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Part 1

Hadoop–A Distributed 
Programming Framework

Part 1 of this book introduces the basics for understanding and using Hadoop. 
We describe the hardware components that make up a Hadoop cluster, as well 
as the installation and confi guration to create a working system. We cover the 
MapReduce framework at a high level and get your fi rst MapReduce program up 
and running.
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Introducing Hadoop

This chapter covers
 The basics of writing a scalable, ■

distributed data-intensive program

 Understanding Hadoop and MapReduce■

 Writing and running a basic MapReduce program■

Today, we’re surrounded by data. People upload videos, take pictures on their 
cell phones, text friends, update their Facebook status, leave comments around 
the web, click on ads, and so forth. Machines, too, are generating and keeping 
more and more data. You may even be reading this book as digital data on your 
computer screen, and certainly your purchase of this book is recorded as data with 
some retailer.1

The exponential growth of data fi rst presented challenges to cutting-edge 
businesses such as Google, Yahoo, Amazon, and Microsoft. They needed to go 
through terabytes  and petabytes  of data to fi gure out which websites were popular, 
what books were in demand, and what kinds of ads appealed to people. Existing 
tools were becoming inadequate to process such large data sets. Google was the fi rst 
to publicize MapReduce—a system they had used to scale their data processing needs. 

1 Of course, you’re reading a legitimate copy of this, right?
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This system aroused a lot of interest because many other businesses were facing similar 
scaling challenges, and it wasn’t feasible for everyone to reinvent their own proprietary 
tool. Doug Cutting  saw an opportunity and led the charge to develop an open source 
version of this MapReduce system called Hadoop . Soon after, Yahoo and others 
rallied around to support this effort. Today, Hadoop is a core part of the computing 
infrastructure for many web companies, such as Yahoo , Facebook , LinkedIn , and 
Twitter . Many more traditional businesses, such as media and telecom, are beginning 
to adopt this system too. Our case studies in chapter 12 will describe how companies 
including New York Times , China Mobile , and IBM are using Hadoop .

Hadoop, and large-scale distributed data processing in general, is rapidly becoming 
an important skill set for many programmers. An effective programmer, today, must 
have knowledge of relational databases, networking, and security, all of which were 
considered optional skills a couple decades ago. Similarly, basic understanding of 
distributed data processing will soon become an essential part of every programmer’s 
toolbox. Leading universities, such as Stanford  and CMU,  have already started 
introducing Hadoop into their computer science curriculum. This book will help you, 
the practicing programmer, get up to speed on Hadoop quickly and start using it to 
process your data sets.

This chapter introduces Hadoop more formally, positioning it in terms of 
distributed systems and data processing systems. It gives an overview of the MapReduce 
programming model. A simple word counting example with existing tools highlights 
the challenges around processing data at large scale. You’ll implement that example 
using Hadoop to gain a deeper appreciation of Hadoop’s simplicity. We’ll also discuss 
the history of Hadoop and some perspectives on the MapReduce paradigm. But let me 
fi rst briefl y explain why I wrote this book and why it’s useful to you.

1.1 Why “Hadoop in Action”?
Speaking from experience, I fi rst found Hadoop to be tantalizing in its possibilities, yet 
frustrating to progress beyond coding the basic examples. The documentation at the 
offi cial Hadoop site is fairly comprehensive, but it isn’t always easy to fi nd straightfor-
ward answers to straightforward questions.

The purpose of writing the book is to address this problem. I won’t focus on the nitty-
gritty details. Instead I will provide the information that will allow you to quickly create 
useful code, along with more advanced topics most often encountered in practice.

1.2 What is Hadoop ?
Formally speaking, Hadoop is an open source framework  for writing and running dis-
tributed applications  that process large amounts of data.  Distributed computing is a 
wide and varied fi eld, but the key distinctions of Hadoop are that it is

 Accessible■ —Hadoop runs on large clusters of commodity machines or on cloud 
computing services such as Amazon’s Elastic Compute Cloud (EC2 ).
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Hadoop cluster

Client Client Client

Figure 1.1 A Hadoop cluster has many parallel machines that store and process large data 
sets. Client computers send jobs into this computer cloud and obtain results.

 ■ Robust—Because it is intended to run on commodity hardware, Hadoop is archi-
tected with the assumption of frequent hardware malfunctions. It can gracefully 
handle most such failures.

 Scalable■ —Hadoop scales linearly to handle larger data by adding more nodes to 
the cluster.

 Simple■ —Hadoop allows users to quickly write effi cient parallel code.

Hadoop’s accessibility and simplicity give it an edge over writing and running large 
distributed programs. Even college students can quickly and cheaply create their own 
Hadoop cluster . On the other hand, its robustness and scalability make it suitable for 
even the most demanding jobs at Yahoo and Facebook. These features make Hadoop 
popular in both academia and industry.

Figure 1.1 illustrates how one interacts with a Hadoop cluster. As you can see, a 
Hadoop cluster is a set of commodity machines networked together in one location.2 
Data storage and processing all occur within this “cloud” of machines . Different users 
can submit computing “jobs” to Hadoop from individual clients, which can be their 
own desktop machines in remote locations from the Hadoop cluster.

Not all distributed systems are set up as shown in fi gure 1.1. A brief introduction to 
other distributed systems will better showcase the design philosophy behind Hadoop. 

2  While not strictly necessary, machines in a Hadoop cluster are usually relatively homogeneous x86 Linux 
boxes. And they’re almost always located in the same data center, often in the same set of racks.
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1.3 Understanding distributed systems and Hadoop 
Moore’s law  suited us well for the past decades, but building bigger and bigger servers 
is no longer necessarily the best solution to large-scale problems. An alternative that 
has gained popularity is to tie together many low-end/commodity machines together 
as a single functional distributed system .

To understand the popularity of distributed systems (scale-out)  vis-à-vis huge 
monolithic servers (scale-up), consider the price performance of current I/O 
technology. A high-end machine with four I/O channels each having a throughput of 
100 MB/sec will require three hours to read a 4 TB data set!  With Hadoop, this same 
data set will be divided into smaller (typically 64 MB) blocks that are spread among 
many machines in the cluster via the Hadoop Distributed File System (HDFS ). With 
a modest degree of replication, the cluster machines can read the data set in parallel 
and provide a much higher throughput. And such a cluster of commodity machines 
turns out to be cheaper than one high-end server!

The preceding explanation showcases the effi cacy of Hadoop relative to monolithic 
systems. Now let’s compare Hadoop to other architectures for distributed systems. 
SETI@home , where screensavers around the globe assist in the search for extraterrestrial 
life, represents one well-known approach. In SETI@home, a central server stores radio 
signals from space and serves them out over the internet to client desktop machines 
to look for anomalous signs. This approach moves the data to where computation will 
take place (the desktop screensavers). After the computation, the resulting data is 
moved back for storage.

Hadoop differs from schemes such as SETI@home in its philosophy toward data.  
SETI@home requires repeat transmissions of data between clients and servers. This 
works fi ne for computationally intensive work, but for data-intensive processing, 
the size of data becomes too large to be moved around easily. Hadoop focuses on 
moving code to data instead of vice versa. Referring to fi gure 1.1 again, we see both 
the data and the computation exist within the Hadoop cluster. The clients send only 
the MapReduce programs to be executed, and these programs are usually small (often 
in kilobytes). More importantly, the move-code-to-data  philosophy applies within the 
Hadoop cluster itself. Data is broken up and distributed across the cluster, and as much 
as possible, computation on a piece of data takes place on the same machine where 
that piece of data resides.

This move-code-to-data philosophy makes sense for the type of data-intensive 
processing Hadoop is designed for. The programs to run (“code”) are orders of 
magnitude smaller than the data and are easier to move around. Also, it takes more 
time to move data across a network than to apply the computation to it. Let the data 
remain where it is and move the executable code to its hosting machine.

Now that you know how Hadoop fi ts into the design of distributed systems, let’s see 
how it compares to data processing systems, which usually means SQL databases. 
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1.4 Comparing SQL databases and Hadoop 
Given that Hadoop is a framework for processing data, what makes it better than standard 
relational databases, the workhorse of data processing in most of today’s applications? 
One reason is that SQL  (structured query language) is by design targeted at structured 
data. Many of Hadoop’s initial applications deal with unstructured data such as text. 
From this perspective Hadoop provides a more general paradigm than SQL.

For working only with structured data, the comparison is more nuanced. In 
principle, SQL and Hadoop can be complementary, as SQL is a query language which 
can be implemented on top of Hadoop as the execution engine. 3 But in practice, SQL 
databases tend to refer to a whole set of legacy technologies, with several dominant 
vendors, optimized for a historical set of applications. Many of these existing commercial 
databases are a mismatch to the requirements that Hadoop targets.

With that in mind, let’s make a more detailed comparison of Hadoop with typical 
SQL databases on specifi c dimensions.

SCALE-OUT INSTEAD OF SCALE-UP

Scaling commercial relational databases  is expensive. Their design is more friendly 
to scaling up. To run a bigger database you need to buy a bigger machine. In fact, 
it’s not unusual to see server vendors market their expensive high-end machines as 
“database-class servers.” Unfortunately, at some point there won’t be a big enough 
machine available for the larger data sets. More importantly, the high-end machines 
are not cost effective for many applications. For example, a machine with four times 
the power of a standard PC costs a lot more than putting four such PCs in a cluster. 
Hadoop is designed to be a scale-out architecture operating on a cluster of com-
modity PC machines. Adding more resources means adding more machines to the 
Hadoop cluster. Hadoop clusters with ten to hundreds of machines is standard. In 
fact, other than for development purposes, there’s no reason to run Hadoop on a 
single server.

KEY/VALUE PAIRS INSTEAD OF RELATIONAL TABLES

A fundamental tenet of relational databases is that data resides in tables having rela-
tional structure defi ned by a schema . Although the relational model has great formal 
properties, many modern applications deal with data types that don’t fi t well into this 
model. Text documents, images, and XML fi les are popular examples. Also, large data 
sets are often unstructured or semistructured. Hadoop uses key/value pairs  as its ba-
sic data unit, which is fl exible enough to work with the less-structured data types. In 
Hadoop, data can originate in any form, but it eventually transforms into (key/value) 
pairs for the processing functions to work on.

FUNCTIONAL PROGRAMMING (MAPREDUCE) INSTEAD OF DECLARATIVE QUERIES (SQL)

SQL is fundamentally a high-level declarative language. You query data by stating the result 
you want and let the database engine fi gure out how to derive it. Under MapReduce you 

3  This is in fact a hot area within the Hadoop community, and we’ll cover some of the leading projects in 
chapter 11.
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specify the actual steps in processing the data, which is more analogous to an execution 
plan for a SQL engine . Under SQL you have query statements; under MapReduce 
you have scripts and codes. MapReduce allows you to process data in a more general 
fashion than SQL queries. For example, you can build complex statistical models  from 
your data or reformat your image data. SQL is not well designed for such tasks.

On the other hand, when working with data that do fi t well into relational structures, 
some people may fi nd MapReduce less natural to use. Those who are accustomed to 
the SQL paradigm may fi nd it challenging to think in the MapReduce way. I hope the 
exercises and the examples in this book will help make MapReduce programming 
more intuitive. But note that many extensions are available to allow one to take 
advantage of the scalability of Hadoop while programming in more familiar paradigms. 
In fact, some enable you to write queries in a SQL-like language, and your query is 
automatically compiled into MapReduce code for execution. We’ll cover some of these 
tools in chapters 10 and 11.

OFFLINE BATCH PROCESSING INSTEAD OF ONLINE TRANSACTIONS

Hadoop is designed for offl ine processing  and analysis of large-scale data. It doesn’t 
work for random reading and writing of a few records, which is the type of load for 
online transaction processing. In fact, as of this writing (and in the foreseeable future), 
Hadoop is best used as a write-once , read-many-times  type of data store. In this aspect 
it’s similar to data warehouses in the SQL world.

You have seen how Hadoop relates to distributed systems and SQL databases at a 
high level. Let’s learn how to program in it. For that, we need to understand Hadoop’s 
MapReduce paradigm. 

1.5 Understanding MapReduce 
You’re probably aware of data processing models such as pipelines  and message 
queues . These models provide specifi c capabilities in developing different aspects of 
data processing applications. The most familiar pipelines are the Unix pipes . Pipelines 
can help the reuse of processing primitives; simple chaining of existing modules cre-
ates new ones. Message queues can help the synchronization of processing primitives . 
The programmer writes her data processing task as processing primitives in the form 
of either a producer or a consumer. The timing of their execution is managed by 
the system.

Similarly, MapReduce is also a data processing model . Its greatest advantage is the 
easy scaling of data processing over multiple computing nodes. Under the MapReduce 
model, the data processing primitives are called mappers  and reducers .  Decomposing a 
data processing application into mappers and reducers is sometimes nontrivial. But, 
once you write an application in the MapReduce form, scaling the application to run 
over hundreds, thousands, or even tens of thousands of machines in a cluster is merely 
a confi guration change. This simple scalability is what has attracted many programmers 
to the MapReduce model.
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1.5.1 Scaling a simple program manually

Before going through a formal treatment of MapReduce, let’s go through an exercise 
of scaling a simple program to process a large data set. You’ll see the challenges of 
scaling a data processing program and will better appreciate the benefi ts of using a 
framework such as MapReduce to handle the tedious 
chores for you.

Our exercise is to count the number of times each word 
occurs in a set of documents. In this example, we have a 
set of documents having only one document with only one 
sentence:

Do as I say, not as I do.

We derive the word counts shown to the right.
We’ll call this particular exercise word counting . When 

the set of documents is small, a straightforward program 
will do the job. Let’s write one here in pseudo-code :

defi ne wordCount as Multiset;
for each document in documentSet {
    T = tokenize(document);
    for each token in T {
        wordCount[token]++;
    }
}
display(wordCount);

The program loops through all the documents. For each document, the words are 
extracted one by one using a tokenization process. For each word, its corresponding 
entry in a multiset called wordCount is incremented by one. At the end, a display() 
function prints out all the entries in wordCount.

Many ways to say MapReduce
Even though much has been written about MapReduce, one does not fi nd the name 
itself written the same everywhere. The original Google paper and the Wikipedia 
entry use the CamelCase version MapReduce. However, Google itself has used Map 
Reduce in some pages on its website (for example, http://research.google.com/
roundtable/MR.html). At the offi cial Hadoop documentation site, one can fi nd links 
pointing to a Map-Reduce Tutorial. Clicking on the link brings one to a Hadoop 
Map/Reduce Tutorial (http://hadoop.apache.org/core/docs/current/mapred_
tutorial.html) explaining the Map/Reduce framework. Writing variations also exist 
for the different Hadoop components such as NameNode (name node, name-
node, and namenode), DataNode, JobTracker, and TaskTracker. For the sake of 
consistency, we’ll go with CamelCase for all those terms in this book. (That is, we will 
use MapReduce, NameNode, DataNode, JobTracker, and TaskTracker.)

Word Count

as 2

do 2

i 2

not 1

say 1
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NOTE A multiset  is a set where each element also has a count. The word count 
we’re trying to generate is a canonical example of a multiset. In practice, it’s 
usually implemented as a hash table .

This program works fi ne until the set of documents you want to process becomes large. 
For example, you want to build a spam fi lter  to know the words frequently used in the 
millions of spam emails you’ve received. Looping through all the documents using a 
single computer will be extremely time consuming. You speed it up by rewriting the 
program so that it distributes the work over several machines. Each machine will pro-
cess a distinct fraction of the documents. When all the machines have completed this, 
a second phase of processing will combine the result of all the machines. The pseudo-
code for the fi rst phase, to be distributed over many machines, is

defi ne wordCount as Multiset;
for each document in documentSubset {
    T = tokenize(document);
    for each token in T {
        wordCount[token]++;
    }
}
sendToSecondPhase(wordCount);

And the pseudo-code for the second phase is

defi ne totalWordCount as Multiset;
for each wordCount received from fi rstPhase {
    multisetAdd (totalWordCount, wordCount);
}

That wasn’t too hard, right? But a few details may prevent it from working as expected. 
First of all, we ignore the performance requirement of reading in the documents. If 
the documents are all stored in one central storage server, then the bottleneck  is in 
the bandwidth of that server. Having more machines for processing only helps up to a 
certain point—until the storage server can’t keep up. You’ll also need to split up the 
documents among the set of processing machines such that each machine will process 
only those documents that are stored in it. This will remove the bottleneck of a central 
storage server. This reiterates the point made earlier about storage and processing hav-
ing to be tightly coupled in data-intensive distributed applications.

Another fl aw with the program is that wordCount (and totalWordCount) are stored 
in memory. When processing large document sets, the number of unique words can 
exceed the RAM storage  of a machine. The English language has about one million 
words, a size that fi ts comfortably into an iPod, but our word counting program will deal 
with many unique words not found in any standard English dictionary. For example, 
we must deal with unique names such as Hadoop. We have to count misspellings even 
if they are not real words (for example, exampel), and we count all different forms 
of a word separately (for example, eat, ate, eaten, and eating  ). Even if the number of 
unique words in the document set is manageable in memory, a slight change in the 
problem defi nition can explode the space complexity. For example, instead of words 



in documents, we may want to count IP addresses in a log fi le, or the frequency of 
bigrams. In the case of the latter, we’ll work with a multiset with billions of entries, 
which exceeds the RAM storage of most commodity computers.

NOTE A bigram  is a pair of consecutive words. The sentence “Do as I say, not 
as I do” can be broken into the following bigrams: Do as, as I, I say, say not, not 
as, as I, I do. Analogously, trigrams  are groups of three consecutive words. Both 
bigrams and trigrams are important  in natural language processing .

wordCount may not fi t in memory; we’ll have to rewrite our program to store this hash 
table on disk. This means we’ll implement a disk-based hash table, which involves a 
substantial amount of coding.

Furthermore, remember that phase two has only one machine, which will process 
wordCount sent from all the machines in phase one. Processing one wordCount is 
itself quite unwieldy. After we have added enough machines to phase one processing, 
the single machine in phase two will become the bottleneck. The obvious question 
is, can we rewrite phase two in a distributed fashion so that it can scale by adding 
more machines?

The answer is, yes. To make phase two work in a distributed fashion, you must somehow 
divide its work among multiple machines  such that they can run independently. You 
need to partition  wordCount after phase one such that each machine in phase two only 
has to handle one partition. In one example, let’s say we have 26 machines for phase 
two. We assign each machine to only handle wordCount for words beginning with a 
particular letter in the alphabet. For example, machine A in phase two will only handle 
word counting for words beginning with the letter a. To enable this partitioning in 
phase two, we need a slight modifi cation in phase one. Instead of a single disk-based 
hash table for wordCount, we will need 26 of them: wordCount-a, wordCount-b, 
and so on. Each one counts words starting with a particular letter. After phase one, 
wordCount-a from each of the phase one machines will be sent to machine A of phase 
two, all the wordCount-b’s will be sent to machine B, and so on. Each machine in 
phase one will shuffl e  its results among the machines in phase two.

Looking back, this word counting program is getting complicated. To make it work 
across a cluster of distributed machines, we fi nd that we need to add a number of 
functionalities:

 Store fi les over many processing machines (of phase one).■

 Write a disk-based hash table permitting processing without being limited by ■

RAM capacity.
 Partition the intermediate data■   (that is, wordCount) from phase one.
 Shuffl e the partitions to the appropriate machines in phase two.■

This is a lot of work for something as simple as word counting, and we haven’t even 
touched upon issues like fault tolerance. (What if a machine fails in the middle of its 
task?) This is the reason why you would want a framework like Hadoop. When you 
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write your application in the MapReduce model, Hadoop will take care of all that 
scalability “plumbing” for you.

1.5.2 Scaling the same program in MapReduce

MapReduce programs are executed in two main phases, called mapping  and reducing . 
Each phase is defi ned by a data processing function, and these functions are called 
mapper and reducer, respectively. In the mapping phase, MapReduce takes the input 
data and feeds each data element to the mapper. In the reducing phase, the reducer 
processes all the outputs from the mapper and arrives at a fi nal result.

In simple terms, the mapper is meant to fi lter and transform  the input into something 
that the reducer can aggregate over. You may see a striking similarity here with the two 
phases we had to develop in scaling up word counting. The similarity is not accidental. 
The MapReduce framework was designed after a lot of experience in writing scalable, 
distributed programs. This two-phase design pattern was seen in scaling many programs, 
and became the basis of the framework.

In scaling our distributed word counting program in the last section, we also had to 
write the partitioning and shuffl ing functions. Partitioning and shuffl ing are common 
design patterns that go along with mapping and reducing. Unlike mapping and 
reducing, though, partitioning and shuffl ing are generic functionalities that are not too 
dependent on the particular data processing application. The MapReduce framework 
provides a default implementation 
that works in most situations.

In order for mapping, reducing, 
partitioning, and shuffl ing (and a 
few others we haven’t mentioned) 
to seamlessly work together, we need 
to agree on a common structure for 
the data being processed. It should 
be fl exible and powerful enough to handle most of the targeted data processing 
applications. MapReduce uses lists  and (key/value) pairs as its main data primitives. 
The keys and values are often integers or strings but can also be dummy values to 
be ignored or complex object types. The map and reduce functions must obey the 
following constraint on the types of keys and values.

In the MapReduce framework you write applications by specifying the mapper and 
reducer. Let’s look at the complete data fl ow:

1 The input to your application must be structured as a list of (key/value) pairs , 
list(<k1, v1>). This input format may seem open-ended but is often quite 
simple in practice. The input format for processing multiple fi les is usually 
list(<String fi lename, String fi le_content>). The input format for 
processing one large fi le, such as a log fi le, is list(<Integer line_number, 
String log_event>).

Input Output

map <k1, v1> list(<k2, v2>)

reduce <k2, list(v2)> list(<k3, v3>)



2 The list of (key/value) pairs is broken up and each individual (key/value) pair, 
<k1, v1>, is processed by calling the map function of the mapper. In practice, 
the key k1 is often ignored by the mapper. The mapper transforms each <k1, 
v1> pair into a list of <k2, v2> pairs. The details of this transformation largely 
determine what the MapReduce program does. Note that the (key/value) pairs 
are processed in arbitrary order. The transformation must be self-contained in 
that its output is dependent only on one single (key/value) pair.
 For word counting, our mapper takes <String fi lename, String fi le_
content>  and promptly ignores fi lename. It can output a list of <String 
word, Integer count> but can be even simpler. As we know the counts will 
be aggregated in a later stage, we can output a list of <String word, Integer 
1> with repeated entries and let the complete aggregation be done later. That 
is, in the output list we can have the (key/value) pair <”foo”, 3> once or we 
can have the pair <”foo”, 1> three times. As we’ll see, the latter approach is 
much easier to program. The former approach may have some performance 
benefi ts, but let’s leave such optimization alone until we have fully grasped the 
MapReduce framework.

3 The output of all the mappers are (conceptually) aggregated into one giant 
list of <k2, v2> pairs. All pairs sharing the same k2 are grouped together into 
a new (key/value) pair, <k2, list(v2)>. The framework asks the reducer to 
process each one of these aggregated (key/value) pairs individually. Following 
our word counting example, the map output for one document may be a list 
with pair <”foo”, 1> three times, and the map output for another document 
may be a list with pair <”foo”, 1> twice. The aggregated pair  the reducer 
will see is <”foo”, list(1,1,1,1,1)>. In word counting, the output of our 
reducer is <”foo”, 5>, which is the total number of times “foo” has occurred 
in our document set. Each reducer works on a different word. The MapReduce 
framework automatically collects all the <k3, v3> pairs and writes them to 
fi le(s). Note that for the word counting example, the data types k2 and k3 are 
the same and v2 and v3 are also the same. This will not always be the case for 
other data processing applications.

Let’s rewrite the word counting program in MapReduce to see how all this fi ts together 
Listing 1.1 shows the pseudo-code.

Listing 1.1 Pseudo-code for map and reduce functions for word counting

map(String fi lename, String document) {
    List<String> T = tokenize(document);
    for each token in T {
        emit ((String)token, (Integer) 1);
    }
}
reduce(String token, List<Integer> values) {
    Integer sum = 0;

 Understanding MapReduce 13
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    for each value in values {
        sum = sum + value;
    }
    emit ((String)token, (Integer) sum);
}

We’ve said before that the output of both map and reduce function are lists. As you 
can see from the pseudo-code, in practice we use a special function in the framework 
called emit() to generate the elements in the list one at a time. This emit() function  
further relieves the programmer from managing a large list.

The code looks similar to what we have in section 1.5.1, except this time it will 
actually work at scale. Hadoop makes building scalable distributed programs easy, 
doesn’t it? Now let’s turn this pseudo-code into a Hadoop program. 

1.6 Counting words  with Hadoop—running your fi rst program
Now that you know what the Hadoop and MapReduce framework is about, let’s get it 
running. In this chapter, we’ll run Hadoop only on a single machine, which can be 
your desktop or laptop computer. The next chapter will show you how to run Hadoop 
over a cluster of machines, which is what you’d want for practical deployment. Run-
ning Hadoop on a single machine is mainly useful for development work.

Linux  is the offi cial development and production platform for Hadoop, although 
Windows  is a supported development platform as well. For a Windows box, you’ll need 
to install cygwin  (http://www-cygwin.com/) to enable shell and Unix scripts.

NOTE Many people have reported success in running Hadoop in development 
mode on other variants of Unix, such as Solaris  and Mac OS X . In fact, 
MacBook Pro seems to be the laptop of choice among Hadoop developers, as 
they’re ubiquitous in Hadoop conferences and user group meetings.

Running Hadoop requires Java  (version 1.6 or higher). Mac users should get it from 
Apple. You can download the latest JDK for other operating systems from Sun at 
http://java.sun.com/javase/downloads/index.jsp. Install it and remember the root of 
the Java installation, which we’ll need later.

To install Hadoop, fi rst get the latest stable release at http://hadoop.apache.org/
core/releases.html. After you unpack the distribution, edit the script conf/hadoop-
env.sh to set JAVA_HOME to the root of the Java installation you have remembered 
from earlier. For example, in Mac OS X, you’ll replace this line

# export JAVA_HOME=/usr/lib/j2sdk1.5-sun 

with this line

export JAVA_HOME=/Library/Java/Home

You’ll be using the Hadoop script quite often. Let’s run it without any arguments to 
see its usage documentation:
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bin/hadoop

We get

Usage: hadoop [--confi g confdir] COMMAND
where COMMAND is one of:
  namenode -format     format the DFS fi lesystem
  secondarynamenode    run the DFS secondary namenode
  namenode             run the DFS namenode
  datanode             run a DFS datanode
  dfsadmin             run a DFS admin client
  fsck                 run a DFS fi lesystem checking utility
  fs                   run a generic fi lesystem user client
  balancer             run a cluster balancing utility
  jobtracker           run the MapReduce job Tracker node
  pipes                run a Pipes job
  tasktracker          run a MapReduce task Tracker node
  job                  manipulate MapReduce jobs
  version              print the version
  jar <jar>            run a jar fi le
  distcp <srcurl> <desturl> copy fi le or directories recursively
  archive -archiveName NAME <src>* <dest> create a hadoop archive
  daemonlog            get/set the log level for each daemon
 or
  CLASSNAME            run the class named CLASSNAME
Most commands print help when invoked w/o parameters.

We’ll cover the various Hadoop commands in the course of this book. For our current 
purpose, we only need to know that the command to run a (     Java) Hadoop program is 
bin/hadoop jar <jar>. As the command implies, Hadoop programs written in Java 
are packaged in jar fi les  for execution.

Fortunately for us, we don’t need to write a Hadoop program fi rst; the default 
installation already has several sample programs we can use. The following command 
shows what is available in the examples jar fi le:

bin/hadoop jar hadoop-*-examples.jar

You’ll see about a dozen example programs prepackaged with Hadoop, and one 
of them is a word counting program called... wordcount! The important (inner) 
classes of that program are shown in listing 1.2. We’ll see how this Java program 
implements the word counting map and reduce functions we had in pseudo-code 
in listing 1.1. We’ll modify this program to understand how to vary its behavior. For 
now we’ll assume it works as expected and only follow the mechanics of executing a 
Hadoop program.

