi cation this service provides
is that you don’t need to worry about setting up EC2 instances, and therefore you
don’t need to deal with all the certifi cates and command line tools and so forth. You
interact with EMR purely through a web-based console at https://console.aws.amazon.
com/elasticmapreduce/home. You can see its initial screen in fi gure 9.9.

The design targets the processing of single jobs. You submit a MapReduce job,
either as a (Streaming, Pig, or Hive) script or a JAR fi le, and EMR will set up a cluster
to run the job. By default the cluster will shut down at the end of the job . The input
(output) of the job is read (written) directly to S3. A heavy user of Hadoop usually
has many jobs running against the same data, making this setup relatively ineffi cient,
as explained in section 9.4.2. But a light user will fi nd EMR dramatically simplifi es
running MapReduce in the cloud. In addition, it’s not diffi cult to imagine that the
sophistication of EMR will only grow in the future and eventually become the primary
way to run Hadoop on AWS.

 Amazon Elastic MapReduce and other AWS services 209

210 CHAPTER 9 Running Hadoop in the cloud

Figure 9.9 The introductory screen of the web console to Amazon Elastic MapReduce. You can follow
the steps onscreen to create a job fl ow.

You can fi nd more information about Amazon Elastic MapReduce at these sites:
http://aws.amazon.com/elasticmapreduce/
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/

9.6.2 AWS Import/Export

 One of the main obstacles to large-scale data processing in the cloud is the diffi culty
of moving large data sets into the cloud. If you already have an existing process that
stores your data in S3, then it’s relatively straightforward to run Hadoop on EC2 to
access that data. On the other hand, if you have to move data to the Amazon cloud
for the sole purpose of analyzing it, then the data transfer itself can be a signifi -
cant hurdle. Amazon introduced the AWS Import/Export service by which you can
physically send a hard drive to them and they upload the data to S3 using their
high-speed internal network. The point at which this service makes sense depends
on your available internet connection speed. Table 9.2 is a rough guideline given
by AWS.

Table 9.2 Size of data set at which AWS Import/Export is more practical than internet upload

Available internet
connection

Theoretical min. number of days to
transfer 1 TB at 80% network utilization

When to consider AWS
Import/Export

T1 (1.544 Mbps) 82 days 100 GB or more

10 Mbps 13 days 600 GB or more

T3 (44.736 Mbps) 3 days 2 TB or more

100 Mbps 1 to 2 days 5 TB or more

1000 Mbps Less than 1 day 60 TB or more

You can fi nd more details about AWS Import/Export at http://aws.amazon.com/
importexport/.

9.7 Summary
Cloud infrastructure is a great place for running Hadoop, as it allows you to easily
scale to hundreds of nodes and gives you the fi nancial fl exibility to avoid upfront
investments. Hadoop has native support for Amazon Web Services (AWS). This chapter
started with the basics of setting up an account and renting compute services from
AWS. Once you’re ready to rent computing nodes from AWS, you’ll fi nd Hadoop tools
for automating the setting up and running of a Hadoop cluster. AWS also has a cloud
storage service (S3) which can be used in conjunction with or in place of HDFS. You’ll
fi nd pros and cons to the different setups. Finally, it’s important to remember to shut
down your Hadoop cluster when you’re fi nished. You’re renting the cloud infrastruc-
ture by the hour, and fees will continue to accrue unless you explicitly shut down
the machines.

 Summary 211

10

212

Programming with Pig

This chapter covers
 Installing Pig and using the Grunt shell■

 Understanding the Pig Latin language■

 Extending the Pig Latin language with user-defi ned functions■

 Computing similar documents effi ciently, using a simple Pig Latin script■

 One frequent complaint about MapReduce is that it’s diffi cult to program. When
you fi rst think through a data processing task, you may think about it in terms of data
fl ow operations, such as loops and fi lters. However, as you implement the program
in MapReduce, you’ll have to think at the level of mapper and reducer functions and
job chaining. Certain functions that are treated as fi rst-class operations in higher-
level languages become nontrivial to implement in MapReduce, as we’ve seen for
joins in chapter 5. Pig is a Hadoop extension that simplifi es Hadoop programming
by giving you a high-level data processing language while keeping Hadoop’s simple
scalability and reliability. Yahoo , one of the heaviest user of Hadoop (and a backer
of both the Hadoop Core and Pig), runs 40 percent of all its Hadoop jobs with Pig.
Twitter is also another well-known user of Pig.1

1 http://www.slideshare.net/kevinweil/hadoop-pig-and-twitter-nosql-east-2009.

 Thinking like a Pig 213

Pig has two major components:

1 A high-level data processing language called Pig Latin .
2 A compiler that compiles and runs your Pig Latin script in a choice of

evaluation mechanisms . The main evaluation mechanism is Hadoop. Pig also
supports a local mode for development purposes.

Pig simplifi es programming because of the ease of expressing your code in Pig Latin.
The compiler helps to automatically exploit optimization opportunities in your script.
This frees you from having to tune your program manually. As the Pig compiler im-
proves, your Pig Latin program will also get an automatic speed-up.

10.1 Thinking like a Pig
Pig has a certain philosophy about its design. We expect ease of use, high perfor-
mance, and massive scalability from any Hadoop subproject. More unique and crucial
to understanding Pig are the design choices of its programming language (a data fl ow
language called Pig Latin), the data types it supports, and its treatment of user-defi ned
functions (UDFs) as fi rst-class citizens.

10.1.1 Data fl ow language

You write Pig Latin programs in a sequence of steps where each step is a single high-
level data transformation. The transformations support relational-style operations,
such as fi lter, union, group, and join. An example Pig Latin program that processes a
search query log may look like

log = LOAD 'excite-small.log' AS (user, time, query);
grpd = GROUP log BY user;
cntd = FOREACH grpd GENERATE group, COUNT(log);
DUMP cntd;

Even though the operations are relational in style, Pig Latin remains a data fl ow language.
A data fl ow language is friendlier to programmers who think in terms of algorithms,
which are more naturally expressed by the data and control fl ows. On the other hand, a
declarative language such as SQL is sometimes easier for analysts who prefer to just state
the results one expects from a program. Hive is a different Hadoop subproject that tar-
gets users who prefer the SQL model. We’ll learn about Hive in detail in chapter 11.

10.1.2 Data types

We can summarize Pig’s philosophy toward data types in its slogan of “Pigs eat any-
thing.” Input data can come in any format. Popular formats, such as tab-delimited text
fi les, are natively supported. Users can add functions to support other data fi le formats
as well. Pig doesn’t require metadata or schema on data, but it can take advantage of
them if they’re provided.

Pig can operate on data that is relational, nested, semistructured, or unstructured.
To support this diversity of data, Pig supports complex data types, such as bags and
tuples that can be nested to form fairly sophisticated data structures.

214 CHAPTER 10 Programming with Pig

10.1.3 User-defi ned functions

Pig was designed with many applications in mind—processing log data, natural lan-
guage processing, analyzing network graphs, and so forth. It’s expected that many of
the computations will require custom processing. Pig is architected from the ground
up with support for user-defi ned functions. Knowing how to write UDFs is a big part
of learning to use Pig.

10.2 Installing Pig
You can download the latest release of Pig from http://hadoop.apache.org/pig/
releases.html. As of this writing, the latest versions of Pig are 0.4 and 0.5. Both of them re-
quire Java 1.6. The main difference between them is that Pig version 0.4 targets Hadoop
version 0.18 whereas Pig version 0.5 targets Hadoop version 0.20. As usual, make sure
to set JAVA_HOME to the root of your Java installation, and Windows users should install
Cygwin . Your Hadoop cluster should already be set up. Ideally it’s a real cluster in fully
distributed mode, although a pseudo-distributed setup is fi ne for practice.

You install Pig on your local machine by unpacking the downloaded distribution.
There’s nothing you have to modify on your Hadoop cluster. Think of the Pig
distribution as a compiler and some development and deployment tools. It enhances
your MapReduce programming but is otherwise only loosely coupled with the
production Hadoop cluster.

Under the directory where you unpacked Pig, you should create the subdirectories
logs and conf (unless they’re already there). Pig will take custom confi guration
from fi les in conf. If you are creating the conf directory just now, there’s obviously
no confi guration fi le, and you’ll need to put in conf a new fi le named pig-env.sh.
This script is executed when you run Pig, and it can be used to set up environment
variables for confi guring Pig. Besides JAVA_HOME, the environment variables of
particular interest are PIG_HADOOP_VERSION and PIG_CLASSPATH . You set these
variables to instruct Pig about your Hadoop cluster. For example, the following
statements in pig-env.sh will tell Pig the version of Hadoop used by the cluster is
0.18, and to add the confi guration directory of your local installation of Hadoop to
Pig’s classpath:

export PIG_HADOOP_VERSION=18
export PIG_CLASSPATH=$HADOOP_HOME/conf/

We assume HADOOP_HOME is set to Hadoop’s installation directory on your local ma-
chine. By adding Hadoop’s conf directory to Pig’s classpath, Pig can automatically
pick up the location of your Hadoop cluster’s NameNode and JobTracker .

Instead of using Pig’s classpath, you can also specify the location of your Hadoop cluster
by creating a pig.properties fi le . This properties fi le will be under the conf directory
you created earlier. It should defi ne fs.default.name and mapred.job.tracker, the
fi lesystem (i.e., HDFS’s NameNode) and the location of the JobTracker. An example pig.
properties fi le pointing to a Hadoop set up in pseudo-distributed mode is

fs.default.name=hdfs://localhost:9000
mapred.job.tracker=localhost:9001

 Running Pig 215

For the sake of convenience, let’s add the Pig installation’s bin directory to your path.
Assume $PIG_HOME is pointing to your Pig’s installation:

export PATH=$PATH:$PIG_HOME/bin

With Pig’s bin directory set as part of your command line path, you can start Pig with
the command pig. You may want to fi rst see its usage options:

pig -help

Let’s start Pig’s interactive shell to see that it’s reading the confi gurations properly.

pig
2009-07-11 22:33:04,797 [main] INFO

➥ org.apache.pig.backend.hadoop.executionengine.HExecutionEngine -

➥ Connecting to hadoop fi le system at: hdfs://localhost:9000
2009-07-11 22:33:09,533 [main] INFO

➥ org.apache.pig.backend.hadoop.executionengine.HExecutionEngine -

➥ Connecting to map-reduce job tracker at: localhost:9001
grunt>

The fi lesystem and the JobTracker Pig reports should be consistent with your confi gu-
ration setup. You’re now inside Pig’s interactive shell, also known as Grunt.

10.3 Running Pig
We can run Pig Latin commands in three ways—via the Grunt interactive shell, through
a script fi le, and as embedded queries inside Java programs. Each way can work in one
of two modes—local mode and Hadoop mode . (Hadoop mode is sometimes called
Mapreduce mode in the Pig documentation.) At the end of the previous section we’ve
entered the Grunt shell running in Hadoop mode.

The Grunt shell allows you to enter Pig commands manually. This is typically used
for ad hoc data analysis or during the interactive cycles of program development. Large
Pig programs or ones that will be run repeatedly are run in script fi les. To enter Grunt,
use the command pig. To run a Pig script, execute the same pig command with the
fi le name as the argument, such as pig myscript.pig. The convention is to use the
.pig extension for Pig scripts.

You can think of Pig programs as similar to SQL queries , and Pig provides a
PigServer class that allows any Java program to execute Pig queries. Conceptually
this is analogous to using JDBC to execute SQL queries. Embedded Pig programs is
a fairly advanced topic and you can fi nd more details at http://wiki.apache.org/pig/
EmbeddedPig.

When you run Pig in local mode, you don’t use Hadoop at all.2 Pig commands are
compiled to run locally in their own JVM , accessing local fi les. This is typically used
for development purposes, where you can get fast feedback by running locally against

2 There are plans to change Pig such that it uses Hadoop even in local mode, which helps to make some pro-
gramming more consistent. The discussion for this topic is taking place at https://issues.apache.org/jira/
browse/PIG-1053.

216 CHAPTER 10 Programming with Pig

a small development data set. Running Pig in Hadoop mode means the compile
Pig program will physically execute in a Hadoop installation. Typically the Hadoop
installation is a fully distributed cluster . (The pseudo-distributed Hadoop setup we
used in section 10.2 was purely for demonstration. It’s rarely used except to debug
confi gurations.) The execution mode is specifi ed to the pig command via the -x or
-exectype option. You can enter the Grunt shell in local mode through:

pig -x local

Entering the Grunt shell in Hadoop mode is

pig -x mapreduce

or use the pig command without arguments, as it chooses the Hadoop mode by default.

10.3.1 Managing the Grunt shell

In addition to running Pig Latin statements (which we’ll look at in a later section), the
Grunt shell supports some basic utility commands.3 Typing help will print out a help
screen of such utility commands. You exit the Grunt shell with quit. You can stop a
Hadoop job with the kill command followed by the Hadoop job ID. Some Pig param-
eters are set with the set command . For example,

grunt> set debug on
grunt> set job.name 'my job'

The debug parameter states whether debug-level logging is turned on or off. The job.
name parameter takes a single-quoted string and will use that as the Pig program’s
Hadoop job name. It’s useful to set a meaningful name to easily identify your Pig job
in Hadoop’s Web UI .

The Grunt shell also supports fi le utility commands, such as ls and cp. You can see
the full list of utility commands and fi le commands in table 10.1. The fi le commands
are mostly a subset of the HDFS fi lesystem shell commands, and their usage should be
self-explanatory.

Table 10.1 Utility and fi le commands in the Grunt shell

Utility commands help

quit

kill jobid

set debug [on|off]

set job.name 'jobname'

File commands cat, cd, copyFromLocal, copyToLocal, cp, ls, mkdir,
mv, pwd, rm, rmf, exec, run

3 Technically these are still considered Pig Latin commands, but you’ll not likely use them outside of the
Grunt shell.

 Learning Pig Latin through Grunt 217

Two new commands are exec and run. They run Pig scripts while inside the Grunt
shell and can be useful in debugging Pig scripts. The exec command executes a Pig
script in a separate space from the Grunt shell. Aliases defi ned in the script aren’t
visible to the shell and vice versa. The command run executes a Pig script in the same
space as Grunt (also known as interactive mode). It has the same effect as manually typ-
ing in each line of the script into the Grunt shell.

10.4 Learning Pig Latin through Grunt
 Before formally describing Pig’s data types and data processing operators, let’s run a
few commands in the Grunt shell to get a feel for how to process data in Pig. For the
purpose of learning, it’s more convenient to run Grunt in local mode:

pig -x local

You may want to fi rst try some of the fi le commands, such as pwd and ls, to orient
yourself around the fi lesystem.

Let’s look at some data. We’ll later reuse the patent data we introduced in
chapter 4, but for now let’s dig into an interesting data set of query logs from the
Excite search engine. This data set already comes with the Pig installation, and it’s
in the fi le tutorial/data/excite-small.log under the Pig installation directory.
The data comes in a three-column, tab-separated format. The fi rst column is an
anonymized user ID. The second column is a Unix timestamp, and the third is the
search query. A decidedly non-random sample from the 4,500 records of this fi le
looks like

3F8AAC2372F6941C 970916093724 minors in possession
C5460576B58BB1CC 970916194352 hacking telenet
9E1707EE57C96C1E 970916073214 buffalo mob crime family
06878125BE78B42C 970916183900 how to make ecstacy

From within Grunt, enter the following statement to load this data into an “alias” (i.e.,
variable) called log.

grunt> log = LOAD 'tutorial/data/excite-small.log' AS (user, time, query);

Note that nothing seems to have happened after you entered the statement. In the
Grunt shell, Pig parses your statements but doesn’t physically execute them until you
use a DUMP or STORE command to ask for the results. The DUMP command prints out
the content of an alias whereas the STORE command stores the content to a fi le. The
fact that Pig doesn’t physically execute any command until you explicitly request
some end result will make sense once you remember that we’re processing large data
sets. There’s no memory space to “load” the data, and in any case we want to verify
the logic of the execution plan before spending the time and resources to physically
execute it.

We use the DUMP command usually only for development. Most often you’ll STORE
signifi cant results into a directory. (Like Hadoop, Pig will automatically partition the
data into fi les named part-nnnnn.) When you DUMP an alias, you should be sure that

218 CHAPTER 10 Programming with Pig

its content is small enough to be reasonably printed to screen. The common way to do
that is to create another alias through the LIMIT command and DUMP the new, smaller
alias. The LIMIT command allows you to specify how many tuples (rows) to return
back. For example, to see four tuples of log

grunt> lmt = LIMIT log 4;
grunt> DUMP lmt;
(2A9EABFB35F5B954,970916105432L,+md foods +proteins)
(BED75271605EBD0C,970916001949L,yahoo chat)
(BED75271605EBD0C,970916001954L,yahoo chat)
(BED75271605EBD0C,970916003523L,yahoo chat)

Table 10.2 summarizes the read and write operators in Pig Latin. LIMIT is techni-
cally not a read or write operator, but as it’s often used alongside, we’ve included it
in the table.

Table 10.2 Data read/write operators in Pig Latin

LOAD alias = LOAD 'fi le' [USING function] [AS schema];

Load data from a fi le into a relation. Uses the PigStorage load function as default
unless specifi ed otherwise with the USING option. The data can be given a schema
using the AS option.

LIMIT alias = LIMIT alias n;

Limit the number of tuples to n. When used right after alias was processed by an
ORDER operator, LIMIT returns the fi rst n tuples. Otherwise there’s no guarantee which
tuples are returned. The LIMIT operator defi es categorization because it’s certainly
not a read/write operator but it’s not a true relational operator either. We include it here
for the practical reason that a reader looking up the DUMP operator, explained later, will
remember to use the LIMIT operator right before it.

DUMP DUMP alias;

Display the content of a relation. Use mainly for debugging. The relation should be small
enough for printing on screen. You can apply the LIMIT operation on an alias to make
sure it’s small enough for display.

STORE STORE alias INTO 'directory' [USING function];

Store data from a relation into a directory. The directory must not exist when this
command is executed. Pig will create the directory and store the relation in fi les named
part-nnnnn in it. Uses the PigStorage store function as default unless specifi ed
otherwise with the USING option.

You may fi nd loading and storing data not terribly exciting. Let’s execute a few data
processing statements and see how we can explore Pig Latin through Grunt.

grunt> log = LOAD 'tutorial/data/excite-small.log'
 ➥ AS (user:chararray, time:long, query:chararray);
grunt> grpd = GROUP log BY user;
grunt> cntd = FOREACH grpd GENERATE group, COUNT(log);
grunt> STORE cntd INTO 'output';

The preceding statements count the number of queries each user has searched for.
The content of the output fi les (you’ll have to look at the fi le from outside Grunt)
look like this:

 Learning Pig Latin through Grunt 219

002BB5A52580A8ED 18
005BD9CD3AC6BB38 18
00A08A54CD03EB95 3
011ACA65C2BF70B2 5
01500FAFE317B7C0 15
0158F8ACC570947D 3
018FBF6BFB213E68 1

Conceptually we’ve performed an aggregating operation similar to the SQL query :

SELECT user, COUNT(*) FROM excite-small.log GROUP BY user;

Two main differences between the Pig Latin and SQL versions are worth pointing out.
As we’ve mentioned earlier, Pig Latin is a data processing language. You’re specifying
a series of data processing steps instead of a complex SQL query with clauses. The
other difference is more subtle—relations in SQL always have fi xed schemas . In SQL,
we defi ne a relation’s schema before it’s populated with data. Pig takes a much looser
approach to schema. In fact, you don’t need to use schemas if you don’t want to,
which may be the case when handling semistructured or unstructured data. Here we
do specify a schema for the relation log, but it’s only in the load statement and it’s not
enforced until we’re loading in the data. Any fi eld that doesn’t obey the schema in the
load operation is casted to a null. In this way the relation log is guaranteed to obey our
stated schema for subsequent operations.

As much as possible, Pig tries to fi gure out the schema for a relation based on
the operation used to create it. You can expose Pig’s schema for any relation with
the DESCRIBE command. This can be useful in understanding what a Pig statement is
doing. For example, we’ll look at the schemas for grpd and cntd. Before doing this,
let’s fi rst see how the DESCRIBE command describes log.

grunt> DESCRIBE log;
log: {user: chararray,time: long,query: chararray}

As expected, the load command gives log the exact schema we’ve specifi ed. The rela-
tion log consists of three fi elds named user, time, and query. The fi elds user and
query are both strings (chararray in Pig) whereas time is a long integer.

A GROUP BY operation on the relation log generates the relation grpd. Based on
the operation and the schema for log, Pig infers a schema for grpd:

grunt> DESCRIBE grpd;
grpd: {group: chararray,log: {user: chararray,time: long,query: chararray}}

group and log are two fi elds in grpd. The fi eld log is a bag with subfi elds user, time,
and query. As we haven’t covered Pig’s type system and the GROUP BY operation, we
don’t expect you to understand this schema yet. The point is that relations in Pig can
have fairly complex schemas, and DESCRIBE is your friend in understanding the rela-
tions you’re working with:

grunt> DESCRIBE cntd;
cntd: {group: chararray,long}

Finally, the FOREACH command operates on the relation grpd to give us cntd. Having
looked at the output of cntd, we know it has two fi elds—the user ID and a count of the

220 CHAPTER 10 Programming with Pig

number of queries. Pig’s schema for cntd, as given by DESCRIBE, also has two fi elds. The
fi rst one’s name—group—is taken from grpd’s schema. The second fi eld has no name, but
it has a type of long. This fi eld is generated by the COUNT function , and the function doesn’t
automatically provide a name, although it does tell Pig that the type has to be a long.

Whereas DESCRIBE can tell you the schema of a relation, ILLUSTRATE does a sample
run to show a step-by-step process on how Pig would compute the relation. Pig tries to
simulate the execution of the statements to compute a relation, but it uses only a small
sample of data to make the execution fast. The best way to understand ILLUSTRATE is
by applying it to a relation. In this case we use cntd. (The output is reformatted to fi t
the width of a printed page.)

grunt> ILLUSTRATE cntd;
--
| log | user: bytearray | time: bytearray | query: bytearray |
--
	0567639EB8F3751C	970916161410	"conan o'brien"
	0567639EB8F3751C	970916161413	"conan o'brien"
	972F13CE9A8E2FA3	970916063540	fi nger AND download
--

| log | user: chararray | time: long | query: chararray |

	0567639EB8F3751C	970916161410	"conan o'brien"
	0567639EB8F3751C	970916161413	"conan o'brien"
	972F13CE9A8E2FA3	970916063540	fi nger AND download

| grpd | group: chararray | log: bag({user: chararray,time: long, |
| | | query: chararray}) |

	0567639EB8F3751C	{(0567639EB8F3751C, 970916161410,
		"conan o'brien"),
		(0567639EB8F3751C,970916161413,
		"conan o'brien")}
	972F13CE9A8E2FA3	{(972F13CE9A8E2FA3, 970916063540,
		fi nger AND download)}

| cntd | group: chararray | long |

| | 0567639EB8F3751C | 2 |
| | 972F13CE9A8E2FA3 | 1 |

The ILLUSTRATE command shows there to be four transformations to arrive at cntd.
The header row of each table describes the schema of the output relation after trans-
formation, and the rest of the table shows example data. The log relation is shown as
two transformations. The data hasn’t changed from one to the next, but the schema
has changed from a generic bytearray (Pig’s type for binary objects) to the specifi ed
schema. The GROUP operation on log is executed on the three sample log tuples to
arrive at the data for grpd. Based on this we can infer the GROUP operation to have

 Speaking Pig Latin 221

taken the user fi eld and made it the group fi eld. In addition, it groups all tuples in
log with the same user value into a bag in grpd. Seeing sample data in a simulated
run by ILLUSTRATE can greatly aid the understanding of different operations. Finally,
we see the FOREACH operation applied to grpd to arrive at cntd. Having seen the data
in grpd in the previous table, one can easily infer that the COUNT() function provided
the size of each bag.

Although DESCRIBE and ILLUSTRATE are your workhorses in understanding Pig
Latin statements, Pig also has an EXPLAIN command to show the logical and physical
execution plan in detail. We summarize the diagnostic operators in table 10.3.