Without specifying any arguments, executing wordcount will show its usage 
information:

bin/hadoop jar hadoop-*-examples.jar wordcount

which shows the arguments list:

wordcount [-m <maps>] [-r <reduces>] <input> <output>



16 CHAPTER 1 Introducing Hadoop

The only parameters are an input directory (<input>) of text documents you want to 
analyze and an output directory (<output>) where the program will dump its output. 
To execute wordcount, we need to fi rst create an input directory:

mkdir input

and put some documents in it. You can add any text document to the directory. For 
illustration, let’s put the text version of the 2002 State of the Union address, obtained 
from http://www.gpoaccess.gov/sou/. We now analyze its word counts and see the 
results:

bin/hadoop jar hadoop-*-examples.jar wordcount input output
more output/*

You’ll see a word count of every word used in the document, listed in alphabetical or-
der. This is not bad considering you have not written a single line of code yet! But, also 
note a number of shortcomings in the included wordcount program. Tokenization  
is based purely on whitespace characters  and not punctuation marks, making States, 
States., and States: separate words. The same is true for capitalization, where States and 
states appear as separate words. Furthermore, we would like to leave out words that 
show up in the document only once or twice.

Fortunately, the source code for wordcount is available and included in the 
installation at src/examples/org/apache/hadoop/examples/WordCount.java. We 
can modify it as per our requirements. Let’s fi rst set up a directory structure for our 
playground and make a copy of the program.

mkdir playground
mkdir playground/src
mkdir playground/classes
cp src/examples/org/apache/hadoop/examples/WordCount.java

➥ playground/src/WordCount.java

Before we make changes to the program, let’s go through compiling and executing 
this new copy in the Hadoop framework.

javac -classpath hadoop-*-core.jar -d playground/classes

➥ playground/src/WordCount.java
jar -cvf playground/wordcount.jar -C playground/classes/ .

You’ll have to remove the output directory each time you run this Hadoop command, 
because it is created automatically.

bin/hadoop jar playground/wordcount.jar

➥ org.apache.hadoop.examples.WordCount input output

Look at the fi les in your output directory again. As we haven’t changed any program 
code, the result should be the same as before. We’ve only compiled our own copy 
rather than running the precompiled version.

Now we are ready to modify WordCount to add some extra features. Listing 1.2 is 
a partial view of the WordCount.java program. Comments and supporting code are 
stripped out.



Listing 1.2 WordCount.java

public class WordCount extends Confi gured implements Tool {

  public static class MapClass extends MapReduceBase
    implements Mapper<LongWritable, Text, Text, IntWritable> {

    private fi nal static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(LongWritable key, Text value, 
                    OutputCollector<Text, IntWritable> output, 
                    Reporter reporter) throws IOException {
      String line = value.toString();
      StringTokenizer itr = new StringTokenizer(line);   q
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());      w
        output.collect(word, one);
      }
    }
  }

  public static class Reduce extends MapReduceBase
    implements Reducer<Text, IntWritable, Text, IntWritable> {

    public void reduce(Text key, Iterator<IntWritable> values,
                       OutputCollector<Text, IntWritable> output, 
                       Reporter reporter) throws IOException {
      int sum = 0;
      while (values.hasNext()) {
        sum += values.next().get();
      }
      output.collect(key, new IntWritable(sum));    e
    }
  }

  ...
}

The main functional distinction between WordCount.java and our MapReduce pseudo-
code is that in WordCount.java, map() processes one line of text at a time whereas our 
pseudo-code processes a document at a time. This distinction may not even be apparent 
from looking at WordCount.java as it’s Hadoop’s default confi guration.

The code in listing 1.2 is virtually identical to our pseudo-code in listing 1.1 though 
the Java syntax makes it more verbose. The map and reduce functions are inside inner 
classes of WordCount. You may notice we use special classes such as LongWritable , 
IntWritable , and Text  instead of the more familiar Long, Integer, and String 
classes of Java. Consider these implementation details for now. The new classes have 
additional serialization capabilities needed by Hadoop’s internal.

The changes we want to make to the program are easy to spot. We see q that 
WordCount uses Java’s StringTokenizer in its default setting, which tokenizes based 
only on whitespaces. To ignore standard punctuation marks, we add them to the 
StringTokenizer’s list of delimiter characters:

StringTokenizer itr = new StringTokenizer(line, “ \t\n\r\f,.:;?![]`”);

 Counting words with Hadoop—running your fi rst program 17
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When looping through the set of tokens, each token is extracted and cast into a Text 
object w. (Again, in Hadoop, the special class Text is used in place of String.) We 
want the word count to ignore capitalization, so we lowercase all the words before turn-
ing them into Text objects.

word.set(itr.nextToken().toLowerCase());

Finally, we want only words that appear more than four times. We modify e to collect 
the word count into the output only if that condition is met. (This is Hadoop’s equiva-
lent of the emit() function in our pseudo-code.)

if (sum > 4) output.collect(key, new IntWritable(sum));

After making changes to those three lines, you can recompile the program and ex-
ecute it again. The results are shown in table 1.1.

Table 1.1 Words with a count higher than 4 in the 2002 State of the Union Address

11th (5) citizens (9) its (6) over (6) to (123)

a (69) congress (10) jobs (11) own (5) together (5)

about (5) corps (6) join (7) page (7) tonight (5)

act (7) country (10) know (6) people (12) training (5)

afghanistan (10) destruction (5) last (6) protect (5) united (6)

all (10) do (6) lives (6) regime (5) us (6)

allies (8) every (8) long (5) regimes (6) want (5)

also (5) evil (5) make (7) security (19) war (12)

America (33) for (27) many (5) september (5) was (11)

American (15) free (6) more (11) so (12) we (76)

americans (8) freedom (10) most (5) some (6) we’ve (5)

an (7) from (15) must (18) states (9) weapons (12)

and (210) good (13) my (13) tax (7) were (7)

are (17) great (8) nation (11) terror (13) while (5)

as (18) has (12) need (7) terrorist (12) who (18)

ask (5) have (32) never (7) terrorists (10) will (49)

at (16) health (5) new (13) than (6) with (22)

be (23) help (7) no (7) that (29) women (5)

been (8) home (5) not (15) the (184) work (7)

best (6) homeland (7) now (10) their (17) workers (5)

budget (7) hope (5) of (130) them (8) world (17)

but (7) i (29) on (32) these (18) would (5)

by (13) if (8) one (5) they (12) yet (8)
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Table 1.1 Words with a count higher than 4 in the 2002 State of the Union Address (Continued )

camps (8) in (79) opportunity (5) this (28) you (12)

can (7) is (44) or (8) thousands (5)

children (6) it (21) our (78) time (7)

We see that 128 words have a frequency count greater than 4. Many of these words 
appear frequently in almost any English text. For example, there is a (69), and (210), 
i (29), in (79), the (184) and many others. We also see words that summarize the issues 
facing the United States at that time: terror (13), terrorist (12), terrorists (10), security 
(19), weapons (12), destruction (5), afghanistan (10), freedom (10), jobs (11), budget (7), 
and many others. 

1.7 History of Hadoop 
Hadoop started out as a subproject of Nutch , which in turn was a subproject of Apache 
Lucene . Doug Cutting  founded all three projects, and each project was a logical pro-
gression of the previous one.

Lucene is a full-featured text indexing and searching library. Given a text collection, 
a developer can easily add search capability to the documents using the Lucene engine . 
Desktop search, enterprise search, and many domain-specifi c search engines have been 
built using Lucene. Nutch is the most ambitious extension of Lucene. It tries to build 
a complete web search engine using Lucene as its core component. Nutch has parsers 
for HTML, a web crawler, a link-graph database, and other extra components necessary 
for a web search engine. Doug Cutting envisions Nutch to be an open democratic 
alternative to the proprietary technologies in commercial offerings such as Google.

Besides having added components like a crawler and a parser, a web search engine  
differs from a basic document search engine in terms of scale. Whereas Lucene is 
targeted at indexing millions of documents, Nutch should be able to handle billions of 
web pages without becoming exorbitantly expensive to operate. Nutch will have to run 
on a distributed cluster of commodity hardware. The challenge for the Nutch team 
is to address scalability issues in software. Nutch needs a layer to handle distributed 
processing, redundancy, automatic failover, and load balancing. These challenges are 
by no means trivial.

Around 2004, Google published two papers describing the Google File System (GFS)  
and the MapReduce framework . Google claimed to use these two technologies for 
scaling its own search system. Doug Cutting immediately saw the applicability of these 
technologies to Nutch, and his team implemented the new framework and ported 
Nutch to it. The new implementation immediately boosted Nutch’s scalability. It started 
to handle several hundred million web pages and could run on clusters of dozens of 
nodes. Doug realized that a dedicated project to fl esh out the two technologies was 
needed to get to web scale, and Hadoop was born. Yahoo! hired Doug in January 
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2006 to work with a dedicated team on improving Hadoop as an open source project. 
Two years later, Hadoop achieved the status of an Apache Top Level Project . Later, on 
February 19, 2008, Yahoo! announced that Hadoop running on a 10,000+ core Linux 
cluster was its production system for indexing the Web (http://developer.yahoo.
net/blogs/hadoop/2008/02/yahoo-worlds-largest-production-hadoop.html). 
Hadoop had truly hit web scale! 

What’s up with the names?
When naming software projects, Doug Cutting seems to have been inspired by his 
family. Lucene is his wife’s middle name, and her maternal grandmother’s fi rst name. 
His son, as a toddler, used Nutch as the all-purpose word for meal and later named 
a yellow stuffed elephant Hadoop. Doug said he “was looking for a name that wasn’t 
already a web domain and wasn’t trademarked, so I tried various words that were in 
my life but not used by anybody else. Kids are pretty good at making up words.”

1.8 Summary
Hadoop is a versatile tool that allows new users to access the power of distributed com-
puting.  By using distributed storage and transferring code instead of data, Hadoop 
avoids the costly transmission step when working with large data sets.  Moreover, the 
redundancy of data allows Hadoop to recover should a single node fail. You have seen 
the ease of creating programs with Hadoop using the MapReduce framework.  What 
is equally important is what you didn’t have to do—worry about partitioning the data, 
determining which nodes will perform which tasks, or handling communication be-
tween nodes.  Hadoop handles this for you, leaving you free to focus on what’s most 
important to you—your data and what you want to do with it.

In the next chapter we’ll go into further details about the internals of Hadoop and 
setting up a working Hadoop cluster.

1.9 Resources
The offi cial Hadoop website is at http://hadoop.apache.org/.

The original papers on the Google File System and MapReduce are well worth 
reading. Appreciate their underlying design and architecture:

 The Google File System■ —http://labs.google.com/papers/gfs.html 
 MapReduce: Simplifi ed Data Processing on Large Clusters■ —http://labs.google.com/

papers/mapreduce.html
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Starting Hadoop

This chapter covers
 The architectural components of Hadoop■

 Setting up Hadoop and its three operating modes: ■

standalone, pseudo-distributed, and fully distributed

 Web-based tools to monitor your Hadoop setup■

This chapter will serve as a roadmap to guide you through setting up Hadoop. If you 
work in an environment where someone else sets up the Hadoop cluster for you, 
you may want to skim through this chapter. You’ll want to understand enough to 
set up your personal development machine, but you can skip through the details of 
confi guring the communication and coordination of various nodes.

After discussing the physical components of Hadoop in section 2.1, we’ll progress 
to setting up your cluster in sections 2.2. and 2.3. Section 2.3 will focus on the three 
operational modes of Hadoop and how to set them up. You’ll read about web-based 
tools that assist monitoring your cluster in section 2.5. 

2.1  The building blocks of Hadoop 
We’ve discussed the concepts of distributed storage and distributed computation 
in the previous chapter. Now let’s see how Hadoop implements those ideas. On 
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a fully confi gured cluster, “running Hadoop” means running a set of daemons, or 
resident programs, on the different servers in your network. These daemons have 
specifi c roles; some exist only on one server, some exist across multiple servers. The 
daemons  include

 NameNode■

 DataNode■

 Secondary NameNode■

 JobTracker■

 TaskTracker■

We’ll discuss each one and its role within Hadoop.

2.1.1  NameNode 

Let’s begin with arguably the most vital of the Hadoop daemons—the NameNode . 
Hadoop employs a master/slave architecture  for both distributed storage and distrib-
uted computation. The distributed storage system  is called the Hadoop File System , or 
HDFS. The NameNode is the master of HDFS that directs the slave DataNode daemons 
to perform the low-level I/O tasks. The NameNode is the bookkeeper of HDFS; it 
keeps track of how your fi les are broken down into fi le blocks, which nodes store those 
blocks, and the overall health of the distributed fi lesystem.

The function of the NameNode is memory and I/O intensive. As such, the 
server hosting the NameNode typically doesn’t store any user data or perform any 
computations for a MapReduce program to lower the workload on the machine. This 
means that the NameNode server doesn’t double as a DataNode or a TaskTracker.

There is unfortunately a negative aspect to the importance of the NameNode—it’s 
a single point of failure of your Hadoop cluster. For any of the other daemons, if their 
host nodes fail for software or hardware reasons, the Hadoop cluster will likely continue 
to function smoothly or you can quickly restart it. Not so for the NameNode.

2.1.2  DataNode 

Each slave machine in your cluster will host a DataNode  daemon to perform the grunt 
work of the distributed fi lesystem—reading and writing HDFS blocks to actual fi les on 
the local fi lesystem. When you want to read or write a HDFS fi le, the fi le is broken into 
blocks and the NameNode will tell your client which DataNode each block resides in. 
Your client communicates directly with the DataNode daemons to process the local 
fi les corresponding to the blocks. Furthermore, a DataNode may communicate with 
other DataNodes to replicate its data blocks for redundancy.

Figure 2.1 illustrates the roles of the NameNode and DataNodes. In this fi gure, we 
show two data fi les, one at /user/chuck/data1 and another at /user/james/data2. The 
data1 fi le takes up three blocks, which we denote 1, 2, and 3, and the data2 fi le consists 
of blocks 4 and 5. The content of the fi les are distributed among the DataNodes. In 
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/user/chuck/data1 -> 1,2,3
/user/james/data2 -> 4,5

NameNode

DataNodes

Figure 2.1 NameNode /DataNode  interaction in HDFS. The NameNode keeps 
track of the fi le metadata—which fi les are in the system and how each fi le is 
broken down into blocks. The DataNodes provide backup store of the blocks 
and constantly report to the NameNode to keep the metadata current.

this illustration, each block has three replicas. For example, block 1 (used for data1) is 
replicated over the three rightmost DataNodes. This ensures that if any one DataNode 
crashes or becomes inaccessible over the network, you’ll still be able to read the fi les.

DataNodes are constantly reporting to the NameNode. Upon initialization, each of 
the DataNodes informs the NameNode of the blocks it’s currently storing. After this 
mapping is complete, the DataNodes continually poll the NameNode to provide 
information regarding local changes as well as receive instructions to create, move, or 
delete blocks from the local disk.

2.1.3  Secondary NameNode 

The Secondary NameNode (SNN)  is an assistant daemon for monitoring the state of the 
cluster HDFS. Like the NameNode, each cluster has one SNN, and it typically resides 
on its own machine as well. No other DataNode or TaskTracker daemons run on the 
same server. The SNN differs from the NameNode in that this process doesn’t receive or 
record any real-time changes to HDFS. Instead, it communicates with the NameNode to 
take snapshots of the HDFS  metadata at intervals defi ned by the cluster confi guration.

As mentioned earlier, the NameNode is a single point of failure for a Hadoop cluster, 
and the SNN snapshots  help minimize the downtime and loss of data. Nevertheless, a 
NameNode failure requires human intervention to reconfi gure the cluster to use the 
SNN as the primary NameNode. We’ll discuss the recovery process in chapter 8 when 
we cover best practices for managing your cluster.
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2.1.4  JobTracker 

The JobTracker  daemon is the liaison between your application and Hadoop. Once 
you submit your code to your cluster, the JobTracker determines the execution plan 
by determining which fi les to process, assigns nodes to different tasks, and monitors all 
tasks as they’re running. Should a task fail, the JobTracker will automatically relaunch 
the task, possibly on a different node, up to a predefi ned limit of retries.

There is only one JobTracker daemon per Hadoop cluster. It’s typically run on a 
server as a master node of the cluster.

2.1.5  TaskTracker 

As with the storage daemons, the computing daemons also follow a master/slave archi-
tecture: the JobTracker is the master overseeing the overall execution of a MapReduce 
job and the TaskTrackers  manage the execution of individual tasks on each slave node. 
Figure 2.2 illustrates this interaction.

Each TaskTracker is responsible for executing the individual tasks that the JobTracker 
assigns. Although there is a single TaskTracker per slave node, each TaskTracker can 
spawn multiple JVMs  to handle many map or reduce tasks in parallel.

One responsibility of the TaskTracker is to constantly communicate with the 
JobTracker. If the JobTracker fails to receive a heartbeat from a TaskTracker within a 
specifi ed amount of time, it will assume the TaskTracker has crashed and will resubmit 
the corresponding tasks to other nodes in the cluster.

JobTracker

Client

TaskTracker

Reduce

Map

TaskTracker

Reduce

Map

TaskTracker

Reduce

Map

TaskTracker

Reduce

Map

Figure 2.2 JobTracker  and TaskTracker  interaction. After a client calls the 
JobTracker to begin a data processing job, the JobTracker partitions the work 
and assigns different map and reduce tasks to each TaskTracker in the cluster.
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DataNode
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Figure 2.3 Topology of a typical Hadoop cluster . It’s a master/slave architecture  
in which the NameNode and JobTracker are masters and the DataNodes and 
TaskTrackers are slaves.

Having covered each of the Hadoop daemons, we depict the topology of one typical 
Hadoop cluster in fi gure 2.3.

This topology features a master node running the NameNode and JobTracker 
daemons and a standalone node  with the SNN in case the master node fails. For small 
clusters, the SNN can reside on one of the slave nodes. On the other hand, for large 
clusters, separate the NameNode and JobTracker on two machines. The slave machines  
each host a DataNode and TaskTracker, for running tasks on the same node where 
their data is stored.

We’ll work toward setting up a complete Hadoop cluster of this form by fi rst 
establishing the master node and the control channels between nodes. If a Hadoop 
cluster is already available to you, you can skip the next section on how to set up Secure 
Shell (SSH) channels between nodes. You also have a couple of options to run Hadoop 
using only a single machine, in what are known as standalone and pseudo-distributed 
modes. They’re useful for development. Confi guring Hadoop to run in these two modes 
or the standard cluster setup (fully distributed mode) is covered in section 2.3. 

2.2  Setting up SSH for a  Hadoop cluster
When setting up a Hadoop cluster , you’ll need to designate one specifi c node as the 
master node. As shown in fi gure 2.3, this server will typically host the NameNode and 
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JobTracker daemons. It’ll also serve as the base station contacting and activating the 
DataNode and TaskTracker daemons on all of the slave nodes. As such, we need to 
defi ne a means for the master node to remotely access every node in your cluster.

Hadoop uses passphraseless SSH  for this purpose. SSH utilizes standard public key 
cryptography  to create a pair of keys for user verifi cation—one public, one private. 
The public key  is stored locally on every node in the cluster, and the master node 
sends the private key   when attempting to access a remote machine. With both pieces 
of information, the target machine can validate the login attempt.

2.2.1  Defi ne a common account

We’ve been speaking in general terms of one node accessing another; more precisely 
this access is from a user account on one node to another user account on the target 
machine. For Hadoop, the accounts should have the same username on all of the nodes 
(we use hadoop-user in this book), and for security purpose we recommend it being 
a user-level account. This account is only for managing your Hadoop cluster. Once the 
cluster daemons are up and running, you’ll be able to run your actual MapReduce jobs 
from other accounts.

2.2.2  Verify SSH  installation

The fi rst step is to check whether SSH is installed on your nodes. We can easily do this 
by use of the “which” UNIX command:

[hadoop-user@master]$ which ssh 
/usr/bin/ssh

[hadoop-user@master]$ which sshd
/usr/bin/sshd

[hadoop-user@master]$ which ssh-keygen
/usr/bin/ssh-keygen

If you instead receive an error message such as this,

/usr/bin/which: no ssh in (/usr/bin:/bin:/usr/sbin...

install OpenSSH (www.openssh.com/) via a Linux package manager or by downloading 
the source directly. (Better yet, have your system administrator do it for you.)

2.2.3  Generate SSH  key pair

Having verifi ed that SSH is correctly installed on all nodes of the cluster, we use ssh-
keygen on the master node to generate an RSA key pair . Be certain to avoid entering 
a passphrase, or you’ll have to manually enter that phrase every time the master node 
attempts to access another node.

[hadoop-user@master]$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter fi le in which to save the key (/home/hadoop-user/.ssh/id_rsa): 
Enter passphrase (empty for no passphrase): 
Enter same passphrase again: 
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Your identifi cation has been saved in /home/hadoop-user/.ssh/id_rsa.
Your public key has been saved in /home/hadoop-user/.ssh/id_rsa.pub.

After creating your key pair, your public key will be of the form

[hadoop-user@master]$ more /home/hadoop-user/.ssh/id_rsa.pub
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEA1WS3RG8LrZH4zL2/1oYgkV1OmVclQ2OO5vRi0Nd
K51Sy3wWpBVHx82F3x3ddoZQjBK3uvLMaDhXvncJG31JPfU7CTAfmtgINYv0kdUbDJq4TKG/fuO5q
J9CqHV71thN2M310gcJ0Y9YCN6grmsiWb2iMcXpy2pqg8UM3ZKApyIPx99O1vREWm+4moFTg
YwIl5be23ZCyxNjgZFWk5MRlT1p1TxB68jqNbPQtU7fIafS7Sasy7h4eyIy7cbLh8x0/V4/mcQsY
5dvReitNvFVte6onl8YdmnMpAh6nwCvog3UeWWJjVZTEBFkTZuV1i9HeYHxpm1wAzcnf7az78jT
IRQ== hadoop-user@master

and we next need to distribute this public key across your cluster.

2.2.4  Distribute public key  and validate logins 

Albeit a bit tedious, you’ll next need to copy the  public key to every slave node as well 
as the master node:

[hadoop-user@master]$ scp ~/.ssh/id_rsa.pub hadoop-user@target:~/master_key

Manually log in to the target node and set the master key as an authorized key (or 
append to the list of authorized keys if you have others defi ned).

[hadoop-user@target]$ mkdir ~/.ssh
[hadoop-user@target]$ chmod 700 ~/.ssh
[hadoop-user@target]$ mv ~/master_key ~/.ssh/authorized_keys
[hadoop-user@target]$ chmod 600 ~/.ssh/authorized_keys

After generating the key, you can verify it’s correctly defi ned by attempting to log in to 
the target node from the master:

[hadoop-user@master]$ ssh target
The authenticity of host ‘target (xxx.xxx.xxx.xxx)’ can’t be established.
RSA key fi ngerprint is 72:31:d8:1b:11:36:43:52:56:11:77:a4:ec:82:03:1d.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ‘target’ (RSA) to the list of known hosts.
Last login: Sun Jan 4 15:32:22 2009 from master

After confi rming the authenticity of a target node to the master node, you won’t be 
prompted upon subsequent login attempts.

[hadoop-user@master]$ ssh target
Last login: Sun Jan 4 15:32:49 2009 from master

We’ve now set the groundwork for running Hadoop on your own cluster. Let’s discuss 
the different Hadoop modes you might want to use for your projects. 

2.3  Running Hadoop 
We need to confi gure a few things before running Hadoop. Let’s take a closer look at 
the Hadoop confi guration directory :

[hadoop-user@master]$ cd $HADOOP_HOME
[hadoop-user@master]$ ls -l conf/
total 100
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-rw-rw-r-- 1 hadoop-user hadoop 2065 Dec 1 10:07 capacity-scheduler.xml
-rw-rw-r-- 1 hadoop-user hadoop  535 Dec 1 10:07 confi guration.xsl
-rw-rw-r-- 1 hadoop-user hadoop 49456 Dec 1 10:07 hadoop-default.xml
-rwxrwxr-x 1 hadoop-user hadoop 2314 Jan 8 17:01 hadoop-env.sh
-rw-rw-r-- 1 hadoop-user hadoop 2234 Jan 2 15:29 hadoop-site.xml
-rw-rw-r-- 1 hadoop-user hadoop 2815 Dec 1 10:07 log4j.properties
-rw-rw-r-- 1 hadoop-user hadoop  28 Jan 2 15:29 masters
-rw-rw-r-- 1 hadoop-user hadoop  84 Jan 2 15:29 slaves
-rw-rw-r-- 1 hadoop-user hadoop  401 Dec 1 10:07 sslinfo.xml.example

The fi rst thing you need to do is to specify the location of Java on all the nodes includ-
ing the master. In hadoop-env.sh  defi ne the JAVA_HOME  environment variable to point 
to the Java installation directory. On our servers, we’ve it defi ned as

export JAVA_HOME=/usr/share/jdk

(If you followed the examples in chapter 1, you’ve already completed this step.)
The hadoop-env.sh fi le contains other variables for defi ning your Hadoop 

environment, but JAVA_HOME is the only one requiring initial modifi cation. The default 
settings on the other variables will probably work fi ne. As you become more familiar 
with Hadoop you can later modify this fi le to suit your individual needs (logging 
directory location, Java class path, and so on).

The majority of Hadoop settings are contained in XML confi guration fi les. Before 
version 0.20, these XML fi les are hadoop-default.xml  and hadoop-site.xml . As the 
names imply, hadoop-default.xml contains the default Hadoop  settings to be used 
unless they are explicitly overridden in hadoop-site.xml. In practice you only deal with 
hadoop-site.xml. In version 0.20 this fi le has been separated out into three XML fi les: 
core-site.xml , hdfs-site.xml , and mapred-site.xml . This refactoring better aligns the 
confi guration settings to the subsystem of Hadoop that they control.  In the rest of this 
chapter we’ll generally point out which of the three fi les used to adjust a confi guration 
setting. If you use an earlier version of Hadoop, keep in mind that all such confi guration 
settings are modifi ed in hadoop-site.xml.

In the following subsections we’ll provide further details about the different 
operational modes of Hadoop and example confi guration fi les for each.

2.3.1  Local (standalone) mode

The standalone mode  is the default mode for Hadoop. When you fi rst uncompress the 
Hadoop source package, it’s ignorant of your hardware setup. Hadoop chooses to be 
conservative and assumes a minimal confi guration. All three XML fi les (or hadoop-
site.xml before version 0.20) are empty under this default mode:

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”confi guration.xsl”?>

<!-- Put site-specifi c property overrides in this fi le. -->

<confi guration>

</confi guration>
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With empty confi guration fi les, Hadoop will run completely on the local machine. 
Because there’s no need to communicate with other nodes, the standalone mode 
doesn’t use HDFS, nor will it launch any of the Hadoop daemons. Its primary 
use is for developing and debugging the application logic of a MapReduce pro-
gram without the additional complexity of interacting with the daemons. When 
you ran the example MapReduce program in chapter 1, you were running it in 
standalone mode.

2.3.2  Pseudo-distributed mode

The pseudo-distributed mode  is running Hadoop in a “cluster of one”  with all 
daemons running on a single machine. This mode complements the standalone mode 
for debugging your code, allowing you to examine memory usage, HDFS input/out-
put issues, and other daemon interactions. Listing 2.1 provides simple XML fi les to 
confi gure a single server in this mode.

Listing 2.1 Example of the three confi guration fi les for pseudo-distributed mode

core-site.xml
<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”confi guration.xsl”?>

<!-- Put site-specifi c property overrides in this fi le. -->

<confi guration>

<property>
 <name>fs.default.name</name>
 <value>hdfs://localhost:9000</value>
 <description>The name of the default fi le system. A URI whose
 scheme and authority determine the FileSystem implementation. 
 </description>
</property>

</confi guration>

mapred-site.xml
<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”confi guration.xsl”?>

<!-- Put site-specifi c property overrides in this fi le. -->

<confi guration>

<property>
 <name>mapred.job.tracker</name>
 <value>localhost:9001</value>
 <description>The host and port that the MapReduce job tracker runs
 at.</description>
</property>

</confi guration>

hdfs-site.xml
<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”confi guration.xsl”?>
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<!-- Put site-specifi c property overrides in this fi le. -->

<confi guration>

<property>
 <name>dfs.replication</name>
 <value>1</value>
 <description>The actual number of replications can be specifi ed when the
 fi le is created.</description>
</property>

</confi guration>

In core-site.xml and mapred-site.xml we specify the hostname and port of the 
NameNode and the JobTracker, respectively. In hdfs-site.xml we specify the default 
replication factor for HDFS, which should only be one because we’re running on only 
one node. We must also specify the location of the Secondary NameNode  in the mas-
ters fi le and the slave nodes  in the slaves fi le:

[hadoop-user@master]$ cat masters
localhost
[hadoop-user@master]$ cat slaves
localhost

While all the daemons are running on the same machine, they still communicate 
with each other using the same SSH protocol as if they were distributed over a cluster. 
Section 2.2 has a more detailed discussion of setting up the SSH  channels, but for 
single-node operation simply check to see if your machine already allows you to ssh 
back to itself.

[hadoop-user@master]$ ssh localhost

If it does, then you’re good. Otherwise setting up takes two lines.

[hadoop-user@master]$ ssh-keygen -t dsa -P ‘’ -f ~/.ssh/id_dsa
[hadoop-user@master]$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

You are almost ready to start Hadoop. But fi rst you’ll need to format your HDFS by 
using the command

[hadoop-user@master]$ bin/hadoop namenode -format

We can now launch the daemons by use of the start-all.sh script. The Java jps 
command will list all daemons to verify the setup was successful.

[hadoop-user@master]$ bin/start-all.sh
[hadoop-user@master]$ jps
26893 Jps
26832 TaskTracker
26620 SecondaryNameNode
26333 NameNode
26484 DataNode
26703 JobTracker
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When you’ve fi nished with Hadoop you can shut  down the Hadoop daemons by 
the command

[hadoop-user@master]$ bin/stop-all.sh

Both standalone and pseudo-distributed modes are for  development and debug-
ging purposes. An actual Hadoop cluster runs in the third mode, the fully distrib-
uted mode.

2.3.3  Fully distributed mode 

After continually emphasizing the benefi ts of distributed storage and distributed 
computation, it’s time for us to set up a full cluster. In the discussion below we’ll use 
the following server names:

 master■ —The master node of the cluster and host of the NameNode and Job-
Tracker daemons

 backup■ —The server that hosts the Secondary NameNode daemon
 hadoop1, hadoop2, hadoop3, ...■ —The slave boxes of the cluster running both 

DataNode and TaskTracker daemons 

Using the preceding naming convention, listing 2.2 is a modifi ed version of the 
pseudo-distributed confi guration fi les (listing 2.1) that can be used as a skeleton for 
your cluster’s setup.

Listing 2.2 Example confi guration fi les for fully distributed mode

core-site.xml
<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”confi guration.xsl”?>

<!-- Put site-specifi c property overrides in this fi le. -->

<confi guration>

<property>
 <name>fs.default.name</name>       q
 <value>hdfs://master:9000</value>     
 <description>The name of the default fi le system. A URI whose
 scheme and authority determine the FileSystem implementation. 
 </description>
</property>

</confi guration>

mapred-site.xml
<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”confi guration.xsl”?>

<!-- Put site-specifi c property overrides in this fi le. -->

<confi guration>



32 CHAPTER 2 Starting Hadoop

<property>
 <name>mapred.job.tracker</name>      w
 <value>master:9001</value>      
 <description>The host and port that the MapReduce job tracker runs
 at.</description>
</property>

</confi guration>

hdfs-site.xml
<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”confi guration.xsl”?>

<!-- Put site-specifi c property overrides in this fi le. -->

<confi guration>

<property>
 <name>dfs.replication</name>       e
 <value>3</value>       
 <description>The actual number of replications can be specifi ed when the
 fi le is created.</description>
</property>

</confi guration>

The key differences are

 We explicitly stated the hostname for location of the NameNode ■ q and 
JobTracker w daemons.

 We increased the HDFS replication factor■   to take advantage of distributed 
storage e. Recall that data is replicated across HDFS to increase availability and 
reliability.

We also need to update the  masters and slaves fi les  to refl ect the locations of the other 
daemons.

[hadoop-user@master]$ cat masters
backup
[hadoop-user@master]$ cat slaves
hadoop1
hadoop2
hadoop3
...

Once you have copied these fi les across all the nodes in your cluster, be sure to format 
HDFS to prepare it for storage:

[hadoop-user@master]$ bin/hadoop namenode - format

Now you can start the Hadoop daemons:

[hadoop-user@master]$ bin/start-all.sh

and verify the nodes are running their assigned jobs.

[hadoop-user@master]$ jps
30879 JobTracker
30717 NameNode
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Switching between modes

A practice that I found useful when starting with Hadoop was to use symbolic links  
to switch between Hadoop modes instead of constantly editing the XML fi les. To 
do so, create a separate confi guration folder for each of the modes and place the 
appropriate version of the XML fi les in the corresponding folder. Below is an example 
directory listing:

[hadoop@hadoop_master hadoop]$ ls -l

total 4884

drwxr-xr-x  2 hadoop-user hadoop  4096 Nov 26 17:36 bin

-rw-rw-r-  -  1 hadoop-user hadoop  57430 Nov 13 19:09 build.xml

drwxr-xr-x  4 hadoop-user hadoop  4096 Nov 13 19:14 c++

-rw-rw-r-  -  1 hadoop-user hadoop 287046 Nov 13 19:09 CHANGES.txt

lrwxrwxrwx  1 hadoop-user hadoop   12 Jan 5 16:06 conf -> conf.cluster

drwxr-xr-x  2 hadoop-user hadoop  4096 Jan 8 17:05 conf.cluster

drwxr-xr-x  2 hadoop-user hadoop  4096 Jan 2 15:07 conf.pseudo

drwxr-xr-x  2 hadoop-user hadoop  4096 Dec 1 10:10 conf.standalone

drwxr-xr-x 12 hadoop-user hadoop  4096 Nov 13 19:09 contrib

drwxrwxr-x  5 hadoop-user hadoop  4096 Jan 2 09:28 datastore

drwxr-xr-x  6 hadoop-user hadoop  4096 Nov 26 17:36 docs

...

You can then switch between confi gurations by using the Linux ln command (e.g., 
ln -s conf.cluster conf). This practice is also useful to temporarily pull a node 
out of the cluster to debug a MapReduce program in pseudo-distributed mode, but 
be sure that the modes have different fi le locations for HDFS and stop all daemons 
on the node before changing confi gurations.

30965 Jps
[hadoop-user@backup]$ jps
2099 Jps
1679 SecondaryNameNode
[hadoop-user@hadoop1]$ jps
7101 TaskTracker
7617 Jps
6988 DataNode

You have a functioning cluster!

Now that we’ve gone through all the settings to successfully get a Hadoop cluster up 
and running, we’ll introduce the Web UI for basic monitoring of the cluster’s state. 
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2.4  Web-based cluster  UI
Having covered the operational modes of Hadoop, we can now introduce the web 
interfaces  that Hadoop provides to monitor the health of your cluster. The browser in-
terface allows you to access information you desire much faster than digging through 
logs and directories.

The NameNode hosts a general report on port 50070. It gives you an overview of 
the state of your cluster’s HDFS. Figure 2.4 displays this report for a 2-node cluster 
example. From this interface, you can browse through the fi lesystem, check the 
status of each DataNode in your cluster, and peruse the Hadoop daemon logs  to verify 
your cluster is functioning correctly.

Hadoop provides a similar status overview of ongoing MapReduce jobs. Figure 2.5 
depicts one hosted at port 50030 of the JobTracker.

Again, a wealth of information is available through this reporting interface. You 
can access the status of ongoing MapReduce tasks as well as detailed reports about 
completed jobs. The latter is of particular importance—these logs describe which 
nodes performed which tasks and the time/resources required to complete each task. 
Finally, the Hadoop confi guration for each job is also available, as shown in fi gure 2.6. 
With all of this information you can streamline your MapReduce programs to better 
utilize the resources of your cluster.

Figure 2.4 A snapshot of the HDFS  web interface. From this interface you can browse through the 
HDFS fi lesystem, determine the storage available on each individual node, and monitor the overall 
health of your cluster.
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Figure 2.5 A snapshot of the MapReduce  web interface. This tool allows you to monitor active 
MapReduce jobs and access the logs of each map and reduce task. The logs of previously submitted 
jobs are also available and are useful for debugging your programs.

Figure 2.6 Confi guration details for a specifi c MapReduce  job. This information is potentially useful 
when tuning parameters to optimize the performance of your programs.
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Though the usefulness of these tools may not be immediately apparent at this stage, 
they’ll come in handy as you begin to perform more sophisticated tasks on your 
cluster. You’ll realize their importance as we study Hadoop more in depth. 

2.5  Summary
In this chapter we’ve discussed the key nodes and the roles they play within the 
Hadoop architecture. You’ve learned how to confi gure your cluster, as well as manage 
some basic tools to monitor your cluster’s overall health.

Overall, this chapter focuses on one-time tasks. Once you’ve formatted the 
NameNode for your cluster, you’ll (hopefully) never need to do so again. Likewise, 
you shouldn’t keep altering the hadoop-site.xml confi guration fi le for your cluster 
or assigning daemons to nodes. In the next chapter, you’ll learn about the aspects of 
Hadoop you’ll be interacting with on a daily basis, such as managing fi les in HDFS. 
With this knowledge you’ll be able to begin writing your own MapReduce applications 
and realize the true potential that Hadoop has to offer.
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Components of Hadoop

This chapter covers
 Managing fi les in HDFS■

 Analyzing components of the MapReduce framework■

 Reading and writing input and output data■

In the last chapter we looked at setting up and installing Hadoop. We covered what 
the different nodes do and how to confi gure them to work with each other. Now 
that you have Hadoop running, let’s look at the Hadoop framework from a pro-
grammer’s perspective. If the previous chapter is like teaching you how to connect 
your turntable, your mixer, your amplifi er, and your speakers together, then this 
chapter is about the techniques of mixing music.

We fi rst cover HDFS, where you’ll store data that your Hadoop applications will 
process. Next we explain the MapReduce framework in more detail. In chapter 1 
we’ve already seen a MapReduce program, but we discussed the logic only at the 
conceptual level. In this chapter we get to know the Java classes and methods, as 
well as the underlying processing steps. We also learn how to read and write using 
different data formats.
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3.1  Working with fi les in HDFS 
HDFS is a fi lesystem designed for large-scale distributed data processing under frame-
works such as MapReduce. You can store a big data set of (say) 100 TB as a single fi le 
in HDFS , something that would overwhelm most other fi lesystems. We discussed in 
chapter 2 how to replicate the data for availability and distribute it over multiple ma-
chines to enable parallel processing. HDFS abstracts these details away and gives you 
the illusion that you’re dealing with only a single fi le.

As HDFS isn’t a native Unix fi lesystem, standard Unix fi le tools, such as ls and cp 
don’t work on it, 1 and neither do standard fi le read/write operations, such as fopen() 
and fread(). On the other hand, Hadoop  does provide a set of command line utilities 
that work similarly to the Linux fi le commands. In the next section we’ll discuss those 
Hadoop fi le shell commands, which are your primary interface with the HDFS system. 
Section 3.1.2 covers Hadoop Java libraries for handling HDFS fi les programmatically.

NOTE A typical Hadoop workfl ow creates data fi les (such as log fi les) elsewhere 
and copies them into HDFS using one of the command line utilities discussed 
in the next section. Your MapReduce programs then process this data, but they 
usually don’t read any HDFS fi les directly. Instead they rely on the MapReduce  
framework to read and parse the HDFS fi les into individual records (key/
value pairs ), which are the unit of data MapReduce programs do work on. 
You rarely will have to programmatically read or write HDFS fi les except for 
custom import and export of data.

3.1.1  Basic  fi le commands 

Hadoop fi le commands take the form of

hadoop fs -cmd <args>

where cmd is the specifi c fi le command and <args> is a variable number of arguments. 
The command cmd is usually named after the corresponding Unix equivalent. For 
example, the command for listing fi les is   2

hadoop fs –ls

Let’s look at the most common fi le management tasks  in Hadoop, which include

 Adding fi les and directories■

 Retrieving fi les■

 Deleting fi les■

1  There are several ongoing projects that try to make HDFS mountable as a Unix fi lesystem. More details are 
at http://wiki.apache.org/hadoop/MountableHDFS. As of this writing these projects aren’t offi cially part of 
Hadoop and they may not have the reliability needed for some production systems.

2  Some older documentation shows fi le utilities in the form of hadoop dfs -cmd <args>. Both dfs and fs 
are equivalent, although fs is the preferred form now.
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ADDING  FILES  AND DIRECTORIES 

Before you can run Hadoop programs on data stored in HDFS, you’ll need to put the 
data into HDFS fi rst. Let’s assume you’ve already formatted and started a HDFS fi lesys-
tem. (For learning purposes, we recommend a pseudo-distributed confi guration  as a 
playground.) Let’s create a directory and put a fi le in it.

HDFS has a default working directory of /user/$USER, where $USER is your login 
user name. This directory isn’t automatically created for you, though, so let’s create 
it with the mkdir command. For the purpose of illustration, we use chuck. You should 
substitute your user name in the example commands.

hadoop fs –mkdir /user/chuck

URI  for specifying exact fi le and directory location
Hadoop fi le commands can interact with both the HDFS fi lesystem and the local 
fi lesystem. (And as we’ll see in chapter 9, it can also interact with Amazon S3 as a 
fi lesystem.) A URI pinpoints the location of a specifi c fi le or directory. The full URI 
format is scheme://authority/path. The scheme  is similar to a protocol. It can be 
hdfs or fi le, to specify the HDFS fi lesystem or the local fi lesystem, respectively. For 
HDFS, authority  is the NameNode host and path  is the path of the fi le or directory of 
interest. For example, for a standard pseudo-distributed confi guration running HDFS 
on the local machine on port 9000, a URI to access the example.txt fi le under the 
directory user/chuck will look like hdfs://localhost:9000/user/chuck/example.txt. 
You can use the Hadoop cat command to show the content of that fi le: 

hadoop fs -cat hdfs://localhost:9000/user/chuck/example.txt

As we’ll see shortly, most setups don’t need to specify the scheme://authority part 
of the URI. When dealing with the local fi lesystem, you’ll probably prefer your standard 
Unix commands rather than the Hadoop fi le commands. For copying fi les between 
the local fi lesystem and HDFS, Hadoop commands, such as put  and get  use the 
local fi lesystem as source and destination, respectively, without you specifying the 
fi le:// scheme. For other commands, if you leave out the scheme://authority part of 
the URI, the default from the Hadoop confi guration is used. For example, if you have 
changed the conf/hadoop-site.xml fi le to the pseudo-distributed confi guration, your 
fs.default.name property in the fi le should be

<property>
    <name>fs.default.name</name>
    <value>hdfs://localhost:9000</value>
</property>

Under this confi guration, shorten the URI hdfs://localhost:9000/user/chuck/example.
txt to /user/chuck/example.txt. Furthermore, HDFS  defaults to a current working 
directory of /user/$USER, where $USER is your login user name. If you’re logged 
in as chuck, then shorten the URI hdfs://localhost:9000/user/chuck/example.txt to 
example.txt. The Hadoop cat command  to show the content of the fi le is 

hadoop fs -cat example.txt
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Hadoop’s mkdir command  automatically creates parent directories if they don’t 
already exist, similar to the Unix mkdir command with the -p option. So the preced-
ing command will create the /user directory too. Let’s check on the directories with 
the ls command.

hadoop fs -ls /

You’ll see this response showing the /user directory at the root / directory.

Found 1 items
drwxr-xr-x   - chuck supergroup          0 2009-01-14 10:23 /user

If you want to see all the subdirectories, in a way similar to Unix’s ls with the -r 
option, you can use Hadoop’s lsr command .

hadoop fs -lsr /

You’ll see all the fi les and directories recursively.

drwxr-xr-x   - chuck supergroup          0 2009-01-14 10:23 /user
drwxr-xr-x   - chuck supergroup          0 2009-01-14 10:23 /user/chuck

Now that we have a working directory, we can put a fi le into it. Create some text fi le 
on your local fi lesystem called example.txt. The Hadoop  command put is used to copy 
fi les from the local system into HDFS.

hadoop fs -put example.txt .

Note the period (.) as the last argument in the command above. It means that we’re put-
ting the fi le into the default working directory. The command above is equivalent to

hadoop fs -put example.txt /user/chuck

We can re-execute the recursive fi le listing command to see that the new fi le is added 
to HDFS.

$ hadoop fs -lsr /
drwxr-xr-x   - chuck supergroup          0 2009-01-14 10:23 /user
drwxr-xr-x   - chuck supergroup          0 2009-01-14 11:02 /user/chuck
-rw-r--r--   1 chuck supergroup        264 2009-01-14 11:02

➥/user/chuck/example.txt

In practice we don’t need to check on all fi les recursively, and we may restrict ourselves 
to what’s in our own working directory. We would use the Hadoop ls command in its 
simplest form:

$ hadoop fs -ls
Found 1 items
-rw-r--r--   1 chuck supergroup        264 2009-01-14 11:02

➥/user/chuck/example.txt

The output displays properties, such as permission, owner, group, fi le size, and last 
modifi cation date, all of which are familiar Unix concepts. The column stating “1” re-
ports the replication factor  of the fi le. It should always be 1 for the pseudo-distributed 



confi guration . For production clusters, the replication factor is typically 3 but can be 
any positive integer. Replication factor is not applicable to directories, so they will only 
show a dash (-) for that column.

After you’ve put data into HDFS, you can run Hadoop programs to process it. The 
output of the processing will be a new set of fi les in HDFS, and you’ll want to read or 
retrieve the results.

RETRIEVING FILES  

The Hadoop command get does the exact reverse of put. It copies fi les from HDFS to 
the local fi lesystem. Let’s say we no longer have the example.txt fi le locally and we want 
to retrieve it from HDFS; we can run the command

hadoop fs -get example.txt .

to copy it into our local current working directory.
Another way to access the data is to display it. The Hadoop cat command allows us 

to do that.

hadoop fs -cat example.txt

We can use the Hadoop fi le command with Unix pipes  to send its output for further 
processing by other Unix commands. For example, if the fi le is huge (as typical Hadoop 
fi les are) and you’re interested in a quick check of its content, you can pipe the output 
of Hadoop’s cat into a Unix head.

hadoop fs -cat example.txt | head

Hadoop natively supports a tail command  for looking at the last kilobyte of a fi le.

hadoop fs -tail example.txt

After you fi nish working with fi les in HDFS, you may want to delete them to free up 
space.

DELETING FILES  

You shouldn’t be too surprised by now that the Hadoop command for removing fi les 
is rm.

hadoop fs –rm example.txt

The rm command  can also be used to delete empty directories.

LOOKING UP HELP 

A list of Hadoop fi le commands, together with the usage and description of each com-
mand, is given in the appendix. For the most part, the commands are modeled after 
their Unix equivalent. You can execute hadoop fs (with no parameters) to get a com-
plete list of all commands available on your version of Hadoop. You can also use help 
to display the usage and a short description of each command. For example, to get a 
summary of ls, execute

hadoop fs –help ls
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42 CHAPTER 3 Components of Hadoop

and you should see the following description:

-ls <path>:     List the contents that match the specifi ed fi le pattern. If
                path is not specifi ed, the contents of /user/<currentUser>
                will be listed. Directory entries are of the form 
                        dirName (full path) <dir> 
                and fi le entries are of the form 
                        fi leName(full path) <r n> size 
                where n is the number of replicas specifi ed for the fi le 
                and size is the size of the fi le, in bytes.

Although the command line utilities are suffi cient for most of your interaction with the 
HDFS fi lesystem, they’re not exhaustive and there’ll be situations where you may want 
deeper access into the HDFS API. Let’s see how to do so in the next section.

3.1.2  Reading and writing to HDFS  programmatically

To motivate an examination of the HDFS Java API, we’ll develop a PutMerge program  
for merging fi les  while putting them into HDFS. The command line utilities don’t sup-
port this operation; we’ll use the API.

The motivation for this example came when we wanted to analyze Apache log 
fi les  coming from many web servers. We can copy each log fi le into HDFS, but in 
general, Hadoop works more effectively with a single large fi le rather than a number of 
smaller ones. (“Smaller” is relative here as it can still be tens or hundreds of gigabytes.) 
Besides, for analytics purposes we think of the log data as one big fi le. That it’s spread 
over multiple fi les  is an incidental result of the physical web server architecture. One 
solution is to merge all the fi les fi rst and then copy the combined fi le into HDFS. 
Unfortunately, the fi le merging will require a lot of disk space in the local machine. It 
would be much easier if we could merge all the fi les on the fl y as we copy them into 
HDFS.

What we need is, therefore, a PutMerge-type of operation. Hadoop’s command line 
utilities include a getmerge command  for merging a number of HDFS fi les before 
copying them onto the local machine. What we’re looking for is the exact opposite. 
This is not available in Hadoop’s fi le utilities. We’ll write our own program using the 
HDFS API.

The main classes for fi le manipulation in Hadoop are in the package org.apache.
hadoop.fs . Basic Hadoop fi le operations include the familiar open, read, write, 
and close. In fact, the Hadoop fi le API is generic and can be used for working with 
fi lesystems other than HDFS. For our PutMerge program, we’ll use the Hadoop fi le 
API to both read the local fi lesystem and write to HDFS.

The starting point for the Hadoop  fi le API is the FileSystem class . This is an abstract 
class for interfacing with the fi lesystem, and there are different concrete subclasses 
for handling HDFS and the local fi lesystem. You get the desired FileSystem 
instance by calling the factory method FileSystem.get(Confi guration conf). The 
 Confi guration  class is a special class for holding key/value confi guration parameters. 
Its default instantiation is based on the resource confi guration for your HDFS system. 
We can get the FileSystem object to interface with HDFS by



Confi guration conf = new Confi guration();
FileSystem hdfs = FileSystem.get(conf);

To get a FileSystem object specifi cally for the local fi lesystem, there’s the FileSystem.
getLocal(Confi guration conf) factory method.

FileSystem local = FileSystem.getLocal(conf);

Hadoop fi le API uses Path objects  to encode fi le and directory names and FileStatus
objects  to store metadata for fi les and directories. Our PutMerge program will merge 
all fi les from a local directory. We use the FileSystem’s listStatus () method to get 
a list of fi les in a directory.

Path inputDir = new Path(args[0]);
FileStatus[] inputFiles = local.listStatus(inputDir);

The length of the inputFiles array is the number of fi les in the specifi ed directory. 
Each FileStatus object in inputFiles has metadata information such as fi le length, 
permissions, modifi cation time, and others. Of interest to our PutMerge program is 
each fi le’s Path representation, inputFiles[i].getPath(). We can use this Path to 
request an FSDataInputStream object  for reading in the fi le.

FSDataInputStream in = local.open(inputFiles[i].getPath());
byte buffer[] = new byte[256];
int bytesRead = 0;
while( (bytesRead = in.read(buffer)) > 0) {
    ...
}
in.close();

FSDataInputStream is a subclass of Java’s standard java.io.DataInputStream with ad-
ditional support for random access. For writing to a HDFS fi le, there’s the analogous 
FSDataOutputStream object .

Path hdfsFile = new Path(args[1]);
FSDataOutputStream out = hdfs.create(hdfsFile);
out.write(buffer, 0, bytesRead);
out.close();

To complete the PutMerge program, we create a loop that goes through all the fi les in 
inputFiles as we read each one in and write it out to the destination HDFS fi le. You 
can see the complete program in listing 3.1.

Listing 3.1 A PutMerge  program

import java.io.IOException;

import org.apache.hadoop.conf.Confi guration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;

public class PutMerge {
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    public static void main(String[] args) throws IOException {

        Confi guration conf = new Confi guration();
        FileSystem hdfs  = FileSystem.get(conf);
        FileSystem local = FileSystem.getLocal(conf);

        Path inputDir = new Path(args[0]);     q
        Path hdfsFile = new Path(args[1]); 

        try {
            FileStatus[] inputFiles = local.listStatus(inputDir);  w
            FSDataOutputStream out = hdfs.create(hdfsFile);  e
            for (int i=0; i<inputFiles.length; i++) {
                System.out.println(inputFiles[i].getPath().getName());

                FSDataInputStream in =   

        ➥ local.open(inputFiles[i].getPath());   r
                byte buffer[] = new byte[256];
                int bytesRead = 0;
                while( (bytesRead = in.read(buffer)) > 0) {
                    out.write(buffer, 0, bytesRead);
                }
                in.close();
            }
            out.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

The general fl ow of the program involves fi rst setting the local directory and the HDFS 
destination fi le based on user-specifi ed arguments q. In w we extract information 
about each fi le in the local input directory. We create an output stream to write to the 
HDFS fi le in e. We loop through each fi le in the local directory, and r opens an in-
put stream to read that fi le. The rest of the code is standard Java fi le copy.

The FileSystem class also has methods such as delete() , exists() , mkdirs() , 
and rename()  for other standard fi le operations. You can fi nd the most recent Javadoc 
for the Hadoop fi le API at http://hadoop.apache.org/core/docs/current/api/org/
apache/hadoop/fs/package-summary.html. 

We have covered how to work with fi les in HDFS. You now know a few ways to put 
data into and out of HDFS. But merely having data isn’t terribly interesting. You want 
to process it, analyze it, and do other things. Let’s conclude our discussion of HDFS 
and move on to the other major component of Hadoop, the MapReduce framework, 
and how to program under it. 

3.2  Anatomy of a  MapReduce program
As we have mentioned before, a MapReduce program processes data by manipulating 
(key/value) pairs in the general form 

map: (K1,V1) ➞ list(K2,V2)
reduce: (K2,list(V2)) ➞ list(K3,V3)
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Not surprisingly, this is an overly generic representation of the data fl ow. In this section 
we learn more details about each stage in a typical MapReduce program. Figure 3.1 
displays a high-level diagram of the entire process, and we further dissect each compo-
nent as we step through the fl ow.

Input DataInput Data

Node 1

Node 1

Node 2

Node 2

Input data is
distributed to nodes

Map Map

Reduce Reduce

Each map task works
on a “split” of data

Mapper outputs
intermediate data

Data exchange
between nodes in
a “shuffle” process

Intermediate data of
the same key goes to
the same reducer

Reducer output is
stored

Figure 3.1 The general MapReduce  data fl ow. Note that after distributing input 
data to different nodes, the only time nodes communicate with each other is at 
the “shuffl e” step . This restriction on communication greatly helps scalability.
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Before we analyze how data gets passed onto each individual stage, we should fi rst fa-
miliarize ourselves with the data types that Hadoop supports. 

3.2.1  Hadoop  data types

Despite our many discussions regarding keys and values, we have yet to mention their 
types. The MapReduce framework won’t allow them to be an arbitrary class. For ex-
ample, although we can and often do talk about certain keys and values as integers, 
strings, and so on, they aren’t exactly standard Java objects, such as Integer, String, 
and so forth. This is because the MapReduce framework has a certain defi ned way of 
serializing the key/value pairs to move them across the cluster’s network, and only 
classes that support this kind of serialization can function as keys or values in the 
framework.