Table 10.3 Diagnostic operators in Pig Latin

DESCRIBE DESCRIBE alias;

Display the schema of a relation.

EXPLAIN EXPLAIN [-out path] [-brief] [-dot] [-param ...]
[-param_fi le ...] alias;

Display the execution plan used to compute a relation. When used with a script
name, for example, EXPLAIN myscript.pig, it will show the execution plan
of the script.

ILLUSTRATE ILLUSTRATE alias;

Display step-by-step how data is transformed, starting with a load command, to
arrive at the resulting relation. To keep the display and processing manageable,
only a (not completely random) sample of the input data is used to simulate the
execution.

In the unfortunate case where none of Pig’s initial sample will survive the script to
generate meaningful data, Pig will “fake” some similar initial data that will survive
to generate data for alias. For example, consider these operations:

A = LOAD 'student.data' as (name, age);
B = FILTER A by age > 18;
ILLUSTRATE B;

If every tuple Pig samples for A happens to have age less than or equal to 18,
B is empty and not much is “illustrated.” Instead Pig will construct for A some
tuples with age greater than 18. This way B won’t be an empty relation and users
can see how the script works.

In order for ILLUSTRATE to work, the load command in the fi rst step must
include a schema. The subsequent transformations must not include the LIMIT
or SPLIT operators, or the nested FOREACH operator, or the use of the map
data type (to be explained in section 10.5.1).

10.5 Speaking Pig Latin
You now know how to use Grunt to run Pig Latin statements and investigate their
execution and results. We can come back and give a more formal treatment of the
language. You should feel free to use Grunt to explore these language concepts as we
present them.

222 CHAPTER 10 Programming with Pig

10.5.1 Data types and schemas

Let’s fi rst look at Pig data types from a bottom-up view. Pig has six simple atomic types
and three complex types, shown in tables 10.4 and 10.5 respectively. The atomic
types include numeric scalars as well as string and binary objects. Type casting is sup-
ported and done in the usual manner. Fields default to bytearray unless specifi ed
otherwise.

Table 10.4 Atomic data types in Pig Latin

int Signed 32-bit integer

long Signed 64-bit integer

fl oat 32-bit fl oating point

double 64-bit fl oating point

chararray Character array (string) in Unicode UTF-8

bytearray Byte array (binary object)

The three complex types are tuple, bag, and map.
A fi eld in a tuple or a value in a map can be null or any atomic or complex type.

This enables nesting and complex data structures. Whereas data structures can be
arbitrarily complex, some are defi nitely more useful and occur more often than others,
and nesting usually doesn’t go deeper than two levels. In the Excite log example earlier,
the GROUP BY operator generated a relation grpd where each tuple has a fi eld that is
a bag. The schema for the relation seems more natural once you think of grpd as the
query history of each user. Each tuple represents one user and has a fi eld that is a bag
of the user’s queries.

Table 10.5 Complex data types in Pig Latin

Tuple (12.5,hello world,-2)

A tuple is an ordered set of fi elds. It’s most often used as a row in a relation. It’s
represented by fi elds separated by commas, all enclosed by parentheses.

Bag {(12.5,hello world,-2),(2.87,bye world,10)}

A bag is an unordered collection of tuples. A relation is a special kind of bag,
sometimes called an outer bag. An inner bag is a bag that is a fi eld within some
complex type.

A bag is represented by tuples separated by commas, all enclosed by curly
brackets.

Tuples in a bag aren’t required to have the same schema or even have the
same number of fi elds. It’s a good idea to do this though, unless you’re handling
semistructured or unstructured data.

Map [key#value]

A map is a set of key/value pairs. Keys must be unique and be a string
(chararray). The value can be any type.

 Speaking Pig Latin 223

We can also look at Pig’s data model from the top down. At the top, Pig Latin state-
ments work with relations, which is a bag of tuples. If you force all the tuples in a bag
to have a fi xed number of fi elds and each fi eld has a fi xed atomic type, then it behaves
like a relational data model —the relation is a table, tuples are rows (records), and
fi elds are columns. But, Pig’s data model has more power and fl exibility by allowing
nested data types . Fields can themselves be tuples, bags, or maps. Maps are helpful in
processing semistructured data such as JSON, XML, and sparse relational data. In ad-
dition, it isn’t necessary that tuples in a bag have the same number of fi elds. This allows
tuples to represent unstructured data.

Besides declaring types for fi elds, schemas can also assign names to fi elds to make
them easier to reference. Users can defi ne schemas for relations using the AS keyword
with the LOAD, STREAM, and FOREACH operators. For example, in the LOAD statement
for getting the Excite query log, we defi ned the data types for the fi elds in log, as well
as named the fi elds user, time, and query.

grunt> log = LOAD 'tutorial/data/excite-small.log'

 ➥ AS (user:chararray, time:long, query:chararray);

In defi ning a schema, if you leave out the type, Pig will default to bytearray as the most
generic type. You can also leave out the name, in which case a fi eld would be unnamed
and you can only reference it by position.

10.5.2 Expressions and functions

You can apply expressions and functions to data fi elds to compute various values. The
simplest expression is a constant value . Next is to reference the value of a fi eld . You can
reference the named fi elds’ value directly by the name. You can reference an unnamed
fi eld by $n, where n is its position inside the tuple. (Position is numbered starting at 0.)
For example, this LOAD command provides named fi elds to log through the schema.

log = LOAD 'tutorial/data/excite-small.log'

 ➥ AS (user:chararray, time:long, query:chararray);

The three named fi elds are user, time, and query. For example, we can refer to the
time fi eld as either time or $1, because the time fi eld is the second fi eld in log (posi-
tion number 1). Let’s say we want to extract the time fi eld into its own relation; we can
use this statement:

projection = FOREACH log GENERATE time;

We can also achieve the same with

projection = FOREACH log GENERATE $1;

Most of the time you should give names to fi elds. One use of referring to fi elds by posi-
tion is when you’re working with unstructured data.

When using complex types, you use the dot notation to reference fi elds nested
inside tuples or bags. For example, recall earlier that we’d grouped the Excite log by
user ID and arrived at relation grpd with a nested schema .

224 CHAPTER 10 Programming with Pig

| grpd | group: chararray | log: bag({user: chararray,time: long, |
| | | query: chararray}) |

	0567639EB8F3751C	{(0567639EB8F3751C, 970916161410,
		"conan o'brien"),
		(0567639EB8F3751C,970916161413,
		"conan o'brien")}
	972F13CE9A8E2FA3	{(972F13CE9A8E2FA3, 970916063540,
		fi nger AND download)}

The second fi eld in grpd is named log, of type bag. Each bag has tuples with three
named fi elds: user, time, and query. In this relation, log.query would refer to the two
copies of “conan” “o’brien” when applied to the fi rst tuple. You can get the same fi eld
with log.$2.

You reference fi elds inside maps through the pound operator instead of the
dot operator . For a map named m, the value associated with key k is referenced
through m#k.

Being able to refer to values is only a fi rst step. Pig supports the standard arithmetic,
comparison, conditional, type casting , and Boolean expressions that are common in
most popular programming languages. See table 10.6.

Table 10.6 Expressions in Pig Latin

Constant 12, 19.2,
'hello world'

Constant values such as 19 or “hello world.” Numeric values
without decimal point are treated as int unless l or L is
appended to the number to make it a long. Numeric values
with a decimal point are treated as double unless f or F is
appended to the number to make it a fl oat.

Basic
arithmetic

+,-,*,/ Plus, minus, multiply, and divide.

Sign +x, -x Negation (-) changes the sign of a number.

Cast (t)x Convert the value of x into type t.

Modulo x % y The remainder of x divided by y.

Conditional (x ? y : z) Returns y if x is true, z otherwise. This expression must be
enclosed in parentheses.

Comparison ==,!=,<,>,
<=,>=

Equals to, not equals to, greater than, less than, etc.

Pattern
matching

x matches
regex

Regular expression matching of string x. Uses Java’s regular
expression format (under the java.util.regex.
Pattern class) to specify regex.

Null x is null,
x is not null

Check if x is null (or not).

Boolean x and y,
x or y
not x

Boolean and, or, not.

 Speaking Pig Latin 225

Furthermore, Pig also supports functions. Table 10.7 shows Pig’s built-in functions,
most of which are self-explanatory. We’ll discuss user-defi ned functions (UDF) in
section 10.6.

Table 10.7 Built-in functions in Pig Latin

AVG Calculate the average of numeric values in a single-column bag.

CONCAT Concatenate two strings (chararray) or two bytearrays.

COUNT Calculate the number of tuples in a bag. See SIZE for other data types.

DIFF Compare two fi elds in a tuple. If the two fi elds are bags, it will return tuples that are
in one bag but not the other. If the two fi elds are values, it will emit tuples where
the values don’t match.

MAX Calculate the maximum value in a single-column bag. The column must be a
numeric type or a chararray.

MIN Calculate the minimum value in a single-column bag. The column must be a
numeric type or a chararray.

SIZE Calculate the number of elements. For a bag it counts the number of tuples. For a
tuple it counts the number of elements. For a chararray it counts the number of
characters. For a bytearray it counts the number of bytes. For numeric scalars it
always returns 1.

SUM Calculate the sum of numeric values in a single-column bag.

TOKENIZE Split a string (chararray) into a bag of words (each word is a tuple in the bag).
Word separators are space, double quote ("), comma, parentheses, and asterisk (*).

IsEmpty Check if a bag or map is empty.

You can’t use expressions and functions alone. You must use them within relational
operators to transform data.

10.5.3 Relational operators

The most salient characteristic about Pig Latin as a language is its relational opera-
tors. These operators defi ne Pig Latin as a data processing language. We’ll quickly go
over the more straightforward operators fi rst, to acclimate ourselves to their style and
syntax. Afterward we’ll go into more details on the more complex operators such as
COGROUP and FOREACH.

UNION combines multiple relations together whereas SPLIT partitions a relation
into multiple ones. An example will make it clear:

grunt> a = load 'A' using PigStorage(',') as (a1:int, a2:int, a3:int);
grunt> b = load 'B' using PigStorage(',') as (b1:int, b2:int, b3:int);
grunt> DUMP a;
(0,1,2)
(1,3,4)
grunt> DUMP b;
(0,5,2)
(1,7,8)
grunt> c = UNION a, b;
grunt> DUMP c;

226 CHAPTER 10 Programming with Pig

(0,1,2)
(0,5,2)
(1,3,4)
(1,7,8)
grunt> SPLIT c INTO d IF $0 == 0, e IF $0 == 1;
grunt> DUMP d;
(0,1,2)
(0,5,2)
grunt> DUMP e;
(1,3,4)
(1,7,8)

The UNION operator allows duplicates. You can use the DISTINCT operator to remove
duplicates from a relation. Our SPLIT operation on c sends a tuple to d if its fi rst fi eld
($0) is 0, and to e if it’s 1. It’s possible to write conditions such that some rows will go to
both d and e or to neither. You can simulate SPLIT by multiple FILTER operators. The
FILTER operator alone trims a relation down to only tuples that pass a certain test:

grunt> f = FILTER c BY $1 > 3;
grunt> DUMP f;
(0,5,2)
(1,7,8)

We’ve seen LIMIT being used to take a specifi ed number of tuples from a relation.
SAMPLE is an operator that randomly samples tuples in a relation according to a speci-
fi ed percentage.

The operations ‘till now are relatively simple in the sense that they operate on each
tuple as an atomic unit. More complex data processing, on the other hand, will require
working on groups of tuples together. We’ll next look at operators for grouping. Unlike
previous operators, these grouping operators will create new schemas in their output
that rely heavily on bags and nested data types. The generated schema may take a little
time to get used to at fi rst. Keep in mind that these grouping operators are almost
always for generating intermediate data. Their complexity is only temporary on your
way to computing the fi nal results.

The simpler of these operators is GROUP. Continuing with the same set of relations
we used earlier,

grunt> g = GROUP c BY $2;
grunt> DUMP g;
(2,{(0,1,2),(0,5,2)})
(4,{(1,3,4)})
(8,{(1,7,8)})

grunt> DESCRIBE c;
c: {a1: int,a2: int,a3: int}
grunt> DESCRIBE g;
g: {group: int,c: {a1: int,a2: int,a3: int}}

We’ve created a new relation, g, from grouping tuples in c having the same value on
the third column ($2, also named a3). The output of GROUP always has two fi elds. The
fi rst fi eld is group key, which is a3 in this case. The second fi eld is a bag containing
all the tuples with the same group key. Looking at g’s dump, we see that it has three

 Speaking Pig Latin 227

tuples, corresponding to the three unique values in c’s third column. The bag in the
fi rst tuple represents all tuples in c with the third column equal to 2. The bag in the
second tuple represents all tuples in c with the third column equal to 4. And so forth.
After you understand how g’s data came about, you’ll feel more comfortable looking
at its schema. The fi rst fi eld of GROUP’s output relation is always named group, for the
group key. In this case it may seem more natural to call the fi rst fi eld a3, but currently
Pig doesn’t allow you to assign a name to replace group. You’ll have to adapt yourself
to refer to it as group. The second fi eld of GROUP’s output relation is always named af-
ter the relation it’s operating on, which is c in this case, and as we said earlier it’s always
a bag. As we use this bag to hold tuples from c, the schema for this bag is exactly the
schema for c —three fi elds of integers named a1, a2, and a3.

Before moving on, we want to note that one can GROUP by any function or expression.
For example, if time is a timestamp and there exists a function DayOfWeek , one can
conceivably do this grouping that would create a relation with seven tuples.

GROUP log BY DayOfWeek(time);

Finally, one can put all tuples in a relation into one big bag. This is useful for aggregate
analysis on relations, as functions work on bags but not relations. For example:

grunt> h = GROUP c ALL;
grunt> DUMP h;
(all,{(0,1,2),(0,5,2),(1,3,4),(1,7,8)})
grunt> i = FOREACH h GENERATE COUNT($1);
grunt> dump i;
(4L)

This is one way to count the number of tuples in c. The fi rst fi eld in GROUP ALL’s out-
put is always the string all.

Now that you’re comfortable with GROUP, we can look at COGROUP , which groups
together tuples from multiple relations . It functions much like a join. For example, let’s
cogroup a and b on the third column.

grunt> j = COGROUP a BY $2, b BY $2;
grunt> DUMP j;
(2,{(0,1,2)},{(0,5,2)})
(4,{(1,3,4)},{})
(8,{},{(1,7,8)})
grunt> DESCRIBE j;
j: {group: int,a: {a1: int,a2: int,a3: int},b: {b1: int,b2: int,b3: int}}

Whereas GROUP always generates two fi elds in its output, COGROUP always generates
three (more if cogrouping more than two relations). The fi rst fi eld is the group key,
whereas the second and third fi elds are bags. These bags hold tuples from the co-
grouping relations that match the grouping key. If a grouping key matches only tuples
from one relation but not the other, then the fi eld corresponding to the nonmatching
relation will have an empty bag. To ignore group keys that don’t exist for a relation,
one can add the INNER keyword to the operation, like

228 CHAPTER 10 Programming with Pig

grunt> j = COGROUP a BY $2, b BY $2 INNER;
grunt> dump j;
(2,{(0,1,2)},{(0,5,2)})
(8,{},{(1,7,8)})
grunt> j = COGROUP a BY $2 INNER, b BY $2 INNER;
grunt> dump j;
(2,{(0,1,2)},{(0,5,2)})

Conceptually, you can think of the default behavior of COGROUP as an outer join, and
the INNER keyword can modify it to be left outer join, right outer join, or inner join.
Another way to do inner join in Pig is to use the JOIN operator. The main difference
between JOIN and an inner COGROUP is that JOIN creates a fl at set of output records, as
indicated by looking at the schema:

grunt> j = JOIN a BY $2, b BY $2;
grunt> dump j;
(0,1,2,0,5,2)
grunt> DESCRIBE j;
j: {a::a1: int,a::a2: int,a::a3: int,b::b1: int,b::b2: int,b::b3: int}

The last relational operator we look at is FOREACH. It goes through all tuples in a relation
and generates new tuples in the output. Behind this seeming simplicity lies tremendous
power though, particularly when it’s applied to complex data types outputted by the
grouping operators. There’s even a nested form of FOREACH designed for handling com-
plex types. First let’s familiarize ourselves with different FOREACH operations on simple
relations.

grunt> k = FOREACH c GENERATE a2, a2 * a3;
grunt> DUMP k;
(1,2)
(5,10)
(3,12)
(7,56)

FOREACH is always followed by an alias (name given to a relation) followed by the key-
word GENERATE. The expressions after GENERATE control the output. At its simplest,
we use FOREACH to project specifi c columns of a relation into the output. We can also
apply arbitrary expressions, such as multiplication in the preceding example.

For relations with nested bags (e.g., ones generated by the grouping operations),
FOREACH has special projection syntax, and a richer set of functions. For example,
applying nested projection to have each bag retain only the fi rst fi eld:

grunt> k = FOREACH g GENERATE group, c.a1;
grunt> DUMP k;
(2,{(0),(0)})
(4,{(1)})
(8,{(1)})

To get two fi elds in each bag:

grunt> k = FOREACH g GENERATE group, c.(a1,a2);
grunt> DUMP k;
(2,{(0,1),(0,5)})

 Speaking Pig Latin 229

(4,{(1,3)})
(8,{(1,7)})

Most built-in Pig functions are geared toward working on bags.

grunt> k = FOREACH g GENERATE group, COUNT(c);
grunt> DUMP k;
(2,2L)
(4,1L)
(8,1L)

Recall that g is based on grouping c on the third column. This FOREACH statement
therefore generates a frequency count of the values in c’s third column. As we said
earlier, grouping operators are mainly for generating intermediate data that will be
simplifi ed by other operators such as FOREACH. The COUNT function is one of the ag-
gregate functions. As we’ll see, you can create many other functions via UDFs.

The FLATTEN function is designed to fl atten nested data types. Syntactically it looks
like a function, such as COUNT and AVG, but it’s a special operator as it can change the
structure of the output created by FOREACH...GENERATE. Its fl attening behavior is
also different depending on how it’s applied and what it’s applied to. For example,
consider a relation with tuples of the form (a, (b, c)). The statement FOREACH...
GENERATE $0, FLATTEN($1) will create one output tuple of the form (a, b, c) for
each input tuple.

When applied to bags, FLATTEN modifi es the FOREACH...GENERATE statement to
generate new tuples. It removes one layer of nesting and behaves almost the opposite
of grouping operations. If a bag contains N tuples, fl attening it will remove the bag and
create N tuples in its place.

grunt> k = FOREACH g GENERATE group, FLATTEN(c);
grunt> DUMP k;
(2,0,1,2)
(2,0,5,2)
(4,1,3,4)
(8,1,7,8)
grunt> DESCRIBE k;
k: {group: int,c::a1: int,c::a2: int,c::a3: int}

Another way to understand FLATTEN is to see that it produces a cross-product. This
view is helpful when we use FLATTEN multiple times within a single FOREACH statement.
For example, let’s say we’ve somehow created a relation l.

grunt> dump l;
(1,{(1,2)},{(3)})
(4,{(4,2),(4,3)},{(6),(9)})
(8,{(8,3),(8,4)},{(9)})
grunt> describe l;
d: {group: int,a: {a1: int,a2: int},b: {b1: int}}

The following statement that fl attens two bags outputs all combinations of those two
bags for each tuple:

grunt> m = FOREACH l GENERATE group, FLATTEN(a), FLATTEN(b);
grunt> dump m;

230 CHAPTER 10 Programming with Pig

(1,1,2,3)
(4,4,2,6)
(4,4,2,9)
(4,4,3,6)
(4,4,3,9)
(8,8,3,9)
(8,8,4,9)

We see that the tuple with group key 4 in relation l has a bag of size 2 in fi eld a and
also a bag size 2 in fi eld b. The corresponding output in m therefore has four rows rep-
resenting the full cross-product.

Finally, there’s a nested form of FOREACH to allow for more complex processing of
bags. Let’s assume you have a relation (say l) and one of its fi elds (say a) is a bag, a
FOREACH with nested block has this form:

alias = FOREACH l {
 tmp1 = operation on a;
 [more operations...]
 GENERATE expr [, expr...]
 }

The GENERATE statement must always be present at the end of the nested block. It will
create some output for each tuple in l. The operations in the nested block can create
new relations based on the bag a. For example, we can trim down the a bag in each
element of l’s tuple.

grunt> m = FOREACH l {
 tmp1 = FILTER a BY a1 >= a2;
 GENERATE group, tmp1, b;
 }
grunt> DUMP m;
(1,{},{(3)})
(4,{(4,2),(4,3)},{(6),(9)})
(8,{(8,3),(8,4)},{(9)})

You can have multiple statements in the nested block. Each one can even be operating
on different bags.

grunt> m = FOREACH l {
 tmp1 = FILTER a BY a1 >= a2;
 tmp2 = FILTER b by $0 < 7;
 GENERATE group, tmp1, tmp2;
 };
grunt> DUMP m;
(1,{},{(3)})
(4,{(4,2),(4,3)},{(6)})
(8,{(8,3),(8,4)},{})

As of this writing, only fi ve operators are allowed in the nested block: DISTINCT, FILTER,
LIMIT, ORDER, and SAMPLE. It’s expected that more will be supported in the future.

NOTE Sometimes the output of FOREACH can have a completely different
schema from its input. In those cases, users can specify the output schema using
the AS option after each fi eld. This syntax differs from the LOAD command

 Speaking Pig Latin 231

where the schema is specifi ed as a list after the AS option, but in both cases we
use AS to specify a schema.

Table 10.8 summarizes the relational operators in Pig Latin. On many operators you’ll
see an option for PARALLEL n . The number n is the degree of parallelism you want for
executing that operator. In practice n is the number of reduce tasks in Hadoop that Pig
will use. If you don’t set n it’ll default to the default setting of your Hadoop cluster. Pig
documentation recommends setting the value of n according to the following guideline:

n = (#nodes - 1) * 0.45 * RAM

where #nodes is the number of nodes and RAM is the amount of memory in GB on
each node.

Table 10.8 Relational operators in Pig Latin

SPLIT SPLIT alias INTO alias IF expression, alias IF
expression [, alias IF expression ...];

Splits a relation into two or more relations, based on the given Boolean
expressions. Note that a tuple can be assigned to more than one relation, or to
none at all.

UNION alias = UNION alias, alias, [, alias ...]

Creates the union of two or more relations. Note that

 ■ As with any relation, there’s no guarantee to the order of tuples

 Doesn’t require the relations to have the same schema or even the same ■

number of fi elds

 Doesn’t remove duplicate tuples■

FILTER alias = FILTER alias BY expression;

Selects tuples based on Boolean expression. Used to select tuples that you want
or remove tuples that you don’t want.

DISTINCT alias = DISTINCT alias [PARALLEL n];

Remove duplicate tuples.

SAMPLE alias = SAMPLE alias factor;

Randomly sample a relation. The sampling factor is given in factor. For
example, a 1% sample of data in relation large_data is

small_data = SAMPLE large_data 0.01;

The operation is probabilistic in such a way that the size of small_data will not
be exactly 1% of large_data, and there’s no guarantee the operation will return
the same number of tuples each time.

FOREACH alias = FOREACH alias GENERATE expression [,expression
...] [AS schema];

Loop through each tuple and generate new tuple(s). Usually applied to transform
columns of data, such as adding or deleting fi elds.

One can optionally specify a schema for the output relation; for example, naming
new fi elds.

232 CHAPTER 10 Programming with Pig

Table 10.8 Relational operators in Pig Latin (continued)

FOREACH
(nested)

alias = FOREACH nested_alias {
 alias = nested_op;
 [alias = nested_op; ...]
 GENERATE expression [, expression ...];
};

Loop through each tuple in nested_alias and generate new tuple(s). At least
one of the fi elds of nested_alias should be a bag. DISTINCT, FILTER,
LIMIT, ORDER, and SAMPLE are allowed operations in nested_op to operate
on the inner bag(s).