More specifi cally, classes that implement the Writable interface can be values, and 
classes that implement the WritableComparable<T> interface  can be either keys 
or values. Note that the WritableComparable<T> interface is a combination of the 
Writable and java.lang.Comparable<T> interfaces . We need the comparability 
requirement for keys because they will be sorted at the reduce stage, whereas values 
are simply passed through.

Hadoop comes with a number of predefi ned classes that implement 
WritableComparable, including wrapper classes for all the basic data types, as seen 
in table 3.1.

Table 3.1 List of frequently used types for the key/value pairs . These classes all implement the 
WritableComparable interface.

Class Description

BooleanWritable Wrapper for a standard Boolean variable

ByteWritable Wrapper for a single byte

DoubleWritable Wrapper for a Double

FloatWritable Wrapper for a Float

IntWritable Wrapper for a Integer

LongWritable Wrapper for a Long

Text Wrapper to store text using the UTF8 format

NullWritable Placeholder when the key or value is not needed

Keys and values can take on types beyond the basic ones which Hadoop natively sup-
ports. You can create your own custom type as long as it implements the Writable 
(or WritableComparable<T>) interface. For example, listing 3.2 shows a class 
that can represent edges in a network. This may represent a fl ight route between 
two cities. 



Listing 3.2 An example class that implements the WritableComparable  interface

public class Edge implements WritableComparable<Edge>{

    private String departureNode;
    private String arrivalNode;

    public String getDepartureNode() { return departureNode;}

    @Override
    public void readFields(DataInput in) throws IOException {  q
        departureNode = in.readUTF();
        arrivalNode = in.readUTF();     
    }

    @Override
    public void write(DataOutput out) throws IOException {   w
        out.writeUTF(departureNode);
        out.writeUTF(arrivalNode);     
    }

    @Override
    public int compareTo(Edge o) {      e
        return (departureNode.compareTo(o.departureNode) != 0)
            ? departureNode.compareTo(o.departureNode)
            : arrivalNode.compareTo(o.arrivalNode);
    }
}

The Edge class  implements the readFields () q and write() w methods of the 
Writable interface. They work with the Java DataInput  and DataOutput  classes to 
serialize the class contents. Implement the compareTo() method e for the Comparable 
interface. It returns -1, 0, or 1 if the called Edge is less than, equal to, or greater than 
the given Edge .

With the data type interfaces now defi ned, we can proceed to the fi rst stage of the 
data fl ow process as described in fi gure 3.1: the mapper.

3.2.2 Mapper

To serve as the mapper , a class implements from the Mapper interface  and inherits the 
MapReduceBase class . The MapReduceBase class, not surprisingly, serves as the base 
class for both mappers and reducers.  It includes two methods that effectively act as the 
constructor and destructor for the class:

 ■ void confi gure(  JobConf job) —In this function you can extract the parameters set 
either by the confi guration XML fi les or in the main class of your application.  
Call this function before any data processing begins.

 ■ void close ()—As the last action before the map task terminates, this function 
should wrap up any loose ends—database connections, open fi les, and so on.

The Mapper interface is responsible for the data processing step.  It utilizes Java generics  
of the form Mapper<K1,V1,K2,V2> where the key classes and value classes implement 
the WritableComparable and Writable interfaces, respectively.  Its single method is 
to process an individual (key/value) pair:
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void map(K1 key,
         V1 value,
         OutputCollector<K2,V2> output,
         Reporter reporter
        ) throws IOException

The function generates a (possibly empty) list of (K2, V2) pairs for a given (K1, V1) 
input pair.  The OutputCollector  receives the output of the mapping process, and 
the Reporter  provides the option to record extra information about the mapper as 
the task progresses.

Hadoop provides a few useful mapper implementations. You can see some of them 
in the table 3.2.

Table 3.2 Some useful Mapper  implementations predefi ned by Hadoop

Class Description

IdentityMapper<K,V> Implements Mapper<K,V,K,V> and maps inputs directly to outputs

InverseMapper<K,V> Implements Mapper<K,V,V,K> and reverses the key/value pair

RegexMapper<K> Implements Mapper<K,Text,Text,LongWritable> and generates a 
(match, 1) pair for every regular expression match

TokenCountMapper<K> Implements Mapper<K,Text,Text,LongWritable> and generates a 
(token, 1) pair when the input value is tokenized

As the MapReduce name implies, the major data fl ow operation after map is the re-
duce phase, shown in the bottom part of fi gure 3.1.

3.2.3 Reducer 

As with any mapper implementation, a reducer  must fi rst extend the MapReduce base 
class to allow for confi guration and cleanup. In addition, it must also implement the 
Reducer interface which has the following single method:

void reduce(K2 key,
            Iterator<V2> values,
            OutputCollector<K3,V3> output,
            Reporter reporter
           ) throws IOException

When the reducer task receives the output from the various mappers, it sorts the 
incoming data on the key of the (key/value) pair and groups together all values of 
the same key. The reduce() function  is then called, and it generates a (possibly 
empty) list of (K3, V3) pairs by iterating over the values associated with a given key. The 
OutputCollector receives the output of the reduce process and writes it to an output 
fi le. The Reporter provides the option to record extra information about the reducer 
as the task progresses.

Table 3.3 lists a couple of basic reducer implementations provided by Hadoop.



Table 3.3 Some useful Reducer  implementations predefi ned by Hadoop

Class Description

IdentityReducer<K,V> Implements Reducer<K,V,K,V> and maps inputs directly to outputs

LongSumReducer<K> Implements Reducer<K,LongWritable,K,LongWritable> and 
determines the sum of all values corresponding to the given key

Although we have referred to Hadoop programs as MapReduce applications, there is 
a vital step between the two stages: directing the result of the mappers to the different 
reducers. This is the responsibility of the partitioner.

3.2.4 Partitioner— redirecting output from Mapper

A common misconception for fi rst-time MapReduce programmers is to use only a 
single reducer. After all, a single reducer sorts all of your data before processing—
and who doesn’t like sorted data? Our discussions regarding MapReduce expose 
the folly of such thinking. We would have ignored the benefi ts of parallel com-
putation . With one reducer, our compute cloud has been demoted to a compute 
raindrop.

With multiple  reducers, we need some way to determine the appropriate one to send 
a (key/value) pair outputted by a mapper. The default behavior is to hash the key to 
determine the reducer. Hadoop enforces this strategy by use of the HashPartitioner 
class . Sometimes the HashPartitioner will steer you awry.  Let’s return to the Edge 
class introduced in section 3.2.1.

Suppose you used the Edge class to analyze fl ight information data to determine the 
number of passengers departing from each airport.  Such data may be

(San Francisco, Los Angeles)  Chuck Lam
(San Francisco, Dallas)  James Warren
...
If you used HashPartitioner, the two rows could be sent to different reducers. 

The number of departures would be processed twice and both times erroneously.
How do we customize the partitioner for your applications? In this situation, we 

want all edges with a common departure point to be sent to the same reducer. This is 
done easily enough by hashing the departureNode member  of the Edge :

public class EdgePartitioner implements Partitioner<Edge, Writable> 
{
    @Override
    public int getPartition(Edge key, Writable value, int numPartitions)
    {
        return new Long(key.getDepartureNode()).hashCode() % numPartitions;
    }

    @Override
    public void confi gure(JobConf conf) { }
}
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A custom partitioner only needs to implement two functions: confi gure()  and 
getPartition() .  The former uses the Hadoop job confi guration to confi gure the 
partitioner, and the latter returns an integer between 0 and the number of reduce tasks 
indexing to which reducer the (key/value) pair will be sent.

The exact mechanics of the partitioner may be diffi cult to follow. Figure 3.2 illustrates 
this for better understanding.

Between the map and reduce stages, a MapReduce application must take the output 
from the mapper tasks and distribute the results among the reducer tasks. This process 
is typically called shuffl ing , because the output of a mapper on a single node  may be 
sent to reducers across multiple nodes  in the cluster.

3.2.5 Combiner—local reduce

In many situations with MapReduce applications, we may wish to perform a “local 
reduce ” before we distribute the mapper results. Consider the WordCount example of 

IN IN IN IN IN IN IN IN IN

OUT OUT OUT

Map

Reduce

Figure 3.2 The MapReduce  data fl ow, with an emphasis on  partitioning and 
shuffl ing. Each icon is a key/value pair. The shapes represents keys, whereas 
the inner patterns represent values. After shuffl ing, all icons of the same shape 
(key) are in the same reducer. Different keys can go to the same reducer, as seen 
in the rightmost reducer. The partitioner decides which key goes where. Note that
 the leftmost reducer has more load due to more data under the “ellipse” key.
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chapter 1 once more.  If the job processes a document containing the word “the” 574 
times, it’s much more effi cient to store and shuffl e the pair (“the”, 574) once instead 
of the pair (“the”, 1) multiple times. This processing step is known as combining. We 
explain combiners in more depth in section 4.6.

3.2.6 Word counting with  predefi ned mapper and reducer classes

We have concluded our preliminary coverage of all the basic components of MapReduce. 
Now that you’ve seen more classes provided by Hadoop, it’ll be fun to revisit the Word-
Count example (see listing 3.3), using some of the classes we’ve learned.

Listing 3.3 Revised version of the WordCount example

public class WordCount2 {
    public static void main(String[] args) {
        JobClient client = new JobClient();
        JobConf conf = new JobConf(WordCount2.class);

        FileInputFormat.addInputPath(conf, new Path(args[0]));
        FileOutputFormat.setOutputPath(conf, new Path(args[1]));

        conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(LongWritable.class);
        conf.setMapperClass(TokenCountMapper.class);   q
        conf.setCombinerClass(LongSumReducer.class);
        conf.setReducerClass(LongSumReducer.class);   w
        client.setConf(conf);
        try {
            JobClient.runJob(conf);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

We have to write only the driver for this MapReduce program because we have used 
Hadoop’s predefi ned TokenCountMapper class  q and LongSumReducer class  w. Easy, 
isn’t it? Hadoop provides the ability to generate more sophisticated programs (this will 
be the focus of part 2 of the book), but we want to emphasize that Hadoop allows you 
to rapidly generate useful programs with a minimal amount of code. 

3.3 Reading and writing 
Let’s see how MapReduce reads input data and writes output data and focus on the 
fi le formats it uses. To enable easy distributed processing, MapReduce makes certain 
assumptions about the data it’s processing. It also provides fl exibility in dealing with a 
variety of data formats.

Input data usually resides in large fi les, typically tens or hundreds of gigabytes or 
even more. One of the fundamental principles of MapReduce’s processing power is 
the splitting of the input data into chunks . You can process these chunks in parallel 
using multiple machines. In Hadoop terminology these chunks are called input splits . 
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The size of each split should be small enough for a more granular parallelization . 
(If all the input data is in one split, then there is no parallelization.) On the other 
hand, each split shouldn’t be so small that the overhead of starting and stopping the 
processing of a split becomes a large fraction of execution time. 

The principle of dividing input data (which often can be one single massive fi le) into 
splits for parallel processing explains some of the design decisions behind Hadoop’s 
generic FileSystem as well as HDFS in particular. For example, Hadoop’s FileSystem 
provides the class FSDataInputStream  for fi le reading rather than using Java’s java.
io.DataInputStream . FSDataInputStream extends DataInputStream  with random 
read access, a feature that MapReduce requires because a machine may be assigned 
to process a split that sits right in the middle of an input fi le. Without random access, 
it would be extremely ineffi cient to have to read the fi le from the beginning until 
you reach the location of the split. You can also see how HDFS is designed for storing 
data that MapReduce will split and process in parallel. HDFS stores fi les in blocks 
spread over multiple machines. Roughly speaking, each fi le block is a split. As different 
machines will likely have different blocks, parallelization is automatic if each split/
block is processed by the machine that it’s residing at. Furthermore, as HDFS replicates 
blocks in multiple nodes for reliability, MapReduce can choose any of the nodes that 
have a copy of a split/block.

Input splits and record boundaries
Note that input splits  are a logical division of your records whereas HDFS  blocks  are 
a physical division of the input data. It’s extremely effi cient when they’re the same 
but in practice it’s never perfectly aligned. Records may cross block boundaries. 
Hadoop guarantees the processing of all records . A machine processing a particular 
split may fetch a fragment of a record from a block other than its “main” block and 
which may reside remotely. The communication cost for fetching a record fragment is 
inconsequential because it happens relatively rarely.

You’ll recall that MapReduce works on key/value pairs. So far we’ve seen that Hadoop 
by default considers each line in the input fi le to be a record and the key/value pair 
is the byte offset (key) and content of the line (value), respectively. You may not have 
recorded all your data that way. Hadoop supports a few other data formats and allows 
you to defi ne your own.

3.3.1 InputFormat

The way an input fi le is split up and read by Hadoop is defi ned by one of the imple-
mentations of the InputFormat interface . TextInputFormat  is the default Input-
Format implementation, and it’s the data format we’ve been implicitly using up to 
now. It’s often useful for input data that has no defi nite key value, when you want to 



get the content one line at a time. The key returned by TextInputFormat is the byte 
offset of each line, and we have yet to see any program that uses that key for its data 
processing.

POPULAR INPUTFORMAT CLASSES

Table 3.4 lists other popular implementations of InputFormat along with a descrip-
tion of the key/value pair each one passes to the mapper.

Table 3.4 Main InputFormat  classes. TextInputFormat is the default unless an alternative is 
specifi ed. The object type for key and value are also described.

InputFormat Description

TextInputFormat Each line in the text fi les is a record. Key is the byte 
offset of the line, and value is the content of the line.

key: LongWritable
value: Text

KeyValueTextInputFormat Each line in the text fi les is a record. The fi rst separator 
character divides each line. Everything before the 
separator is the key, and everything after is the value. 
The separator is set by the key.value.separator.in.input.
line property, and the default is the tab (\t) character.

key: Text
value: Text

SequenceFileInputFormat<K,V> An InputFormat for reading in sequence fi les. Key and 
value are user defi ned. Sequence fi le is a Hadoop-
specifi c compressed binary fi le format. It’s optimized for 
passing data between the output of one MapReduce job 
to the input of some other MapReduce job.

key: K (user defi ned)
value: V (user defi ned)

NLineInputFormat Same as TextInputFormat, but each split is guaranteed 
to have exactly N lines. The mapred.line.input.format.
linespermap property, which defaults to one, sets N.

key: LongWritable
value: Text

KeyValueTextInputFormat  is used in the more structured input fi les where a pre-
defi ned character, usually a tab (\t), separates the key and value of each line (record). 
For example, you may have a tab-separated data fi le of timestamps and URLs:

17:16:18    http://hadoop.apache.org/core/docs/r0.19.0/api/index.html
17:16:19    http://hadoop.apache.org/core/docs/r0.19.0/mapred_tutorial.html
17:16:20    http://wiki.apache.org/hadoop/GettingStartedWithHadoop
17:16:20    http://www.maxim.com/hotties/2008/fi nalist_gallery.aspx
17:16:25    http://wiki.apache.org/hadoop/

...
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You can set your JobConf object  to use the KeyValueTextInputFormat class to read 
this fi le.

conf.setInputFormat(KeyValueTextInputFormat.class);

Given the preceding example fi le, the fi rst record your mapper reads will have a key 
of “17:16:18” and a value of “http://hadoop.apache.org/core/docs/r0.19.0/api/
index.html”. The second record to your mapper will have a key of “17:16:19” and 
a value of “http://hadoop.apache.org/core/docs/r0.19.0/mapred_tutorial.html.” 
And so on.

Recall that our previous mappers had used LongWritable and Text as the 
key and value types, respectively. LongWritable  is a reasonable type for the key 
under TextInputFormat because the key is a numerical offset. When using 
KeyValueTextInputFormat, both the key and the value will be of type Text , and 
you’ll have to change your Mapper implementation and map() method  to refl ect the 
new key type.

The input data to your MapReduce job does not necessarily have to be some 
external data. In fact it’s often the case that the input to one MapReduce job is the 
output of some other MapReduce job. As we’ll see, you can customize your output 
format too. The default output format writes the output in the same format that 
KeyValueTextInputFormat can read back in (i.e., each line is a record with key and 
value separated by a tab character). Hadoop provides a much more effi cient binary 
compressed fi le format called sequence fi le . This sequence fi le is optimized for Hadoop 
processing and should be the preferred format when chaining multiple MapReduce 
jobs. The InputFormat class to read sequence fi les is SequenceFileInputFormat . 
The object type for key and value in a sequence fi le are defi nable by the user. The 
output and the input type have to match, and your Mapper implementation and map() 
method have to take in the right input type.

CREATING A CUSTOM INPUTFORMAT—INPUTSPLIT  AND RECORDREADER 

Sometimes you may want to read input data in a way different from the standard 
InputFormat  classes. In that case you’ll have to write your own custom InputFormat 
class. Let’s look at what it involves. InputFormat is an interface consisting of only two 
methods.

public interface InputFormat<K, V> {

  InputSplit[] getSplits(JobConf job, int numSplits) throws IOException;

  RecordReader<K, V> getRecordReader(InputSplit split,
                                     JobConf job, 
                                     Reporter reporter) throws IOException;
}

The two methods sum up the functions that InputFormat has to perform:

 Identify all the fi les used as input data and divide them into input splits. Each ■

map task is assigned one split.



 Provide an object (■ RecordReader) to iterate through records in a given split, 
and to parse each record into key and value of predefi ned types.

Who wants to worry about how fi les are divided into splits ? In creating your 
own InputFormat class you should subclass the FileInputFormat class, which 
takes care of fi le splitting. In fact, all the InputFormat classes in table 3.4 subclass 
FileInputFormat. FileInputFormat implements the getSplits()  method but 
leaves getRecordReader()  abstract for the subclass to fi ll out. FileInputFormat’s 
getSplits() implementation tries to divide the input data into roughly the number 
of splits specifi ed in numSplits , subject to the constraints that each split must have 
more than mapred.min.split.size  number of bytes but also be smaller than the 
block size of the fi lesystem. In practice, a split usually ends up being the size of a block, 
which defaults to 64 MB in HDFS.

FileInputFormat has a number of protected methods a subclass can overwrite to 
change its behavior, one of which is the isSplitable(FileSystem fs, Path fi lename) 
method. It checks whether you can split a given fi le. The default implementation always 
returns true, so all fi les larger than a block will be split. Sometimes you may want a 
fi le to be its own split, and you’ll overwrite isSplitable()  to return false in those 
situations. For example, some fi le compression schemes don’t support splits. (You 
can’t start reading from the middle of those fi les.) Some data processing operations, 
such as fi le conversion, will need to treat each fi le as an atomic record and one should 
also not be able to split it.

In using FileInputFormat you focus on customizing RecordReader, which is 
responsible for parsing an input split into records and then parsing each record into a 
key/value pair . Let’s look at the signature of this interface.

public interface RecordReader<K, V> {
  boolean next(K key, V value) throws IOException;

  K createKey();
  V createValue();

  long getPos() throws IOException;
  public void close() throws IOException;
  fl oat getProgress() throws IOException;
}

Instead of writing our own RecordReader , we’ll again leverage existing classes pro-
vided by Hadoop. For example, LineRecordReader  implements RecordReader 
<LongWritable,Text> . It’s used in TextInputFormat and reads one line at a time, 
with byte offset as key and line content as value. KeyValueLineRecordReader  uses 
KeyValueTextInputFormat . For the most part, your custom RecordReader will be 
a wrapper around an existing implementation, and most of the action will be in the 
next() method .

One use case for writing your own custom InputFormat class is to read records 
in a specifi c type rather than the generic Text type. For example, we had previously 
used KeyValueTextInputFormat to read a tab-separated data fi le of timestamps 

 Reading and writing 55



56 CHAPTER 3 Components of Hadoop

and URLs. The class ends up treating both the timestamp and the URL as Text type. 
For our illustration, let’s create a TimeUrlTextInputFormat that works exactly the 
same but treats the URL as a URLWritable type 3. As mentioned earlier, we create 
our InputFormat class by extending FileInputFormat and implementing the factory 
method to return our RecordReader.

public class TimeUrlTextInputFormat extends

    ➥ FileInputFormat<Text, URLWritable> {

  public RecordReader<Text, URLWritable> getRecordReader(

      ➥ InputSplit input, JobConf job, Reporter reporter)
      ➥ throws IOException {

    return new TimeUrlLineRecordReader(job, (FileSplit)input);

  }
}

Our URLWritable class is quite straightforward:

public class URLWritable implements Writable {

  protected URL url; 

  public URLWritable() { }

  public URLWritable(URL url) {
    this.url = url;
  }

  public void write(DataOutput out) throws IOException {
    out.writeUTF(url.toString());
  }

  public void readFields(DataInput in) throws IOException {
    url = new URL(in.readUTF());
  }

  public void set(String s) throws MalformedURLException {
    url = new URL(s);
  }
}

Our TimeUrlLineRecordReader  will implement the six methods in the RecordReader
interface, in addition to the class constructor. It’s mostly a wrapper around KeyValue-
TextInputFormat, but converts the record value from Text to type URLWritable.

class TimeUrlLineRecordReader implements RecordReader<Text, URLWritable> {

  private KeyValueLineRecordReader lineReader;
  private Text lineKey, lineValue;

  public TimeUrlLineRecordReader(JobConf job, FileSplit split) throws

3  We may also want the time key to be some type other than Text. For example, we can make up a type 
CalendarWritableComparable for it. We leave that as an exercise for the reader as we focus on a 
simpler illustration.



  ➥ IOException {
    lineReader = new KeyValueLineRecordReader(job, split);

    lineKey = lineReader.createKey();
    lineValue = lineReader.createValue();
  }

  public boolean next(Text key, URLWritable value) throws IOException {
    if (!lineReader.next(lineKey, lineValue)) {
      return false;
    }

    key.set(lineKey);
    value.set(lineValue.toString());

    return true;
  }

  public Text createKey() {
    return new Text(“”);
  }

  public URLWritable createValue() {
    return new URLWritable();
  }

  public long getPos() throws IOException {
    return lineReader.getPos();
  }

  public fl oat getProgress() throws IOException {
    return lineReader.getProgress();
  }

  public void close() throws IOException {
    lineReader.close();
  }
}

Our TimeUrlLineRecordReader class creates a KeyValueLineRecordReader  object 
and passes the getPos() , getProgress() , and close()  method calls directly to it. 
The next () method casts the lineValue Text object into the URLWritable type.

3.3.2 OutputFormat

MapReduce outputs data into fi les using the OutputFormat class , which is analogous 
to the InputFormat class. The output has no splits, as each reducer writes its output 
only to its own fi le. The output  fi les reside in a common directory and are typically 
named part-nnnnn, where nnnnn is the partition ID of the reducer. RecordWriter 
objects format the output and RecordReaders parse the format of the input.

Hadoop provides several standard implementations of OutputFormat, as shown 
in table 3.5. Not surprisingly, almost all the ones we deal with inherit  from the File
OutputFormat  abstract class; InputFormat classes inherit from FileInputFormat. 
You specify the OutputFormat by calling setOutputFormat () of the JobConf object 
that holds the confi guration of your MapReduce job.

 Reading and writing 57



58 CHAPTER 3 Components of Hadoop

NOTE You may wonder why there’s a separation between OutputFormat 
(InputFormat) and FileOutputFormat (FileInputFormat) when it 
seems all OutputFormat (InputFormat) classes extend FileOutputFormat 
(FileInputFormat). Are there OutputFormat (InputFormat) classes that 
don’t work with fi les? Well, the NullOutputFormat implements OutputFormat 
in a trivial way and doesn’t need to subclass FileOutputFormat. More impor-
tantly, there are OutputFormat (InputFormat) classes that work with databases 
rather than fi les, and these classes are in a separate branch in the class hierarchy 
from FileOutputFormat (FileInputFormat). These classes have specialized 
applications, and the interested reader can dig further in the online Java docu-
mentation for DBInputFormat and DBOutputFormat.

Table 3.5 Main OutputFormat  classes. TextOutputFormat is the default.

OutputFormat Description

TextOutputFormat<K,V> Writes each record as a line of text. Keys and values 
are written as strings and separated by a tab (\t) 
character, which can be changed in the mapred.
textoutputformat.separator property.

SequenceFileOutputFormat<K,V> Writes the key/value pairs in Hadoop’s proprietary 
sequence fi le format. Works in conjunction with 
SequenceFileInputFormat.

NullOutputFormat<K,V> Outputs nothing.

The default OutputFormat is TextOutputFormat, which writes each record as a line 
of text. Each record’s key and value are converted to strings through toString() , and 
a tab (\t) character  separates them. The separator character can be changed in the 
mapred.textoutputformat.separator property.

TextOutputFormat outputs data in a format readable by KeyValueTextInput-
Format. It can also output in a format readable by TextInputFormat if you make the 
key type a NullWritable . In that case the key in the key/value pair is not written out, 
and neither is the separator character. If you want to suppress the output completely, 
then you should use the NullOutputFormat . Suppressing the Hadoop output is useful 
if your reducer writes its output in its own way and doesn’t need Hadoop to write any 
additional fi les.

Finally, SequenceFileOutputFormat  writes the output in a sequence fi le format 
that can be read back in using SequenceFileInputFormat. It’s useful for writing 
intermediate data results when chaining MapReduce jobs. 

3.4 Summary
Hadoop is a software framework that demands a different perspective on data process-
ing. It has its own fi lesystem, HDFS, that stores data in a way optimized for data-intensive 
processing. You need specialized Hadoop tools to work with HDFS, but fortunately 
most of those tools follow familiar Unix or Java syntax.



The data processing part of the Hadoop framework is better known as MapReduce. 
Although the highlight of a MapReduce program is, not surprisingly, the Map and the 
Reduce operations, other operations done by the framework, such as data splitting 
and shuffl ing, are crucial to how the framework works. You can customize the other 
operations, such as Partitioning and Combining. Hadoop provides options for reading 
data and also to output data of different formats.

Now that we have a better understanding of how Hadoop works, let’s go on to 
part 2 of this book and look at various techniques for writing practical programs using 
Hadoop.
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Part 2

Hadoop in Action

Part 2 teaches the practical skills required to write and run data processing 
programs in Hadoop. We explore various examples of using Hadoop to analyze a 
patent data set, including advanced algorithms such as the Bloom fi lter. We also 
cover programming and administration techniques that are uniquely useful to 
working with Hadoop in production.
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Writing basic 
MapReduce programs

This chapter covers
 Patent data as an example data set to process with Hadoop■

 Skeleton of a MapReduce program■

 Basic MapReduce programs to count statistics■

 Hadoop’s Streaming API for writing MapReduce programs ■

using scripting languages

 Combiner to improve performance■

The MapReduce programming model is unlike most programming models you may 
have learned. It’ll take some time and practice to gain familiarity. To help develop 
your profi ciency, we go through many example programs in the next couple chap-
ters. These examples will illustrate various MapReduce programming techniques. 
By applying MapReduce in multiple ways you’ll start to develop an intuition and a 
habit of “MapReduce thinking.” The examples will cover simple tasks to advanced 
uses. In one of the advanced applications we introduce the Bloom fi lter, a data struc-
ture not normally taught in the standard computer science curriculum. You’ll see 
that processing large data sets, whether you’re using Hadoop or not, often requires 
a rethinking of the underlying algorithms.
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We assume you already have a basic grasp of Hadoop. You can set up Hadoop, 
and you have compiled and run an example program, such as word counting from 
chapter 1. Let’s use examples—from a real-world data set.

4.1 Getting the patent data set
  To do anything meaningful with Hadoop we need data. Many of our examples will use 
patent data sets, both of which are available from the National Bureau of Economic 
Research  (NBER ) at http://www.nber.org/patents/. The data sets were originally 
compiled for the paper “The NBER Patent Citation Data File: Lessons, Insights and 
Methodological Tools.”1  We use the citation data  set cite75_99.txt and the patent 
description data  set apat63_99.txt.

NOTE The data sets are approximately 250 MB each, which are small enough 
to make our examples runnable in Hadoop’s standalone  or pseudo-distributed 
mode . You can practice writing MapReduce programs using them even when 
you don’t have access to a live cluster. The best part of Hadoop is that you 
can be fairly sure your MapReduce program will run on clusters of machines 
processing data sets 100 or 1,000 times larger with virtually no code changes.

A popular development tactic is to create a smaller, sampled  subset of your 
large production data and call it the development data set . This development 
data set may only have several hundred megabytes. You develop your 
program in standalone or pseudo-distributed mode with the development 
data set. This gives your development process a fast turnaround time, the 
convenience of running on your own machine, and an isolated environment 
for debugging.

We have chosen these two data sets for our example programs because they’re 
similar to most data types you’ll encounter. First of all, the citation data encodes a 
graph  in the same vein that web links and social networks  are also graphs. Patents 
are published in chronological order; some of their properties resemble time series . 
Each patent is linked with a person (inventor) and a location (country of inventor). 
You can view them as personal or geographical data . Finally, you can look at the 
data as generic database relations  with well-defi ned schemas, in a simple comma-
separated format. 2

4.1.1 The patent citation data

The patent citation data set contains citations from U.S. patents issued between 1975 and 
1999. It has more than 16 million rows and the fi rst few lines resemble the following: 

1  NBER Working Paper 8498, by Hall, B. H., A. B. Jaffe, and M. Tratjenberg (2001).
2  There are more common data types than two data sets can possibly represent. An important one that’s 

missing here is text, but you’ve already seen text used in the word count example. Other missing types 
include XML, image, and geolocation (the lat-long variety). Math matrix is not represented in general, 
although the citation graph can be interpreted as a sparse 0/1 matrix.
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“CITING”,”CITED”
3858241,956203
3858241,1324234
3858241,3398406
3858241,3557384
3858241,3634889
3858242,1515701
3858242,3319261
3858242,3668705
3858242,3707004
...

The data set is in the standard comma-separated values (CSV) format, with the 
fi rst line a description of the columns. Each of the other lines record one particu-
lar citation. For example, the second line shows that patent 3858241 cites patent 
956203. The fi le is sorted by the citing patent. We can see that patent 3858241 cites 
fi ve patents in total. Analyzing the data more quantitatively will give us deeper in-
sights into it.

If you’re only reading the data fi le, the citation data appears to be a bunch of 
numbers. You can “think” of this data in more interesting terms. One way is to 
visualize  it as a graph. In fi gure 4.1 we’ve shown a portion of this citation graph . We 
can see that some patents are cited often whereas others aren’t cited at all. 3 Patents 
like 5936972 and 6009552 cite a similar set of patents (4354269, 4486882, 5598422) 
even though they don’t cite each other. We use Hadoop to derive descriptive 
statistics about this patent data, as well as look for interesting patterns that aren’t 
immediately obvious. 

4.1.2 The patent description data

 The other data set we use is the patent description data. It has the patent number, the 
patent application year, the patent grant year, the number of claims, and other meta-
data about patents. Look at the fi rst few lines of this data set. It’s similar to a table in a 
relational  database, but in CSV format. This data set has more than 2.9 million records. 
As in many real-world data sets, it has many missing values .

“PATENT”,”GYEAR”,”GDATE”,”APPYEAR”,”COUNTRY”,”POSTATE”,”ASSIGNEE”, 

➥ ”ASSCODE”,”CLAIMS”,”NCLASS”,”CAT”,”SUBCAT”,”CMADE”,”CRECEIVE”,

➥ ”RATIOCIT”,”GENERAL”,”ORIGINAL”,”FWDAPLAG”,”BCKGTLAG”,”SELFCTUB”,

➥ ”SELFCTLB”,”SECDUPBD”,”SECDLWBD”
3070801,1963,1096,,”BE”,””,,1,,269,6,69,,1,,0,,,,,,,
3070802,1963,1096,,”US”,”TX”,,1,,2,6,63,,0,,,,,,,,,
3070803,1963,1096,,”US”,”IL”,,1,,2,6,63,,9,,0.3704,,,,,,,
3070804,1963,1096,,”US”,”OH”,,1,,2,6,63,,3,,0.6667,,,,,,,
3070805,1963,1096,,”US”,”CA”,,1,,2,6,63,,1,,0,,,,,,,

3  As with any data analysis, we must be careful when interpreting with limited data. When a patent doesn’t 
seem to cite any other patents, it may be an older patent for which we have no citation information. 
On the other hand, more recent patents are cited less often because only newer patents can be aware 
of their existence.
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3070806,1963,1096,,”US”,”PA”,,1,,2,6,63,,0,,,,,,,,,
3070807,1963,1096,,”US”,”OH”,,1,,623,3,39,,3,,0.4444,,,,,,,
3070808,1963,1096,,”US”,”IA”,,1,,623,3,39,,4,,0.375,,,,,,,
3070809,1963,1096,,”US”,”AZ”,,1,,4,6,65,,0,,,,,,,,, 

The fi rst row contains the name of a couple dozen attributes, which are meaningful 
only to patent specialists. Even without understanding all the attributes, it’s still useful 
to have some idea of a few of them. Table 4.1 describes the fi rst ten.

6009552

3909721

4354269

4486882 5598422

3697947

4395768

3566352

5771248 59319675936972

4201976 4205324

5193094

3891959
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3868632
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3800283851306

3958220

3519988 3629824 3675200 3697948

4375100521868952837914870645
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4796261

5546409
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Figure 4.1 A partial view of the patent citation data set as a graph. Each patent is shown as a 
vertex (node), and each citation is a directed edge (arrow).
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Table 4.1 Defi nition of the fi rst 10 attributes in the patent description data set

Attribute name Content

PATENT Patent number

GYEAR Grant year

GDATE Grant date, given as the number of days elapsed since January 1, 1960

APPYEAR Application year (available only for patents granted since 1967)

COUNTRY Country of fi rst inventor

POSTATE State of fi rst inventory (if country is U.S.)

ASSIGNEE Numeric identifi er for assignee (i.e., patent owner)

ASSCODE One-digit (1-9) assignee type. (The assignee type includes U.S. individual, 
U.S. government, U.S. organization, non-U.S. individual, etc.)

CLAIMS Number of claims (available only for patents granted since 1975)

NCLASS 3-digit main patent class

Now that we have two patent data sets, let’s write Hadoop programs to process the data. 

4.2 Constructing the basic template of a MapReduce program
We write most MapReduce programs in brief and as variations on a template. When 
writing a new MapReduce program, you generally take an existing MapReduce program 
and modify it until it does what you want. In this section, we write our fi rst MapReduce 
program and explain its different parts. This program can serve as a template for future 
MapReduce programs .

Our fi rst program will take the patent citation data and invert  it. For each patent, 
we want to fi nd and group the patents that cite it. Our output should be similar to the 
following:

1       3964859,4647229
10000   4539112
100000  5031388
1000006 4714284
1000007 4766693
1000011 5033339
1000017 3908629
1000026 4043055
1000033 4190903,4975983
1000043 4091523
1000044 4082383,4055371
1000045 4290571
1000046 5918892,5525001
1000049 5996916
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1000051 4541310
1000054 4946631
1000065 4748968
1000067 5312208,4944640,5071294
1000070 4928425,5009029

We have discovered that patents 5312208, 4944640, and 5071294 cited patent 
1000067. For this section we won’t focus too much on the MapReduce data fl ow, 
which we’ve already covered in chapter 3. Instead we focus on the structure of a 
MapReduce program. We need only one fi le for the entire program as you can see 
in listing 4.1.

Listing 4.1 Template for a typical Hadoop program 

public class MyJob extends Confi gured implements Tool {

    public static class MapClass extends MapReduceBase
        implements Mapper<Text, Text, Text, Text> {

        public void map(Text key, Text value,
                        OutputCollector<Text, Text> output,
                        Reporter reporter) throws IOException {

            output.collect(value, key);
        }
    }

    public static class Reduce extends MapReduceBase
        implements Reducer<Text, Text, Text, Text> {

        public void reduce(Text key, Iterator<Text> values,
                           OutputCollector<Text, Text> output,
                           Reporter reporter) throws IOException {

            String csv = “”;
            while (values.hasNext()) {
                if (csv.length() > 0) csv += “,”;
                csv += values.next().toString();
            }
            output.collect(key, new Text(csv));
        }
    }

    public int run(String[] args) throws Exception {
        Confi guration conf = getConf();

        JobConf job = new JobConf(conf, MyJob.class);

        Path in = new Path(args[0]);
        Path out = new Path(args[1]);
        FileInputFormat.setInputPaths(job, in);
        FileOutputFormat.setOutputPath(job, out);

        job.setJobName(“MyJob”);
        job.setMapperClass(MapClass.class);
        job.setReducerClass(Reduce.class);

        job.setInputFormat(KeyValueTextInputFormat.class);
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        job.setOutputFormat(TextOutputFormat.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        job.set(“key.value.separator.in.input.line”, “,”);

        JobClient.runJob(job);

        return 0;
    }

    public static void main(String[] args) throws Exception { 
        int res = ToolRunner.run(new Confi guration(), new MyJob(), args);

        System.exit(res);
    }
}

Our convention is that a single class, called MyJob in this case, completely defi nes each 
MapReduce job. Hadoop requires the Mapper  and the Reducer  to be their own static 
classes. These classes are quite small, and our template includes them as inner classes 
to the MyJob class. The advantage is that everything fi ts in one fi le, simplifying code 
management. But keep in mind that these inner classes are independent and don’t 
interact much with the MyJob class. Various nodes with different JVMs clone and run 
the Mapper and the Reducer during job execution , whereas the rest of the job class is 
executed only at the client machine.

We investigate the Mapper and the Reducer classes in a while. Without those classes, 
the skeleton of the MyJob class is

public class MyJob extends Confi gured implements Tool {

    public int run(String[] args) throws Exception {
        Confi guration conf = getConf();

        JobConf job = new JobConf(conf, MyJob.class); 

        Path in = new Path(args[0]);
        Path out = new Path(args[1]);
        FileInputFormat.setInputPaths(job, in);
        FileOutputFormat.setOutputPath(job, out);

        job.setJobName(“MyJob”);
        job.setMapperClass(MapClass.class);
        job.setReducerClass(Reduce.class);

        job.setInputFormat(KeyValueTextInputFormat.class);
        job.setOutputFormat(TextOutputFormat.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        job.set(“key.value.separator.in.input.line”, “,”);

        JobClient.runJob(job);

        return 0;
    }

    public static void main(String[] args) throws Exception { 
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        int res = ToolRunner.run(new Confi guration(), new MyJob(), args);

        System.exit(res);
    }
}

The core of the skeleton is within the run()  method, also known as the driver. The 
driver instantiates, confi gures, and passes a JobConf   object named job to JobClient.
runJob() to start the MapReduce job. (The JobClient  class, in turn, will communicate 
with the JobTracker  to start the job across the cluster.) The JobConf object will hold 
all confi guration parameters necessary for the job to run. The driver needs to specify 
in job the input paths, the output paths, the Mapper class, and the Reducer class—the 
basic parameters for every job. In addition, each job can reset the default job proper-
ties, such as InputFormat, OutputFormat, and so on. One can also call the set()  
method on the JobConf object to set up any confi guration parameter. Once you pass 
the JobConf object to JobClient.runJob(), it’s treated as the master plan for the 
job. It’s becomes the blueprint for how the job will be run.  

 The JobConf object has many parameters, but we don’t want to program the driver 
to set up all of them. The confi guration fi les of the Hadoop installation are a good 
starting point. When starting a job from the command line, the user may also want to 
pass extra arguments to alter the job confi guration. The driver can defi ne its own set 
of commands and process the user arguments itself to enable the user to modify some 
of the confi guration parameters. As this task is needed often, the Hadoop framework 
provides ToolRunner , Tool , and Confi gured  to simplify it. When used together in the 
MyJob skeleton above, these classes enable our job to understand user-supplied options  
that are supported by GenericOptionsParser . For example, we have previously 
executed the MyJob class using this command line:

bin/hadoop jar playground/MyJob.jar MyJob input/cite75_99.txt output

Had we wanted to run the job only to see the mapper’s output (which you may want 
to do for debugging  purposes), we could set the number of reducers to zero with the 
option -D mapred.reduce.tasks=0. 

bin/hadoop jar playground/MyJob.jar MyJob -D mapred.reduce.tasks=0

➥  input/cite75_99.txt output

It works even though our program doesn’t explicitly understand the -D option. By us-
ing ToolRunner , MyJob will automatically support the options in table 4.2.

Table 4.2 Options supported by GenericOptionsParser 

Option Description

-conf <confi guration fi le> Specify a confi guration fi le.

-D <property=value> Set value for a JobConf property.

-fs <local|namenode:port> Specify a NameNode, can be “local”.
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Table 4.2 Options supported by GenericOptionsParser  (Continued )

Option Description

-jt <local|jobtracker:port> Specify a JobTracker.

-fi les <list of fi les> Specify a comma-separated list of fi les to be used 
with the MapReduce job. These fi les are automatically 
distributed to all task nodes to be locally available.

-libjars <list of jars> Specify a comma-separated list of jar fi les to be included 
in the classpath of all task JVMs.

-archives <list of archives> Specify a comma-separated list of archives to be 
unarchived on all task nodes.

The convention for our template is to call the Mapper class MapClass  and the 
Reducer class Reduce . The naming would seem more symmetrical if we call the Mapper 
class Map, but Java already has a class (interface) named Map. Both the Mapper and the 
Reducer extend MapReduceBase , which is a small class providing no-op implementations 
to the confi gure() and close() methods required by the two interfaces. We use the 
confi gure()  and close()  methods to set up and clean up the map (reduce) tasks. We 
won’t need to override them except for more advanced jobs.

The signatures for the Mapper class and the Reducer class are

public static class MapClass extends MapReduceBase
    implements Mapper<K1, V1, K2, V2> {

    public void map(K1 key, V1 value,
                    OutputCollector<K2, V2> output,
                    Reporter reporter) throws IOException { }
}

public static class Reduce extends MapReduceBase
    implements Reducer<K2, V2, K3, V3> {

    public void reduce(K2 key, Iterator<V2> values,
                       OutputCollector<K3, V3> output,
                       Reporter reporter) throws IOException { }
}

The center of action for the Mapper class is the map()  method and for the Reducer 
class the reduce()  method. Each invocation of the map() method is given a key/value 
pair of types K1 and V1, respectively . The key/value pairs generated by the mapper are 
outputted via the collect() method of the OutputCollector  object. Somewhere in 
your map() method you need to call

output.collect((K2) k, (V2) v);

Each invocation of the reduce() method at the reducer is given a key of type K2 and 
a list of values of type V2. Note that it must be the same K2 and V2 types used in the 
Mapper. The reduce() method will likely have a loop to go through all the values of 
type V2.
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while (values.hasNext()) {
    V2? v = values.next();
    ...
}

The reduce() method is also given an OutputCollector to gather its key/value out-
put, which is of type K3/V3. Somewhere in the reduce() method you’ll call

output.collect((K3) k, (V3) v);

In addition to having consistent K2 and V2 types across Mapper and Reducer, you’ll 
also need to ensure that the key and value types used in Mapper and Reducer are con-
sistent with the input format, output key class, and output value class set in the driver. 
The use of KeyValueTextInputFormat   means that K1 and V1 must both be type Text . 
The driver must call setOutputKeyClass()  and setOutputValueClass()  with the 
classes of K2 and V2, respectively.

Finally, all the key and value types  must be subtypes of Writable , which ensures a 
serialization interface for Hadoop to send the data around in a distributed cluster. In 
fact, the key types implement WritableComparable  , a subinterface of Writable. The 
key types need to additionally support the compareTo() method, as keys are used for 
sorting in various places in the MapReduce framework.

4.3 Counting things
 Much of what the layperson thinks of as statistics is counting, and many basic Hadoop 
jobs involve counting. We’ve already seen the word count  example in chapter 1. For 
the patent citation data, we may want the number of citations a patent has received. 
This too is counting. The desired output would look like this:

1       2
10000   1
100000  1
1000006 1
1000007 1
1000011 1
1000017 1
1000026 1
1000033 2
1000043 1
1000044 2
1000045 1
1000046 2
1000049 1
1000051 1
1000054 1
1000065 1
1000067 3

In each record, a patent number is associated with the number of citations it has re-
ceived. We can write a MapReduce program for this task. Like we said earlier, you 
hardly ever write a MapReduce program from scratch. You have an existing MapReduce 
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program that processes the data in a similar way. You copy that and modify it until it fi ts 
what you want.

We already have a program for getting the inverted citation index.  We can modify 
that program to output the count instead of the list of citing patents. We need the 
modifi cation only at the Reducer. If we choose to output the count as an IntWritable, 
we need to specify IntWritable in three places in the Reducer code. We called them 
V3 in our previous notation.

public static class Reduce extends MapReduceBase
    implements Reducer<Text, Text, Text, IntWritable> {

    public void reduce(Text key, Iterator<Text> values,
                       OutputCollector<Text, IntWritable> output,
                       Reporter reporter) throws IOException {

        int count = 0;
        while (values.hasNext()) {
            values.next();
            count++;
        }
        output.collect(key, new IntWritable(count));
    }
}

By changing a few lines and matching class types, we have a new MapReduce 
program. This program may seem a minor modifi cation. Let’s go through another 
example that requires more changes, but you’ll see that the basic MapReduce program 
structure remains.

After running the previous example, we now have a data set that counts the number 
of citations for each patent. A neat exercise would be to count the counts. Let’s build 
a histogram  of the citation counts. We expect a large number of patents to have been 
only cited once, and a small number may have been cited hundreds of times. It would 
be interesting to see the distribution of the citation counts.

NOTE As the patent citation data set only covers patents issued between 1975 
and 1999, the citation count is necessarily an underestimate. (Citations from 
patents outside of that period aren’t counted.) We also don’t deal with patents 
that supposedly have been cited zero times. Despite these caveats, the analysis 
will be useful.

The fi rst step to writing a MapReduce program is to fi gure out the data fl ow. In this 
case, as a mapper reads a record, it ignores the patent number and outputs an interme-
diate key/value pair of <citation_count, 1>. The reducer will sum up the number 
of 1s for each citation count and output the total.

After fi guring out the data fl ow, decide on the types for the key/value pairs—K1, V1, 
K2, V2, K3, and V3 for the input, intermediate, and output key/value pairs. Let’s use 
the KeyValueTextInputFormat , which automatically breaks each input record into 
key/value pairs based on a separator character. The input format produces K1 and V1 



74 CHAPTER 4 Writing basic MapReduce programs

as Text . We choose to use IntWritable  for K2, V2, K3, and V3 because we know those 
data must be integers and it’s more effi cient to use IntWritable.

Based on the data fl ow and the data types, you’ll be able to see the fi nal program 
shown in listing 4.2 and understand what it’s doing. You can see that it’s structurally 
similar to the other MapReduce programs we’ve seen so far. We go into details about 
the program after the listing.

Listing 4.2 CitationHistogram.java: count patents cited once, twice, and so on

public class CitationHistogram extends Confi gured implements Tool {

    public static class MapClass extends MapReduceBase
        implements Mapper<Text, Text, IntWritable, IntWritable> {

        private fi nal static IntWritable uno = new IntWritable(1);
        private IntWritable citationCount = new IntWritable();

        public void map(Text key, Text value,
                        OutputCollector<IntWritable, IntWritable> output,
                        Reporter reporter) throws IOException {

            citationCount.set(Integer.parseInt(value.toString()));
            output.collect(citationCount, uno);
        }
    }

    public static class Reduce extends MapReduceBase
        implements Reducer<IntWritable,IntWritable,IntWritable,IntWritable>
    {

        public void reduce(IntWritable key, Iterator<IntWritable> values,
                           OutputCollector<IntWritable, IntWritable>output,
                           Reporter reporter) throws IOException {

            int count = 0;
            while (values.hasNext()) {
                count += values.next().get();
            }
            output.collect(key, new IntWritable(count));
        }
    }

    public int run(String[] args) throws Exception {
        Confi guration conf = getConf();

        JobConf job = new JobConf(conf, CitationHistogram.class);

        Path in = new Path(args[0]);
        Path out = new Path(args[1]);
        FileInputFormat.setInputPaths(job, in);
        FileOutputFormat.setOutputPath(job, out);

        job.setJobName(“CitationHistogram”);
        job.setMapperClass(MapClass.class);
        job.setReducerClass(Reduce.class);

        job.setInputFormat(KeyValueTextInputFormat.class);
        job.setOutputFormat(TextOutputFormat.class);
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        job.setOutputKeyClass(IntWritable.class);
        job.setOutputValueClass(IntWritable.class);

        JobClient.runJob(job);

        return 0;
    }

    public static void main(String[] args) throws Exception { 
        int res = ToolRunner.run(new Confi guration(), 
                                 new CitationHistogram(), 
                                 args);

        System.exit(res);
    }
}

The class name is now CitationHistogram; all references to MyJob were changed to re-
fl ect the new name. The main() method is almost always the same. The driver is mostly 
intact. The input format and output format are still KeyValueTextInputFormat  
and TextOutputFormat , respectively. The main change is that the output key class 
and the output value class are now IntWritable, to refl ect the new type for K2 and V2. 
We’ve also removed this line:

job.set(“key.value.separator.in.input.line”, “,”);

 It sets the separator character used by KeyValueTextInputFormat to break each in-
put line into a key/value pair. Previously it was a comma for processing the original 
patent citation data. By not setting this property it defaults to the tab character, which 
is appropriate for the citation count data.

The data fl ow for this mapper is similar to that of the previous mappers, only here 
we’ve chosen to defi ne and use a couple class variables—citationCount and uno.

public static class MapClass extends MapReduceBase
    implements Mapper<Text, Text, IntWritable, IntWritable> {

    private fi nal static IntWritable uno = new IntWritable(1);
    private IntWritable citationCount = new IntWritable();

    public void map(Text key, Text value,
                    OutputCollector<IntWritable, IntWritable> output,
                    Reporter reporter) throws IOException {

        citationCount.set(Integer.parseInt(value.toString()));
        output.collect(citationCount, uno);
    }
}

The map() method has one extra line for setting citationCount, which is for type 
casting. The reason for defi ning citationCount and uno in the class rather than 
inside the method is purely one of effi ciency. The map() method will be called as 
many times as there are records (in a split, for each JVM). Reducing the number 
of objects created inside the map() method can increase performance and reduce  
garbage collection . As we pass citationCount and uno to output.collect(), 
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we’re relying on the output.collect() method’s contract to not modify those 
two objects.4

The reducer sums up the values for each key. It seems ineffi cient because we know 
all values are 1s (uno, to be exact). Why do we need to sum the count? We’ve chosen 
this route because it will be easier for us later if we choose to add a combiner  to enhance 
performance. Unlike MapClass, the call to output.collect() in Reduce instantiates 
a new IntWritable rather than reuse an existing one.

output.collect(key, new IntWritable(count));

We can improve performance by using an IntWritable class variable. But the number 
of times reduce() is called is much smaller in this particular program, probably no 
more than a thousand times (across all reducers). We don’t have much need to opti-
mize this particular code.

Running the MapReduce job on the citation count data will show the following 
result. As we suspect, a large number (900K+) of patents have only one citation, whereas 
some have hundreds of citations. The most popular patent has 779 citations.

1       921128
2       552246
3       380319
4       278438 
5       210814
6       163149
7       127941
8       102155
9       82126
10      66634
...
411     1
605     1
613     1
631     1
633     1
654     1
658     1
678     1
716     1
779     1

As this histogram output is only several hundred lines long, we can put it into a spread-
sheet and plot it. Figure 4.2 shows the number of patents at various citation frequen-
cies. The plot is on a log-log scale. When a distribution shows as a line in a log-log plot, 
it’s considered to be a power law distribution . The citation count histogram seems to 
fi t the description, although its approximately parabolic curvature also suggests a log-
normal distribution .

As you’ve seen in our examples so far, a MapReduce program is often not very big, 
and you can keep a certain structure across them to simplify development. Most of the 
work is in thinking through the data fl ow.

4 We see in section 5.1.3 that this reliance will forbid the ChainMapper from using pass-by-reference.
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4.4 Adapting for Hadoop’s API changes
One of the main design goals driving toward Hadoop’s major 1.0 release is a 
stable and extensible MapReduce API. As of this writing, version 0.20 is the latest 
release and is considered a bridge between the older API (that we use throughout 
this book) and this upcoming stable API. The 0.20 release supports the future 
API while maintaining backward-compatibility with the old one by marking it 
as deprecated. Future releases after 0.20 will stop supporting the older API. As 
of this writing, we don’t recommend jumping into the new API yet for a couple 
reasons:

1 Many of Hadoop’s own library classes in 0.20 aren’t rewritten under the new 
API yet. You won’t be able to use those classes if your MapReduce code uses the 
new API in 0.20.

2 Many still consider the most production-ready and stable version of Hadoop as 
of this writing to be 0.18.3. Some users are warming up to version 0.20, but we 
suggest you wait a little longer before going full production with it.5

By the time you read this the situation may be different. In this section we cover the 
changes the new API presents. Fortunately, almost all the changes affect only the basic 
MapReduce template. We rewrite the template under the new API to enable you to use 
it in the future.

5  You may be wondering about version 0.19. The general consensus is that its initial release was problematic 
and full of bugs. Some minor releases tried fi xing the problems, but the community seems to want to skip 
straight to 0.20 instead.

Figure 4.2 Plotting the number of patents at different citation frequencies. Many 
patents have one citation (or not at all, which is not shown on this graph). Some 
patents have hundreds of citations. On a log-log graph, this looks close enough to 
a straight line to be considered a power-law distribution. 
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The fi rst thing you’ll notice in the new API is that many classes in org.apache.
hadoop.mapred have been moved elsewhere. Many of them are now at org.apache.
hadoop.mapreduce, and the library classes are under one of the packages in org.
apache.hadoop.mapreduce.lib. After you’ve moved to the new API, you shouldn’t 
have any import statements (or full references) to any classes under org.apache.
hadoop.mapred, all of which are to be deprecated.

The most meaningful change in the new API is the introduction of context objects. 
Its most immediate impact is to replace the OutputCollector and Reporter objects 
used in the map() and reduce() methods. You now output key/value pairs by 
calling Context.write() instead of OutputCollector.collect(). The long-term 
consequences are to unify communication between your code and the MapReduce 
framework, and to stabilize the Mapper and Reducer API such that the basic method 
signatures will not change when new functionalities are added. New functionalities 
will only be additional methods on the context objects. Programs written before the 
introduction of those functionalities will be unaware of the new methods, and they will 
continue to compile and run against the newer releases.

The new map() and reduce() methods are contained in new abstract classes Mapper 
and Reducer, respectively. They replace the Mapper and Reducer interfaces in the 
original API (org.apache.hadoop.mapred.Mapper and org.apache.hadoop.mapred.
Reducer). The new abstract classes also replace the MapReduceBase class, which has 
been deprecated.