JOIN alias = JOIN alias BY fi eld_alias, alias BY fi eld_alias [,
alias BY fi eld_alias …] [USING "replicated"] [PARALLEL n];

Compute inner join of two or more relations based on common fi eld values. When
using the replicated option, Pig stores all relations after the fi rst one in memory
for faster processing. You have to ensure that all those smaller relations together
are indeed small enough to fi t in memory.

Under JOIN, when the input relations are fl at, the output relation is also fl at. In
addition, the number of fi elds in the output relation is the sum of the number of
fi elds in the input relations, and the output relation’s schema is a concatenation of
the input relations’ schemas.

GROUP alias = GROUP alias { [ALL] | [BY {[fi eld_alias [, fi eld_
alias]] | * | [expression]] } [PARALLEL n];

Within a single relation, group together tuples with the same group key. Usually
the group key is one or more fi elds, but it can also be the entire tuple (*) or an
expression. One can also use GROUP alias ALL to group all tuples into
one group.

The output relation has two fi elds with autogenerated names. The fi rst fi eld is
always named “group” and it has the same type as the group key. The second
fi eld takes the name of the input relation and is a bag type. The schema for the
bag is the same as the schema for the input relation.

COGROUP alias = COGROUP alias BY fi eld_alias [INNER | OUTER] ,
alias BY fi eld_alias [INNER | OUTER] [PARALLEL n];

Group tuples from two or more relations, based on common group values.

The output relation will have a tuple for each unique group value. Each tuple will
have the group value as its fi rst fi eld. The second fi eld is a bag containing tuples
from the fi rst input relation with matching group value. Ditto for the third fi eld of
the output tuple.

In the default OUTER join semantic, all group values appearing in any input
relation are represented in the output relation. If an input relation doesn’t
have any tuple with a particular group value, it will have an empty bag in the
corresponding output tuple. If the INNER option is set for a relation, then only
group values that exist in that input relation are allowed in the output relation.
There can’t be an empty bag for that relation in the output.

You can group on multiple fi elds. For this, you have to specify the fi elds in a
comma-separated list enclosed by parentheses for fi eld_alias.

COGROUP (with INNER) and JOIN are similar except that COGROUP generates
nested output tuples.

 Working with user-defi ned functions 233

Table 10.8 Relational operators in Pig Latin (continued)

CROSS alias = CROSS alias, alias [, alias …] [PARALLEL n];

Compute the (fl at) cross-product of two or more relations. This is an expensive
operation and you should avoid it as far as possible.

ORDER alias = ORDER alias BY { * [ASC|DESC] | fi eld_alias
[ASC|DESC] [, fi eld_alias [ASC|DESC] …] } [PARALLEL n];

Sort a relation based on one or more fi elds. If you retrieve the relation right after
the ORDER operation (by DUMP or STORE), it’s guaranteed to be in the desired
sorted order. Further processing (FILTER, DISTINCT, etc.) may destroy the
ordering.

STREAM alias = STREAM alias [, alias …] THROUGH {'command' |
cmd_alias } [AS schema] ;

Process a relation with an external script.

At this point you’ve learned various aspects of the Pig Latin language—data types,
expressions, functions, and relational operators. You can extend the language further
with user-defi ned functions. But before discussing that we’ll end this section with a
note on Pig Latin compilation and optimization.

10.5.4 Execution optimization

As with many modern compilers, the Pig compiler can reorder the execution sequence
to optimize performance, as long as the execution plan remains logically equivalent to
the original program. For example, imagine a program that applies an expensive func-
tion (say, encryption) to a certain fi eld (say, social security number) of every record,
followed by a fi ltering function to select records based on a different fi eld (say, limit
only to people within a certain geography). The compiler can reverse the execution
order of those two operations without affecting the fi nal result, yet performance is
much improved. Having the fi ltering step fi rst can dramatically reduce the amount of
data and work the encryption step will have to do.

As Pig matures, more optimization will be added to the compiler. Therefore it’s
important to try to always use the latest version. But there’s always a limit to a compiler’s
ability to optimize arbitrary code. You can read Pig’s web documentation for techniques
to improve performance. A list of tips for enhancing performance under Pig version
0.3 is at http://hadoop.apache.org/pig/docs/r0.3.0/cookbook.html.

10.6 Working with user-defi ned functions
Fundamental to Pig Latin’s design philosophy is its extensibility through user-defi ned
functions (UDFs), and there’s a well-defi ned set of APIs for writing UDFs. This doesn’t
mean that you’ll have to write all the functions you need yourself. Part of Pig’s ecosys-
tem4 is PiggyBank, 5 an online repository for users to share their functions. You should

4 I thought about calling it a Pig pen, but PigPen is actually the name of an Eclipse plug-in for editing Pig
Latin scripts. See http://wiki.apache.org/pig/PigPen.

5 http://wiki.apache.org/pig/PiggyBank.

234 CHAPTER 10 Programming with Pig

check PiggyBank fi rst for any function you need. Only if you don’t fi nd an appropriate
function should you consider writing your own. You should also consider contributing
your UDF back to PiggyBank to benefi t others in the Pig community.

10.6.1 Using UDFs

As of this writing UDFs are always written in Java and packaged in jar fi les. To use a
particular UDF you’ll need the jar fi le containing the UDF’s class fi le(s). For example,
when using functions from PiggyBank you’ll most likely obtain a piggybank.jar fi le.

To use a UDF, you must fi rst register the jar fi le with Pig using the REGISTER statement .
Afterward, you invoke the UDF by its fully qualifi ed Java class name. For example,
there’s an UPPER function in PiggyBank that transforms a string to uppercase:

REGISTER piggybank/java/piggybank.jar;
b = FOREACH a GENERATE

 ➥ org.apache.pig.piggybank.evaluation.string.UPPER($0);

If you need to use a function multiple times, it’ll get annoying to write out the fully
qualifi ed class name every time. Pig offers the DEFINE statement to assign a name to a
UDF. You can rewrite the above statements to

REGISTER piggybank/java/piggybank.jar;
DEFINE Upper org.apache.pig.piggybank.evaluation.string.UPPER();
b = FOREACH a GENERATE Upper($0);

Table 10.9 summarizes the UDF-related statements.

Table 10.9 UDF statements in Pig Latin

DEFINE DEFINE alias { function | 'command' [...] };

Assign an alias to a function or command.

REGISTER REGISTER alias;

Register UDFs with Pig. Currently UDFs are only written in Java, and alias is the
path of the JAR fi le. All UDFs must be registered before they can be used.

If you’re only using UDFs written by other people, this is all you need to know. But if
you can’t fi nd the UDF you need, you’ll have to write your own.

10.6.2 Writing UDFs

Pig supports two main categories of UDFs: eval 6 and load/store . We use the load/
store functions only in LOAD and STORE statements to help Pig read and write special
formats. Most UDFs are eval functions that take one fi eld value and return another
fi eld value.

6 Some eval functions are quite common and have special considerations. They’re sometimes described in
their own categories. These include fi lter functions (eval functions that return a Boolean) and aggregate
functions (eval functions that take a bag and return a scalar value).

 Working with user-defi ned functions 235

As of this writing, you can only write a UDF using Pig’s Java API. 7 To create an eval
UDF you make a Java class that extends the abstract EvalFunc<T> class. It has only one
abstract method which you need to implement:

abstract public T exec(Tuple input) throws IOException;

This method is called on each tuple in a relation, where each tuple is represented by
a Tuple object. The exec() method processes the tuple and returns a type T corre-
sponding to a valid Pig Latin type. T can be any one of the Java classes in table 10.10,
some of which are native Java classes and some of which are Pig extensions.

Table 10.10 Pig Latin types and their equivalent classes in Java.

Pig Latin type Java class

Bytearray DataByteArray

Chararray String

Int Integer

Long Long

Float Float

Double Double

Tuple Tuple

Bag DataBag

Map Map<Object, Object>

The best way to learn about writing UDFs is to dissect one of the existing UDFs in
PiggyBank. Even when writing your own, it’s often useful to start with a working UDF
that’s functionally similar to what you want and only modify the processing logic. For
our purpose, let’s explore the UPPER UDF we used earlier from PiggyBank. The exec()
method looks like this:

public class UPPER extends EvalFunc<String>
{
 public String exec(Tuple input) throws IOException {
 if (input == null || input.size() == 0)
 return null;

 try {
 String str = (String)input.get(0);
 return str.toUpperCase();
 } catch(Exception e){
 System.err.println("Failed to process input; error - " +

 ➥ e.getMessage());
 return null;
 }
 }
}

7 The Javadoc for the API is at http://hadoop.apache.org/pig/javadoc/docs/api/.

236 CHAPTER 10 Programming with Pig

The object input belongs to the Tuple class, which has two methods for retrieving its
content.

List<Object> getAll();
Object get(int fi eldNum) throws ExecException;

The getAll() method return all fi elds in the tuple as an ordered list. UPPER instead
uses the get() method to request for a specifi c fi eld (at position 0). This method
would throw an ExecException if the requested fi eld number is greater than the num-
ber of fi elds in the tuple. In UPPER the retrieved fi eld is casted to a Java String, which
usually works but may cause a cast exception if we were casting between incompatible
data types. We’ll see later how to use Pig to ensure that our casting works. In any case,
the try/catch block would’ve caught and handled any exception. If everything works,
UPPER’s exec() method will return a String with characters uppercased. In addition,
most UDFs should implement the default behavior that the output is null when the
input tuple is null.

In addition to implementing exec(), UPPER also overrides a couple methods from
EvalFunc, one of which is getArgToFuncMapping:

@Override
public List<FuncSpec> getArgToFuncMapping() throws FrontendException {
 List<FuncSpec> funcList = new ArrayList<FuncSpec>();
 funcList.add(new FuncSpec(this.getClass().getName(),

 ➥ new Schema(new Schema.FieldSchema(null, DataType.CHARARRAY))));

 return funcList;
}

The getArgToFuncMapping() method returns a List of FuncSpec objects repre-
senting the schema of each fi eld in the input tuple. Pig will handle typecasting for
you by converting the types of all fi elds in a tuple to conform to this schema before
passing it to exec(). It will pass fi elds that can’t be converted to the desired type
as null.

UPPER only cares about the type of the fi rst fi eld, so it adds only one FuncSpec to
the list, and this FuncSpec states that the fi eld must be of type chararray, represented
as DataType.CHARARRAY. The instantiation of FuncSpec is quite convoluted, which
is due to Pig’s ability to handle complex nested types. Fortunately, unless you work
with unusually complicated types, you’ll probably fi nd a FuncSpec instantiation for the
type you want already in one of PiggyBank ’s UDFs. Reuse that in your code. You can
even reuse the entire getArgToFuncMapping() function if you have the same tuple
schema as another UDF.

Besides telling Pig the input schema, you can also tell Pig the schema of your
output. You may not need to do this if the output of your UDF is a simple scalar , as
Pig will use Java’s Refl ection mechanism to infer the schema automatically. But if
your UDF returns a tuple or a bag, the Refl ection mechanism will fail to fi gure out
the schema completely. In that case you should specify it so that Pig can propagate
the schema correctly.

 Working with scripts 237

In UPPER’s case it only outputs a simple String, so it’s not necessary to specify the
output schema. But UPPER does do this by overriding outputSchema() to tell Pig that
it’s returning a string (DataType.CHARARRAY).

@Override
public Schema outputSchema(Schema input) {
 return new Schema(
 new Schema.FieldSchema(
 getSchemaName(this.getClass().getName().toLowerCase(), input),
 DataType.CHARARRAY
)
);
}

Again, the Schema object construction looks convoluted because of Pig’s ability to have
complex nested types. One special case is if the schema of your UDF’s output is the
same as the input. We can return a copy of the input schema:

public Schema outputSchema(Schema input) {
 return new Schema(input);
}

As with the construction of FuncSpec, you’ll probably fi nd some preexisting UDFs in
PiggyBank with your desired output schema.

A few types of UDFs call for special considerations. Filter functions are eval functions
that return a Boolean, and we use them in Pig Latin’s FILTER and SPLIT statements.
They should extend FilterFunc instead of EvalFunc. Aggregate functions are eval
functions that take in a bag and return a scalar. They’re usually used for computing
aggregate metrics, such as COUNT, and we can sometimes optimize them in Hadoop
by using a combiner. We haven’t covered the load/save UDFs for reading and writing
data sets. These more advanced topics are covered in Pig’s documentation on UDFs:
http://hadoop.apache.org/pig/docs/r0.3.0/udf.html.

10.7 Working with scripts
Writing Pig Latin scripts is largely about packaging together the Pig Latin statements
that you’ve successfully tested in Grunt. Pig scripting does have a few unique topics
though. They’re comments, parameter substitution, and multiquery execution.

10.7.1 Comments

As you’ll reuse your Pig Latin script, it’s obviously a good idea to leave comments for
other people (or yourself) to understand it in the future. Pig Latin supports two forms
of comments, single-line and multiline. You start the single-line comment by a double
hyphen and the comment ends at the end of the line. You enclose the multiline com-
ment by the /* and */ markers, similar to multiline comments in Java. For example, a
Pig Latin script with comments can look like

/*
 * Myscript.pig
 * Another line of comment

238 CHAPTER 10 Programming with Pig

 */
log = LOAD 'excite-small.log' AS (user, time, query);
lmt = LIMIT log 4; -- Only show 4 tuples
DUMP lmt;
-- End of program

10.7.2 Parameter substitution

When you write a reusable script, it’s generally parameterized such that you can vary
its operation for each run. For example, the script may take the fi le paths of its input
and output from the user each time. Pig supports parameter substitution to allow the
user to specify such information at runtime. It denotes such parameters by the $ prefi x
within the script. For example, the following script displays a user-specifi ed number of
tuples from a user-specifi ed log fi le:

log = LOAD '$input' AS (user, time, query);
lmt = LIMIT log $size;
DUMP lmt;

The parameters in this script are $input and $size. If you run this script using the
pig command, you specify the parameters using the -param name=value argument.

pig -param input=excite-small.log -param size=4 Myscript.pig

Note that you don’t need the $ prefi x in the arguments. You can enclose a param-
eter value in single or double quotes, if it has multiple words. A useful technique is
to use Unix commands to generate the parameter values, particularly for dates. This
is accomplished through Unix’s command substitution, which executes commands
enclosed in back ticks (`).

pig -param input=web-'date +%y-%m-%d'.log -param size=4 Myscript.pig

By doing this, the input fi le for Myscript.pig will be based on the date the script is
run. For example, the input fi le will be web-09-07-29.log if the script is run on July
29, 2009.

If you have to specify many parameters, it may be more convenient to put them in
a fi le and tell Pig to execute the script using parameter substitution based on that fi le.
For example, we can create a fi le Myparams.txt with the following content:

Comments in a parameter fi le start with hash
input=excite-small.log
size=4

The parameter fi le is passed to the pig command with the -param_fi le fi lename
argument.

pig -param_fi le Myparams.txt Myscript.pig

You can specify multiple parameter fi les as well as mix parameter fi les with direct specifi -
cation of parameters at the command line using -param. If you defi ne a parameter mul-
tiple times, the last defi nition takes precedence. When in doubt about what parameter
values a script ends up using, you can run the pig command with the -debug option.

 Working with scripts 239

This tells Pig to run the script and also output a fi le named original_script_name.
substituted that has the original script but with all the parameters fully substituted. Exe-
cuting pig with the -dryrun option outputs the same fi le but doesn’t execute the script.

The exec and run commands allow you to run Pig Latin scripts from within the
Grunt shell, and they support parameter substitution using the same -param and
-param_fi le arguments; for example:

grunt> exec -param input=excite-small.log -param size=4 Myscript.pig

However, parameter substitution in exec and run doesn’t support Unix commands,
and there’s no debug or dryrun option.

10.7.3 Multiquery execution

In the Grunt shell, a DUMP or STORE operation processes all previous statements need-
ed for the result. On the other hand, Pig optimizes and processes an entire Pig script
as a whole. This difference would have no effect at all if your script has only one DUMP
or STORE command at the end. If your script has multiple DUMP/STORE, Pig script’s mul-
tiquery execution improves effi ciency by avoiding redundant evaluations. For example,
let’s say you have a script that stores intermediate data:

a = LOAD ...
b = some transformation of a
STORE b ...
c = some further transformation of b
STORE c ...

If you enter the statements in Grunt, where there’s no multiquery execution, it will
generate a chain of jobs on the STORE b command to compute b. On encountering
STORE c, Grunt will run another chain of jobs to compute c, but this time it will evalu-
ate both a and b again! You can manually avoid this reevaluation by inserting a b =
LOAD ... statement right after STORE b, to force the computation of c to use the saved
value of b. This works on the assumption that the stored value of b has not been modi-
fi ed, because Grunt, by itself, has no way of knowing.

On the other hand, if you run all the statements as a script, multiquery execution
can optimize the execution by intelligently handling intermediate data. Pig compiles
all the statements together and can locate the dependency and redundancy. Multiquery
execution is enabled by default and usually has no effect on the computed results. But
multiquery execution can fail if there are data dependencies that Pig is not aware of.
This is quite rare but can happen with, for example, UDFs. Consider this script:

STORE a INTO 'out1';
b = LOAD ...
c = FOREACH b GENERATE MYUDF($0,'out1');
STORE c INTO 'out2';

If the custom function MYUDF is such that it accesses a through the fi le out1, the Pig
compiler would have no way of knowing that. Not seeing the dependency, the Pig com-
piler may erroneously think it OK to evaluate b and c before evaluating a. To disable
multiquery execution, run the pig command with -M or -no_multiquery option.

240 CHAPTER 10 Programming with Pig

10.8 Seeing Pig in action—example of computing similar patents
Given the extra power that Pig provides, we can take on more challenging data process-
ing applications. One interesting application from the patent data set is fi nding similar
patents based on citation data. Patents that are often cited together must be similar
(or at least related) in some way. This application has the essence of the Amazon.com
style collaborative fi ltering (“Customers who have bought this have also bought that.”)
and fi nding similar documents (by looking for documents with a similar set of words).
For our purpose here, let’s suppose we want to look into patents that are cited together
more than N times, where N is a fi xed number we specify.8

For applications that involve pair-wise computations (e.g., computing number
of cocitations for each pair of patents), it’s often easy to imagine an implementation
involving a pair of nested loops enumerating all pair combinations and performing the
computation on each pair. Even though Hadoop makes it easy to scale by adding more
hardware, we should continue to remember fundamental concepts in computational
complexity. Quadratic complexity will still bring linear scalability to its knees. Even a small
data set of 3 million patents can lead to 9 trillion pairs. We need smarter algorithms.

The main insight to leverage is that the resulting data is sparse . Most pairs will
have zero similarity as most pairs of patents are never cited together. Our similarity
computation will become much more manageable if we redesign it to only work on
patent pairs that are known to have been cited together. Looking at our data, this
approach is quite natural. This implementation involves these steps for each patent:

1 Get the list of patents it cites
2 Generate all pair-wise combinations of the list and record each pair
3 Count how many of each pair we have

If each patent cites a fi xed number of patents, say 10, this implementation would gen-
erate 45 pairs for each patent. (45 is the number of pair combinations possible from
10 items, which mathematically is derived as 10 x 9 / 2.) With 3 million patents this
creates 135 million pairs, which is orders of magnitude smaller than the brute force ap-
proach. This advantage would be even more apparent if the patent data set is larger.

Even though we’ve fi gured out the algorithm for this application, implementing it
in MapReduce can still be tedious. It’ll require chaining multiple jobs together, and
each job will require its own class. Pig Latin, on the other hand, takes only a dozen
lines to implement the three-step program (listing 10.1), and further optimization can
eliminate more lines and increase effi ciency still.

Listing 10.1 Pig Latin script to fi nd patents that are often cited together

 cite = LOAD 'input/cite75_99.txt' USING PigStorage(',')

 ➥ AS (citing:int, cited:int);
 cite_grpd = GROUP cite BY citing;

8 Variations of this may involve more advanced scoring functions, such as normalizing for frequent items,
or computing a similarity ranking rather than a simple cutoff. The simple cutoff criterion we chose here is
easier to implement and illustrates the essence of computing similarity.

 Seeing Pig in action—example of computing similar patents 241

 cite_grpd_dbl = FOREACH cite_grpd GENERATE group, cite.cited AS cited1,

 ➥ cite.cited AS cited2;
 cocite = FOREACH cite_grpd_dbl

 ➥ GENERATE FLATTEN(cited1), FLATTEN(cited2);
 cocite_fl trd = FILTER cocite BY cited1 != cited2;
 cocite_grpd = GROUP cocite_fl trd BY *;
 cocite_cnt = FOREACH cocite_grpd

 ➥ GENERATE group, COUNT(cocite_fl trd) as cnt;
 cocite_fl at = FOREACH cocite_cnt GENERATE FLATTEN(group), cnt;
cocite_cnt_grpd = GROUP cocite_fl at BY cited1;
 cocite_bag = FOREACH cocite_cnt_grpd

 ➥ GENERATE group, cocite_fl at.(cited2, cnt);

cocite_fi nal = FOREACH cocite_cnt_grpd {
 similar = FILTER cocite_fl at BY cnt > 5;
 GENERATE group, similar;
}
STORE cocite_fi nal INTO 'output';

Pig Latin, and probably complex data processing in general, can be hard to read. For-
tunately, we can use Grunt’s ILLUSTRATE command on cocite_bag to get a simulated
sample run of the statements and see what each operation is generating. (We’ve refor-
matted the output to fi t the width of the printed page.)

| cite | citing: bytearray | cited: bytearray |

	3858554	3601095
	3858554	3685034
	3859004	1730866
	3859004	3022581
	3859572	3206651

| cite | citing: int | cited: int |

	3858554	3601095
	3858554	3685034
	3859004	1730866
	3859004	3022581
	3859572	3206651

| cite_grpd | group: int | cite: bag({citing: int,cited: int}) |

	3858554	{(3858554, 3601095), (3858554, 3685034)}
	3859004	{(3859004, 1730866), (3859004, 3022581)}
	3859572	{(3859572, 3206651)}

| cite_grpd_dbl | group: | cited1: | cited2: |
| | int | bag({cited: int}) | bag({cited: int})|

	3858554	{(3601095), (3685034)}	{(3601095),(3685034)}
	3859004	{(1730866), (3022581)}	{(1730866),(3022581)}
	3859572	{(3206651)}	{(3206651)}

242 CHAPTER 10 Programming with Pig

The relation cite_grpd contains a bag for each patent, and in this bag are the cited
patents. From this relation (in this example run), we can see that patents 3601095 and
3685034 are cited together in patent 3858554. Grouping cocited patents was done by
the GROUP operation in creating cite_grpd . The relation cite_grpd_dbl only re-
moves the redundant “citing” patent and creates a duplicate column. The columns
cited1 and cited2 have the same values. This duplication will allow the cross-product
operation to generate all pair-wise combinations .

--
| cocite | cited1::cited: int | cited2::cited: int |
--
	3601095	3601095
	3601095	3685034
	3685034	3601095
	3685034	3685034
	1730866	1730866
	1730866	3022581
	3022581	1730866
	3022581	3022581
	3206651	3206651
--

The cross-product from fl attening each row of cite_grpd_dbl creates cocite.9 This
is the record of all pairs of patents that have been cited together and is a major check-
point for our algorithm. We know that cocite is a big relation, even under our scheme
which is more effi cient than brute force. There are three ways to trim down cocite
further. We’ll discuss them all but implement only one.

The fi rst potential reduction is to notice that each cited patent is considered to
have been cocited with itself. As we know that it’s quite pointless for our application to
fi gure out that a patent is similar to itself, we can ignore all such pairs. Note that if we
keep these “identity” pairs in the calculation, the cocitation count for them will end up
being exactly the citation count. These numbers can still be useful if we’re looking for
the percentage of times patents are cocited. As we’re not computing percentages, that
consideration wouldn’t affect us.

As cocitation is symmetric , pairs always appear twice, in reverse order. For example,
we see both (3601095,3685034) and (3685034,3601095) when they appear together
once. Given our current application need to fi nd patent pairs that are cocited more
than N times together, we can put in a simple rule retaining only one of the two
redundant pairs and trim cocite’s size by half. This rule can be thus: retain only
pairs where the fi rst fi eld is smaller than the second fi eld. But keeping the redundant
pairs can be useful for lookup later in some applications. For example, we can fi nd
all patents cocited with X by searching for X in the fi rst fi eld. In the more condensed
version we’d have to look for X in both fi elds.

Finally, we can use heuristics to remove cocitation pairs that we don’t think are
important. We compromise fi nal precision to gain effi ciency. The applicability
and usefulness of heuristics will depend on the application semantics and the data

9 Note that cocite can be computed from cite_grpd directly by using a more complicated FOREACH state-
ment, and you may choose to do it when you feel more comfortable reading Pig Latin.

 Seeing Pig in action—example of computing similar patents 243

distribution. In our case, a patent that cites many patents together will generate a
quadratic number of rows in cocite. If we believe that such “verbose” patents don’t
help us understand similar patent pairs, removing them can signifi cantly reduce the
size of data to process with little impact on fi nal results. The benefi t of this heuristic
is much greater if we’re looking at reverse patent citation or text documents, where
frequency of items are extremely skewed and quadratic expansion on a few popular items
can dominate the amount of data processed. In fact, in such situations approximate
heuristics are almost necessary.

An important process check is to note that we’ve focused on a higher level of data
processing issues. We’ve obviated any low-level discussion about MapReduce.

--
| cocite_fl trd | cited1::cited: int | cited2::cited: int |
--
	3601095	3685034
	3685034	3601095
	1730866	3022581
	3022581	1730866
--

We’ve decided to only fi lter out “identity” patent pairs :

cocite_grpd	group:	cocite_fl trd:
	tuple({cited1::cited: int,	bag({cited1::cited: int,
	cited2::cited: int})	cited2::cited: int})

	(1730866, 3022581)	{(1730866, 3022581)}
	(3022581, 1730866)	{(3022581, 1730866)}
	(3601095, 3685034)	{(3601095, 3685034)}
	(3685034, 3601095)	{(3685034, 3601095)}

| cocite_cnt | group: | cnt: |
| | tuple({cited1::cited: int,cited2::cited: int}) | long |

	(1730866, 3022581)	1
	(3022581, 1730866)	1
	(3601095, 3685034)	1
	(3685034, 3601095)	1

| cocite_fl at | group::cited1::cited: | group::cited2::cited: | cnt: |
| | int | int | long |

	1730866	3022581	1
	3022581	1730866	1
	3601095	3685034	1
	3685034	3601095	1

244 CHAPTER 10 Programming with Pig

We grouped the patent pair citations together, counted them, and fl attened out
the relation. Unfortunately, ILLUSTRATE generates sample data that only has coci-
tation counts of 1. However, we see that the operations are doing basically what
we wanted. If we stick to the original application requirement of only looking for
patent pairs that have been cocited more than N times, we would apply a fi lter on
cocite_fl at and be fi nished. But we want to show how we can further group the
tuples, which would be needed for other types of fi ltering. For example, you may
want to fi nd the K most cocited patents for each patent. Let’s look at the rest of
the output:

| cocite_cnt_grpd | group: int | cocite_fl at: bag({group::cited1::cited: |
| | | int,group::cited2::cited: int,cnt: long})|

	1730866	{(1730866, 3022581, 1)}
	3022581	{(3022581, 1730866, 1)}
	3601095	{(3601095, 3685034, 1)}
	3685034	{(3685034, 3601095, 1)}

| cocite_bag | group: int | cocite_fl at: |
| | | bag({group::cited2::cited: int,cnt: long}) |

	1730866	{(3022581, 1)}
	3022581	{(1730866, 1)}
	3601095	{(3685034, 1)}
	3685034	{(3601095, 1)}

If we had wanted to fi nd each patent’s K most cocited patents, we would use a FOREACH
statement to process each tuple in cocite_bag and write our own UDF to take in a bag
(cocite_fl at) and return a bag of at most K tuples (the most cocited ones). You can
do this fi nal step as an exercise. Let’s see an example of a nested FOREACH statement to
fi lter out tuples inside bags that have counts of 5 or less.

cocite_fi nal = FOREACH cocite_cnt_grpd {
 similar = FILTER cocite_fl at BY cnt > 5;
 GENERATE group, similar;
}

As you can see, Pig has simplifi ed the implementation of this data processing ap-
plication tremendously. This “similar item” feature has been known to be useful in
different applications, but it’s also quite challenging to implement. Using Pig and
Hadoop, this turns into only an afternoon’s work. Furthermore, its improved ease
of development enables rapid prototyping of alternative features. For your own ex-
ercise, instead of fi nding patents that are often cited together, can you fi nd patents
that have similar citations?

 Summary 245

10.9 Summary
Pig is a higher-level data processing layer on top of Hadoop. Its Pig Latin language
provides programmers a more intuitive way to specify data fl ows. It supports schemas
in processing structured data, yet it’s fl exible enough to work with unstructured text
or semistructured XML data. It’s extensible with the use of UDFs. It vastly simplifi es
data joining and job chaining—two aspects of MapReduce programming that many
developers found overly complicated. To demonstrate its usefulness, our example of
computing patent cocitation shows a complex MapReduce program written in a dozen
lines of Pig Latin.

11

246

Hive and the Hadoop herd

This chapter covers
 What Hive is■

 Setting up Hive■

 Using Hive for data warehousing■

 Other software packages related to Hadoop■

As powerful as Hadoop is, it doesn’t offer everything for everybody. Many projects
have sprung up to extend Hadoop for specifi c purposes. The most prominent and
well-supported ones have offi cially become subprojects under the umbrella of the
Apache Hadoop project.1 These subprojects include

 ■ Pig—A high-level data fl ow language
 ■ Hive—A SQL-like data warehouse infrastructure
 ■ HBase—A distributed, column-oriented database modeled after Google’s

Bigtable

1 What we’ve referred to in this book as “Hadoop” so far (HDFS and MapReduce) is technically called the
“Hadoop Core” subproject of Apache Hadoop, although colloquially people tend to call it Hadoop.

 Hive 247

 ■ Zookeeper—A reliable coordination system for managing shared state between
distributed applications

 ■ Chukwa—A data collection system for managing large distributed systems

We covered Pig in detail in chapter 10, and we’ll learn about Hive in this chapter.
Furthermore, section 11.2 will briefl y describe other Hadoop-related projects. Some
of these aren’t associated with Apache (e.g., Cascading, CloudBase). Some are in their
nascent stages (e.g., Hama, Mahout). You’ll see some of these tools in action in the
case studies of chapter 12.

11.1 Hive
Hive2 is a data warehousing package built on top of Hadoop. It began its life at
Facebook processing large amount of user and log data. It’s now a Hadoop subproject
with many contributors. Its target users remain data analysts who are comfortable
with SQL and who need to do ad hoc queries , summarization , and data analysis on
Hadoop-scale data.3 You interact with Hive by issuing queries in a SQL-like language
called HiveQL . For example, a query to get all active users from a user table looks
like this:

INSERT OVERWRITE TABLE user_active
SELECT user.*
FROM user
WHERE user.active = 1;

Hive’s design refl ects its targeted use as a system for managing and querying structured
data. By focusing on structured data , Hive can add certain optimization and usability
features that MapReduce, being more general, doesn’t have. Hive’s SQL-inspired lan-
guage separates the user from the complexity of MapReduce programming. It reuses
familiar concepts from the relational database world, such as tables, rows, columns,
and schema, to ease learning. In addition, whereas Hadoop naturally works on fl at
fi les, Hive can use directory structures to “partition” data to improve performance on
certain queries. To support these additional features, a new and important component
of Hive is a metastore for storing schema information. This metastore typically resides
in a relational database.

You can interact with Hive using several methods, including a Web GUI and Java
Database Connectivity (JDBC) interface . Most interactions, though, tend to take
place over a command line interface (CLI), which is what we focus on. You can see a
high-level architecture diagram of Hive in fi gure 11.1.

2 http://hadoop.apache.org/hive/.
3 Note that because Hive is built on top of Hadoop, it’s still designed for a low-latency, batch-oriented type of

processing. It’s therefore not a direct replacement for traditional SQL data warehouses, such as ones offered
by Oracle.

248 CHAPTER 11 Hive and the Hadoop herd

JDBC/
ODBC

Web
GUICLI

Parser
Planner

Optimizer
Metastore

QueriesDDL

Hive

Hadoop
Figure 11.1 Hive architecture.
Queries are parsed and executed
on Hadoop. The metastore is an
important component that helps
determine how queries will be run.

11.1.1 Installing and confi guring Hive

Hive requires Java 1.6 and Hadoop version 0.17 or above. You can fi nd the latest
release of Hive at http://hadoop.apache.org/hive/releases.html. Download and
extract the tarball into a directory that we call HIVE_HOME. Hadoop needs to be up
and running already. In addition, you need to set up a couple directories in HDFS
for Hive to use.

bin/hadoop fs -mkdir /tmp
bin/hadoop fs -mkdir /user/hive/warehouse
bin/hadoop fs -chmod g+w /tmp
bin/hadoop fs -chmod g+w /user/hive/warehouse

If you let Hive manage your data completely for you, Hive will store your data under
the /user/hive/warehouse directory. Hive can automatically add compression and
special directory structures (such as partitions) to those data to improve query perfor-
mance. It’s good to let Hive manage your data if you plan on using Hive to query it.
But if you already have your data in some other directories in HDFS and want to keep
them there, Hive can work with them too. In that case, Hive will take your data as is and
won’t try to optimize your data storage for query processing . Some casual users don’t
understand this distinction, and believe that Hive requires data to be in some special
Hive format. This is defi nitely not true.

 Hive 249

Hive stores metadata in a standard relational database. Out-of-the-box Hive comes
with an open source, lightweight, embedded SQL database called Derby, 4 which is
installed and run on the client machine along with Hive. If you are the only Hive user,
this default setup should be fi ne. But beyond the initial testing and evaluation, you’ll
most likely deploy Hive in a multi-user environment, where you wouldn’t want each
user to have their own version of the metadata. You’ll need a centralized location
for storing metadata. Typically, you use a shared SQL database such as MySQL, but
any JDBC-compliant database will do. You’ll need a database server and you’ll need
to create a database dedicated as a Hive metastore. This database is typically named
metastore_db. Once you have created this, confi gure every Hive installation to point
to it as the metastore. You confi gure the installations by modifying the fi les hive-site.
xml and jpox.properties. Both are under the $HIVE_HOME/conf directory. A raw
installation doesn’t have a hive-site.xml fi le, and you’ll have to create it. Properties
in this fi le override the properties in hive-default.xml, in the same way that hadoop-
site.xml overrides hadoop-default.xml. The fi le hive-site.xml should override three
properties and look like the following:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="confi guration.xsl"?>

<confi guration>

<property>
 <name>hive.metastore.local</name>
 <value>false</value>
</property>

<property>
 <name>javax.jdo.option.ConnectionURL</name>
 <value>jdbc:mysql://<hostname>/metastore_db</value>
</property>

<property>
 <name>javax.jdo.option.ConnectionDriverName</name>
 <value>com.mysql.jdbc.Driver</value>
</property>

</confi guration>

Table 11.1 explains these properties. Specify the javax.jdo.option.ConnectionURL
and javax.jdo.option.ConnectionDriverName properties again in the fi le jpox.
properties . In addition, the username and password to log into the database are also
specifi ed in jpox.properties. The jpox.properties fi le should contain the following
four lines:

javax.jdo.option.ConnectionDriverName=com.mysql.jdbc.Driver
javax.jdo.option.ConnectionURL=jdbc:mysql://<hostname>/metastore_db
javax.jdo.option.ConnectionUserName=<username>
javax.jdo.option.ConnectionPassword=<password>

4 http://db.apache.org/derby/.

250 CHAPTER 11 Hive and the Hadoop herd

Table 11.1 Confi guration for using a MySQL database as a metadata store in multi-user mode

Property Description

hive.metastore.local Controls whether to create and use
a local metastore server in the client
machine. Set this to false to use a
remote metastore server.

javax.jdo.option.ConnectionURL JDBC connection URL specifying the
database for the metastore.5 For example,
jdbc:mysql://<hostname>/
metastore_db.

javax.jdo.option.
ConnectionDriverName

The class name of the JDBC driver. For
example, com.mysql.jdbc.Driver.

javax.jdo.option.ConnectionUserName Username for logging into the database.

javax.jdo.option.ConnectionPassword Password for logging into the database.

Once you have the database set up, or if you’re only evaluating Hive and can use its
default single-user mode, you’re ready to go into its CLI . Type in bin/hive in the $HIVE_
HOME directory. You’ll receive the Hive prompt, ready to take your Hive commands.

bin/hive
Hive history fi le=/tmp/root/hive_job_log_root_200908240830_797162695.txt
hive>

11.1.2 Example queries

Before we formally explain HiveQL, it’s useful to run a few commands from the CLI.
You’ll get a feel of how it works and can explore on your own.

Let’s assume you have the patent citation data cite75_99.txt on your local machine.
Recall that this is a comma-separated data set of patent citations. In Hive, we fi rst
defi ne a table that will store this data:

hive> CREATE TABLE cite (citing INT, cited INT)
 > ROW FORMAT DELIMITED
 > FIELDS TERMINATED BY ','
 > STORED AS TEXTFILE;
OK
Time taken: 0.246 seconds

HiveQL statements are terminated by semicolons. You can have a statement that goes over
multiple lines as long as you type in a semicolon only at the end, as we’ve done here.

Most of the action in this four-line command is in the fi rst line. Here we defi ne a two-
column table called cite. The fi rst column is called citing and is of type INT , whereas the
second column is called cited and is also of type INT. The other lines in this command

5 The complete format for the MySQL JDBC driver is described in http://dev.mysql.com/doc/refman/5.0/
en/connector-j-reference-confi guration-properties.html.

 Hive 251

tell Hive how the data is stored (as a text fi le) and how it should be parsed (fi elds are
separated by commas).

We can see what tables are currently in Hive with the SHOW TABLES command:

hive> SHOW TABLES;
OK
cite
Time taken: 0.053 seconds

Between Hive’s “OK” and “Time taken” messages, we see the cite table. We can check
its schema with the DESCRIBE command :

hive> DESCRIBE cite;
OK
citing int
cited int
Time taken: 0.13 seconds

The table has the two columns from our defi nition, as expected. Managing and defi n-
ing tables in HiveQL are similar to standard relational databases. Let’s load the patent
citation data into this table.

hive> LOAD DATA LOCAL INPATH 'cite75_99.txt'
 > OVERWRITE INTO TABLE cite;
Copying data from fi le:/root/cite75_99.txt
Loading data to table cite
OK
Time taken: 9.51 seconds

This tells Hive to load data from a fi le called cite75_99.txt in the local fi lesystem into
our cite table . Underneath the hood, the local machine uploads this data into HDFS,
under some directory managed by Hive. (Unless you’ve changed the confi guration,
this will be some directory under /user/hive/warehouse.)

When loading data, Hive will not let any data into a table that violates its schema. In
place of those data Hive will substitute a null. We can use a simple SELECT statement
to browse data in the cite table:

hive> SELECT * FROM cite LIMIT 10;
OK
NULL NULL
3858241 956203
3858241 1324234
3858241 3398406
3858241 3557384
3858241 3634889
3858242 1515701
3858242 3319261
3858242 3668705
3858242 3707004
Time taken: 0.17 seconds

Our schema defi nes the two columns to be integers. We see that there’s a row with nulls , in-
dicating that a record violated the schema. This is due to the fi rst line of cite75_99.txt, which
has the column names rather than patent numbers. Overall this shouldn’t be alarming.

252 CHAPTER 11 Hive and the Hadoop herd

Now that we’re pretty confi dent that Hive has read the data and is managing it, we
can run all kinds of queries on it. Let’s start by counting how many rows are in the
table. In SQL this is accomplished by the familiar SELECT COUNT(*). HiveQL has a
slightly different syntax in this case:

hive> SELECT COUNT(1) FROM cite;
Total MapReduce jobs = 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
 set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
 set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
 set mapred.reduce.tasks=<number>
Starting Job = job_200908250716_0001, Tracking URL = http://ip-10-244-199-
143.ec2.internal:50030/jobdetails.jsp?jobid=job_200908250716_0001
Kill Command = /usr/lib/hadoop/bin/hadoop job -Dmapred.job.tracker=ip-10-
244-199-143.ec2.internal:9001 -kill job_200908250716_0001
 map = 0%, reduce =0%
 map = 12%, reduce =0%
 map = 25%, reduce =0%
 map = 30%, reduce =0%
 map = 34%, reduce =0%
 map = 43%, reduce =0%
 map = 53%, reduce =0%
 map = 62%, reduce =0%
 map = 71%, reduce =0%
 map = 75%, reduce =0%
 map = 79%, reduce =0%
 map = 88%, reduce =0%
 map = 97%, reduce =0%
 map = 99%, reduce =0%
 map = 100%, reduce =0%
 map = 100%, reduce =67%
 map = 100%, reduce =100%
Ended Job = job_200908250716_0001
OK
16522439
Time taken: 85.153 seconds

Reading the messages, you can see that this query had created a MapReduce job . The
beauty of Hive is that the user doesn’t need to know anything about MapReduce at
all. As far as she’s concerned, she’s only querying a database using a language similar
to SQL.

The result of the previous query was printed directly to the screen. In most cases the
query result should be saved to disk, which usually would be some other Hive table.
Our next query fi nds the citation frequency of each patent. We fi rst create a table to
store this result:

hive> CREATE TABLE cite_count (cited INT, count INT);
OK
Time taken: 0.027 seconds

 Hive 253

We can execute a query to fi nd the citation frequency. The query uses the COUNT
and GROUP BY features, again in a way similar to SQL. There’s an additional INSERT
OVERWRITE TABLE clause to tell Hive to write the result to a table:

hive> INSERT OVERWRITE TABLE cite_count
 > SELECT cited, COUNT(citing)
 > FROM cite
 > GROUP BY cited;
...
 map = 100%, reduce =89%
 map = 100%, reduce =90%
 map = 100%, reduce =100%
Ended Job = job_200908250716_0002
Loading data to table cite_count
3258984 Rows loaded to cite_count
OK
Time taken: 103.331 seconds

The query execution helpfully tells us that 3,258,984 rows were loaded into the cita-
tion frequency table. We can execute more HiveQL statements to browse this citation
frequency table:

hive> SELECT * FROM cite_count WHERE count > 10 LIMIT 10;
Total MapReduce jobs = 1
Number of reduce tasks is set to 0 as there's no reduce operator
...
 map = 80%, reduce =0%
 map = 100%, reduce =100%
Ended Job = job_200908250716_0003
OK
163404 13
164184 16
217584 13
246144 14
288134 11
347644 11
366494 11
443764 11
459844 13
490484 13

An interesting part about this query is that Hive is intelligent enough to know that
“Number of reduce tasks is set to 0 as there’s no reduce operator.”

When you’re fi nished with using a table, you can delete it with the DROP TABLE
command :

hive> DROP TABLE cite_count;
OK
Time taken: 0.024 seconds

Be careful when using this command. It doesn’t ask you for confi rmation whether
you really want to delete the table or not. It’s diffi cult to recover a table once you have
dropped it.

Finally, you can exit your Hive session with the exit command.

254 CHAPTER 11 Hive and the Hadoop herd

11.1.3 HiveQL in details

Having seen Hive in action, we’re ready to formally look at different aspects and usage
of HiveQL.

DATA MODEL

We’ve already seen that Hive supports tables as a fundamental data model. Physically,
Hive stores tables as directories under /user/hive/warehouse. For example, the cite ta-
ble we created earlier would have its data under the /user/hive/warehouse/cite direc-
tory. The output table cite_count would be under /user/hive/warehouse/cite_count.
In the most basic setup, the directory hierarchy under a table is only one level deep,
and the table’s data are spread out over many fi les under that one directory.

Relational databases use indexes on columns to speed up queries on those columns.
Hive, instead, uses a concept of partition columns , which are columns whose values
would divide the table into separate partitions. For example, a state column would
partition a table into 50 partitions, one for each state.6 A date column is a popular
partition column for log data; data for each day would belong to its own partition. Hive
treats partition columns differently than regular data columns, and executes queries
involving partition columns much more effi ciently. This is because Hive physically
stores different partitions in different directories. For example, let’s say you have a
table named users that has two partition columns date and state (plus the regular data
columns). Hive will have a directory structure like this for that table:

/user/hive/warehouse/users/date=20090901/state=CA
/user/hive/warehouse/users/date=20090901/state=NY
/user/hive/warehouse/users/date=20090901/state=TX
...
/user/hive/warehouse/users/date=20090902/state=CA
/user/hive/warehouse/users/date=20090902/state=NY
/user/hive/warehouse/users/date=20090902/state=TX
...
/user/hive/warehouse/users/date=20090903/state=CA
/user/hive/warehouse/users/date=20090903/state=NY
/user/hive/warehouse/users/date=20090903/state=TX
...

All user data for California (state=CA) on September 1, 2009 (date=20090901) re-
sides in one directory, and data for other partitions is in other directories. If a query
comes in asking about California users on September 1, 2009, Hive only has to process
data in that one directory and ignore data in the users table that have been stored in
other partitions. Queries over ranges in the partition columns will involve processing
multiple directories, but Hive will still avoid a full scan of all data in users. In some
sense partitioning brings similar benefi ts to Hive as indexing provides to a traditional
relational database, although partitioning works at a much less granular level. You’ll
want each partition to still be big enough that a MapReduce job on it can be reason-
ably effi cient.

6 In practice you’ll also have to handle District of Columbia and various territories.

 Hive 255

In addition to partitions, the Hive data model also has a concept of buckets , which
provide effi ciency to queries that can work well on a random sample of data. (For
example, in computing the average of a column, a random sample of data can provide
a good approximation.) Bucketing divides data into a specifi ed number of fi les based
on the hash of the bucket column. If we specify 32 buckets based on user id in our users
table, the full fi le structure for our table in Hive will look like

/user/hive/warehouse/users/date=20090901/state=CA/part-00000
...
/user/hive/warehouse/users/date=20090901/state=CA/part-00031
/user/hive/warehouse/users/date=20090901/state=NY/part-00000
...
/user/hive/warehouse/users/date=20090901/state=NY/part-00031
/user/hive/warehouse/users/date=20090901/state=TX/part-00000
...

Each partition will have 32 buckets. By bucketing on user id, Hive will know that each
fi le in part-00000 ... part-00031 has a random sample of users. The computation
of many aggregate statistics remains fairly accurate on a sampled data set. Bucketing is
particularly useful for speeding up those queries. For example, Hive can run a query
on 1/32 of all the users in a partition by using only the data in part-00000, without
having to even read the other fi les. Hive can still do sampling without buckets (or on
columns other than the bucket column), but this involves scanning in all the data and
randomly ignoring much of it. Much of the effi ciency advantage of sampling would
therefore be lost.

MANAGING TABLES

We’ve already seen how to create a simple table for the patent citation data set. Let’s
now break down the different parts of a more complicated table creation statement.
This one creates a table called page_view .

CREATE TABLE page_view(viewTime INT, userid BIGINT,
 page_url STRING, referrer_url STRING,
 ip STRING COMMENT 'IP Address of the User')
COMMENT 'This is the page view table'
PARTITIONED BY (dt STRING, country STRING)
CLUSTERED BY (userid) INTO 32 BUCKETS
ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '\t'
 LINES TERMINATED BY '\n'
STORED AS SEQUENCEFILE;

The fi rst part looks much like the SQL equivalent:

CREATE TABLE page_view(viewTime INT, userid BIGINT,
 page_url STRING, referrer_url STRING,
 ip STRING COMMENT 'IP Address of the User')

It specifi es the name of the table (page_view) and its schema, which includes the name
of the columns as well as their type. Hive supports the following data types:

 ■ TINYINT —1 byte integer
 ■ SMALLINT —2 byte integer

256 CHAPTER 11 Hive and the Hadoop herd

 ■ INT —4 byte integer
 ■ BIGINT —8 byte integer
 ■ DOUBLE —Double precision fl oating point
 ■ STRING —Sequence of characters

Noticeably missing is the Boolean type, which is usually handled as TINYINT. Hive also
has complex types , such as structs , maps , and arrays that can be nested. But they’re
currently not well supported in the language and are considered advanced topics.