The new map() and reduce() methods have a couple more minor changes. 
They can throw InterruptedException instead of only IOException. In addition, 
the reduce() method no longer accepts the list of values as an Iterator but as 
an Iterable, which is easier to iterate through using Java’s foreach syntax. We can 
summarize the changes we’ve discussed so far in the method signatures for MapClass 
and Reduce. Recall the signatures under the original API: 

public static class MapClass extends MapReduceBase
    implements Mapper<K1, V1, K2, V2> {

    public void map(K1 key, V1 value,
                    OutputCollector<K2, V2> output,
                    Reporter reporter) throws IOException { }
}

public static class Reduce extends MapReduceBase
    implements Reducer<K2, V2, K3, V3> {

    public void reduce(K2 key, Iterator<V2> values,
                       OutputCollector<K3, V3> output,
                       Reporter reporter) throws IOException { }
}

The new API has simplifi ed them somewhat:

public static class MapClass extends Mapper<K1, V1, K2, V2> {

    public void map(K1 key, V1 value, Context context)
                    throws IOException, InterruptedException { }
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}

public static class Reduce extends Reducer<K2, V2, K3, V3> {

    public void reduce(K2 key, Iterable<V2> values, Context context)
                       throws IOException, InterruptedException { }
}

You also need to change a few things in the driver to support the new API. JobConf 
and JobClient classes have been replaced. Their functionalities have been pushed 
to the Confi guration class (which was originally the parent class of JobConf) and a 
new class Job. The Confi guration class purely confi gures a job, whereas the Job class 
defi nes and controls the execution of a job. Methods such as setOutputKeyClass() 
and setOutputValueClass() have moved from JobConf to Job. A job’s construction 
and submission for execution are now under Job. Originally you would construct a job 
using JobConf:

JobConf job = new JobConf(conf, MyJob.class);
job.setJobName(“MyJob”);

Now it’s done through Job:

Job job = new Job(conf, “MyJob”);
job.setJarByClass(MyJob.class);

Previously JobClient submitted a job for execution:

JobClient.runJob(job);

Now it’s also done through Job:

System.exit(job.waitForCompletion(true)?0:1);

Listing 4.3 is the template program from listing 4.1 rewritten to use the new API in 
Hadoop 0.20. It incorporates all the changes we’ve mentioned in this section.

Listing 4.3 Template for basic Hadoop program (listing 4.1) rewritten for new API v 0.20

public class MyJob extends Confi gured implements Tool {

    public static class MapClass
                           extends Mapper<LongWritable, Text, Text, Text> {

        public void map(LongWritable key, Text value, Context context)
                        throws IOException, InterruptedException {

            String[] citation = value.toString().split(“,”);
            context.write(new Text(citation[1]), new Text(citation[0]));
        }
    }

    public static class Reduce extends Reducer<Text, Text, Text, Text> {

        public void reduce(Text key, Iterable<Text> values,
                           Context context)
                           throws IOException, InterruptedException {

            String csv = “”;
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            for (Text val:values) {     
                if (csv.length() > 0) csv += “,”;   
                csv += val.toString();    
            }        

            context.write(key, new Text(csv));
        }
    }

    public int run(String[] args) throws Exception {
        Confi guration conf = getConf();

        Job job = new Job(conf, “MyJob”);
        job.setJarByClass(MyJob.class);

        Path in = new Path(args[0]);
        Path out = new Path(args[1]);
        FileInputFormat.setInputPaths(job, in);
        FileOutputFormat.setOutputPath(job, out);

        job.setMapperClass(MapClass.class);
        job.setReducerClass(Reduce.class);

        job.setInputFormatClass(TextInputFormat.class); q
        job.setOutputFormatClass(TextOutputFormat.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);

        System.exit(job.waitForCompletion(true)?0:1);

        return 0;
    }

    public static void main(String[] args) throws Exception { 
        int res = ToolRunner.run(new Confi guration(), new MyJob(), args);

        System.exit(res);
    }
}

The code performs the same inverted indexing function as listing 4.1, but under the 
0.20 API. Unfortunately, the KeyValueTextInputFormat class we had used in listing 
4.1 hasn’t been ported to the new API as of version 0.20. We have to rewrite the tem-
plate using TextInputFormat q. We expect all Hadoop classes to support the new 
API when version 0.21 is released. To keep presentation of examples in the rest of this 
book unifi ed, we continue to use the API before 0.20. 

4.5 Streaming in Hadoop
We have been using Java to write all our Hadoop programs. Hadoop supports other 
languages via a generic API called Streaming . In practice, Streaming is most useful 
for writing simple, short MapReduce programs that are more rapidly developed in a 
scripting language that can take advantage of non-Java libraries.

Hadoop Streaming interacts with programs using the Unix streaming paradigm. 
Inputs come in through STDIN and outputs go to STDOUT. Data has to be text 
based and each line is considered a record. Note that this is exactly how many 

Iterable allows 
foreach looping

Compatible 
InputFormat class
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Unix commands work, and Hadoop Streaming enables those commands to be used 
as mappers and reducers. If you’re familiar with using Unix commands, such as 
wc, cut, or uniq for data processing, you can apply them to large data sets using 
Hadoop Streaming.

The overall data fl ow in Hadoop Streaming is like a pipe where data streams 
through the mapper, the output of which is sorted and streamed through the reducer. 
In pseudo-code using Unix’s command line notation, it’s

cat [input_fi le] | [mapper] | sort | [reducer] >[output_fi le]

The following examples will illustrate how to use Streaming with Unix commands.

4.5.1 Streaming with Unix commands

 In the fi rst example, let’s get a list of cited patents in cite75_99.txt.

bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar 

        ➥ -input input/cite75_99.txt 
        ➥ -output output 
        ➥ -mapper ‘cut -f 2 -d ,’ 
        ➥ -reducer ‘uniq’

 That’s it! It’s a one-line command. Let’s see what each part of the command does.
The Streaming API is in a contrib package at contrib/streaming/hadoop-*-

streaming.jar. The fi rst part and the -input and the -output arguments specify 
that we’re running a Streaming program with the corresponding input and output 
fi le/directory. The mapper and reducer are specifi ed as arguments in quotes. We see 
that for the mapper we use the Unix cut command to extract the second column, 
where columns are separated by commas. In the citation data set this column is the 
patent number of a cited patent. These patent numbers are then sorted and passed to 
the reducer. The uniq command at the reducer will remove all duplicates in the sorted 
data. The output of this command is

“CITED”
1
10000
100000
1000006
...
999973
999974
999977
999978
999983

The fi rst row has the column descriptor “CITED” from the original fi le. Note that the 
rows are sorted lexicographically because Streaming processes everything as text and 
doesn’t know other data types.

After getting the list of cited patents, we may want to know how many are there. 
Again we can use Streaming to quickly get a count, using the Unix command wc –l.
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bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar 

        ➥ -input output 
        ➥ -output output_a 
        ➥ -mapper ‘wc -l’ 
        ➥ -D mapred.reduce.tasks=0

Here we use wc –l as the mapper to count the number of records in each split. 
Hadoop Streaming (since version 0.19.0) supports the GenericOptionsParser . The 
-D argument is used for specifying confi guration properties. We want the mapper to 
directly output the record count without any reducer, so we set mapred.reduce.tasks 
to 0 and don’t specify the -reducer option at all. 6 The fi nal count is 3258984. More 
than 3 million patents have been cited according to our data.  

4.5.2  Streaming with scripts

We can use  any executable script that processes a line-oriented data stream from 
STDIN and outputs to STDOUT with Hadoop Streaming. For example, the Python script  
in listing 4.4 randomly samples data from STDIN. For those who don’t know Python, 
the program has a for loop that reads STDIN one line at a time. For each line, we 
choose a random integer between 1 and 100 and check against the user-given argu-
ment (sys.argv[1]). The comparison determines whether to pass that line on to the 
output or ignore it. You can use the script in Unix to uniformly sample a line-oriented 
data fi le, for example:

cat input.txt | RandomSample.py 10 >sampled_output.txt

The preceding command calls the Python script with an argument of 10; sampled_
output.txt will have (approximately) 10 percent of the records in input.txt. We can 
in fact specify any integer between 1 and 100 to get the corresponding percentage of 
data in the output.

Listing 4.4 RandomSample.py: a Python script printing random lines from STDIN

#!/usr/bin/env python
import sys, random

for line in sys.stdin:
    if (random.randint(1,100) <= int(sys.argv[1])):
        print line.strip()

We can apply the same script in Hadoop to get a smaller sample of a data set. A 
sampled data set is often useful for development purposes, as you can run your 
Hadoop program on the sampled data in standalone or pseudo-distributed mode 
to quickly debug and iterate. Also, when you’re looking for some “descriptive” 

6  You may notice that this approach counts the number of records in each split, not the entire fi le. With 
a bigger fi le, or multiple fi les, the user will have to sum up the counts herself to get the overall total. To 
fully automate a complete counting, the user will have to write a script at the reducer to sum up all the 
partial counts.
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information about your data, the speed and convenience in processing a smaller 
data set generally outweigh any loss of precision. Finding data clusters is one ex-
ample of such descriptive information. Optimized implementations of a variety of 
clustering algorithms are readily available in R, MATLAB, and other packages. It 
makes a lot more sense to sample down the data and apply some standard software 
package, instead of trying to process all data using some distributed clustering al-
gorithms in Hadoop.

WARNING The loss of precision from computing on a sampled data set may 
or may not be important. It depends on what you’re trying to compute and 
the distribution of your data set. For example, it’s usually fi ne to compute an 
average from a sampled data set, but if the data set is highly skewed  and the 
average is dominated by a few values, sampling can be problematic. Similarly, 
clustering on a sampled data set is fi ne if it’s used only to get a general 
understanding of the data. If you were looking for small, anomalous clusters, 
sampling may get rid of them. For functions such as maximum and minimum, 
it’s not a good idea to apply them to sampled data.

Running RandomSample.py using Streaming is like running Unix commands using 
Streaming, the difference being that Unix commands are already available on all nodes 
in the cluster, whereas RandomSample.py is not. Hadoop Streaming supports a -fi le  
option to package your executable fi le as part of the job submission. 7 Our command 
to execute RandomSample.py is

bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar 

        ➥ -input input/cite75_99.txt 
        ➥ -output output 
        ➥ -mapper ‘RandomSample.py 10’ 
        ➥ -fi le RandomSample.py  
        ➥ -D mapred.reduce.tasks=1

In specifying the mapper to be ‘RandomSample.py 10’ we’re sampling at 10 percent. 
Note that we’ve set the number of reducers (mapred.reduce.tasks) to 1. As we 
haven’t specifi ed any particular reducer, it will use the default IdentityReducer. As 
its name implies, IdentityReducer  passes its input straight to output. In this case we 
can set the number of reducers to any non-zero value to get an exact number of output 
fi les. Alternatively, we can set the number of reducers to 0, and let the number of out-
put fi les be the number of mappers. This is probably not ideal for the sampling task as 
each mapper’s output is only a small fraction of the input, and we may end up with a 
number of small fi les. We can easily correct that later using the HDFS shell command 
getmerge  or other fi le manipulations to arrive at the right number of output fi les. The 
approach to use is more or less a personal preference.

7  It’s also implicitly assumed that you have installed the Python language on all the nodes in your cluster.
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The random sampling script was implemented in Python, although any scripting 
language that works with STDIN and STDOUT would work. For illustration we’ve rewritten 
the same script in PHP 8 (listing 4.5). Execute this Stream script  with

bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar 

        ➥ -input input/cite75_99.txt 
        ➥ -output output 
        ➥ -mapper ‘php RandomSample.php 10’ 
        ➥ -fi le RandomSample.php 
        ➥ -D mapred.reduce.tasks=1

Listing 4.5 RandomSample.php.: a PHP script printing random lines from STDIN

<?php

while (!feof(STDIN)) {
    $line = fgets(STDIN);
    if (mt_rand(1,100) <= $argv[1]) {
        echo $line;
    }
}

 The random sampling scripts don’t require any custom reducer, but you can’t always 
write a Streaming program like that. As you’ll use Streaming quite often in practice, 
let’s see another exercise. This time we create a custom reducer.

Suppose we’re interested in fi nding the most number of claims in a single patent. In 
the patent description data set, the number of claims for a given patent is in the ninth 
column. Our task is to fi nd the maximum  value in the ninth column of the patent 
description data.

Under Streaming, each mapper sees the entire stream of data, and it’s the mapper 
that takes on the responsibility of breaking the stream into (line-oriented) records. 
In the standard Java model, the framework itself breaks input data into records, and 
gives the map() method only one record at a time. The Streaming model makes it 
easy to keep state information across records in a split, which we take advantage of in 
computing the maximum. The standard Java model, too, can keep track of state across 
records in a split, but it’s more involved. We cover that in the next chapter.

In creating a Hadoop program for computing maximum, we take advantage of 
the distributive property  of maximum. Given a data set divided into many splits, the 

8  You may have noticed in listing 4.5 that there’s no ending bracket ?> to close the opening bracket <?php. 
Recall that PHP was originally designed to work within static HTML content. Anything outside the PHP 
brackets <?php ... ?> is considered static content to be outputted. When using PHP as a pure scripting 
language, you need to be careful that you leave no whitespaces outside the brackets. Otherwise they will be 
outputted and may cause unintended behavior that is hard to debug. (It would appear whitespaces were 
introduced in the output data out of nowhere.)
 It’s easy to ensure that there’s no whitespaces before the opening bracket <?php by putting the bracket at 
the beginning of the script fi le. But, it’s easy to accidentally leave whitespaces after the closing bracket ?>, 
as ending whitespaces don’t grab attention. When using a fi le as a PHP script, it’s safer to omit the closing 
bracket ?>. The PHP interpreter will quietly read everything till the end-of-fi le as PHP commands rather 
than static content.
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global maximum is the maximum over the maxima of the splits. That sounded like a 
mouthful, but a simple example will make it clear. If we have four records X1, X2, X3, 
and X4, and they’re divided into two splits (X1, X2) and (X3, X4), we can fi nd the 
maximum over all four records by looking at the maximum of each split, or

max(X1,X2,X3,X4) = max(max(X1,X2), max(X3,X4))

Our strategy is to have mapper calculate the maximum over its individual split. Each 
mapper will output a single value at the end. We have a single reducer that looks at all 
those values and outputs the global maximum. Listing 4.6 depicts the Python script for 
a mapper to compute the maximum over a split.

Listing 4.6 AttributeMax.py: Python script to fi nd maximum value of an attribute

#!/usr/bin/env python

import sys

index = int(sys.argv[1])
max   = 0
for line in sys.stdin:
    fi elds = line.strip().split(“,”)
    if fi elds[index].isdigit():
        val = int(fi elds[index])
        if (val > max):
            max = val
else:
    print max

The script is not complicated. It has a for loop to read one record at a time. It 
tokenizes the record into fi elds and updates the maximum if the user-specifi ed fi eld 
is bigger. Note that the mapper doesn’t output any value until the end, when it 
sends out the maximum value of the entire split. This is different from what we’ve 
seen before, where each record sends out one or more intermediate records to be 
processed by the reducers.

Given the parsimonious output of the mapper, we can use the default 
IdentityReducer  to record the (sorted) output of the mappers.

bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar 

        ➥ -input input/apat63_99.txt 
        ➥ -output output 
        ➥ -mapper ‘AttributeMax.py 8’ 
        ➥ -fi le playground/AttributeMax.py 
        ➥ -D mapred.reduce.tasks=1

The mapper is ‘AttributeMax.py 8’. It outputs the maximum of the ninth column 
in a split. The single reducer collects all the mapper outputs. Given seven mappers, the 
fi nal output of the above command is this:

0
260
306
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348
394
706
868

Each line records the maximum over a particular split. We see that one split has zero 
claims in all its records. This sounds suspicious until we recall that the claim count at-
tribute is not available for patents before 1975.

We see that our mapper is doing the right thing. We can use a reducer that outputs 
the maximum over the values outputted by the mappers. We have an interesting 
situation here, due to the distributive property of maximum, where we can also use 
AttributeMax.py as the reducer. Only now the reducer is trying to fi nd the maximum 
in the “fi rst” column.

bin/hadoop jar contrib/streaming/hadoop-0.18.1-streaming.jar 

        ➥ -input input/apat63_99.txt 
        ➥ -output output 
        ➥ -mapper ‘AttributeMax.py 8’ 
        ➥ -reducer ‘AttributeMax.py 0’ 
        ➥ -fi le AttributeMax.py 
        ➥ -D mapred.reduce.tasks=1

The output of the above command should be a one-line fi le, and you’ll fi nd the maxi-
mum number of claims in a patent to be 868.

Classes of aggregation functions
We use aggregation functions to compute descriptive statistics. They’re generally 
grouped into three classes: distributive , algebraic , and holistic . The maximum  
function is an example of a distributive function. Other distributive functions 
include minimum , sum , and count . As the name implies, distributive functions have 
distributive properties. Similar to the maximum function, you can globally compute 
these functions by iteratively applying them to smaller chunks of data.

Another class of aggregation functions is the algebraic functions. Examples of this 
class include average  and variance . They don’t follow the distributive property, and 
their derivation will require some “algebraic” computation over simpler functions. We 
get into examples of this in the next section.

Finally, functions such as median  and K smallest/largest value belong to the holistic 
class of aggregation functions. Readers interested in a challenge should try to 
implement the median function in an effi cient manner using Hadoop.

4.5.3  Streaming with key/value pairs

At this point you may wonder what happened to the key/value pair way of encoding 
records. Our discussion on Streaming so far talks about each record as an atomic unit 
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rather than as composed of a key and a value. The truth is that Streaming works on 
key/value pairs just like the standard Java MapReduce model. By default, Streaming 
uses the tab character to separate the key from the value in a record. When there’s no 
tab character, the entire record is considered the key and the value is empty text. For 
our data sets, which have no tab character, this provides the illusion that we’re process-
ing each individual record as a whole unit. Furthermore, even if the records do have 
tab characters in them, the Streaming API will only shuffl e and sort the records in a 
different order. As long as our mapper and reducer work in a record-oriented way, we 
can maintain the record-oriented illusion.

Working with key/value pairs allows us to take advantage of the key-based shuffl ing 
and sorting to create interesting data analyses. To illustrate key/value pair processing 
using Streaming, we can write a program to fi nd the maximum number of claims in a 
patent for each country. This would differ from AttributeMax.py in that this is trying 
to fi nd the maximum for each key, rather than a maximum across all records. Let’s 
make this exercise more interesting by computing the average   rather than fi nding 
the maximum. (As we see, Hadoop already includes a package called Aggregate that 
contains classes that help fi nd the maximum for each key.)

First, let’s examine how key/value pairs work in the Streaming API for each step of 
the MapReduce data fl ow.

1 As we’ve seen, the mapper under Streaming reads a split through STDIN and 
extracts each line as a record. Your mapper can choose to interpret each input 
record as a key/value pair or a line of text.

2 The Streaming API will interpret each line of your mapper’s output as a key/
value pair separated by tab. Similar to the standard MapReduce model, we 
apply the partitioner  to the key to fi nd the right reducer to shuffl e  the record 
to. All key/value pairs with the same key will end up at the same reducer.

3 At each reducer, key/value pairs are sorted according to the key by the 
Streaming API. Recall that in the Java model, all key/value pairs of the same 
key are grouped together into one key and a list of values. This group is then 
presented to the reduce() method. Under the Streaming API your reducer is 
responsible for performing the grouping. This is not too bad as the key/value pairs 
are already sorted by key. All records of the same key are in one contiguous 
chunk. Your reducer will read one line at a time from STDIN and will keep 
track of the new keys.

4 For all practical purposes, the output (STDOUT) of your reducer is written to 
a fi le directly. Technically a no-op step is taken before the fi le write. In this 
step the Streaming API breaks each line of the reducer’s output by the tab 
character and feeds the key/value pair to the default TextOutputFormat , 
which by default re-inserts the tab character before writing the result to a 
fi le. Without tab characters in the reducer’s output it will show the same 
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no-op behavior. You can reconfi gure the default behavior to do something 
different, but it makes sense to leave it as a no-op and push the processing 
into your reducer.

To understand the data fl ow better, we write a Streaming program to compute the 
average number of claims for each country. The mapper will extract the country and 
the claims count for each patent and package them as a key/value pair. In accord 
with the default Streaming convention, the mapper outputs this key/value pair with a 
tab character to separate them. The Streaming API will pick up the key and the shuf-
fl ing will guarantee that all claim counts of a country will end up at the same reducer. 
We can see the Python code in listing 4.7. For each record, the mapper extracts the 
country (fi elds[4][1:-1]) as key and the claims count (fi elds[8]) as value. An extra 
concern with our data set is that missing values  do exist. We’ve added a conditional 
statement to skip over records with missing claim counts.

Listing 4.7 AverageByAttributeMapper.py: output country and claim count of patents

#!/usr/bin/env python

import sys

for line in sys.stdin:
    fi elds = line.split(“,”)
    if (fi elds[8] and fi elds[8].isdigit()):
        print fi elds[4][1:-1] + “\t” + fi elds[8]

Before writing the reducer, let’s run the mapper in two situations: without any reducer, 
and with the default IdentityReducer. It’s a useful approach now for learning as we 
can see exactly what’s being outputted by the mapper (by using no reducer) and what’s 
being inputted into the reducer (by using IdentityReducer). You’ll fi nd this handy 
later when debugging your MapReduce program. You can at least check if the mapper 
is outputting the proper data and if the proper data is being sent to the reducer. First 
let’s run the mapper without any reducer.

bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar 

        ➥ -input input/apat63_99.txt 
        ➥ -output output 
        ➥ -fi le playground/AverageByAttributeMapper.py 
        ➥ -mapper ‘AverageByAttributeMapper.py’ 
        ➥ -D mapred.reduce.tasks=0

The output should consist of lines where a country code is followed by a tab followed 
by a numeric count. The order of the output records is not sorted by (the new) key. In 
fact, it’s in the same order as the order of the input records, although that’s not obvi-
ous from looking at the output.

The more interesting case is to use the IdentityReducer  with a non-zero number 
of reducers. We see how the shuffl ed and sorted records are presented to the reducer. 
To keep it simple let’s try a single reducer by setting -D mapred.reduce.tasks=1 and 
see the fi rst 32 records.



 Streaming in Hadoop 89

AD      9
AD      12
AD      7
AD      28
AD      14
AE      20
AE      7
AE      35
AE      11
AE      12
AE      24
AE      4
AE      16
AE      26
AE      11
AE      4

AE      23
AE      12
AE      16
AE      10
AG      18
AG      12
AG      8
AG      14
AG      24
AG      20
AG      7
AG      3
AI      10
AM      18
AN      5
AN      26

Under the Streaming API, the reducer will see these text data in STDIN. We have to code 
our reducer to recover the key/value pairs by breaking each line at the tab character. Sort-
ing has “grouped” together records of the same key. As you read each line from STDIN, 
you’ll be responsible for keeping track of the boundary between records of different 
keys. Note that although the keys are sorted, the values don’t follow any particular order. 
Finally, the reducer must perform its stated computation, which in this case is calculating 
the average value across a key. Listing 4.8 gives the complete reducer in Python .

Listing 4.8 AverageByAttributeReducer.py

#!/usr/bin/env python

import sys

(last_key, sum, count) = (None, 0.0, 0)

for line in sys.stdin:
    (key, val) = line.split(“\t”)

    if last_key and last_key != key:
        print last_key + “\t” + str(sum / count)
        (sum, count) = (0.0, 0)

    last_key = key
    sum   += fl oat(val)
    count += 1

print last_key + “\t” + str(sum / count)

The program keeps a running sum and count for each key. When it detects a new key 
in the input stream or the end of the fi le, it computes the average for the previous key 
and sends it to STDOUT. After running the entire MapReduce job, we can easily check 
the correctness of the fi rst few results.

AD      14.0
AE      15.4
AG      13.25
AI      10.0
AM      18.0
AN      9.625
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NOTE For those interested, the NBER  website from where we get the patent 
data also has a fi le (list_of_countries.txt) that shows the full country 
name for each country code.  Looking at the output of our job and the country 
codes, we see that Andorra (AD) patents have an average 14 claims. Arab 
Emirates (AE) patents average 15.4 claims. Antigua and Barbuda (AG) patents 
average 13.25 claims, and so forth.

4.5.4 Streaming with the Aggregate package

 Hadoop includes a library package called Aggregate that simplifi es obtaining aggre-
gate statistics of a data set. This package can simplify the writing of Java statistics collec-
tors, especially when used with Streaming, which is the focus of this section.9

The Aggregate package under Streaming functions as a reducer that computes 
aggregate statistics. You only have to provide a mapper that processes records and 
sends out a specially formatted output. Each line of the mapper’s output looks like

function:key\tvalue

The output string starts with the name of a value aggregator function (from the set of 
predefi ned functions available in the Aggregate package). A colon and a tab separated 
key/value pair follows. The Aggregate reducer applies the function to the set of values 
for each key. For example, if the function is LongValueSum , then the output is the sum  
of values for each key. (As the function name implies, each value is treated as a Java 
long type.) If the function is LongValueMax, then the output is the maximum  value 
for each key. You can see the list of aggregator functions supported in the Aggregate 
package in table 4.3.

Table 4.3 List of value aggregator functions supported by the Aggregate package 

Value aggregator Description

DoubleValueSum Sums up a sequence of double values.

LongValueMax Finds the maximum of a sequence of long values.

LongValueMin Finds the minimum of a sequence of long values.

LongValueSum Sums up a sequence of long values.

StringValueMax Finds the lexicographical maximum of a sequence of 
string values.

StringValueMin Finds the lexicographical minimum of a sequence of 
string values.

UniqValueCount Finds the number of unique values (for each key).

ValueHistogram Finds the count, minimum, median, maximum, average, 
and standard deviation of each value. (See text for 
further explanation.)

9  Using the Aggregate package in Java is explained in http://hadoop.apache.org/core/docs/current/api/
org/apache/hadoop/mapred/lib/aggregate/package-summary.html.
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 Let’s go through an exercise using the Aggregate package to see how easy it is. We 
want to count the number of patents granted each year. We can approach this prob-
lem in a way similar to the word counting example we saw in chapter 1. For each 
record, our mapper will output the grant year as the key and a “1” as the value. The 
reducer will sum up all the values (“1”s) to arrive at a count. Only now we’re using 
Streaming with the Aggregate package. Our result will be the simple mapper shown 
in listing 4.9.

Listing 4.9 AttributeCount.py

#!/usr/bin/env python

import sys

index = int(sys.argv[1])
for line in sys.stdin:
    fi elds = line.split(“,”)
    print “LongValueSum:” + fi elds[index] + “\t” + “1”

AttributeCount.py works for any CSV-formatted input fi le. The user only has to 
specify the column index to count the number of records for each attribute in that 
column. The print statement has the main “action” of this short program. It tells the 
Aggregate package to sum up all the values (of 1) for each key, defi ned as the user-
specifi ed column (index). To count the number of patents granted each year, we run 
this Streaming program with the Aggregate package, telling the mapper to use the 
second column (index = 1) of the input fi le as the attribute of interest. 

bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar

        ➥  -input input/apat63_99.txt 
        ➥  -output output 
        ➥ -fi le AttributeCount.py 
        ➥ -mapper ‘AttributeCount.py 1’ 
        ➥ -reducer aggregate

You’ll fi nd most of the options of running the Streaming program familiar. The main 
thing to point out is that we’ve specifi ed the reducer to be ‘aggregate’. This is the 
signal to the Streaming API that we’re using the Aggregate package. The output of the 
MapReduce job (after sorting) is

“GYEAR” 1
1963    45679
1964    47375
1965    62857
...
1996    109645
1997    111983
1998    147519
1999    153486

The fi rst row is anomalous because the fi rst row of the input data is a column descrip-
tion. Otherwise the MapReduce job neatly outputs the patent count for each year. As 
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shown in fi gure 4.3, we can plot the data to visualize  it better. You’ll see that it has a 
mostly steady upward trend.  

Looking at the list of functions in the Aggregate package in table 4.3, you’ll fi nd that 
most of them are combinations of maximum, minimum, and sum for atomic data type. 
(For some reason DoubleValueMax and DoubleValueMin aren’t supported. They 
would be trivial modifi cations of LongValueMax and LongValueMin and an added
advantage.) UniqValueCount and ValueHistogram are slightly different and we look 
at some examples of how to use them.