We can attach a descriptive comment to each column, as was done here for the ip
column. In addition, we also add a descriptive comment to the table:

COMMENT 'This is the page view table'

The next part of the CREATE TABLE statement specifi es the partition columns:

PARTITIONED BY (dt STRING, country STRING)

As we’ve discussed previously, partition columns are optimized for querying. They’re
distinct from the data columns of viewTime, userid, page_url, referrer_url, and
ip. The value of a partition column for a particular row is not explicitly stored with
the row; it’s implied from the directory path. But there’s no syntactical difference in
queries over partition columns or data columns.

CLUSTERED BY (userid) INTO 32 BUCKETS

The CLUSTERED BY (...) INTO ... BUCKETS clause specifi es the bucketing informa-
tion, including the column that random samples will be taken from and also how many
buckets to create. The choice of the number of buckets will depend on the following:

1 The size of your data under each partition
2 The size of sample you intend to use

The fi rst criterion is important because after you divide a partition into the specifi ed
number of buckets, you wouldn’t want each bucket fi le to be so small that it becomes
ineffi cient for Hadoop to handle. On the other hand, a bucket should be the same size
or smaller than your intended sample size. Bucketing by user into 32 buckets is a good
setting if your sample size will be about 3 percent (~1/32) of your user base.

NOTE Unlike partitioning, Hive doesn’t automatically enforce bucketing when
data is written to a table. Specifying bucketing information merely tells Hive
that you’ll manually enforce the bucketing (sampling) criteria when data is
written to a table and that Hive can take advantage of it in processing queries.
To enforce the bucketing criteria you need to correctly set the number of
reducers when populating the table. More detail can be found in http://wiki.
apache.org/hadoop/Hive/LanguageManual/DDL/BucketedTables.

The ROW FORMAT clause tells Hive how the table data is stored per row. Without this
clause, Hive defaults to the newline character as the row delimiter and an ASCII value

 Hive 257

of 001 (ctrl-A) as the fi eld delimiter. Our clause tells Hive to use the tab character as the
fi eld delimiter instead. We also tell Hive to use the newline character as the line delim-
iter, but that’s already the default and we include it here only for illustrative purposes:

ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '\t'
 LINES TERMINATED BY '\n'

Finally, the last clause tells Hive the fi le format to store the table data:

STORED AS SEQUENCEFILE;

Currently Hive supports two formats, SEQUENCEFILE and TEXTFILE . Sequence fi le is a
compressed format and usually provides higher performance.

We can add an EXTERNAL modifi er to the CREATE TABLE statement such that the
table is created to point to an existing data directory. You’ll need to specify the location
of this directory.

CREATE EXTERNAL TABLE page_view(viewTime INT, userid BIGINT,
 page_url STRING, referrer_url STRING, ip STRING)
LOCATION '/path/to/existing/table/in/HDFS';

After you’ve created a table, you can ask Hive the table’s schema with the DESCRIBE
command:

hive> DESCRIBE page_view;

You can also change the table structure with the ALTER command. This includes chang-
ing the table’s name:

hive> ALTER TABLE page_view RENAME TO pv;

or adding new columns:

hive> ALTER TABLE page_view ADD COLUMNS (newcol STRING);

or deleting a partition:

hive> ALTER TABLE page_view DROP PARTITION (dt='2009-09-01');

To delete the whole table, use the DROP TABLE command:

hive> DROP TABLE page_view;

To know what tables are being managed by Hive, you can show them all with

hive> SHOW TABLES ;

If there are so many tables in use that it becomes unwieldy to list them all, you can
narrow down the result with a Java regular expression :

hive> SHOW TABLES 'page_.*';

LOADING DATA

There are multiple ways to load data into a Hive table. The LOAD DATA command is
the workhorse:

258 CHAPTER 11 Hive and the Hadoop herd

hive> LOAD DATA LOCAL INPATH 'page_view.txt'
 > OVERWRITE INTO TABLE page_view;

This takes a local fi le named page_view.txt and loads its content into the page_view
table. If we omit the OVERWRITE modifi er, the content is added to the table rather than
replacing whatever already exists in it. If we omit the LOCAL modifi er, the fi le is taken
from HDFS instead of the local fi lesystem. The LOAD DATA command also allows you
to name a specifi c partition in the table to load the data into:

hive> LOAD DATA LOCAL INPATH 'page_view.txt'
 > OVERWRITE INTO TABLE page_view
 > PARTITION (dt='2009-09-01', country='US');

When working with data from the local fi lesystem, it’s useful to know that you can
execute local Unix commands from within the Hive CLI. You prepend the command
with the exclamation mark (!) and end it with a semicolon (;). For example, you can
get a fi le listing

hive> ! ls ;

or examine the fi rst few lines of a fi le

hive> ! head hive_result ;

Note that the spaces around ! and ; aren’t necessary. We’ve added them for readability.

RUNNING QUERIES

For the most part, running HiveQL queries is surprisingly similar to running SQL que-
ries. One of the general differences is that the results of HiveQL queries are relatively
large. You should almost always have an INSERT clause to tell Hive to store your query
result somewhere. Often it’s some other table:

INSERT OVERWRITE TABLE query_result

Other times it’s a directory in HDFS:

INSERT OVERWRITE DIRECTORY '/hdfs_dir/query_result'

And sometimes it’s a local directory:

INSERT OVERWRITE LOCAL DIRECTORY '/local_dir/query_result'

The basic queries can look almost identical to SQL:

INSERT OVERWRITE TABLE query_result
SELECT *
FROM page_view
WHERE country='US';

Note that the query is over a partition column (country), but the query would look
exactly the same if it was a data column instead. One syntax to adjust to is that HiveQL
uses COUNT(1) in places where SQL typically would use COUNT(*) . For example, you
would use this HiveQL query to fi nd the number of page views from the U.S.:

 Hive 259

SELECT COUNT(1)
FROM page_view
WHERE country='US';

Like SQL, the GROUP BY clause allows one to do aggregate queries on groups. This
query will list the number of page views from each country:

SELECT country, COUNT(1)
FROM page_view
GROUP BY country;

And this query will list the number of unique users from each country:

SELECT country, COUNT(DISTINCT userid)
FROM page_view
GROUP BY country;

Table 11.2 shows all the operators supported in HiveQL. These are quite stan-
dard in SQL and programming languages and we won’t explain them in detail.
The main exception is in regular expression matching. HiveQL provides two
commands for regular expression matching—LIKE and REGEXP . (RLIKE is equiv-
alent to REGEXP.) LIKE only performs simple SQL regular expression matching,
where an underscore (_) character in B matches any single character in A and the
percent (%) character matches any number of characters in A. REGEXP treats
B as a full Java regular expression.7 Tables 11.3 and 11.4 list the majority of HiveQL
functions.

Table 11.2 Standard operators in HiveQL

Operator type Operators

Comparison A = B , A <> B , A < B , A <= B , A > B , A >= B ,
A IS NULL , A IS NOT NULL , A LIKE B , NOT A LIKE B ,
A RLIKE B , A REGEXP B

Arithmetic A + B , A - B , A * B , A / B , A % B

Bit-wise A & B , A | B , A ^ B, ~A

Logical A AND B, A && B, A OR B, A || B, NOT A, !A

One of the main motivators for users to seek a higher-level language, such as Pig Latin
and HiveQL, is the support of joins . Currently HiveQL only supports equijoins (joins
on equality) . An example join query is

INSERT OVERWRITE TABLE query_result
SELECT pv.*, u.gender, u.age
FROM page_view pv JOIN user u ON (pv.userid = u.id);

7 The format of Java regular expression is fully explained in the Javadoc http://java.sun.com/j2se/1.4.2/
docs/api/java/util/regex/Pattern.html.

260 CHAPTER 11 Hive and the Hadoop herd

Syntactically, in the FROM clause you add the JOIN keyword between the tables and then
specify the join columns after the ON keyword. To join more than two tables, we repeat
the pattern like this:

INSERT OVERWRITE TABLE pv_friends
SELECT pv.*, u.gender, u.age, f.friends
FROM page_view pv JOIN user u ON (pv.userid = u.id)
 JOIN friend_list f ON (u.id = f.uid);

We can add sampling to any query by modifying the FROM clause. This query tries to
compute the average view time, except the average is only taken from data in the fi rst
bucket out of 32 buckets:

SELECT avg(viewTime)
FROM page_view TABLESAMPLE(BUCKET 1 OUT OF 32);

The general syntax for TABLESAMPLE is

TABLESAMPLE(BUCKET x OUT OF y)

The sample size for the query is around 1/y. In addition, y needs to be a multiple or
factor of the number of buckets specifi ed for the table at table creation time. For ex-
ample, if we change y to 16, the query becomes

SELECT avg(viewTime)
FROM page_view TABLESAMPLE(BUCKET 1 OUT OF 16);

Then the sample size includes approximately 1 out of every 16 users (as the bucket
column is userid). The table still has 32 buckets, but Hive tries to satisfy this query by
processing buckets 1 and 17 together. On the other hand, if y is specifi ed to be 64, Hive
will execute the query on half of the data in one bucket. The value of x is only used to
select which bucket to use. Under truly random sampling its value shouldn’t matter.

Besides avg, Hive has many other built-in functions. You can see some of the more
common ones in tables 11.3 and 11.4. Programmers can also add UDFs to Hive for
custom processing. A brief introduction on how to create a UDF is given in http://
wiki.apache.org/hadoop/Hive/AdminManual/Plugins.

11.1.4 Hive Sum-up

Hive is a data warehousing layer built on top of Hadoop’s massively scalable architec-
ture. By focusing on structured data, Hive has added many performance-enhancing
techniques (such as partitions) and usability features (such as a SQL-like language). It
makes certain frequent tasks, such as joining, easy. Hive is introducing Hadoop tech-
nology to a wider audience of analysts and other nonprogrammers. As of August 2009,
Facebook counts 29 percent of its employees as Hive users, more than half of whom
are outside of engineering.8

8 This fact is cited in http://www.facebook.com/note.php?note_id=114588058858. An explanation of how
Facebook decided to build out its Hadoop infrastructure is given in http://www.facebook.com/note.
php?note_id=16121578919. The presentation at http://www.slideshare.net/zshao/hive-data-warehousing-
analytics-on-hadoop-presentation gives a detailed description of how Facebook designed its data warehouse
and analytics system around Hive.

 Hive 261

Table 11.3 Built-in functions

Function Description

concat(string a, string b) Returns the concatenation of string a with string b.

substr(string str, int
start)
substr(string str, int
start, int length)

Returns the substring of str starting at start. The result
goes until the end of str unless an optional length
argument is specifi ed.

round(double num) Returns the closest integer (BIGINT).

fl oor(double num) Returns the largest integer (BIGINT) that’s equal to or
smaller than num.

ceil(double num)
ceiling(double num)

Returns the smallest integer (BIGINT) that’s equal to or
bigger than num.

sqrt(double num) Returns the square root of num.

rand()
rand(int seed)

Returns a random number (that changes from row to row).
The optional seed value can make the random number
sequence deterministic.

Ln(double num) Returns the natural log of num.

log2(double num) Returns the base-2 log of num.

log10(double num) Returns the base-10 log of num.

log(double num)
log(double base, double
num)

Returns the natural log of num. Or returns the base-base
log of num.

exp(double a) Raise e (the base of natural logarithm) to the power of a.

power(double a, double b)
pow(double a, double b)

Returns a raised to the power of b.

upper(string s)
ucase(string s)

Returns string s in uppercase.

lower(string s)
lcase(string s)

Returns string s in lowercase.

trim(string s) Returns string s with spaces trimmed on both ends.

ltrim(string s) Returns string s with spaces trimmed on the left end.

rtrim(string s) Returns string s with spaces trimmed on the right end.

regexp(string s, string
regex)

Returns whether the string s matches the Java regular
expression regex.

regexp_replace(string
s, string regex, string
replacement)

Returns a string where all parts of s that match the
Java regular expression regex are replaced with
replacement.

day(string date)
dayofmonth(string date)

Returns the day part of a date or timestamp string.

month(string date) Returns the month part of a date or timestamp string.

year(string date) Returns the year part of a date or timestamp string.

To_date(string timestamp) Returns the date part (year-month-day) of a
timestamp string.

unix_timestamp(string
timestamp)

Convert a timestamp string to UnixTime.

262 CHAPTER 11 Hive and the Hadoop herd

Table 11.3 Built-in functions (continued)

Function Description

from_unixtime(int
unixtime)

Convert integer in UnixTime to a timestamp string.

date_add(string date, int
days)

Add a number of days to a date string.

date_sub(string date, int
days)

Subtract a number of days from a date string.

datediff(string date1,
string date2)

Calculate the difference in number of days. Result is
negative if date1 is earlier.

Table 11.4 Built-in aggregate functions

Function Description

count(1)
count(DISTINCT col)

Returns the number of members in the group, or the
number of distinct values of the column.

sum(col)
sum(DISTINCT col)

Returns the sum of the values of the column, or the
sum of the distinct values of the column.

avg(col)
avg(DISTINCT col)

Returns the average value of the column, or the
average of the distinct values of the column.

max(col) Returns the maximum value of the column.

min(col) Returns the minimum value of the column.

11.2 Other Hadoop -related stuff
The Hadoop ecosystem is growing every day. The following are projects or vendors
related to Hadoop that we fi nd useful or that have tremendous potential. All of them
except Aster Data and Greenplum are open source in some way.

11.2.1 HBase

http://hadoop.apache.org/hbase/—HBase is a scalable data store targeted at random read
and write access of (fairly-)structured data. It’s modeled after Google’s Bigtable9 and
targeted to support large tables, on the order of billions of rows and millions of col-
umns. It uses HDFS as the underlying fi lesystem and is designed to be fully distributed
and highly available. Version 0.20 introduces signifi cant performance improvement.

11.2.2 ZooKeeper

http://hadoop.apache.org/zookeeper/—Zookeeper is a coordination service for building large
distributed applications. You can use it independently from the Hadoop Core framework.

9 “Bigtable: A Distributed Storage System for Structured Data” by Chang et al., OSDI ‘06—Seventh Symposium
on Operating System Design and Implementation. http://labs.google.com/papers/bigtable.html.

 Other Hadoop-related stuff 263

It implements many of the common services used in large distributed applications, such
as confi guration management, naming, synchronization, and group services. Histori-
cally developers have to reinvent these services for each distributed application, which
is time consuming and error prone, as these services are notoriously diffi cult to imple-
ment correctly. By abstracting away the underlying complexity, ZooKeeper makes it easy
to implement consensus, leader election, presence protocols, and other primitives, and
frees the developer to focus on the semantics of her application. ZooKeeper is often a
major component in other Hadoop-related projects, such as HBase and Katta .

11.2.3 Cascading

http://www.cascading.org/—Cascading is an API for assembling and executing complex
data processing workfl ows on Hadoop. It abstracts away the MapReduce model into
a data processing model consisting of tuples , pipes , and (source and sink) taps. Pipes
operate on streams of tuples, where operations include Each, Every, GroupBy, and
CoGroup. Pipes can be assembled and nested to create an “assembly.” We create an
executable “fl ow” when we attach a pipe assembly to a (data) source tap and a (data)
sink tap .

Cascading shares many design similarities and goals with Pig . One difference,
though, is that Pig’s Grunt shell makes it easier to execute ad hoc queries. Another
difference is that Pig programs are written in Pig Latin, whereas Cascading works more
like a Java framework in which you create a data processing fl ow through instantiating
various Java classes (Each, Every, etc.). Using Cascading doesn’t require learning a
new language, and the data process fl ow created can be more effi cient because you’ve
written it directly yourself.

11.2.4 Cloudera

http://www.cloudera.com/—Cloudera is attempting to do for Hadoop what RedHat has
done for Linux. It’s supporting and packaging Hadoop to be easy and friendly to en-
terprise users. It provides live training sessions in major cities as well as educational
videos on their web site. You can simplify your deployment of Hadoop by using their
free Hadoop distribution, in either RPM or Ubuntu /Debian Packages. Their Hadoop
distribution is based on the most recent stable release of Hadoop, plus useful (and
tested) patches from future releases, and additional tools such as Pig and Hive. Cloud-
era also offers consulting and support services to help enterprises use Hadoop.

11.2.5 Katta

http://katta.sourceforge.net/—As Hadoop can trace its origin to search engines, it should
not be surprising to see it being applied to distributed indexing and search. Nutch is a
web search engine built on top of Hadoop.10 But as a web search engine, Nutch has many
unique requirements. It is often a mismatched solution for specifi c search applications.

10 It may be more accurate to say that Nutch motivated the creation of Hadoop. See chapter 1 for full history.

264 CHAPTER 11 Hive and the Hadoop herd

Katta is a scalable, fault tolerant, distributed indexing system. It’s more lightweight
and fl exible than Nutch. In some sense it’s adding some extra capabilities (such as
replication, redundancy, fault tolerance, and scalability) to Lucene while retaining the
basic application semantics.

11.2.6 CloudBase

http://cloudbase.sourceforge.net/—CloudBase is an ANSI SQL data warehousing layer on
top of Hadoop. Unlike Hive, CloudBase works directly on fl at fi les without any meta-
data store. It makes a stricter goal of ANSI SQL adherence, and interaction is primar-
ily through a JDBC driver, which makes it easier to connect to business intelligence
reporting tools. For the most part, CloudBase is a compiler that takes SQL queries
and compiles them into MapReduce programs. As of this writing, CloudBase has a less
active developer community than Pig or Hive, and its GPL license is more restrictive
than the Apache license.

11.2.7 Aster Data and Greenplum

http://www.asterdata.com/; http://www.greenplum.com/—Aster Data Systems and Green-
plum are both commercial vendors offering high-performance, scalable data ware-
housing solutions tightly combining SQL with MapReduce. Although they support
the MapReduce programming model, they were both created independently from Ha-
doop and had made many different underlying design choices. Unlike Hadoop, their
offerings are architected much more specifi cally toward enterprise customers looking
for higher-performing SQL data warehouses. As they come at the MapReduce para-
digm from a different angle than Hadoop, studying them can help understand some
of Hadoop’s architectural trade-offs.

11.2.8 Hama and Mahout

http://incubator.apache.org/hama/; http://lucene.apache.org/mahout/—Both Hama and
Mahout are projects for scientifi c data processing using Hadoop. Hama is a matrix
computation package for calculating products, inverse, eigenvalues, eigenvectors, and
other matrix operations. Mahout is targeted more specifi cally at implementing ma-
chine learning algorithms on Hadoop (for more information, see Mahout in Action,
Manning Publications). Mahout version 0.1 was released in April 2009 and included
implementations such as Naïve Bayes classifi cation, k-means clustering, and collabora-
tive fi ltering.

At the time of this writing both projects are relatively new and under the Apache
incubator. Interested readers should consider becoming contributors.

11.2.9 search-hadoop.com

As a Hadoop programmer, you’ll often have the need to fi nd some piece of documen-
tation about Hadoop or its subprojects. Sematext , a company specializing in search
and analytics, runs http://search-hadoop.com/, a site that lets you search across all

 Summary 265

Hadoop subprojects and data sources—mailing list archives, Wikis, issue tracking
systems, source code, and so on. The underlying search index is continuously updated.
Search results allow fi ltering by project, data source, and author, and can be sorted by
date, relevance, or the combination of the two.

11.3 Summary
This chapter covered many of the additional tools you can use with Hadoop. We gave
special attention to Hive, a data warehousing package that allows you to process data
in Hadoop using an SQL-like language. A rich ecosystem of supporting software has
sprung up around Hadoop, and you’ll see some of them in action in the case studies
in the next chapter.

12

266

Case studies

This chapter covers
 The New York Times■

 China Mobile■

 StumbleUpon■

 IBM■

We’ve been through many exercises and sample programs by now. The next step is to
integrate what you’ve learned about Hadoop into your own real-world applications.
To help you in that transition, this chapter provides examples of how other enter-
prises have used Hadoop as part of the solution to their data processing problems.

The case studies serve two purposes. One is to step back and see the broader
systems that utilize Hadoop as a critical part. You’ll discover complementary tools,
such as Cascading, HBase, and Jaql. The second purpose is to demonstrate the
variety of businesses that have used Hadoop to solve their operational challenges.
Our case studies span industries, including media (the New York Times), telecom
(China Mobile), internet (StumbleUpon), and enterprise software (IBM).

 Mining data at China Mobile 267

12.1 Converting 11 million image documents
from the New York Times archive
In 2007, the New York Times decided to make all their public domain articles between
1851 and 1922 freely available on their website. Doing this required a scalable image con-
version system. Because the Times had stored its older articles as scanned TIFF images ,
they needed image processing to combine different pieces of each article together into a
single fi le in the desired PDF format. Previously, these articles were behind a paid wall and
didn’t receive much traffi c. The Times could use a real-time approach to scale, glue, and
convert the TIFF images. Although that worked well enough for a low volume of requests,
it would not scale to handle the signifi cant traffi c increase expected from the articles’ free
availability. The Times needed a better architecture to handle the opening of its archive.

The solution was to pregenerate all the articles as PDF fi les and serve them like any
other static content. The New York Times already had the code to convert the TIFF
images to PDF fi les. It looked like a simple matter of batch processing all the articles
in one setting instead of dealing with each individual article as a request came in.
The challenging part of this solution came when one realized that the archive had
11 million articles consisting of 4 TB of data.

Derek Gottfrid , a software programmer at the Times, thought this was a perfect
opportunity to use the Amazon Web Services (AWS) and Hadoop. Storing and serving
the fi nal set of PDFs from Amazon’s Simple Storage Service (S3) was already deemed a
more cost-effective approach than scaling up the storage back-end of the website. Why
not process the PDFs in the AWS cloud as well?

Derek copied the 4 TB of TIFF images into S3. He “started writing code to pull all
the parts that make up an article out of S3, generate a PDF from them and store the
PDF back in S3. This was easy enough using the JetS3t —Open Source Java toolkit
for S3, iText PDF Library and installing the Java Advanced Image Extension .”1 After
tweaking his code to work within the Hadoop framework, Derek deployed it to Hadoop
running on 100 nodes in Amazon’s Elastic Compute Cloud (EC2). The job ran for 24
hours and generated another 1.5 TB of data to be stored in S3.

At 10 cents per instance per hour, the whole job ended up costing only $240 (100
instances x 24 hours x $0.10) in computation. The storage cost for S3 was extra,
but as the Times had decided to archive its fi les in S3 anyway, that cost was already
amortized. Data transfer between S3 and EC2 being free, the Hadoop job didn’t incur
any bandwidth cost at all.

The whole effort took only a single employee. Thanks to Derek’s work, it has become
much easier for people to look up the New York Times’ account of historic events.

12.2 Mining data at China Mobile
Contributed by ZHIGUO LUO , MENG XU , AND SHAOLING SUN —Research Institute of China
Mobile Communication Corporation.

1 http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/.

268 CHAPTER 12 Case studies

China Mobile Communication Corporation (CMCC) is the largest mobile phone
operator in the world. Traded on NYSE under the symbol CHL, China Mobile is seventh
in BrandZ’s global brand equity ranking for 2009, behind McDonald’s and Apple but
ahead of General Electric. With more than two-thirds of China’s mobile phone market,
CMCC serves the communication needs of 500 million subscribers. Even at its size,
China Mobile has experienced rapid growth. For example, in 2006 when its subscriber
base was only 300 million, its subscriber growth rate was at 22 percent, its voice usage
was growing at 30 percent, and its SMS usage was growing at 41 percent annually.

As with any telecom operator, China Mobile generates a lot of data in the normal
course of running its communication network. For example, each call generates a call
data record (CDR) , which includes information such as the caller’s phone number, the
callee’s phone number, the start time of the call, the call’s duration, information about
the call’s routing, and so forth. In addition to CDR, a phone network also generates
signaling data between various switches, nodes, and terminals within the network. At a
minimum, we need this data for completing calls and accurately billing customers. We
also need it to analyze for marketing, network tuning, and other purposes.

At China Mobile, the size of its network naturally leads to large amounts of data
created. Every day the network generates 5 TB to 8 TB of CDR data. A branch company
of China Mobile can have more than 20 million subscribers, leading to more than
100 GB of CDR data for voice calls and between 100 GB to 200 GB of CDR data for
SMS every day. In addition, a typical branch company generates around 48 GB of data
per day for General Packet Radio Service (GPRS) signaling and 300 GB of data per
day for 3G signaling.

China Mobile looks to data warehousing and mining of this data to extract insights
for improving marketing operations, network optimization, and service optimization.
Some typical applications include

 Analyzing user behavior■

 Predicting customer churn■

 Analyzing service association■

 Analyzing network quality of service (QOS■)
 Analyzing signaling data■

 Filtering spam messages■

China Mobile has experiences with commercial data mining tools from some well-
known vendors. These tools’ architectural design limits China Mobile’s current data
mining system because it requires all data to be processed within a single server. Hard-
ware capacity thus becomes a performance bottleneck. The current system at one of the
branch companies is based on commercial solutions and consists of a Unix server with
eight CPU cores, 32 GB memory, and a storage array. It can only perform user behav-
ior analysis for up to 1.4 million customers, or only about 10 percent of customer data
of that particular branch company. Even within the limitation on the amount of data
that can be processed, the current system takes too much time for many applications.

 Mining data at China Mobile 269

In addition, the high-end Unix servers and storage arrays are expensive, and the com-
mercial package software don’t support custom algorithms well.

Because of the limitations of the current system, China Mobile initiated an
experimental project to develop a parallel data mining tool set on Hadoop and
evaluated it against its current system. They named the project Big Cloud–based
Parallel Data Mining (BC-PDM) and it was architected to achieve four objectives :

 Massive scalability■ —Using Hadoop for a scale-out architecture
 Low cost■ —Built around cheap commodity hardware and free software
 Customizable■ —Applications built around specifi c business requirements
 Ease of use■ —Graphical user interface similar to ones in commercial tools

BC-PDM implemented many of the standard ETL operations and data mining algo-
rithms in MapReduce. The ETL operations include computing aggregate statistics,
attribute processing, data sampling, redundancy removal, and others. It implemented
nine data mining algorithms from three categories. The categories include clustering
(e.g., K-means), classifi cation (e.g., C4.5), and association analysis (e.g., Apriori). The
MapReduce programs were executed and evaluated within a Hadoop cluster consist-
ing of 256 nodes connected to a single 264-port Gbps switch. The hardware for the
nodes are

 Datanode/TaskTracker■ —1-way 4-core Xeon 2.5 GHz CPU, 8 GB RAM, 4 x 250 GB
SATA II disks

 Namenode/JobTracker■ —2-way 2-core AMD Opteron 2.6 GHz CPU, 16 GB RAM,
4 x 146 GB SAS disks

China Mobile compared BC-PDM against their existing data mining solution using
real data from China Mobile’s Business Analysis Support System (BASS) . There were
three different data sets. They were all fairly large, and for certain evaluation tasks
smaller, sampled subsets were needed. You’ll see the original size (Large scale) as well as
the size of the sampled subsets (Middle scale and Small scale) in table 12.1.

Table 12.1 Size of data sets used for evaluation

Data Large scale Middle scale Small scale

Users’ behavior 12 TB 120 GB 12 GB

Users’ accessing 16 TB 160 GB 16 GB

New service association 120 GB 12 GB 1.2 GB

China Mobile evaluated BC-PDM on four dimensions : correctness, performance, cost,
and scalability. Correctness was, of course, necessary for the new system to be useful.
They verifi ed BC-PDM’s parallel ETL operations by ensuring the same results were
generated as the existing serial ETL implementation. The data mining algorithms,
on the other hand, were not expected to generate the exact same results as the existing

270 CHAPTER 12 Case studies

system. This is because minor implementation and execution details, such as initial
conditions and ordering of the input data, can affect the exact output. They examined
the results and checked for general consistency. In addition, the UCI data sets were
also employed to verify BC-PDM’s parallel data mining algorithms. The UCI data sets
are popular among researchers in the machine-learning community and are well un-
derstood. China Mobile can verify BC-PDM’s output with known expected models.

After establishing the correctness of the MapReduce implementations, the
performance of BC-PDM was compared to the current system. The comparison used
only a 16-node Hadoop cluster. As we’ll see, this small cluster is cheaper than the
monolithic big-iron server of the current system. Figure 12.1 shows the timing between
the two setups for ETL operations (left graph) and data mining tasks (right graph).

Note that BC-PDM was tasked to process 10 times the amount of data as the current
system. BC-PDM was faster for all ETL operations, resulting in general performance
improvement of 12 to 16 times. For data mining tasks BC-PDM was further stress-
tested with 100 times the amount of data as the current system. Even with data size two
orders of magnitude larger, BC-PDM was faster than the current system at the Apriori
(association) and C4.5 (classifi cation) algorithms. The K-means clustering algorithm
took slightly longer to complete than the current system at 10 times the data size. Full
end-to-end testing of three applications from the Shanghai Branch Company showed
performance improvement of 3 to 7 times. These real-world applications include
channel preference modeling, new service association modeling, and subscriber
subdivision modeling. Recall that BC-PDM in this evaluation is based on a relatively
small 16-node Hadoop cluster . As we’ll see later, BC-PDM and Hadoop scale well with
additional nodes. At the full size of our cluster of 256 nodes, we expect BC-PDM to be
able to store, process, and mine data at the 100-TB scale.

Not only is the 16-node BC-PDM cluster outperforming the current system, it’s also
signifi cantly cheaper. Table 12.2 shows a cost breakdown of the two systems. (As of
this writing, one USD converts to a little less than seven RMB.) The 16-node Hadoop/
BC-PDM cluster is roughly one fi fth the cost of the current commercial solution. The
biggest saving comes from the use of low-cost commodity servers. In fact, the hardware

700
600
500
400
300
200
100

0

Attr
iD

el
Attr

iA
dd

Rep
la

ce
In

te
rv

al
ize

M
iss

in
gR

ep
la

ce
Jo

in
Sta

tis
tic

Sam
pl

e
Red

Rem
ov

e

2000

1500

1000

500

0

Unix&Tools BC-PDM with 10 times data

Unix&Tool

Papriori PC45 Pkmeans

BC-PDM with 100 times data
BC-PDM with 10 times data

Figure 12.1 Performance comparison of the Hadoop cluster versus existing commercial
Unix server. The left graph tests ETL operations whereas the right graph is for data
mining algorithms.

 Mining data at China Mobile 271

cost of the 16-node cluster is less than one sixteenth the hardware cost of the current
scale-up solution.

Table 12.2 Comparison of cost and confi guration between existing solution and a 16-node Hadoop
cluster. (As of this writing, one USD converts to a little less than seven RMB.)

BC-PDM
(16 nodes)

Existing commercial
Unix server

Hardware cost Computing ability CPU: 64 cores
memory: 128 GB

CPU: 8 cores
memory: 32 GB

Storage ability 16 TB
(4 x 256 GB SATA II each node)

storage array

Cost 240,000 RMB 4,000,000 RMB

Software cost Database 500,000 RMB 1,000,000 RMB

Application software 300,000 RMB 500,000 RMB

Maintenance cost 200,000 RMB 500,000 RMB

Total 1,240,000 RMB 6,000,000 RMB

’Till now, we’ve investigated the correctness, performance, and cost of the new BC-
PDM system. Let’s examine the scalability of the system as we add more nodes to the
cluster. We ran the ETL operations and data mining algorithms on three cluster sizes:
32 nodes, 64 nodes, and 128 nodes. We measured the speed-up in execution on larger
clusters, taking the execution time in the 32-node cluster as baseline. You’ll see the
results in fi gure 12.2, with the left graph showing the speed-up for ETL operations
and the right graph showing data mining operations. Note that the horizontal axis
(representing cluster size) is exponential, with marks doubling from 32 to 64 to 128.
As exact linear scalability of the operations is the best that we can hope for, the ideal
graph would have the speed-up go from 1 to 2 to 4. We see that many ETL operations
are close to this linear scalability ideal. In fact, when the cluster size quadrupled, from

Figure 12.2 Scalability of ETL (left) and data mining (right) algorithms on Hadoop cluster
as extra nodes are added. The horizontal axis represents the number of nodes in the
BC-PDM cluster. The vertical axis represents the speed-up, relative to the execution time
on the 32-node cluster.

272 CHAPTER 12 Case studies

32 nodes to 128 nodes, all but two had a speed-up greater than 2.5.2 The data min-
ing algorithms are more complex, yet they achieve respectable scalability as well. Our
performance testing earlier (fi gure 12.1) used only a small 16-node cluster, which we
don’t even consider in the current scalability benchmark. Yet the 16-node cluster could
handle an order of magnitude more data faster than the existing commercial solution.
Together these evaluations demonstrate our BC-PDM cluster’s ability to handle data at
the 100-TB level going forward.

After the thorough evaluation of the BC-PDM system, we worked with the Shanghai
Branch to apply our system to some of their business needs. One application was to
characterize their user base to enable precision marketing. More specifi cally, they
wanted to know how their users are segmented, the characteristics and differences of
each segment, and to classify each user for targeted marketing. We used the parallel
K-means algorithm from our data mining toolset to cluster their user base and created
the market segmentation graph in fi gure 12.3. Further analysis helped to characterize
each segment according to the average bill and types of service used. BC-PDM
performed this analysis 3 times faster than their existing Unix solution.

In conclusion, China Mobile is a large mobile communication provider,
and there’s tremendous and growing need to analyze large data sets . Current
commercial offerings are expensive and inadequate for analyzing our user data. We
investigated the use of Hadoop. We built a data mining system called BC-PDM on
top of MapReduce and HDFS and found this system to be accurate, fast, cheap, and
scalable. Going forward, we’ll improve BC-PDM’s effi ciency as well as expand its
scope by implementing more ETL operations and data mining algorithms. More
importantly, we intend to establish BC-PDM as a service platform for data analysis
across China Mobile’s branch companies.

12.3 Recommending the best websites at StumbleUpon
Contributed by KEN MACINNIS and RYAN RAWSON

Using a combination of human opinions and machine learning to immediately
deliver relevant content, StumbleUpon presents only websites that have been sug-
gested by other like-minded Stumblers . Each time you click the Stumble button, you
are presented with a high-quality website based on the collective opinions of other
like-minded web surfers.

StumbleUpon uses ratings of “like” and “dislike” to form collaborative opinions on
website quality. When you “stumble,” you’ll only see pages that friends and like-minded

2 The two exceptions were the Join and the Duplicate Removal operations. They ran in roughly constant time
irrespective of the cluster size. We are currently investigating the underlying reason for it. One possible
explanation for Hadoop running a job in constant time (independent of cluster size) is that the job is not
evenly distributed and one task is the bottleneck to the job’s completion.

 Recommending the best websites at StumbleUpon 273

Stumblers have recommended. This will help you discover great content that is hard
to fi nd using a traditional search engine.

12.3.1 Distributed beginnings at StumbleUpon

To collect and analyze this stumbling data, StumbleUpon requires its highly available
back-end platform to collect, analyze, and transform millions of ratings per day. With
nearly 10 million users at present, StumbleUpon fairly quickly surpassed the abilities a
traditional LAMP (Linux, Apache, MySQL, PHP) stack afforded us, and we began to
build a distributed platform for the following reasons:

 Scalability■ —Commodity hardware scales easily in many cases. Twenty Hadoop
nodes may cost only as much as a single redundant database slave pair.

 Freedom of development■ —Developers have fewer restrictions when compared to de-
signing around a carefully architected, somewhat fragile RDBMS.

 Operational concerns■ —Removing as many single-point-of-failure cases as possible
is crucial to smooth operation of a world-class service.

 Data processing speed■ —Many system-wide calculations were simply not possible to
perform with a monolithic system.

Type General: no
special feature,
average bill ¥ 46

Type Economic:
less service, some
basic calling,
average bill ¥ 54

Type Life: high
mark in life related
services, average
bill ¥ 70

Type Business:
high bill, high
roam call,
average bill ¥ 291

9.2%55.0%

4.5%

1.8%

1.8%

Type White Collar:
more MMS, more
VAS, high mark in
fashion, average bill
¥ 251

27.6%

Type Chatting:
high SMS, high
GPRS, average
bill ¥ 120

Figure 12.3 Cluster analysis of user base for China Mobile’s Shanghai Branch using the
K-means algorithm. The result can be used for the company’s marketing campaigns.

274 CHAPTER 12 Case studies

12.3.2 HBase and StumbleUpon

HBase plays a critical part in StumbleUpon ’s distributed platform. HBase is a distrib-
uted, column-oriented database that harnesses the power of the Hadoop and HDFS
platform underneath it. But, as with any complex system, there are trade-offs: HBase
shelves traditional relational database concepts, such as joins, foreign key relations,
and triggers in the pursuit of a system that hosts immensely large, sparsely populated
data on commodity hardware in a scalable manner.

AN INTRODUCTION TO HBASE

HBase is modeled after Google’s Bigtable,3 a distributed storage system. Let’s recap the
basics of Bigtable and Bigtable-like systems:

 Shares concepts of both column- and row-oriented databases. As described by ■

the authors, Bigtable is a “a sparse, distributed multidimensional sorted map.”
The basic unit of storage, a table, is split into multiple tablets (regions in HBase
parlance).

 Writes are buffered in memory, then fl ushed into read-only fi les after a while.■

 To keep the number of fi les low, they are merged in a ■ compaction process that
rewrites N fi les into 1.

 Special tablets or regions are used to track the locations of the data.■

 Due to the column-oriented nature of the datastore, ■ sparse tables—those with a
majority of null cell values—are virtually free as null values aren’t stored explicitly.

 Column families are used to group row columns. All columns in a family ■

are stored together (for locality) and share storage and confi guration
parameters.

 Table cells are stored with multiple versions instead of overwriting existing data.■

 Capacity (both storage size and processing speed) can be increased by simply ■

adding machines to the cluster, with no special confi guration needed.

HBase provides many additional features:

 REST and Thrift■ 4 gateways allowing for easy access from non-Java development
environments

 Easy integration with Hadoop MapReduce for data processing■

 Harnesses the proven reliability and scalability of Hadoop and HDFS■

 Web-based UIs for management of both the master and region servers■

 Strong open source community■

3 Bigtable: A Distributed Storage System for Structured Data. Chang, et al. http://labs.google.com/papers/
bigtable.html.

4 Thrift is a remote procedure call library originally developed at Facebook. It’s now an Apache incubator
project at http://incubator.apache.org/thrift/.

 Recommending the best websites at StumbleUpon 275

Figure 12.4 describes a simplistic version of the data write path in an HBase region
server . The write is appended to the server’s write-ahead log:

1 Data is then inserted in to the MemStore .
2 As the MemStore grows beyond a threshold, it’s fl ushed to a new fi le on disk.
3 When there are too many fi les on disk, data store fi les are compacted into

fewer fi les (minor compaction).

Please visit the project site for further information on obtaining, running, and enhanc-
ing HBase.5

USING HBASE AT STUMBLEUPON

StumbleUpon carefully selected HBase from a host of candidate database and
database-like storage and retrieval systems. We value full consistency, where any
query subsequent to a write operation is guaranteed to refl ect that write. In addition,
StumbleUpon is committed to the open source model where we are free to contribute
back to the community, and HBase’s strong development community both refl ected
that commitment and offered a valuable resource with which to drive improvements to
the product.

Our fi rst large test of HBase was in importing existing, legacy data from our
MySQL -based systems. In the past, we undertook this process only when absolutely
necessary (such as migrating tables or hosts) and could take days or weeks to
complete.

COLUMN VERSUS ROW STORE

You can see one example of the column -store design pattern in the storage of arbitrary
attributes for a user across multiple logical attribute groupings. In this example, we
assume a user has

Figure 12.4 HBase write operations

5 http://hadoop.apache.org/hbase/.

276 CHAPTER 12 Case studies

 Contact data■ —Email and web addresses, instant messaging names, profi le photo
URLs

 Statistics■ —“Signup date,” “last login time,” “last client version seen”
 Attributes■ —For remote login credentials, to authenticate to a third-party service
 Permissions■ —For access to site features and data

In the traditional RDBMS world, we may arbitrarily assign each group to a table. User
attributes may be retrieved and associated simultaneously with joins and foreign keys.
With careful design6 and a relatively moderate amount of data, such a system is fl ex-
ible and maintainable. However, as access patterns change—for instance, we desire to
store multiple credentials per user where we assumed only one to begin—the design
is diffi cult to change.

Furthermore, this design suffers its most fatal fl aws when the data volume scales
past a moderate amount and the schema needs to be refactored. The idea of doing an
ALTER TABLE on a production database table containing millions or billions of rows
as well as the headache of vetting systemic schema changes for both correctness and
completeness is a daunting prospect. Even with a perfect, static, concrete table, data
analysis becomes bottlenecked by the selection, input, and output of records.

Let’s take a look at listing 12.1. It’s a simple example where our typical user only has
an ID and a record per Stumble:

Listing 12.1 Determining Stumbles per user, per URL

public class CountUserUrlStumbles {
 public static class Map extends MapReduceBase
 implements Mapper<ImmutableBytesWritable, RowResult,
 Text, Text> {
 @Override
 public void map(ImmutableBytesWritable key,
 RowResult value,
 OutputCollector<Text, Text> output,
 Reporter reporter) throws IOException {
 byte [] row = value.getRow();
 int userid = StumbleUtils.UserIndex.getUserId(row);
 int urlid = StumbleUtils.UserIndex.getUrlId(row);

 Text one = new Text("1");
 output.collect(new Text("U:" + Integer.toString(userid)), one);
 output.collect(new Text("Url:" + Integer.toString(urlid)), one);
 }
 }

 public static class Reduce extends MapReduceBase
 implements Reducer<Text,Text,Text,Text> {
 @Override
 public void reduce(Text key,
 Iterator<Text> values,
 OutputCollector<Text, Text> output,
 Reporter reporter) throws IOException {

6 Rarely achieved on the fi rst attempt, since fi nal schemas are rarely known fully a priori!

 Recommending the best websites at StumbleUpon 277

 int count = 0;
 while (values.hasNext()) {
 values.next();
 count++;
 }
 output.collect(key, new Text(Integer.toString(count)));
 }
 }

 public static void main(String []args) throws IOException {
 if (args.length < 2) {
 System.out.println("Give the name of the by-userid stumble table");
 return;
 }
 JobConf job = new JobConf(CountUserUrlStumbles.class);
 job.setInputFormat(TableInputFormat.class);
 FileInputFormat.setInputPaths(job, args[0]);
 job.setMapperClass(Map.class);
 job.setReducerClass(Reduce.class);
 job.setOutputFormat(TextOutputFormat.class);
 TextOutputFormat.setOutputPath(job, new Path(args[1]));
 job.setNumMapTasks(5000);
 JobClient jc = new JobClient(job);
 jc.submitJob(job);
 }
}

In this example, we look at a routine StumbleUpon task: counting stumbles per
user as well as stumbles per URL. Although this task is not particularly complex or
insightful, we provide it here as a concrete example to the reader of a type of analytic
task we perform on a daily basis. The most interesting bit is that this trivial example
completes in about 1 hour (using twenty commodity nodes) when processing a key
count in the tens of billions. The MySQL-based counterpart doesn’t complete in a
reasonable amount of time—at least not without special handling and support to
dump the data from MySQL , split the lines to a reasonable chunk size, and then
combine the results.

You may fi nd this series of operations familiar: mapping, then reducing! By using
the generalized facilities of both HBase and Hadoop, we are able to conduct similar
statistical surveys as needed, without special preparation and runtime handling. To
apply this straightforward example to the real world, we are now able to complete
all analysis tasks in the same day they’re requested. We can provide the ability to
run ad hoc queries at a rate not thought possible before Hadoop and HBase were
powering our platform. As a business thrives and dies on the data it can analyze,
this decreased turnaround time makes an incredible impact from the front offi ce
number crunching to the research engineers doing instant spam analysis on content
submissions.

One can only imagine the diffi culty of refactoring the custom-processing pipeline
when the data schema is more complex than this trivial example, if we didn’t have our
distributed processing platform to power the extraction, transformation, and analysis.

278 CHAPTER 12 Case studies

TRANSCENDING A SINGLE MACHINE

As we’ve outlined, one of the most important scalability features of HBase is the ability
to (fi nally) transcend the write limits of a single machine.

Typically, scaling a database involves adding read slaves and caching to the system.
Read slaves can only help if your application is reading more than writing. Caching only
helps if your data set doesn’t change too often. Even so, these architectural features
frequently add vast application-side complexity.

HBase hosts each region on any one of the machines in the cluster (each is a region
server). Writes touch the region server hosting that region, and the HBase region
server writes to three (by default) HDFS data nodes. 7 With a large table and a similarly
large cluster, writes are spread out to many different machines, inherently avoiding the
single machine write problem that master-slave data stores have.

This feature can help you scale beyond traditional relational systems at a fraction
of the cost. As larger hardware tends to become expensive faster than the actual
performance delivered, this is a fairly profound and important ability. For the large
work loads at StumbleUpon, the savings could literally be millions of dollars. Some
problems simply aren’t approachable on a single machine setup!

For highly dynamic data sets, where we frequently read things that were just written,
caching in a system, such as memcached, may not help much. HBase holds recently
written data in a write buffer. Reads for that data come directly out of memory. This
action could completely obviate the need for a caching layer.

One example of a highly dynamic data set is event counters. This is a diffi cult
problem because most high-speed solutions tend to be RAM-only for performance
(e.g., memcached), while requiring high durability as well. Enter HBase and its
incrementColumnValue() call. These mutates are internally treated as any other
change, by both logging to disk and buffering up in the write buffer. Reads can come
directly from the write buffer, accelerating both and achieving high performance
and durability. StumbleUpon harnesses the natural ability of HBase to support event
counters in just about every niche of the site—clicks, hits, ads served, and so on.

Furthermore, HBase offers a superior choice to typical sharding solutions. Most
traditional sharding approaches require a priori assumptions of the key space. This can have
surprising performance implications when the hashing function isn’t evenly distributed or
when the keys are distributed outside the assumptions of your sharding scheme.

HBase takes a data-sized approach to splitting tables into regions; as the data in a
region grows and reaches a confi gured size (currently defaulted to 256 MB), a mid-
key is picked from the middle of the data, splitting the region into two roughly equal
chunks. Each chunk becomes its own region and now has room to grow. Repeating
this procedure thousands of times gives a net result of a table with 2000 roughly
equal-sized regions. Figure 12.5 shows the operation of a simplifi ed HBase cluster
with three writes and one read concurrently operating on a key space of 256 keys
(0x00-0xFF).

7 HDFS writes to multiple data nodes to achieve durability of data, as well as locality-based performance.

 Recommending the best websites at StumbleUpon 279

 The client bootstraps the ROOT table location from ZooKeeper■ .
 The ROOT table contains pointers to other META tables that hold user table ■

locations.
 The client fi nds the region for the selected operation. The location is cached in ■

the client.
 The request is sent to the region for execution.■

As StumbleUpon’s data continues to grow in an uneven manner, we don’t end up
with unbalanced shards or regions requiring manual intervention later, a problem
frequently encountered by most manual sharding solutions involving RDBMS.

LUDICROUS-SPEED HBASE

For all the talk about HBase’s advantages, initially we found that the performance of the
system was not up to online data servicing. To fi x that, Ryan contributed back a large
number of internal performance and reliability enhancements to the HBase project.

The fi rst major contribution was the HFile format. The previous format had
ineffi ciencies in the index strategy, read paths, and internal APIs. Several issues were
identifi ed:

 Stream-oriented format made caching■ diffi cult.
 Index effi ciency was sensitive to the size of the data.■

 Lots of byte array copies were made.■

 Object creation rates were too high.■

HFile is an immutable fi le format. Once written, no value in it can change. The reader
and writer are separated in code and there are no mutate or update methods available.
As most HFiles are hosted on HDFS, it would be impossible anyway because HDFS fi les
are immutable as well.