UniqValueCount gives the number of unique values  for each key. For example, we 
may want to know whether more countries are participating in the U.S. patent system 
over time. We can examine this by looking at the number of countries with patents 
granted each year. We use a straightforward wrapper of UniqValueCount in listing 
4.10 and apply it to the year and country columns of apat63_99.txt (column index 
of 1 and 4, respectively).

bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar 

        ➥ -input input/apat63_99.txt 
        ➥ -output output 
        ➥ -fi le UniqueCount.py 
        ➥ -mapper ‘UniqueCount.py 1 4’ 
        ➥ -reducer aggregate

In the output we get one record for each year. Plotting it gives us fi gure 4.4.  We can 
see that the increasing number of patents granted from 1960 to 1990 (from fi gure 4.3) 
didn’t come from more countries (fi gure 4.4). The same number of countries had 
fi led more.

Figure 4.3 Using Hadoop to count patents published each year and Excel to plot the 
result. This analysis using Hadoop quickly shows the annual patent output to have 
almost quadrupled in 40 years.
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Listing 4.10 UniqueCount.py: a wrapper around the UniqValueCount function

#!/usr/bin/env python

import sys

index1 = int(sys.argv[1])
index2 = int(sys.argv[2])
for line in sys.stdin:
    fi elds = line.split(“,”)
    print “UniqValueCount:” + fi elds[index1] + “\t” + fi elds[index2]

The aggregate function ValueHistogram   is the most ambitious function in the Aggre-
gate package. For each key, it outputs the following:

1 The number of unique values
2  The minimum  count
3 The median  count
4 The maximum  count
5 The average  count
6 The standard deviation 

In its most general form, it expects the output of the mapper to have the form

ValueHistogram:key\tvalue\tcount

We specify the function ValueHistogram followed by a colon, followed by a tab-
separated key, value, and count triplet. The Aggregate reducer outputs the six statistics 
above for each key. Note that for everything except the fi rst statistics (number of 
unique values) the counts are summed over each key/value pair. Outputting two 
records from your mapper as

ValueHistogram:key_a\tvalue_a\t10
ValueHistogram:key_a\tvalue_a\t20

Figure 4.4 The number of countries with U.S. patents granted in each year. We performed 
the computation with a MapReduce job and graphed the result with Excel.
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is no different than outputting a single record with the sum

ValueHistogram:key_a\tvalue_a\t30

A useful variation is for the mapper to only output the key and value, without the count 
and the tab character that goes with it. ValueHistogram automatically assumes a count 
of 1 in this case. Listing 4.11 shows a trivial wrapper around ValueHistogram.

Listing 4.11 ValueHistogram.py: wrapper around Aggregate package’s ValueHistogram 

#!/usr/bin/env python

import sys

index1 = int(sys.argv[1])
index2 = int(sys.argv[2])
for line in sys.stdin:
    fi elds = line.split(“,”)
    print “ValueHistogram:” + fi elds[index1] + “\t” + fi elds[index2]

We run this program to fi nd the distribution of countries with patents granted for 
each year.

bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar 

        ➥ -input input/apat63_99.txt 
        ➥ -output output 
        ➥ -fi le ValueHist.py 
        ➥ -mapper ‘ValueHist.py 1 4’ 
        ➥ -reducer aggregate

The output is a tab-separated value (TSV) fi le with seven columns. The fi rst column, 
the year of patent granted, is the key. The other six columns are the six statistics the 
ValueHistogram is set to compute. A partial view of the output is here (we skip the 
fi rst two rows for formatting reasons):

1964    58    1    7    38410    816.8103448275862    4997.413601595352
1965    67    1    5    50331    938.1641791044776    6104.779230296307
1966    71    1    5    54634    963.4507042253521    6443.625995189338
1967    68    1    8    51274    965.4705882352941    6177.445623039149
1968    71    1    7    45781    832.4507042253521    5401.229955880634
1969    68    1    8    50394    993.5147058823529    6080.713518728092
1970    72    1    7    47073    894.8472222222222    5527.883233761672
1971    74    1    9    55976    1058.337837837838    6492.837390992137

The fi rst column after the year is the number of unique values. This is exactly the same 
as the output of UniqValueCount. The second, third, and fourth columns are the mini-
mum , median , and maximum , respectively. For the patent data set we used, we see 
that (for every year) the country receiving the fewest granted patents (other than 0) 
received 1. Looking specifi cally at the output for 1964, the country receiving the most 
patents received 38410 patents, whereas half the countries received less than 7 patents. 
The average number of patents a country received in 1964 is 816.8 with a standard devi-
ation of 4997.4. Needless to say, the number of patents granted to each country is highly 
skewed , given the discrepancy between the median (7) and the average  (816.8).   



 Improving performance with combiners 95

 We’ve seen how using the Aggregate package under Streaming is a simple way to 
get some popular metrics. It’s a great demonstration of Hadoop’s power in simplifying 
the analysis of large data sets.

4.6 Improving performance with combiners
 We saw in AverageByAttributeMapper.py and AverageByAttributeReducer.py 
(listings 4.7 and 4.8) how to compute the average for each attribute. The mapper 
reads each record and outputs a key/value pair for the record’s attribute and count. 
It shuffl es the key/value pairs across the network, and the reducer computes the aver-
age for each key. In our example of computing the average number of claims for each 
country’s patents, we see at least two effi ciency bottlenecks:

1 If we have 1 billion input records, the mappers will generate 1 billion key/
value pairs that will be shuffl ed across the network. If we were computing a 
function such as maximum, it’s obvious that the mapper only has to output 
the maximum  for each key it has seen. Doing so would reduce network traffi c 
and increase performance. For a function such as average , it’s a bit more 
complicated, but we can still redefi ne the algorithm such that for each mapper 
only one record is shuffl ed for each key.

2 Using country from the patent data set as key illustrates data skew . The data is 
far from uniformly distributed, as a signifi cant majority of the records would 
have U.S. as the key. Not only does every key/value pair in the input map to a 
key/value pair in the intermediate data, most of the intermediate key/value 
pairs will end up at a single reducer, overwhelming it.

Hadoop solves these bottlenecks by extending the MapReduce framework with a com-
biner step in between the mapper and reducer. You can think of the combiner as a helper 
for the reducer. It’s supposed to whittle down the output of the mapper to lessen the 
load on the network and on the reducer. If we specify a combiner, the MapReduce 
framework may apply it zero, one, or more times to the intermediate data. In order for 
a combiner to work, it must be an equivalent transformation of the data with respect 
to the reducer. If we take out the combiner, the reducer’s output will remain the same. 
Furthermore, the equivalent transformation property must hold when the combiner is 
applied to arbitrary subsets of the intermediate data.

If the reducer only performs a distributive function,  such as maximum, minimum, 
and summation (counting), then we can use the reducer itself as the combiner. 
But many useful functions aren’t distributive. We can rewrite some of them, such as 
averaging to take advantage of a combiner.

 The averaging approach taken by AverageByAttributeMapper.py is to output 
only each key/value pair. AverageByAttributeReducer.py will count the number of 
key/value pairs it receives and sum up their values, in order for a single fi nal division 
to compute the average. The main obstacle to using a combiner is the counting 
operation, as the reducer assumes the number of key/value pairs it receives is the 
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number of key/value pairs in the input data. We can refactor the MapReduce program 
to track the count explicitly. The combiner becomes a simple summation function with 
the distributive property.

Let’s fi rst refactor the mapper and reducer before writing the combiner, as the 
operation of the MapReduce job must be correct even without a combiner. We write 
the new averaging program in Java as the combiner must be a Java class.

NOTE The Streaming  API allows you to specify a combiner using the 
-combiner option. For versions up to at least 0.20, the combiner must still 
be a Java class. It’s best to write your mapper and reducer in a Java language. 
Fortunately, the Hadoop roadmap supports native Streaming scripts as 
combiners. In practice, one can get the equivalent of a combiner by setting 
the mapper to a Unix pipe ‘mapper.py | sort | combiner.py’. In addition, 
if you’re using the Aggregate package, each value aggregator already has 
a built-in (Java) combiner. The Aggregate package will automatically use 
these combiners. 

Let’s write a Java mapper (listing 4.12) that’s analogous to AverageByAttributeMapper.
py of listing 4.7.

Listing 4.12  Java equivalent of AverageByAttributeMapper.py

public static class MapClass extends MapReduceBase
    implements Mapper<LongWritable, Text, Text, Text> {

    public void map(LongWritable key, Text value,
                    OutputCollector<Text, Text> output,
                    Reporter reporter) throws IOException {

        String fi elds[] = value.toString().split(“,”, -20);
        String country = fi elds[4];
        String numClaims = fi elds[8];
        if (numClaims.length() > 0 && !numClaims.startsWith(“\””)) {
            output.collect(new Text(country),
                           new Text(numClaims + “,1”));  q
        }
    }
}

The crucial difference in this new Java mapper is that the output is now appended 
with a count of 1 q. We could’ve defi ned a new Writable data type that holds both 
the value and count, but things are simple enough that we’re just keeping a comma-
separated string in Text.

At the reducer, the list of values for each key are parsed. The total sum and count 
are then computed by summation and divided at the end to get the average .

public static class Reduce extends MapReduceBase
    implements Reducer<Text, Text, Text, DoubleWritable> {

    public void reduce(Text key, Iterator<Text> values,



                       OutputCollector<Text, DoubleWritable> output,
                       Reporter reporter) throws IOException {

        double sum = 0;
        int count = 0;
        while (values.hasNext()) {
            String fi elds[] = values.next().toString().split(“,”);
            sum += Double.parseDouble(fi elds[0]);
            count += Integer.parseInt(fi elds[1]);
        }
        output.collect(key, new DoubleWritable(sum/count));
    }
}

The logic of the refactored MapReduce job was not too hard to follow, was it? We add-
ed an explicit count for each key/value pair. This refactoring allows the intermediate 
data to be combined at each mapper before it’s sent across the network.

Programmatically, the combiner must implement the Reducer  interface. The 
combiner’s reduce()  method performs the combining operation. This may seem like 
a bad naming scheme, but recall that for the important class of distributive functions , 
the combiner and the reducer perform the same operations. Therefore, the combiner 
has adopted the reducer’s signature to simplify its reuse. You don’t have to rename 
your Reduce class to use it as a combiner class. In addition, because the combiner is 
performing an equivalent transformation, the type for the key/value pair in its output 
must match that of its input. In the end, we’ve created a Combine class that looks 
similar to the Reduce class, except it only outputs the (partial) sum and count at the 
end, whereas the reducer computes the fi nal average.

public static class Combine extends MapReduceBase
    implements Reducer<Text, Text, Text, Text> {

    public void reduce(Text key, Iterator<Text> values,
                       OutputCollector<Text, Text> output,
                       Reporter reporter) throws IOException {

        double sum = 0;
        int count = 0;
        while (values.hasNext()) {
            String fi elds[] = values.next().toString().split(“,”);
            sum += Double.parseDouble(fi elds[0]);
            count += Integer.parseInt(fi elds[1]);
        }
        output.collect(key, new Text(sum + “,” + count));
    }
}

To enable the combiner, the driver must specify the combiner’s class to the JobConf 
object. You can do this through the setCombinerClass()  method. The driver sets 
the mapper, combiner, and the reducer:

 Improving performance with combiners 97
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Figure 4.5 Monitoring the effectiveness of the combiner in the 
AveragingWithCombiner job

job.setMapperClass(MapClass.class);
job.setCombinerClass(Combine.class);
job.setReducerClass(Reduce.class);

 A combiner doesn’t necessarily improve performance. You should monitor the job’s 
behavior to see if the number of records outputted by the combiner is meaningfully less 
than the number of records going in. The reduction must justify the extra execution 
time of running a combiner. You can easily check this through the JobTracker’s Web UI , 
which we’ll see in chapter 6. 

Looking at fi gure 4.5, note that in the map phase, combine has 1,984,625 input 
records and only 1,063 output records. Clearly the combiner has reduced the amount
of intermediate data. Note that the reduce side executes the combiner, though the 
benefi t of this is negligible in this case.  

4.7 Exercising what you’ve learned
 Practice is the path to profi ciency. You can try the following exercises to hone your 
ability to think in the MapReduce paradigm.

1 Top K records—Change AttributeMax.py (or AttributeMax.php) to output 
the entire record rather than only the maximum  value. Rewrite it such that the 
MapReduce job outputs the records with the top K values rather than only the 
maximum.
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2 Web traffi c measurement—Take a web server log  fi le and write a Streaming 
program with the Aggregate package  to fi nd the hourly traffi c to that site.

3 Inner product of two sparse vectors—A vector is a list of values. Given two vectors, 
X = [x1, x2, ...] and Y = [y1, y2, ...], their inner product is Z = x1 * y1 + 
x2 * y2 + ... . When X and Y are long but have many elements with zero value, 
they’re usually given in a sparse representation: 
1,0.46
9,0.21
17,0.92
...
where the key (fi rst column) is the index into the vector. All elements not 
explicitly specifi ed are considered to have a value of zero. Note that the 
keys don’t need to be in a sorted order. In fact, the keys may not even be 
numerical. (For natural language processing , the keys can be words in a 
document, and the inner product is a measure of document similarity .) 
Write a Streaming job to compute the inner product of two sparse vectors . 
You can add a post-processing step after the MapReduce job to complete the 
computation.

4 Time series processing—Consider time-series  data, where each record has a 
timestamp as key and a measurement (on that time period) as value. We want 
an output that is a linear function of the time series in a form: 
y(t) = a0 * x(t) + a1 * x(t-1) + a2 * x(t-2) + ... + aN * 

x(t-N)

where t stands for time and a0,…,aN are known constants. In signal processing , 
this is known as an FIR fi lter . A particularly popular instance is the moving 
average , where a0 = a1 = … = aN = 1/N. Each point in y is the average of the 
previous N points in x. It’s a simple way to smooth out time series.
 Implement this linear fi lter in MapReduce. Be sure to use a combiner. If 
you order the time series data chronologically (as they usually are) and N is 
relatively small, what’s the reduction in network traffi c for shuffl ing when a 
combiner is used? For extra credit, write your own partitioner so the output 
stays ordered chronologically.
 For the more advanced practitioners, this example illustrates the difference 
between scalability and performance. Implementing an FIR fi lter in Hadoop 
makes it scalable to process terabytes or more of data. Students of signal 
processing will recognize that a high performance implementation of an FIR 
fi lter often calls for a technique known as Fast Fourier Transform  (FFT ). A 
solution that is scalable and high performing would call for a MapReduce 
implementation of FFT, which is beyond the scope of this book.

5 Commutative property—Recall from basic math that the commutative property  
means the order of operation is irrelevant. For example, addition obeys the 
commutative property, as a+b=b+a and a+b+c=b+a+c=b+c+a=c+a+b=c+b+a. 
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Is the MapReduce framework fundamentally designed for implementing 
commutative functions? Why or why not?

6 Multiplication (product)—Many machine-learning  and statistical-classifi cation 
algorithms involve the multiplication of a large number of probability values. 
Usually we compare the product of one set of probabilities to the product of a 
different set, and choose a classifi cation corresponding to the bigger product. 
We’ve seen that maximum is a distributive function. Is the product also 
distributive ? Write a MapReduce program that multiplies all values in a data 
set. For full credit, apply the program to a reasonably large data set. 
Does implementing the program in MapReduce solve all scalability issues? 
What should you do to fi x it?
 (Writing your own fl oating-point library is a popular answer, but not a 
good one.)

7 Translation into fi ctional dialect—A popular assignment in introductory 
computer science classes is to write a program that converts English to “pirate-
speak .” Many variations of the exercise exist for other semi-fi ctional dialects, 
such as “Snoop Dogg ” and “E-40.” Usually the solution involves a dictionary 
look-up for exact word matches (“for” becomes “fo,” “sure” becomes “sho,” 
“the” becomes “da,” etc.), simple text rules (words ending in “ing” now ends in 
“in’,” replace the last vowel of a word and everything after it with “izzle,” etc.), 
and random injections (“kno’ wha’ im sayin’?”). Write such translations and 
use Hadoop to apply it to a large corpus such as Wikipedia. 

4.8 Summary
MapReduce programs follow a template. Often the whole program is defi ned within 
a single Java class. Within the class, a driver sets up a MapReduce job’s confi guration 
object, which is used as the blueprint for how the job is set up and run. You’ll fi nd the 
map and reduce functions in subclasses of Mapper and Reducer, respectively. Those 
classes are often no more than a couple dozen lines long, so they’re usually written as 
inner classes for convenience.

Hadoop provides a Streaming API for writing MapReduce programs in a language 
other than Java. Many MapReduce programs are much easier to develop in a scripting 
language using the Streaming API, especially for ad hoc data analysis. The Aggregate 
package, when used with Streaming, enables one to rapidly write programs for counting 
and getting basic statistics.

MapReduce programs are largely about the map and the reduce functions, but 
Hadoop allows for a combiner function to improve performance by “pre-reducing” 
the intermediate data at the mapper before the reduce phase.

In standard programming (outside of the MapReduce paradigm), counting, 
summing, averaging, and so on are usually done through a simple, single pass of the 
data. Refactoring those programs to run in MapReduce, as we’ve done in this chapter, 
is relatively straightforward conceptually. More complex data analysis algorithms call 
for deeper reworking of the algorithms, which we cover in the next chapter.
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4.9  Further resources
Although we’ve focused on the patent data sets  in this chapter, there are other large 
publicly accessible data sets that you can download and play around with. Below are a 
few examples.

 http://www.netfl ixprize.com/index—Netfl ix■    is an online movie rental site. A 
crucial part of its business is a recommendation engine that suggests new movies 
to a user based on the user’s ratings of previous movies. As part of a competition, 
it released a data set of user ratings to challenge people to develop better rec-
ommendation algorithms. The uncompressed data comes at 2 GB+. It contains 
100 M+ movie ratings from 480 K users on 17 K movies. 

 http://aws.amazon.com/publicdatasets/—Amazon■   has hosted for free several 
large public data sets  for its EC2  users. As of this writing, the data sets belong to 
the three categories of biology, chemistry, and economics. For example, one of 
the biological data sets is an annotated human genome  data of roughly 550 GB. 
Under economics you can fi nd data sets, such as the 2000 U.S. Census  (approxi-
mately 200 GB).

 http://boston.lti.cs.cmu.edu/Data/clueweb09/—Carnegie Mellon University’s■   
Language Technologies Institute has released the ClueWeb09  data set to aid 
large-scale web research. It’s a crawl of a billion web pages in 10 languages. The 
uncompressed data set takes up 25 TB. Given the size of the data set, the most 
effi cient way to get it is in compressed form (which takes up 5 TB) shipped in 
hard disk drives. (At a certain scale, shipping hard drives through FedEx has a 
high “bandwidth.”) As of this writing, CMU  charges US$790 to ship four 1.5 TB 
drives with the compressed data.
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Advanced MapReduce

This chapter covers

 Chaining multiple MapReduce jobs■

 Performing joins of multiple data sets■

 Creating Bloom fi lters■

As your data processing becomes more complex you’ll want to exploit different Hadoop 
features. This chapter will focus on some of these more advanced techniques.

When handling advanced data processing, you’ll often fi nd that you can’t 
program the process into a single MapReduce job. Hadoop supports chaining  
MapReduce programs together to form a bigger job. You’ll also fi nd that advanced 
data processing often involves more than one data set. We’ll explore various joining  
techniques in Hadoop for simultaneously processing multiple data sets. You can 
code certain data processing tasks more effi ciently when processing a group of 
records at a time. We’ve seen how Streaming  natively supports the ability to process 
a whole split at a time, and the Streaming implementation of the maximum function 
takes advantage of this ability. We’ll see that the same is true for Java programs. 
We’ll discover the Bloom fi lter and implement it with a mapper  that keeps state 
information across records.
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5.1 Chaining MapReduce  jobs
 You’ve been doing data processing tasks which a single MapReduce job can accom-
plish. As you get more comfortable writing MapReduce programs and take on more 
ambitious data processing tasks, you’ll fi nd that many complex tasks need to be broken 
down into simpler subtasks, each accomplished by an individual MapReduce job. For 
example, from the citation data set you may be interested in fi nding the ten most-
cited patents. A sequence of two MapReduce jobs can do this. The fi rst one creates the 
“inverted” citation data set  and counts the number of citations for each patent, and the 
second job fi nds the top ten in that “inverted” data.

5.1.1 Chaining  MapReduce jobs  in a sequence

Though you can execute the two jobs manually one after the other, it’s more convenient 
to automate the execution sequence. You can chain MapReduce jobs to run sequen-
tially, with the output of one MapReduce job being the input to the next. Chaining 
MapReduce jobs is analogous to Unix pipes .

mapreduce-1 | mapreduce-2 | mapreduce-3 | ...

Chaining MapReduce jobs sequentially is quite straightforward. Recall that a driver  
sets up a JobConf  object with the confi guration parameters for a MapReduce job 
and passes the JobConf object to JobClient.runJob()  to start the job. As Job-
Client.runJob() blocks until the end of a job, chaining MapReduce jobs involves  
calling the driver of one MapReduce job after another. The driver at each job will 
have to create a new JobConf object and set its input path to be the output path of 
the previous job. You can delete the intermediate data generated at each step of the 
chain at the end.

5.1.2 Chaining MapReduce jobs with complex dependency

Sometimes the subtasks of a complex data processing task don’t run sequentially, and 
their MapReduce jobs are therefore not chained in a linear fashion. For example, 
mapreduce1 may process one data set while mapreduce2 independently processes an-
other data set. The third job, mapreduce3, performs an inner join of the fi rst two jobs’ 
output. (We’ll discuss data joining  in the next sections.) It’s dependent on the other 
two and can  execute only after both mapreduce1 and mapreduce2 are completed. But 
mapreduce1 and mapreduce2 aren’t dependent on each other.

Hadoop has a mechanism to simplify the management of such (nonlinear) job 
dependencies via the Job  and JobControl  classes. A Job object is a representation 
of a MapReduce job. You instantiate a Job object by passing a JobConf object to its 
constructor. In addition to holding job confi guration information, Job also holds 
dependency information,  specifi ed through the addDependingJob() method. For 
Job objects x and y,

x.addDependingJob(y)
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means x will not start until y has fi nished. Whereas Job objects store the confi guration 
and dependency information, JobControl objects do the managing and monitoring of 
the job execution. You can add jobs to a JobControl object via the addJob() method. 
After adding all the jobs and dependencies, call JobControl’s run() method to spawn 
a thread to submit and monitor jobs for execution. JobControl has methods like all-
Finished() and getFailedJobs() to track the execution of various jobs within the batch.

5.1.3 Chaining  preprocessing and postprocessing steps

 A lot of data processing tasks involve record-oriented preprocessing and postprocess-
ing. For example, in processing documents for information retrieval , you may have 
one step to remove stop words  (words like a, the, and is that occur frequently but aren’t 
too meaningful), and another step for stemming  (converting different forms of a word 
into the same form, such as fi nishing and fi nished into fi nish.) You can write a separate 
MapReduce job for each of these pre- and postprocessing steps and chain them to-
gether, using IdentityReducer  (or no reducer at all) for these steps. This approach is 
ineffi cient as each step in the chain takes up I/O and storage to process the intermedi-
ate results. Another approach is for you to write your mapper such that it calls all the 
preprocessing steps beforehand and the reducer to call all the postprocessing steps 
afterward. This forces you to architect the pre- and postprocessing steps in a modular 
and composable manner. Hadoop introduced the ChainMapper  and the ChainReducer  
classes in version 0.19.0 to simplify the composition of pre- and postprocessing.

You can think of chaining MapReduce jobs, as explained in section 5.1.1, symbolically 
using the pseudo-regular expression:

[MAP | REDUCE]+

where a reducer REDUCE comes after a mapper MAP, and this [MAP | REDUCE] se-
quence can repeat itself one or more times, one right after another. The analogous 
expression for a job using ChainMapper and ChainReducer would be

MAP+ | REDUCE | MAP*

The job runs multiple mappers in sequence to preprocess the data, and after running 
reduce it can optionally run multiple mappers in sequence to postprocess the data. 
The beauty of this mechanism is that you write the pre- and postprocessing steps as 
standard mappers. You can run each one of them individually if you want. (This is 
useful when you want to debug  them individually.) You call the addMapper() method 
in ChainMapper and ChainReducer to compose the pre- and postprocessing steps, 
respectively. Running all the pre- and postprocessing steps in a single job leaves no 
intermediate fi le and there’s a dramatic reduction in I/O.

Consider the example where there are four mappers (Map1, Map2, Map3, and Map4) 
and one reducer (Reduce), and they’re chained into a single MapReduce job in 
this sequence:

Map1 | Map2 | Reduce | Map3 | Map4
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In this setup, you should think of Map2 and Reduce as the core of the MapReduce job, 
with the standard partitioning and shuffl ing applied between the mapper and reducer. 
You should consider Map1 as a preprocessing step and Map3 and Map4 as postprocess-
ing steps. The number of processing steps can vary. This is only an example.

You can specify the composition of this sequence of mappers and reducer with the 
driver. See listing 5.1. You need to make sure the key and value outputs of one task 
have matching types (classes) with the inputs of the next task.

Listing 5.1 Driver for chaining  mappers within a MapReduce job

Confi guration conf = getConf();
JobConf job = new JobConf(conf);

job.setJobName(“ChainJob”);
job.setInputFormat(TextInputFormat.class);
job.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(job, in); 
FileOutputFormat.setOutputPath(job, out);

JobConf map1Conf = new JobConf(false);  
ChainMapper.addMapper(job,    
                      Map1.class,   
                      LongWritable.class,  
                      Text.class,   q
                      Text.class,   
                      Text.class,   
                      true,    
                      map1Conf);   

JobConf map2Conf = new JobConf(false);  
ChainMapper.addMapper(job,    
                      BMap.class,   
                      Text.class,   
                      Text.class,   w
                      LongWritable.class,  
                      Text.class,   
                      true,    
                      map2Conf);   

JobConf reduceConf = new JobConf(false);  
ChainReducer.setReducer(job,    
                        Reduce.class,   
                        LongWritable.class,  
                        Text.class,   e
                        Text.class,   
                        Text.class,   
                        true,    
                        reduceConf);   

JobConf map3Conf = new JobConf(false);  
ChainReducer.addMapper(job,    
                       Map3.class,   
                       Text.class,   r
                       Text.class,   
                       LongWritable.class,  

Add Map1 step to job

Add Map2 step to job

Add Reduce step to job

Add Map3 step to job
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                       Text.class,   
                       true,    r
                       map3Conf);   

JobConf map4Conf = new JobConf(false);  
ChainReducer.addMapper(job,    
                       Map4.class,   
                       LongWritable.class,  
                       Text.class,   t
                       LongWritable.class,  
                       Text.class,   
                       true,    
                       map4Conf);   

JobClient.runJob(job);

The driver fi rst sets up the “global” JobConf  object with the job’s name, input path, 
output path, and so forth. It adds the fi ve steps of the chained job one at a time, 
in the sequence of the steps’ execution. It adds all the steps before Reduce using 
the static ChainMapper.addMapper() method. It sets the reducer with the static 
ChainReducer.setReducer() method. Using the ChainReducer.addMapper() 
method, it adds the last steps. The global JobConf object (job) is passed through all 
fi ve add* methods. In addition, each mapper and the reducer have a local JobConf 
object (map1Conf, map2Conf, map3Conf, map4Conf, and reduceConf) that takes pre-
cedence over the global one in confi guring the individual mapper/reducer. The 
recommended local JobConf object  is a new JobConf object initiated without 
defaults — new JobConf(false).

Let’s look at the signature of the ChainMapper.addMapper() method to understand 
in detail how to add each step to the chained job. The signature and function of 
ChainReducer.setReducer() and ChainReducer.addMapper() are analogous and 
we’ll skip them.

public static <K1,V1,K2,V2> void
                      addMapper(JobConf job,
                                Class<? extends Mapper<K1,V1,K2,V2>> klass,
                                Class<? extends K1> inputKeyClass,
                                Class<? extends V1> inputValueClass,
                                Class<? extends K2> outputKeyClass,
                                Class<? extends V2> outputValueClass,
                                boolean byValue,
                                JobConf mapperConf)

This method has eight arguments. The fi rst and last are the global and local 
JobConf objects, respectively. The second argument (klass ) is the Mapper class 
that will do the data processing. The four arguments inputValueClass, inputKey-
Class, outputKeyClass, and outputValueClass are the input/output class types 
of the Mapper class.