The HFile writer has a straightforward write path, with four elements:

 Open fi le, provide compression, block size, and comparator arguments. ■

 These never change for the lifetime of the fi le.■

 Append keys, in comparator sorted order. ■

 Any attempt to add keys in nonsorted order results in exceptions.■

 Optionally append metadata blocks. ■

Figure 12.5 HBase easily and automatically “shards.”

280 CHAPTER 12 Case studies

 Useful for additional data, or features, such as Bloom fi lters■ .
 Close the fi le, fi nalize the index and write the trailers.■

As keys and values are appended to the HFile , the code keeps track of how large the
current block is. Once it exceeds the block size specifi ed, it’s fl ushed and the compres-
sion system is reset for the next block. As HFile writer appends a block, an in-memory
index of the fi rst key of each block is formed, along with its in-fi le offset. When the
close method is called, the block index is written immediately behind the last block.
Optional metadata blocks are appended next, followed by the metadata block index.
Finally, a trailer with pointers to the indexes is appended and the fi le is closed.

When a fi le is opened for reading, the data block index and the meta block index
are loaded. They stay in resident for the duration, until the reader object is reclaimed.
The index allows for fast seek and reads of blocks of data. To fi nd a key in the fi le,
fi rst the reader does a binary search of the index. Finding a block number, it reads in
and decompresses the data block and stores it in the block cache. Code then iterates
through the block in memory fi nding the key, or the closest match. Pointers are then
returned, allowing clients a view into the single copy of data.

HFile gains its strengths from simplicity in both concept and implementation. The
implementation is one fi le (tests excepted) and is about 1,600 lines for both reader
and writer.

HFile provided a new internal platform to rewrite the rest of the region server.
The internal algorithms for read-merging multiple fi les into a single-scan result had
grown organically over time and needed a fresh look. Jon Gray and Erik Holstad at
Streamy.com designed and implemented a brand-new read implementation by adding
new delete semantics and restructuring the internal key formats . By using more
effi cient algorithms and redoing the implementation on the 0-copy HFile, more speed
enhancements were gained from the code.

Overall speed increases were extremely impressive, ranging from 30 times to 100
times, depending on the particular API call involved. On the low end, scanning a
series of rows got a 30 times speed-up. On the high end, single row gets can be up to
100 times faster. With these performance improvements, HBase can truly be labeled
as “web ready.”

HBASE AND PARALLELISM

HBase demonstrates excellent parallel speed-up on read and write workloads. As
StumbleUpon has stored so much data in MySQL, insert performance is important. To
copy data into HBase, Hadoop jobs with only mappers that read from MySQL and subse-
quently write into HBase were written. Running on a 20-node cluster with about 80 times
parallelism, aggregate insert performance ranged from 100,000 operations a second up
to as much as 300,000 operations a second. The rows involved were about 100 bytes.

As impressive as the write performance is, the read performance is exceptional. Using
an 80-times-parallel MapReduce read aggregation job, it achieves a total read speed of
4.5 million rows a second. At this rate, reading our largest tables takes less than an hour.
The ability to write entire table analytics is a powerful ability that previously didn’t exist.

 Recommending the best websites at StumbleUpon 281

All the machines involved were dual quad core Intels, with 16 GB of RAM. Each node
had two SATA disks , each 1 TB in size. These relatively modest and standard nodes provide
an excellent level of performance, and the cluster only performs better with more.

12.3.3 More Hadoop at StumbleUpon

At StumbleUpon , we subscribe to the mantra of “Log early, log often, log everything.”
No piece of data is too small or too noisy to be useful down the road. Hadoop excels in
this traditionally strong area for distributed processing: log-and-click collection com-
bined with analysis. StumbleUpon harnesses this natural aptitude of Hadoop for a
variety of analysis tasks, including Apache logfi le collection and user-session analysis.

As an example, a basic need for any web product in the days of search engine
optimization experts and “black hat” attackers is to look back at a combination of web
browser user agent strings combined with the (apparent) originating IP address and
action context. Now imagine needing to do this across a fl eet of web server frontends,
millions of users, and billions of clicks.

Scribe, 8 a Facebook project made public, is a platform for aggregating real-time
streamed log data in such a context. The service is failure tolerant at both the machine
and network level and easily integrates into just about any infrastructure.

StumbleUpon uses Scribe to collect data directly into HDFS where it’s reviewed and
processed by a number of systems. A combination of Cascading and plain MapReduce-
based analysis jobs extract data from the logs for vanilla statistics (such as click counts),
while more sophisticated consumers feed data into real-time feedback systems based
around BerkeleyDB and TokyoCabinet . A second set of systems use this streamed data
for search index updates and thumbnail generation. Figure 12.6 illustrates several data
processing modules around Hadoop .

8 http://github.com/facebook/scribe.

Figure 12.6 StumbleUpon data collection, analysis, and storage using Hadoop

282 CHAPTER 12 Case studies

We obtained an illustrative result by processing 10 GB of standard Apache log fi les
with the Cascading log analysis example.9 Using Hadoop 0.19.1, Cascading 1.0.9, and
the previously mentioned node confi guration, we obtained the number of Apache hits
per minute with this example by bucketing the hits in MapReduce jobs. We wrote a
naive single-node Perl hash-based program as an example of a typical quick solution
a sysadmin may create. The results shown in table 12.3 confi rm that our results easily
achieve linear (or better) speed-up with the simple addition of more nodes to the clus-
ter. Times are the average of 10 mixed executions, to allow for variances.

Table 12.3 Apache log processing with Cascading

Apache Log Processing with Cascading

1 Node Runtime 21m46s
Sec/MB 0.127
Sec/MB/Node 0.127

3 Nodes Runtime 8m3s
Sec/MB 0.0471
Sec/MB/Node 0.0157

15 Nodes Runtime 1m30s

Sec/MB 0.00878
Sec/MB/Node 0.000585

Naive Perl Runtime 42m49s
Sec/MB 0.251
Sec/MB/Node 0.251

We see that even the single-node Cascading solution achieves double the throughput
of the naive Perl application due to the intelligent segmentation and bucketing built in
to the MapReduce framework versus the effect of keeping all data mapped to a single
Perl hash. Given familiarity with Cascading, you may also consider the Perl code more
complex to optimize (and maintain) to boot!

To wit, StumbleUpon uses the native map and reduce functionality in Hadoop and
related products, including Nutch and custom-written content surveyors, to perform
this data retrieval, analysis, and storage. Keeping the resultant data close to the
processing pipeline maximizes our data locality benefi ts.

Putting it all together, StumbleUpon has taken the maximum advantage of the vast
power the MapReduce paradigm unlocks by adopting and extending Hadoop, HDFS,
and HBase. We’re excited to help lead the future of distributed processing.

12.4 Building analytics for enterprise search —IBM’s Project ES2
Contributed by VUK ERCEGOVAC , RAJASEKAR KRISHNAMURTHY , SRIRAM RAGHAVAN , FREDERICK REISS ,
EUGENE SHEKITA , SANDEEP TATA , SHIVAKUMAR VAITHYANATHAN , AND HUAIYU ZHU

In contrast with the radical advances in web search over the last several years, search
over enterprise intranets has remained a diffi cult and largely unsolved problem. Based

9 http://code.google.com/p/cascading/wiki/ApacheLogCascade.

 Building analytics for enterprise search —IBM’s Project ES2 283

on a study of the IBM intranet, Fagin et. al. [1] highlighted some critical differences
between the search problem on the intranet and that on the web. They observed that
an overwhelming majority of the queries in the intranet are “navigational.” They have
a small set of correct answers [2,3]. For instance, a manual examination of the top
6,500 queries (as of July 2008) on the IBM intranet revealed that more than 90 percent
of those queries were navigational.

Several enterprise-specifi c factors complicate the task of fi nding the “correct”
answers for these queries:

 Absence of an economic incentive for content creators to make their pages easily ■

discoverable (in contrast with the presence of such incentives on the web)
 The use of enterprise-specifi c vocabulary, abbreviations, and acronyms, in the ■

search queries and in the intranet pages
 The fact that the same query can have a different “correct” answer depending on ■

the location and organizational role of the person issuing the query (of particu-
lar importance for corporations like IBM with employees and locations in over
80 countries)

From earlier efforts at IBM [4], we learned that these problems are diffi cult to overcome
using traditional information retrieval techniques. Subsequently, in [5], we proposed
an approach consisting of detailed offl ine analyses to pre-identify navigational pages
and the use of a special-purpose navigational index. We demonstrated the viability of
this approach through experiments over a 5.5-million-page corpus from the IBM in-
tranet. The system in [5], uses a mix of proprietary platforms and relational databases.
We have, since, crawled a much larger portion of the IBM intranet , having discovered
over 100 million URLs and indexed over 16 million documents. In order to tackle
these sizes and beyond, and having learned from previous efforts [4,5], we have devel-
oped ES2 —a scalable, high-quality search engine for the IBM intranet . ES2 is based on
the analytics described in [5], but it leverages a number of open source platforms and
tools, such as Hadoop, Nutch , Lucene , and Jaql. 10

In principle, the Nutch crawler, the Hadoop MapReduce framework, and the
Lucene indexing engine provide a full suite of software components for building a
complete search engine. But, to truly address the challenges described earlier, it’s not
suffi cient to merely stitch these systems together. We describe how to use sophisticated
analysis and mining of the crawled pages, and special-purpose navigational indexes
in conjunction with intelligent query processing to ensure effective search quality.
To understand how these elements come together, we now examine some illustrative
search queries and their corresponding results on ES2. See fi gure 12.7.

Figure 12.7 shows the result of running the query idp on ES2 . The IDP is an acronym
for Individual Development Plan, a web-based HR application in IBM to assist in tracking
employee career development. The fi rst two results returned by ES2 represent two
different URLs that both allow the user to launch the IDP web application. The third

10 http://code.google.com/p/jaql/.

284 CHAPTER 12 Case studies

result entry is, in fact, a set of pages describing the IDP process, one per country, that
have been grouped together (indicated visually through indentation and the presence
of a globe icon). We make the following observations:

1 The fi rst result in fi gure 12.7 doesn’t have the word idp in the title and indeed
not even in the content of the page. ES2 was able to associate this page with the
word idp by extracting the term from the URL http://w3.ibm.com/hr/idp/.
For the second result in fi gure 12.7, besides idp in the URL, we also extract
idp from the title by applying a regular expression pattern that explicitly looks
for titles ending in phrases such as “Launch Page,” “Portal,” “Main Page,” and
so on. In ES2, we use several hundred such carefully crafted patterns applied
to the URL, title, META headers, and various other features of a web page
to detect and associate index terms with navigational pages. Section 12.4.3
describes how we execute such analysis, known as Local Analysis , in parallel on a
Hadoop cluster.

2 Our current crawl of the IBM intranet has close to 500 pages that have a
URL containing idp and over a 1,000 pages that have either idp or individual
development plan in the title. To narrow down the result to the two specifi c URLs
shown in fi gure 12.7, we use a complex set of analysis algorithms as part of a

Figure 12.7 Illustrative search results in ES2

 Building analytics for enterprise search —IBM’s Project ES2 285

process known as Global Analysis . Section 12.4.3 describes how to implement
such analysis in ES2 using the Hadoop framework.

3 Notice that in all the result pages grouped as part of the third result in fi gure
12.7, the text Individual Development Plan in the title has been highlighted to
indicate a match against the query term idp . To accomplish this match, the
following two steps took place during offl ine analysis: (1) the phrase Individual
Development Plan was extracted as part of local analysis using patterns applied
to the title and (2) during indexing, the extracted phrase was recognized
to be the expansion of the acronym idp and resulted in the term idp being
added to the index as well. In general, we employ a process known as variant
generation whereby multiple variants of the terms extracted through local
analysis are generated and added to the index. ES2 employs a suite of variant
generation strategies—from simple n-grams over the extracted phrase to more
sophisticated ones. In the interest of space we don’t describe these algorithms
in detail.

4 Finally, to enable results to be customized based on the search users’
geography and to support the type of result grouping shown in fi gure 12.7,
we label each page in the intranet with a specifi c geography (country,
region, and/or IBM location). In ES2, this labeling is accomplished using a
rule-driven classifi er that uses a number of page features extracted during
local analysis.

The examples in fi gure 12.7 motivate the vital role of offl ine analysis and variant gen-
eration in ES2 . Each page in the ES2 collection is pushed through multiple logical
workfl ows, each consisting of a local analysis phase, a global analysis phase, and an
appropriate variant generation strategy. The output of a workfl ow is some subset of the
input pages along with a set of index terms. Depending on the particular extraction
patterns and variant generation rules, the output of two different workfl ows will have
correspondingly different “precision” characteristics. For example, a workfl ow consist-
ing of careful extraction of a person’s name from the title followed by name-specifi c
variant generation is likely to yield much higher-quality answers than a workfl ow that
only generates all possible n-grams of the title of a page.

The creation of an index structure consisting of the output of multiple workfl ows
with different precision characteristics is only half the story. To fully leverage
such an index, ES2 employs a sophisticated runtime query processing strategy. A
discussion of the runtime component of ES2 is beyond the scope of this case study.
We restrict our attention to the offl ine analysis workfl ows and their implementation
on Hadoop.

12.4.1 ES2 architecture

We assume that readers are broadly familiar with Hadoop and Nutch.11 Nutch is an open
source crawler implemented on the Hadoop MapReduce platform for web crawling.

11 http://nutch.apache.org/.

286 CHAPTER 12 Case studies

ES2 also uses Jaql ,12 a data fl ow language designed for JSON (a popular semi-
structured data model). Jaql provides a Unix pipes-like syntax to connect multiple
stages of processing over semistructured JSON data. The ES2 workfl ow involves
invoking multiple algorithms for local analysis, global analysis, and variant generation
before inserting data into indexes. Without adequate data management support, this
complex multistage workfl ow quickly becomes overwhelming. To address this problem,
ES2 uses JSON to represent its data and Jaql to specify the workfl ow (see fi gure 12.8).

Figure 12.8 shows the architecture of ES2. There are six components in ES2: the
crawler, local analysis, global analysis, variant generation and indexing, background
mining, and search runtime. ES2 uses an enhanced version of Nutch (version 0.9)—a
scalable open source crawler based on the Hadoop platform. In addition, ES2 also
gathers information from IBM’s social bookmarking service (called Dogear). Much
like delicious.com, Dogear contains various URLs that have been bookmarked by the
IBM community along with a collection of tags associated with each URL. The tags
associated with the URLs contain valuable clues about the page, and ES2 uses this
information in building its indexes. All the stages use a common distributed fi lesystem,
HDFS, for both input and output. Local analysis processes each page to extract features
about the pages and stores the results as JSON objects in HDFS. ES2 uses Jaql to push
each page through the rest of the pipeline, transforming the data as needed at each

Figure 12.8 ES2 Architecture

12 http://code.google.com/p/jaql/.

 Building analytics for enterprise search —IBM’s Project ES2 287

stage. Jaql queries are used to bring together the results of different local analyses and
invoke global analysis. Jaql is also used to invoke the variant generation and indexing
workfl ow using the outputs of local and global analyses. The indexes are periodically
copied to a different set of machines that serve user queries.

Although not part of the main workfl ow, ES2 periodically executes several mining
and classifi cation tasks. Examples of this include algorithms to automatically produce
acronym libraries, regular expression libraries [6], and geo-classifi cation rules.

12.4.2 ES2 crawler

ES2 uses Nutch version 0.9. A primary data structure in Nutch is the CrawlDB : a key-
value set where the keys are the URLs known to Nutch and the value is the status of
the URL. The status contains metadata about the URL, such as the time of discovery,
whether it has been fetched, and so on. Nutch is architected as a sequence of three
MapReduce jobs:

 Generate■ —In this phase, a fetch list is generated by scanning the input key/value
pairs (from CrawlDB) for URLs that have been discovered, but not fetched. A
common choice in generating this list is to select the top k unfetched URLs using
an appropriate scoring mechanism (k is a confi guration parameter in Nutch).

 Fetch■ —In this phase, the pages associated with the URLs in the input fetch list are
fetched and parsed. The output consists of the URL and the parsed representa-
tion of the page.

 Update■ —The update phase collects all the URLs that have been discovered by
parsing the contents of the pages in the fetch phase and merges them with the
CrawlDB.

The pages fetched in each cycle of generate-fetch-update are referred to as a segment .
Out of the box, the fi rst problem we encountered was crawl speed. Nutch’s crawl rate

was under three pages per second—far less than the network bandwidth available to
the cluster. A deeper problem we encountered after a sample crawl of 80 million pages
was that the quality of discovered pages was surprisingly low. In this section, we identify
the underlying reasons for both these problems and describe the enhancements made
to Nutch to adapt it to the IBM intranet.

MODIFICATIONS FOR PERFORMANCE

Nutch’s design was aimed at web crawling . When using it to crawl the IBM intranet,
we observed multiple performance bottlenecks . We discovered that the reason for the
bottlenecks was that the enterprise intranet contains far fewer hosts than the web, and
some of the design choices made in Nutch assume a large number of distinct hosts. We
describe two ways in which this problem manifests itself, and the approach used in ES2
to adapt Nutch’s design for the enterprise.

A major performance bottleneck in the fetch phase, called long tail problem , exhibits
the following behavior. The crawl rate in the early part of the fetch phase is relatively
high (typically dozens of pages a second). But this deteriorates relatively quickly to
less than a page per second, where it remains until completion of the segment. A

288 CHAPTER 12 Case studies

quick examination revealed that this behavior is heavily infl uenced by the host with
the largest number of URLs in the fetch list. You can understand this by observing
that the fetch rate in Nutch is controlled by two parameters: the number of distinct
hosts in the fetch list that Nutch can concurrently crawl from, and the duration
for which Nutch waits before making consecutive requests to the same host. A
straightforward solution to the long tail problem is to restrict the number of URLs
for a particular host in the fetch list. Unfortunately, this is not suffi cient because not
all host servers are identical, and the time required to fetch the same number of
pages from different hosts can be dramatically different. We added a time-shutoff
parameter that terminates the fetcher after a fi xed amount of time as an engineering
fi x to this problem. While this terminates the fetch phase early (and fewer pages
are retrieved in total in the segment), by avoiding the slow tail phase, we sustain a
higher average crawl rate. In practice, we observed that by appropriately setting this
shutoff parameter, the average crawl rate could be improved to nearly three times the
original crawl rate. Ideally, the current fetch rate should determine such a shutoff;
this unfortunately requires pooling information across map tasks and can’t easily be
performed in Hadoop today.

A main-memory data structure in the fetcher causes a different performance
bottleneck. The fetcher works by fi rst creating a set of queues where each queue stores
URLs for a particular host—we call this data structure FetchQueues . A fi xed amount of
memory is allocated to FetchQueues to be shared across the individual queues. The
fetcher reads the URLs to be fetched from its input and inserts them into FetchQueues
until it exhausts the allocated memory. Worker threads assigned to each queue in
FetchQueues concurrently fetch pages from different hosts as long as their queues are
non-empty. The bottleneck arises because URLs in the input are ordered by host (this
is an artifact of the generate phase) and the fetcher exhausts the memory allocated to
FetchQueues with URLs from very few hosts. Such a design is appropriate for crawling
a large number of hosts on the web as each host in the fetch list would then have only
a few URLs. In the enterprise, host diversity is limited to a few thousand at best. As a
result, few worker threads are actively fetching from FetchQueues, leading to severe
under-utilization of resources. We address this problem by replacing FetchQueues with
a disk-based data structure without any limits on the total size. This allows the fetcher to
populate FetchQueues with all the URLs in the input, thereby keeping the maximum
possible number of worker threads active. This simple change improved the fetch rate
several fold.

12.4.3 ES2 analytics

Much of the complexity and power in ES2 lies in its analytics. In this section, we briefl y
describe the different algorithms, paying special attention to the design choices made
in mapping these algorithms onto Hadoop.

LOCAL ANALYSIS

In local analysis, each page is individually analyzed to extract clues that help decide
whether that page is a candidate navigational page . In ES2, fi ve different local analysis

 Building analytics for enterprise search —IBM’s Project ES2 289

algorithms, namely TitleHomePage, PersonalHomePage, URLHomePage, AnchorHome, and
NavLink are used. These algorithms use rules based on regular expression patterns,
dictionaries, and information extraction tools [7] to identify candidate navigational
pages. For instance, using a regular expression like “\ A\ W*(.+)\s<Home>” (Java
regular expression syntax), the PersonalHomePage algorithm can detect that a page with
a title “G. J. Chaitin’s Home” indicates that this is the home page of G. J. Chaitin. The
algorithm outputs the name of a feature (“Personal Home Page”) and associates a
value with this feature (“G. J. Chaitin”). The next section describes the impact of redi-
rections on local analysis and discusses a solution.

REDIRECTION RESOLUTION

Many sites in IBM’s intranet employ redirection for updating, load balancing, upgrad-
ing, and handling internal reorganizations. Unfortunately, redirections can cause
complications in the local analysis algorithms. For instance, URLHomePage uses the
text of the URL to detect a candidate navigational page. After redirection, the target
URL may not contain the same features as the original URL. As an illustrative ex-
ample, consider the URL http://w3.can.ibm.com/hr/erbp. Local analysis algorithms
can correctly identify this URL as the home page for the Employee Referral Bonus
Program (ERBP) using clues from the URL. But this URL gets redirected to a Lotus
Domino server at http://w3-03.ibm.com/hr/hrc.nsf/3f31db8c0ff0ac90852568f7006d
51ea/ac3f2f04ba60a6d585256d05004cef97?OpenDocument, where a Lotus Domino
database serves information about the Employee Referral Bonus Program. The clues
in the source URL are no longer available in the target, and the local analysis algo-
rithm can no longer identify this page as navigational. To prevent this, ES2 resolves all
redirections, collects the set of URLs that lead to the target page through redirections,
and provides local analysis with the appropriate URLs.

To track redirections, we modifi ed Nutch to tag every page that was a target
of redirection with the source URL. Consider fi gure 12.9. The crawler follows
redirections from a page A to page B, and from page B to arrive at page C. We
track these redirections by tagging pages B and C with the source URL, A. This
tag is stored as a metadata fi eld in the segment fi le . A segment fi le is a key/value set

Figure 12.9 Resolving
redirections

290 CHAPTER 12 Case studies

where the key is the URL of a page and the value is contents of the page (along with
additional metadata fi elds).

Listing 12.2 (called ResolveSimple) outlines the map and reduce functions that are
used to resolve redirections on a segment and invoke local analysis. The map phase
outputs the source URL and the page contents. The reduce phase brings all the
pages with the same source URL into a single group. In the preceding example of
fi gure 12.9, the common source URL for pages A, B, and C is A. The target page
in this group (C) is then passed to local analysis along with the other URLs in the
group—A and B.

Listing 12.2 ResolveSimple

Map (Key: URL, Value: PageData)
if PageData.SourceURL exists then
 Ouput [PageData.SourceURL, PageData]
else
 Output [URL, Pagedata]
end if
End

Reduce (Key: URL, Values: Pageset)
Let URLset = Set of all URLs in Pageset
Let page = Target of redirection in Pageset
result = LocalAnalysis(page, URLset)
output [page.URL, result]
End

HADOOP IMPLEMENTATION

In ResolveSimple, local analysis is invoked in the reducer . This requires Hadoop to
pass along the contents of each page from the map phase to the reduce phase. This
involves sorting and moving a large amount of data across the network. To avoid this,
we modify ResolveSimple (listing 12.2) and separate the task of redirection resolution
and the local analysis so that the algorithms in local analysis are run in the map phase.
This allows the local analysis computation to be colocated with the data, and therefore
results in signifi cant performance improvement.

We have outlined the modifi ed algorithm, called Resolve2Step, in listing 12.3. In the
map phase of this algorithm, we only pass the metadata along and the page content
(which accounts for a majority of the data volume) is projected out. In the reduce
phase of ResolveSimple, we output a table with two columns: the fi rst column is the
URL of the target page in the group of pages, and the second column is the set of
URLs to be associated with the page when it’s submitted to local analysis.

Listing 12.3 Resolve2Step

1: Resolve Redirections
Map (Key: URL, Value: Page)
if PageData.SourceURL exists then
 Ouput [PageData.SourceURL, PageData.metadata]
else

 Building analytics for enterprise search —IBM’s Project ES2 291

 Output [URL, Pagedata.metadata]
end if
End
Reduce (Key: URL, Values: Pageset)
Let URLset = Set of all URLs in Pageset
Let page = Target of redirections in Pageset
output [page.URL, URLset]
End

2: Run Local Analysis
Map (Key: URL, Value: Page)
Load resolveTable from output of previous step if needed
Let URLSet = resolveTable[URL]
result = LocalAnalysis(page, URLset)
output [page.URL, result]
End

If a URL results in a redirection, we don’t add an entry for it in this table. Table 12.4
shows an example of such a table. The chain of redirections shown in the preceding
fi gure 12.9 results in the fi rst row in table 12.4. In a subsequent map-only job for local
analysis, the map tasks read the redirection table into memory. This table is fairly small
for typical segments and easily fi ts in memory. For each URL in the input segment,
the mapper looks up the table if it fi nds a non-empty entry. It passes these URLs on
to local analysis. By invoking local analysis in the map phase, Resolve2Step avoids the
transfer of the page contents over the network to the reducers as in ResolveSimple. We
executed both algorithms for local analysis on a segment of around 400,000 pages on
the cluster using eight nodes. Whereas ResolveSimple completed in about 22 minutes,
Resolve2Step took only 7 minutes.

In order to understand how Resolve2Step scales, we ran this algorithm on the
same segment (400,000 pages) and varied the cluster
size from one to eight servers. The times are shown in
fi gure 12.10. The speed-up graph shows that for the early
part of the curve, we get linear scaling; the benefi ts of
adding more nodes decreases after this point. This is
because the input consists of only a single segment of
400,000 pages. Hadoop is unable to effi ciently divide this
task at a fi ner granularity. We’ll see in the next section
that with larger input data sets, Hadoop can effi ciently
divide the task and provide linear scaling.

GLOBAL ANALYSIS

The local analysis tasks described in the previous section identify candidate navi-
gational pages by extracting relevant features from each page. But as described in
section 12.4.1, the same navigational feature can be associated with multiple pages.
Consider the case where homepage authors use the same title for many of their
web pages. For example, “G. J. Chaitin home page” is the title for many pages on
G. J. Chaitin’s website. Local analysis for personal home pages considers all such pages
to be candidates. ES2 uses global analysis to determine an appropriate subset of pages

Table 12.4 Resolution table in
 Resolve2Step

URL Sources

C {A,B}

… …

X {Y}

… …

292 CHAPTER 12 Case studies

as navigational. [5] describes two algorithms: site root analysis and anchor text analysis .
We briefl y review these algorithms and describe how Jaql is used to implement these
algorithms on large data sets.

GLOBAL ANALYSIS ALGORITHMS

Each global analysis task takes as input a set of pages and the associated features discov-
ered during local analysis. Listing 12.4 shows an example JSON record corresponding
to the page titled “G. J. Chaitin home page.” The fi elds produced by local analysis are
in the record titled “LA” and those produced by global analysis are in “GA.”

Listing 12.4 Example JSON output from global analysis and Jaql query

[...,
{docid: 1879495641814943578,
 url: "http://w3.watson.ibm.com/~chaitin/index.html",
 title: "G J Chaitin Home Page",
 ...
 LA: {
 personalHomepage: {name: G J Chaitin, begin: 0, end: 11},
 geography: {countries: "USA", ...}
 ...},
 GA: {
 personalHomepageSiteRootAnalysis: {marked: true, ...},
 ...}
}, ...]

$alldocs = fi le "laDocs.json";
$results = fi le "phpGADocs.json";

$alldocs
-> fi lter not isnull($.LA.personalHomepage.name)
-> partition by $t = $.LA.personalHomepage.name
 |- SiteRootAnalysis($t, $) -|
-> write $results;

Figure 12.10 Resolve2Step for
one segment (400K Pages) has
a performance speed-up linear in
cluster size.Cluster Size (# Servers)

1 2 3 4 5 6 7 8

E
la

ps
ed

 T
im

e
(m

in
s)

0

5

10

15

20

25

30

35

40

45

S
pe

ed
-u

p

0

1

2

3

4

5

6

7

8
Time

Speed-up

 Building analytics for enterprise search —IBM’s Project ES2 293

The two algorithms of global analysis are

 Site root analysis■ —Both algorithms are used to group candidate pages and iden-
tify a set of representative pages. Given a collection of candidate pages, it’s fi rst
partitioned by the feature of interest, for example, PersonalHomePage. For each
group, a forest of pages is constructed where each URL is a node in the forest,
relating the two URLS A and B as parent and child if A is the longest prefi x of B.
(Shorter prefi xes are higher ancestors.) The forest is pruned using some com-
plex logic that may involve inputs from other local analysis algorithms, the de-
tails of which are beyond the scope of this case study. We use site root analysis not
only for the output from PersonalHomePage, but also for TitleHomePage (e.g.,
pages titled “Working at Almaden Research Center” or “IT Help Central”).

 Anchor text analysis■ —This algorithm collects all the anchor text for each page by
examining all the pages that point to it. The aggregated anchor text is processed
to pick a set of representative terms for that URL. For further details on this
algorithm, see [5].

HADOOP IMPLEMENTATION

In global analysis, fi rst, a merge step joins together the results of local analysis on the
main crawl and the tags for the URLs collected from Dogear. This is followed by a de-
duplication step where duplicate pages are eliminated. Each global analysis task then
involves some standard data manipulation (e.g., partitioning, fi ltering, joining) in con-
junction with some task-specifi c user-defi ned function, such as URL forest generation
and pruning. Jaql is used to specify these tasks at a high level, and execute them in
parallel using Hadoop.

Consider the Jaql query in listing 12.4 used for the global analysis on
PersonalHomePage data. The fi rst two lines specify the input and output fi les. The
input is assumed to be a JSON array—in this case, an array of records—each record
representing a page and the associated results from local analysis. The third line
is the start of a Jaql pipe: pages fl ow from the input fi le, referred to by $allDocs ,
to subsequent operators. The connection between pipe operators is denoted by
->. Following the input, the “fi lter” operator produces a value when its predicate
evaluates to true. In the example, only pages that have a local analysis (LA) fi eld,
a PersonalHomePage fi eld, and a non-null name are output to the next operator.
The $ is a variable that refers to the current value in the pipe. The fi ltered pages
are partitioned according to name. For each partition, the user-defi ned function
SiteRootAnalysis is evaluated. The function takes as input the partitioning fi eld $t
(a variable for name), and all pages in the partition ($). Finally, the annotated pages
are written to $results output fi le.

Jaql evaluates the query shown in the preceding listing 12.4 by translating to a
MapReduce job and submitting the job to Hadoop for evaluation. In this example, the
map stage fi lters pages and extracts the partitioning key. The reduce stage evaluates
the SiteRootAnalysis function per partition and writes the output to a fi le. In general,

294 CHAPTER 12 Case studies

Figure 12.11 Global
analysis times

Jaql automatically translates a collection of pipe defi nitions into a directed acyclic
graph of MapReduce jobs.

In fi gures 12.11 and 12.12, we present how the global analysis task scaled on a
collection of 16 million documents using Jaql and Hadoop as the cluster size was
increased from two to eight servers. Figure 12.11 shows detailed elapsed times for each
stage involved after local analysis through the end of global analysis. Figure 12.12 shows
that as servers were added to the cluster, the total time to evaluate merge, dedup, and
global analysis improved proportionally.

MINING TASKS

ES2 builds acronym libraries , regular expression patterns , and geo-classifi cation
rules automatically using the crawled data in background mining tasks. Recall that

0

1

2

3

4

5

6

7

8

9

2 4 6 8

C l uster S i ze (# S e rvers)

S
p

e
e

d
-u

p

Figure 12.12 Global analysis speed-up

 Building analytics for enterprise search —IBM’s Project ES2 295

local analysis algorithms use these resources. Periodically, the local analysis is rerun
on all the pages after updating these resources. As an example, we provide a brief
description of the acronym mining algorithm and the geo-classifi cation algorithm
used in ES2 below.

Acronym mining is a computationally intensive task that benefi ts from a parallel
implementation on Hadoop. The algorithm used in ES2 is adapted from [8]. It works
by examining the text of each page to fi rst identify patterns of the form “longForm
(shortForm)” or “shortForm (longForm)”. After identifying acronyms and their candidate
longForms, the map function outputs [shortForm, longForm] as a key/value pair. The
reduce function gathers all the possible longForms together for a given shortForm and
ranks them by frequency before producing the output. The reduce function merges
together longForms that are nearly identical, such as “Individual Development Plan”
and “Individual Development Plans” as longForms for “idp .” You can see the map and
reduce functions for the mining task in listing 12.5. This task is easily parallelized on
a cluster.

Listing 12.5 Mining for acronyms

Map (Key: URL, Value: PageText)
Identify all (shortForm, longForm) pairs in the text
For each instance, output [shortForm, longForm]
End

Reduce (Key: shortForm, Values: longForms)
Canonicalize longForms that differ slightly
Compute frequency of each longForm
Output longForms in sorted order
End

Figure 12.13 shows the running time of this algorithm on a sample of 10 million docu-
ments as the number of nodes is increased from two to eight. As can be seen, the
overall task completes in less than 25 minutes even with two nodes. But we see that this
task doesn’t scale linearly with the size of the cluster. We suspect that this is because
the input data is fragmented over several segments, and Hadoop chooses to split this
job into a large number of tasks in the map phase which imposes a large, fi xed over-
head independent of the cluster size. We’re investigating methods to overcome these
performance issues.

The goal of the geo-classifi cation task is to label each page on the intranet with the
country, region, and/or IBM location for which the page is most relevant. Numerous
factors make this task particularly nontrivial. For instance, many new business
processes and web applications within IBM are fi rst deployed in the U.S. before
being extended to other countries and regions across the world. Site administrators
responsible for developing the content for the subsequent rounds of deployment
often use the U.S. page as a starting point and make appropriate edits to tailor the
pages to their respective countries. But when performing this customization, quite
often the administrators don’t edit the corresponding HTML meta headers that

296 CHAPTER 12 Case studies

convey the locale, language, and other geo-specifi c information.13 A simple-minded
classifi er that directly exploits information from the meta headers is therefore prone
to errors. In ES2, we’re currently employing a complex rule-driven classifi er consisting
of a robust set of manually created rules over a small set of page features (e.g.,
presence of a country name in the title, a country code in the URL, etc.). While the
rules have been hand-tuned for high precision, the recall—the number of pages for
which the classifi er is able to assign non-empty geo labels—is limited. Improvement
in recall requires the use of signifi cantly more features from a page than is used by
our current classifi er. But manually developing accurate rule sets over these larger
feature sets is extremely laborious. We’re now in the process of developing a scalable
mining algorithm to automatically “induce” additional classifi cation rules over these
new features, given the high-quality rule set already available today. The use of a
platform like Hadoop is critical to scale our mining algorithms to millions of pages,
each with several hundred features.

12.4.4 Conclusions

We described the architecture of ES2—a scalable enterprise search system developed
at IBM using open source components, such as Nutch, Hadoop, Lucene, and Jaql.
We also outlined the changes we needed to make to Nutch for the purposes of crawl-
ing the enterprise. We mapped the local and global analysis algorithms from [5] on
to Hadoop. In implementing a complex workfl ow involving crawling, local analysis,
global analysis, and indexing, we found JSON to be a convenient data format and
Jaql to be an extremely powerful tool. In summary, we believe that Hadoop, Nutch,
Lucene, and Jaql constitute a powerful set of tools with which sophisticated, scalable
systems like ES2 can be built.

Cluster Size (# Servers)
0 2 4 6 8

E
la

ps
ed

 T
im

e
(m

in
s)

5

10

15

20

25

30

S
pe

ed
-u

p

0

1

2

3

4

5

6

7

8
Time

Speed-up

Figure 12.13 Acronym mining has
a speed-up linear in cluster size.

13 Note that the meta headers are intended for consumption by browsers and crawlers and not visible when
the page is rendered.

 Building analytics for enterprise search —IBM’s Project ES2 297

12.4.5 References

Fagin, R., R. Kumar, K. S. McCurley, J. Novak, D. Sivakumar, J. A. Tomlin, and D. P.
Williamson. “Searching the workplace web.” In WWW, pages 366–375, 2003.

Broder, A. “A taxonomy of web search.” SIGIR Forum, 36(2):3–10, 2002.
Hawking, D. “Challenges in enterprise search.” In ADC, pages 15–24, 2004.
Fontura, M., E. J. Shekita, J. Y. Zien, S. Rajagopalan, and A. Neumann. “High performance

index build algorithms for intranet search engines.” In VLDB, pages 1158–1169,
2004.

Zhu, H., S. Raghavan, S. Vaithyanathan, and A. Löser. “Navigating the intranet with
high precision.” In WWW, pages 491–500, 2007.

Li, Y., R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. V. Jagadish. “Regular
expression learning for information extraction.” In EMNLP, 2008.

Reiss, F., S. Raghavan, R. Krishnamurthy, H. Zhu, and S. Vaithyanathan. “An algebraic
approach to rule-based information extraction.” In ICDE, pages 933–942, 2008.

Schwartz, A. S., and M. A. Hearst. “A simple algorithm for identifying abbreviation
defi nitions in biomedical text.” In Pacifi c Symposium on Biocomputing, pages 451–
462, 2003.

298

appendix
HDFS fi le commands

This appendix lists the HDFS commands for managing fi les. They’re in the form of

hadoop fs -cmd <args>

where cmd is the specifi c fi le command and <args> is a variable number of argu-
ments.

You can see the command usage in the following convention. Parameters inside
brackets ([]) are optional and ellipsis (. . .) means the optional parameter can be
repeated. FILE is for fi lenames whereas PATH can be either fi lenames or directory
names. SRC and DST are path names but they function specifi cally as source and
destination, respectively. LOCALSRC and LOCALDST are further required to be
on the local fi lesystem.

Command Usage and description

cat hadoop fs –cat FILE [FILE ...]

Displays the fi les’ content. For reading compressed fi les, you should use
the text command instead.

chgrp hadoop fs –chgrp [-R] GROUP PATH [PATH ...]

Changes the group association for fi les and directories. The -R option
applies the change recursively. The user must be the fi les’ owner or a
superuser. See section 8.3 for more background information on the HDFS
fi le permission system.

 APPENDIX HDFS fi le commands 299

Command Usage and description

chmod hadoop fs –chmod [-R] MODE[,MODE ...] PATH [PATH ...]

Changes the permissions of fi les and directories. Similar to its Unix equivalent,
MODE can be a 3-digit octal mode, or {augo}+/-{rwxX}. The -R option
applies the change recursively. The user must be the fi les’ owner or a
superuser. See section 8.3 for more background information on the HDFS fi le
permission system.

chown hadoop fs –chown [-R] [OWNER][:[GROUP]] PATH [PATH
...]

Changes the ownership of fi les and directories. The -R option applies the
change recursively. The user must be a superuser. See section 8.3 for more
background information on the HDFS fi le permission system.

copyFromLocal hadoop fs –copyFromLocal LOCALSRC [LOCALSRC ...] DST

Identical to put (copy fi les from the local fi le system).

copyToLocal hadoop fs –copyToLocal [-ignorecrc] [-crc] SRC [SRC
...] LOCALDST

Identical to get (copy fi les to the local fi le system).

count hadoop fs –count [-q] PATH [PATH ...]

Displays the number of subdirectories, number of fi les, number of bytes used,
and name for all fi les/directories identifi ed by PATH. The -q option displays
quota information.

cp hadoop fs –cp SRC [SRC ...] DST

Copies fi les from source to destination. If multiple source fi les are specifi ed,
destination has to be a directory.

du hadoop fs –du PATH [PATH ...]

Displays fi le sizes. If PATH is a directory, the size of each fi le in the directory
is reported. Filenames are stated with the full URI protocol prefi x. Note that
although du stands for disk usage, it should not be taken literally, as disk
usage depends on block size and replica factors.

dus hadoop fs –dus PATH [PATH ...]

Similar to du, but for a directory, dus reports the sum of fi le sizes in
aggregate rather than individually.

expunge hadoop fs –expunge

Empties the trash. If the trash feature is enabled, when a fi le is deleted, it
is fi rst moved into the temporary .Trash/ folder. The fi le will be permanently
deleted from the .Trash/ folder only after a user-confi gurable delay. The
expunge command forcefully deletes all fi les from the .Trash/ folder. Note
that as long as a fi le is in the .Trash/ folder, it can be restored by moving it
back to its original location.

300 APPENDIX HDFS fi le commands

Command Usage and description

get hadoop fs –get [-ignorecrc] [-crc] SRC [SRC ...]
LOCALDST

Copies fi les to the local fi lesystem. If multiple source fi les are specifi ed, local
destination has to be a directory. If LOCALDST is -, the fi les are copied to
stdout.

HDFS computes a checksum for each block of each fi le. The checksums for
a fi le are stored separately in a hidden fi le. When a fi le is read from HDFS,
the checksums in that hidden fi le are used to verify the fi le’s integrity. For the
get command, the -crc option will copy that hidden checksum fi le. The
-ignorecrc option will skip the checksum checking when copying.

getmerge hadoop fs –getmerge SRC [SRC ...] LOCALDST [addnl]

Retrieves all fi les identifi ed by SRC, merges them, and writes the single
merged fi le to LOCALDST in the local fi lesystem. The option addnl will add a
newline character to the end of each fi le.

help hadoop fs –help [CMD]

Displays usage information for the command CMD. If CMD is omitted, it
displays usage information for all commands.

ls hadoop fs –ls PATH [PATH ...]

Lists fi les and directories. Each entry shows name, permissions, owner, group,
size, and modifi cation date. File entries also show their replication factor.

lsr hadoop fs –lsr PATH [PATH ...]

Recursive version of ls.

mkdir hadoop fs –mkdir PATH [PATH ...]

Creates directories. Any missing parent directories are also created (like Unix
mkdir –p).

moveFromLocal hadoop fs –moveFromLocal LOCALSRC [LOCALSRC ...] DST

Similar to put, except the local source is deleted after it’s been successfully
copied to HDFS.

moveToLocal hadoop fs –moveToLocal [-crc] SRC [SRC ...] LOCALDST

Displays a “not implemented yet” message.

mv hadoop fs –mv SRC [SRC ...] DST

Moves fi les from source(s) to destination. If multiple source fi les are specifi ed,
destination has to be a directory. Moving across fi lesystems is not permitted.

put hadoop fs –put LOCALSRC [LOCALSRC ...] DST

Copies fi les or directories from local system to destination fi lesystem. If
LOCALSRC is set to -, input is set to stdin and DST must be a fi le.

rm hadoop fs –rm PATH [PATH ...]

Deletes fi les and empty directories.

rmr hadoop fs –rmr PATH [PATH ...]

Recursive version of rm.

 APPENDIX HDFS fi le commands 301

Command Usage and description

setrep hadoop fs –setrep [-R] [-w] REP PATH [PATH ...]

Sets the target replication factor to REP for given fi les. The -R option will
recursively apply the target replication factor to fi les in directories identifi ed by
PATH. The replication factor will take some time to get to the target. The -w
option will wait for the replication factor to match the target.

stat hadoop fs –stat [FORMAT] PATH [PATH ...]

Displays “statistical” information on fi les. The FORMAT string is printed exactly
but with the following format specifi ers replaced.

%b Size of fi le in blocks

%F The string “directory” or “regular fi le” depending on fi le type

%n Filename

%o Block size

%r Replication

%y UTC date in yyyy-MM-dd HH:mm:ss format

%Y Milliseconds since January 1, 1970 UTC

tail hadoop fs –tail [-f] FILE

Displays the last one kilobyte of FILE.

test hadoop fs –test –[ezd] PATH

Performs one of the following type checks on PATH:

-e PATH existence. Returns 0 if PATH exists.

-z Empty fi le. Returns 0 if fi le length is 0.

-d Returns 0 if PATH is a directory.

text hadoop fs –text FILE [FILE ...]

Displays the textual content of fi les. Identical to cat if fi les are text fi les. Files
in known compressed format (gzip and Hadoop’s binary sequence fi le format)
are uncompressed fi rst.

touchz hadoop fs –touchz FILE [FILE ...]

Creates fi les of length 0. Fails if fi les already exist and have nonzero length.

	Cover
	Copyright
	Table of Contents
	Part 1: Hadoop-A Distributed Programming Framework
	Chapter 1: Introducing Hadoop
	1.1 Why “Hadoop in Action”?
	1.2 What is Hadoop ?
	1.3 Understanding distributed systems and Hadoop
	1.4 Comparing SQL databases and Hadoop
	1.5 Understanding MapReduce
	1.6 Counting words with Hadoop—running your fi rst program
	1.7 History of Hadoop
	1.8 Summary
	1.9 Resources

	Chapter 2: Starting Hadoop
	2.1 The building blocks of Hadoop
	2.2 Setting up SSH for a Hadoop cluster
	2.3 Running Hadoop
	2.4 Web-based cluster UI
	2.5 Summary

	Chapter 3: Components of Hadoop
	3.1 Working with files in HDFS
	3.2 Anatomy of a MapReduce program
	3.3 Reading and writing
	3.4 Summary

	Part 2: Hadoop in Action
	Chapter 4: Writing basic MapReduce programs
	4.1 Getting the patent data set
	4.2 Constructing the basic template of a MapReduce program
	4.3 Counting things
	4.4 Adapting for Hadoop’s API changes
	4.5 Streaming in Hadoop
	4.6 Improving performance with combiners
	4.7 Exercising what you’ve learned
	4.8 Summary
	4.9 Further resources

	Chapter 5: Advanced MapReduce
	5.1 Chaining MapReduce jobs
	5.2 Joining data from different sources
	5.3 Creating a Bloom fi lter
	5.4 Exercising what you’ve learned
	5.5 Summary
	5.6 Further resources

	Chapter 6: Programming Practices
	6.1 Developing MapReduce programs
	6.2 Monitoring and debugging on a production cluster
	6.3 Tuning for performance
	6.4 Summary

	Chapter 7: Cookbook
	7.1 Passing job-specifi c parameters to your tasks
	7.2 Probing for task -specifi c information
	7.3 Partitioning into multiple output fi les
	7.4 Inputting from and outputting to a database
	7.5 Keeping all output in sorted order
	7.6 Summary

	Chapter 8: Managing Hadoop
	8.1 Setting up parameter values for practical use
	8.2 Checking system’s health
	8.3 Setting permissions
	8.4 Managing quotas
	8.5 Enabling trash
	8.6 Removing DataNodes
	8.7 Adding DataNodes
	8.8 Managing NameNode and Secondary NameNode
	8.9 Recovering from a failed NameNode
	8.10 Designing network layout and rack awareness
	8.11 Scheduling jobs from multiple users
	8.12 Summary

	Part 3: Hadoop Gone Wild
	Chapter 9: Running Hadoop in the cloud
	9.1 Introducing Amazon Web Services
	9.2 Setting up AWS
	9.3 Setting up Hadoop on EC2
	9.4 Running MapReduce programs on EC2
	9.5 Cleaning up and shutting down your EC2 instances
	9.6 Amazon Elastic MapReduce and other AWS services
	9.7 Summary

	Chapter 10: Programming with Pig
	10.1 Thinking like a Pig
	10.2 Installing Pig
	10.3 Running Pig
	10.4 Learning Pig Latin through Grunt
	10.5 Speaking Pig Latin
	10.6 Working with user-defi ned functions
	10.7 Working with scripts
	10.8 Seeing Pig in action—example of computing similar patents
	10.9 Summary

	Chapter 11: Hive and the Hadoop herd
	11.1 Hive
	11.2 Other Hadoop -related stuff
	11.3 Summary

	Chapter 12: Case studies
	12.1 Converting 11 million image documentsfrom the New York Times archive
	12.2 Mining data at China Mobile
	12.3 Recommending the best websites at StumbleUpon
	12.4 Building analytics for enterprise search —IBM’s Project ES2

	Appendix: HDFS file commands

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