The argument byValue will need a little explanation. In the standard Mapper model , 
the output key/value pairs are serialized and written to disk,1 prepared to be shuffl ed 

Add Map3 step to job

Add Map4 step to job

1  The key and value’s ability to be cloned and serialized is provided by them being implemented 
as Writables.
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to a reducer that may be at a completely different node. Formally this is considered to 
be passed by value , as a copy of the key/value pair is sent over. In the current case where 
we can chain one Mapper to another, we can execute the two in the same JVM thread. 
Therefore, it’s possible for the key/value pairs to be passed by reference , where the output 
of the initial Mapper stays in place in memory and the following Mapper refers to it 
directly in the same memory location. When Map1 calls OutputCollector.collect
(K k, V v) , the objects k and v pass directly to Map2’s map()  method. This improves 
performance  by not having to clone a potentially large volume of data between the 
mappers. But doing this can violate one of the more subtle “contracts” in Hadoop’s 
MapReduce API. The call to OutputCollector.collect(K k, V v)  is guaranteed 
to not alter the content of k and v. Map1 can call OutputCollector.collect(K k, 
V v) and then use the objects k and v afterward, fully expecting their values to stay the 
same. But if we pass those objects by reference to Map2, then Map2 may alter them and 
violate the API’s guarantee. If you’re sure that Map1’s map() method doesn’t use the 
content of k and v after calling OutputCollector.collect(K k, V v), or that Map2 
doesn’t change the value of its k and v input, you can achieve some performance gains 
by setting byValue to false. If you’re not sure of the Mapper’s internal code, it’s best to 
play safe and let byValue be true, maintaining the pass-by-value model, and be certain 
that the Mappers will work as expected.   

5.2 Joining data  from different sources
 It’s inevitable that you’ll come across data analyses where you need to pull in data from 
different sources. For example, given our patent data sets, you may want to fi nd out 
if certain countries cite patents from another country. You’ll have to look at citation 
data  (cite75_99.txt) as well as patent data for country information  (apat63_99.
txt). In the database world it would just be a matter of joining two tables, and most 
databases automagically take care of the join processing  for you. Unfortunately, join-
ing data in Hadoop is more involved, and there are several possible approaches with 
different trade-offs.

We use a couple toy data sets to better illustrate joining in Hadoop. Let’s take a 
comma-separated Customers fi le where each record has three fi elds: Customer ID, 
Name, and Phone Number. We put four records in the fi le for illustration:

1,Stephanie Leung,555-555-5555
2,Edward Kim,123-456-7890
3,Jose Madriz,281-330-8004
4,David Stork,408-555-0000

We store Customer orders in a separate fi le, called Orders. It’s in CSV format, with four 
fi elds: Customer ID, Order ID, Price, and Purchase Date. 

3,A,12.95,02-Jun-2008
1,B,88.25,20-May-2008
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2,C,32.00,30-Nov-2007
3,D,25.02,22-Jan-2009

If we want an inner join  of the two data sets above, the desired output would look a 
listing 5.2.

Listing 5.2 Desired output of an inner join between Customers and Orders data

1,Stephanie Leung,555-555-5555,B,88.25,20-May-2008
2,Edward Kim,123-456-7890,C,32.00,30-Nov-2007
3,Jose Madriz,281-330-8004,A,12.95,02-Jun-2008
3,Jose Madriz,281-330-8004,D,25.02,22-Jan-2009

Hadoop can also perform outer joins, although to simplify explanation we focus on 
inner joins.

5.2.1 Reduce-side joining 

 Hadoop has a contrib package called datajoin that works as a generic framework 
for data joining in Hadoop. Its jar fi le is at contrib/datajoin/hadoop-*-datajoin.
jar. To distinguish it from other joining techniques, it’s called the reduce-side join, 
as we do most of the processing on the reduce side. It’s also known as the reparti-
tioned join  (or the repartitioned sort-merge join), as it’s the same as the database tech-
nique of the same name. Although it’s not the most effi cient joining technique, it’s 
the most general and forms the basis of some more advanced techniques (such as 
the semi-join ).

Reduce-side join introduces some new terminologies and concepts, namely, data 
source , tag , and group key . A data source is analogous to a table in relational  databases. 
We have two data sources in our toy example: Customers and Orders. A data source 
can be a single fi le or multiple fi les. The important point is that all the records in a data 
source have the same structure, analogous to a schema .

The MapReduce paradigm calls for processing each record one at a time in a stateless 
manner. If we want some state information to persist, we have to tag the record with 
such state. For example, given our two fi les, a record may look to a mapper like this:

3,Jose Madriz,281-330-8004

or:

3,A,12.95,02-Jun-2008

where the record type (Customers or Orders) is dissociated from the record itself. Tag-
ging the record will ensure that specifi c metadata will always go along with the record. 
For the purpose of data joining, we want to tag each record with its data source.
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The group key  functions like a join key  in a relational database. For our example, 
the group key is the Customer ID. As the datajoin package allows the group key 
to be any user-defi ned function, group key is more general than a join key in a 
relational database.

Before explaining how to use the contrib package, let’s go through all the major 
steps in a repartitioned sort-merge join of our toy datasets. After seeing how those 
steps fi t together, we’ll see which steps are done by the datajoin package, and which 
ones can we program. We’ll have code to see the hooks for integrating our code with 
the datajoin package.

DATA FLOW OF A REDUCE-SIDE JOIN 

Figure 5.1 illustrates the data fl ow of a repartitioned join on the toy data sets Custom-
ers and Orders, up to the reduce stage. We’ll go into more details later to see what 
happens in the reduce stage.

First we see that mappers receive data from two fi les, Customers and Orders. Each 
mapper knows the fi lename of the data stream it’s processing. The map() function is 
called with each record, and the main goal of map() is to package each record such 
that joining on the reduce side is possible.

Recall that in the MapReduce framework, map() outputs records as key/value pairs 
that are partitioned on the key, and all records of the same key will end up in a single 
reducer and be processed together. For joining, we would want the map() function to 
output a record package where the key is the group key for joining—the Customer ID 
in this case. The value in this key/value package will be the original record, tagged with 
the data source (i.e., fi lename). For example, for the record

3,A,12.95,02-Jun-2008

from the Orders fi le, map() will output a key/value pair where the key is “3,”, the 
Customer ID that will be used to join with records from the Customers fi le. The value 
output by map() is the entire record wrapped by a tag “Orders”.

After map()packages each record of the inputs, MapReduce’s standard partition, 
shuffl e, and sort takes place. Note that as the group key is set to the join key, reduce() 
will process all records of the same join key together. The function reduce() will 
unwrap the package to get the original record and the data source of the record by its 
tag. We see that for group keys (Customer IDs) “1” and “2”, the reduce() function 
gets two values. One value is tagged with “Customers” and the other value is tagged 
with “Orders”. For the map output with (group) key “4”, reduce() will only see one 
value, which is tagged with “Customers”. This is expected as there is no record in 
Orders with a Customer ID of “4”. On the other hand, reduce() will see three values 
for the (group) key “3”. This is due to one record from Customers and two more 
from Orders.
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Customers
1,Stephanie Leung,555-555-5555
2,Edward Kim,123-456-7890
3,Jose Madriz,281-330-8004
4,David Stork,408-555-0000
...

Orders
3,A,12.95,02-Jun-2008
1,B,88.25,20-May-2008
2,C,32.00,30-Nov-2007
3,D,25.02,22-Jan-2009
...

Customers
1,Stephanie Leung,555-555-5555

1

Customers
2,Edward Kim,123-456-7890

2

Customers
3,Jose Madriz,281-330-8004

3

Customers
4,David Stork,408-555-0000

4

Orders
3,A,12.95,02-Jun-2008

3

Orders
1,B,88.25,20-May-2008

1

Orders
2,C,32.00,30-Nov-2007

2

Orders
3,D,25.02,22-Jan-2009

3

Group key Tag

Customers
4,David Stork,408-555-0000

4

Customers
1,Stephanie Leung,555-555-5555

1
Orders
1,B,88.25,20-May-2008

Customers
2,Edward Kim,123-456-7890

2
Orders
2,C,32.00,30-Nov-2007

Customers
3,Jose Madriz,281-330-8004

3 Orders
3,A,12.95,02-Jun-2008

Orders
3,D,25.02,22-Jan-2009

map() map()

shuffle()

reduce() reduce()

Figure 5.1 In repartitioned join , the mapper fi rst wraps each record with a group key 
and a tag. The group key is the joining attribute, and the tag is the data source (table in 
SQL parlance) of the record. The partition and shuffl e step will group all the records with 
the same group key together. The reducer is called on the set of records with the same 
group key.

The function reduce() will take its input and do a full cross-product  on the values. 
Reduce() creates all combinations of the values with the constraint that a combination 
will not be tagged more than once. In cases where reduce() sees values of distinct tags, 
the cross-product is the original set of values. In our example, this is the case for group 
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keys 1, 2, and 4. Figure 5.2 illustrates the cross product for group key 3. We have three 
values, one tagged with Customers and two tagged with Orders. The cross-product cre-
ates two combinations. Each combination consists of the Customers value and one of 
the Orders value.

NOTE Our toy example has an implicit schema that Customer ID identifi es a 
unique record in Customers making the number of combinations in a cross-
product always the number of Orders records with the Customer ID (except 

Customers
3,Jose Madriz,281-330-8004

3 Orders
3,A,12.95,02-Jun-2008

Orders
3,D,25.02,22-Jan-2009

Customers
3,Jose Madriz,281-330-8004

Orders
3,A,12.95,02-Jun-2008

Customers
3,Jose Madriz,281-330-8004

Orders
3,D,25.02,22-Jan-2009

reduce()

combine() combine()

3,Jose Madriz,281-330-8004,A,12.95,02-Jun-2008

3,Jose Madriz,281-330-8004,D,25.02,22-Jan-2009

Figure 5.2 The reduce side of a repartitioned join . For a given join key, the reduce task 
performs a full cross-product of values from different sources. It sends each combination 
to combine () to create an output record. The combine () function can choose to 
not output any particular combination.
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when it’s zero, in which case the cross-product is the Customers record itself). 
For more complicated settings, the number of combinations generated by 
the cross-product is the product of the number of records under each tag. 
If reduce() sees two Customers records and three Orders records together, 
then the cross-product  will create six (2 * 3) combinations. If there’s a third 
data source (Accounts) with two records, then the cross-product will create 
twelve (2 * 2 * 3) combinations.

It feeds each combination from the cross-product into a function called combine(). 
(Don’t confuse with combiners as explained in section 4.5.) Due to the nature of the 
cross-product, combine() is guaranteed to see at most one record from each of the 
data sources (tags), and all the records it sees have the same join key. It’s the combine() 
function that determines whether the whole operation is an inner join , outer join , or 
another type of join . In an inner join , combine() drops all combinations where not all 
tags are present, such as our case with group key “4”. Otherwise combine() merges 
the records from different sources into a single output record.

Now you see why we call this joining process the repartitioned sort-merge join. The 
records in the original input sources can be in random order. They are repartitioned 
onto the reducers in the right grouping. The reducer can then merge records of the 
same join key together to create the desired join output. (The sort happens but it’s not 
critical to understanding the operation.)

IMPLEMENTING JOIN  WITH THE DATAJOIN PACKAGE

Hadoop’s datajoin package implements the datafl ow of a join as described previously. 
We have certain hooks to handle the details of our particular data structure and a spe-
cial hook for us to defi ne the exact function of combine().

Hadoop ’s datajoin package has three abstract classes that we inherit and make 
concrete: DataJoinMapperBase , DataJoinReducerBase , and TaggedMapOutput . 
As the names suggest, our MapClass will extend DataJoinMapperBase, and our 
Reduce class will extend DataJoinReducerBase. The datajoin package has already 
implemented the map() and reduce() methods in these respective base classes to 
perform the join datafl ow describe in the last section. Our subclass will only have to 
implement a few new methods to confi gure the details.

Before explaining how to use DataJoinMapperBase and DataJoinReducerBase, 
you need to understand a new abstract data type TaggedMapOutput that is used 
throughout the code. Recall from the datafl ow description that the mapper outputs a 
package with a (group) key and a value that is a tagged record. The datajoin package 
specifi es the (group) key to be of type Text  and the value (i.e., the tagged record) to be 
of type TaggedMapOutput. TaggedMapOutput is a data type for wrapping our records 
with a Text tag. It trivially implements a getTag() and a setTag(Text tag) method. 
It specifi es an abstract method getData(). Our subclass will implement that method 
to handle the type of the record. There’s no explicit requirement for the subclass 
to have a setData() method but we must pass in the record data. The subclass can 
implement such a setData() method for the sake of symmetry or take in a record in 
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the constructor. In addition, as the output of a mapper, TaggedMapOutput needs to be 
Writable . Therefore, our subclass has to implement the readFields() and write() 
methods. We created TaggedWritable , a simple subclass for handling any Writable 
record type.

public static class TaggedWritable extends TaggedMapOutput {

 private Writable data;

 public TaggedWritable(Writable data) {
  this.tag = new Text(“”);
  this.data = data;
 }

 public Writable getData() {
  return data;
 }

 ...
}

Recall from the join datafl ow that the mapper’s main function is to package a record 
such that it goes to the same reducer as other records with the same join key. Data-
JoinMapperBase performs all the packaging, but the class specifi es three abstract 
methods for our subclass to fi ll in:

protected abstract Text generateInputTag(String inputFile);
protected abstract TaggedMapOutput generateTaggedMapOutput(Object value);
protected abstract Text generateGroupKey(TaggedMapOutput aRecord);

The generateInputTag() is called at the start of a map task to globally specify the tag 
for all the records this map task will process. The tag is defi ned to be of type Text. Note 
that we call the generateInputTag()with the fi lename of the records. The mapper 
working on the Customers fi le will receive the string “Customers” as the argument to 
generateInputTag(). As we’re using the tag to signify the data source, and our fi le-
name is set up to refl ect the data source, generateInputTag() is

protected Text generateInputTag(String inputFile) {
    return new Text(inputFile);
}

If a data source is spread out over several fi les (part-0000, part-0001, etc.), you would 
not want the tag to be the complete fi lename, rather some prefi x of it. For example, 
the tag (data source) can be the fi lename before the dash (-) sign.

protected Text generateInputTag(String inputFile) {
    String datasource = inputFile.split(‘-’)[0];
    return new Text(datasource);
}

We store the result of generateInputTag()in the DataJoinMapperBase object’s 
inputTag variable for later use. We can also store the fi lename in DataJoinMapper-
Base’s inputFile variable if we want to refer to it again.

After the map task’s initialization, DataJoinMapperBase’s map() is called for each 
record. It calls the two abstract methods that we have yet to implement.
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public void map(Object key, Object value,
              OutputCollector output, Reporter reporter) throws IOException
{
    TaggedMapOutput aRecord = generateTaggedMapOutput(value);
    Text groupKey = generateGroupKey(aRecord);
    output.collect(groupKey, aRecord);
}

The generateTaggedMapOutput() method wraps the record value into a Tagged-
MapOutput type. Recall the concrete implementation of TaggedMapOutput that we’re 
using is called TaggedWritable. The method generateTaggedMapOutput() can re-
turn a TaggedWritable with any Text tag that we want. In principle, the tag can even 
be different for different records in the same fi le. In the standard case, we want the tag 
to stand for the data source that our generateInputTag() had computed earlier and 
stored in this.inputTag.

protected TaggedMapOutput generateTaggedMapOutput(Object value) {
 TaggedWritable retv = new TaggedWritable((Text) value);
 retv.setTag(this.inputTag);
 return retv;
}

The generateGroupKey() method takes a tagged record (of type TaggedMapOutput) 
and returns the group key for joining. For our current purpose, we unwrap the tagged 
record and take the fi rst fi eld in the CSV-formatted value as the join key.

protected Text generateGroupKey(TaggedMapOutput aRecord) {
 String line = ((Text) aRecord.getData()).toString();
 String[] tokens = line.split(“,”);
 String groupKey = tokens[0];
 return new Text(groupKey);
}

In a more general implementation, the user will be able to specify which fi eld should be 
the joining key and if the record separator may be some character other than a comma. 

DataJoinMapperBase is a simple class, and much of the mapper code is in our 
subclass. DataJoinReducerBase, on the other hand, is the workhorse of the datajoin 
package, and it simplifi es our programming by performing a full outer join  for us. Our 
reducer subclass only has to implement the combine() method to fi lter out unwanted 
combinations to get the desired join operation (inner join, left outer join, etc.). It’s 
also in the combine()  method that we format the combination into the appropriate 
output format.

We give the combine() method one combination of the cross product of the tagged records 
with the same join (group) key. This may sound complicated, but recall from the datafl ow 
diagrams in fi gures 5.1 and 5.2 that the  cross-product is simple for the canonical case 
of two data sources. Each combination will have either two records (meaning there’s 
at least one record in each data source with the join key) or one (meaning only one 
data source has that join key).

Let’s look at the signature of combine():
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protected abstract TaggedMapOutput

                              ➥ combine(Object[] tags, Object[] values);

An array of tags and an array of values represent the combination. The size of those two 
arrays is guaranteed to be the same and equal to the number of tagged records in the 
combination. The fi rst tagged record in the combination is represented by tags[0] 
and values[0], the second one is tags[1] and values[1], and so forth. Further-
more, the tags are always in sorted order.

As tags correspond to the data sources, in the canonical case of joining two data sources, 
the tags array to combine() won’t be longer than two. Figure 5.2 shows combine() 
being called twice. For the left side, the tags and values arrays are like this:   2

tags = {“Customers”, “Orders”};
values = {“3,Jose Madriz,281-330-8004”, “A,12.95,02-Jun-2008”};

For an inner join , combine() will ignore combinations where not all tags are present. It 
does so by returning null. Given a legal combination, the role of combine() is to concat-
enate all the values into one single record for output. The order of concatenation is fully 
determined by combine(). In the case of an inner join, the length of values[] is always 
the number of data sources available (two in the canonical case), and the tags are always 
in sorted order. It’s a sensible choice to loop through the values[] array to get the 
default alphabetical ordering based on data source names.

DataJoinReducerBase, like any reducer, outputs key/value pairs. For each legal 
combination, the key is always the join key and the value is the output of combine(). 
Note that the join key is still present in each element of the values[] array. The 
combine() method should strip out the join key in those elements before concatenating 
them. Otherwise the join key will be shown multiple times in one output record.

Finally, DataJoinReducerBase expects combine() to return a TaggedMapOutput . 
It’s unclear why as DataJoinReducerBase ignores the tag in the TaggedMapOutput 
object.

Listing 5.3 shows the complete code, including our reduce subclass.  

Listing 5.3 Inner join of data from two fi les using reduce-side join

public class DataJoin extends Confi gured implements Tool {

    public static class MapClass extends DataJoinMapperBase {

        protected Text generateInputTag(String inputFile) {
            String datasource = inputFile.split(“-”)[0];
            return new Text(datasource);
        }

        protected Text generateGroupKey(TaggedMapOutput aRecord) {
            String line = ((Text) aRecord.getData()).toString();
            String[] tokens = line.split(“,”);
            String groupKey = tokens[0];
            return new Text(groupKey);

2  The tags array is of type Text[] and values is of type TaggedWritable[]. We ignore those details to 
focus on the their contents.
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        }

        protected TaggedMapOutput generateTaggedMapOutput(Object value) {
            TaggedWritable retv = new TaggedWritable((Text) value);
            retv.setTag(this.inputTag);
            return retv;
        }
    }

    public static class Reduce extends DataJoinReducerBase {

        protected TaggedMapOutput combine(Object[] tags, Object[] values) {
            if (tags.length < 2) return null;  
            String joinedStr = “”; 
            for (int i=0; i<values.length; i++) {
                if (i > 0) joinedStr += “,”;
                TaggedWritable tw = (TaggedWritable) values[i];
                String line = ((Text) tw.getData()).toString();
                String[] tokens = line.split(“,”, 2);
                joinedStr += tokens[1];
            }
            TaggedWritable retv = new TaggedWritable(new Text(joinedStr));
            retv.setTag((Text) tags[0]); 
            return retv;
        }
    }

    public static class TaggedWritable extends TaggedMapOutput {

        private Writable data;

        public TaggedWritable(Writable data) {
            this.tag = new Text(“”);
            this.data = data;
        }

        public Writable getData() {
            return data;
        }

        public void write(DataOutput out) throws IOException {
            this.tag.write(out);
            this.data.write(out);
        }

        public void readFields(DataInput in) throws IOException {
            this.tag.readFields(in);
            this.data.readFields(in);
        }
    }

    public int run(String[] args) throws Exception {
        Confi guration conf = getConf();

        JobConf job = new JobConf(conf, DataJoin.class);

        Path in = new Path(args[0]);
        Path out = new Path(args[1]);
        FileInputFormat.setInputPaths(job, in);
        FileOutputFormat.setOutputPath(job, out);
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        job.setJobName(“DataJoin”);
        job.setMapperClass(MapClass.class);
        job.setReducerClass(Reduce.class);

        job.setInputFormat(TextInputFormat.class);
        job.setOutputFormat(TextOutputFormat.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(TaggedWritable.class);
        job.set(“mapred.textoutputformat.separator”, “,”);

        JobClient.runJob(job); 
        return 0;
    }

    public static void main(String[] args) throws Exception { 
        int res = ToolRunner.run(new Confi guration(),
                                 new DataJoin(),
                                 args);

        System.exit(res);
    }
}

Next we’ll look at another way of doing joins that is more effi cient in some common 
applications.

5.2.2 Replicated joins using DistributedCache 

The reduce-side join technique discussed in the last section is fl exible, but it can also 
be quite ineffi cient. Joining doesn’t take place until the reduce phase. We shuffl e all 
data across the network fi rst, and in many situations we drop the majority of this data 
during the joining process. It would be more effi cient if we eliminate the unnecessary 
data right in the map phase. Even better would be to perform the entire joining opera-
tion in the map phase.

The main obstacle to performing joins in the map phase is that a record being 
processed by a mapper may be joined with a record not easily accessible (or even 
located) by that mapper. If we can guarantee the accessibility of all the necessary data 
when joining a record, joining on the map side can work. For example, if we know 
that the two sources of data are partitioned into the same number of partitions and 
the partitions are all sorted on the key and the key is the desired join key, then each 
mapper (with the proper InputFormat  and RecordReader ) can deterministically 
locate and retrieve all the data necessary to perform joining. In fact, Hadoop’s org.
apache.hadoop.mapred.join package  contains helper classes to facilitate this map-
side join . Unfortunately, situations where we can naturally apply this are limited, 
and running extra MapReduce jobs to repartition the data sources to be usable by 
this package seems to defeat the effi ciency gain. Therefore, we’ll not pursue this 
package further.

All hope is not lost though. There’s another data pattern that occurs quite frequently 
that we can take advantage of. When joining big data, often only one of the sources 
is big; the second source may be orders of magnitude smaller. For example, a local 
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phone company’s Customers data may have only tens of millions of records (each 
record containing basic information for one customer), but its transaction log can 
have billions of records containing detailed call history. When the smaller source can 
fi t in memory of a mapper, we can achieve a tremendous gain in effi ciency by copying 
the smaller source to all mappers and performing joining in the map phase. This is 
called replicated join  in the database literature as one of the data tables is replicated 
across all nodes in the cluster. (The next section will cover the case when the smaller 
source doesn’t fi t in memory.)

Hadoop has a mechanism called distributed cache  that’s designed to distribute fi les to 
all nodes in a cluster. It’s normally used for distributing fi les containing “background” 
data needed by all mappers. For example, if you’re using Hadoop to classify documents , 
you may have a list of keywords for each class. (Or better yet, a probabilistic model for 
each class, but we digress…) You would use distributed cache to ensure all mappers 
have access to the lists of keywords, the “background” data. For executing replicated 
joins, we consider the smaller data source as background data.

Distributed cache is handled by the appropriately named class DistributedCache . 
There are two steps to using this class. First, when confi guring a job, you call the static 
method DistributedCache.addCacheFile() to specify the fi les to be disseminated 
to all nodes. These fi les are specifi ed as URI objects, and they default to HDFS unless 
a different fi lesystem is specifi ed. The JobTracker will take this list of URIs and 
create a local copy of the fi les in all the TaskTrackers when it starts the job. In the 
second step, your mappers on each individual TaskTracker will call the static method 
DistributedCache.getLocalCacheFiles() to get an array of local fi le Paths where 
the local copy is located. At this point the mapper can use standard Java fi le I/O 
techniques to read the local copy.

Replicated joins using DistributedCache are simpler than reduce-side joins. Let’s 
begin with our standard Hadoop template .

public class DataJoinDC extends Confi gured implements Tool {

    public static class MapClass extends MapReduceBase
        implements Mapper<Text, Text, Text, Text> {

        ...
    }

    public int run(String[] args) throws Exception { 
        ...
    }

    public static void main(String[] args) throws Exception { 
        int res = ToolRunner.run(new Confi guration(),
                                 new DataJoinDC(),
                                 args);

        System.exit(res);
    }
}
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Note that we’ve taken out the Reduce class. We plan on performing the joining in 
the map phase and will confi gure this job to have no reducers. You’ll fi nd our driver 
method familiar too.

public int run(String[] args) throws Exception {
 Confi guration conf = getConf();
 JobConf job = new JobConf(conf, DataJoinDC.class);

 DistributedCache.addCacheFile(new Path(args[0]).toUri(), conf); q
 Path in = new Path(args[1]);
 Path out = new Path(args[2]);
 FileInputFormat.setInputPaths(job, in);
 FileOutputFormat.setOutputPath(job, out);

 job.setJobName(“DataJoin with DistributedCache”);
 job.setMapperClass(MapClass.class);
 job.setNumReduceTasks(0);

 job.setInputFormat(KeyValueTextInputFormat.class);
 job.setOutputFormat(TextOutputFormat.class);
 job.set(“key.value.separator.in.input.line”, “,”);

 JobClient.runJob(job);

 return 0;
}

The crucial addition here is q where we take the fi le specifi ed by the fi rst argument 
and add it to DistributedCache. When we run the job, each node will create a local 
copy of that fi le from HDFS. The second and third arguments denote the input and 
output paths of the standard Hadoop job. Note that we’ve limited the number of data 
sources to two. This is not an inherent limitation of the technique, but a simplifi cation 
that makes our code easier to follow.

 Up to now our MapClass has only had to defi ne one method, map(). In fact, the 
Mapper interface (and also the Reducer interface) has two more abstract methods, 
confi gure() and close(). We call the method confi gure()when we fi rst instantiate 
the MapClass, and the method close()when the mapper fi nishes processing its split. 
The MapReduceBase  class provides default no-op implementations for these methods. 
Here we want to override confi gure() to load our join data into memory when a 
mapper is fi rst initialized. This way we can have the data available each time we call 
map()to process a new record.

public static class MapClass extends MapReduceBase
    implements Mapper<Text, Text, Text, Text> {

    private Hashtable<String, String> joinData = 
                                     new Hashtable<String, String>();

    @Override
    public void confi gure(JobConf conf) {
        try {
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            Path [] cacheFiles = DistributedCache.getLocalCacheFiles(conf);
            if (cacheFiles != null && cacheFiles.length > 0) {
                String line;
                String[] tokens;

                BufferedReader joinReader = new BufferedReader(
                                new FileReader(cacheFiles[0].toString()));
                try {
                    while ((line = joinReader.readLine()) != null) {
                        tokens = line.split(“,”, 2);
                        joinData.put(tokens[0], tokens[1]);
                    }
                } fi nally {
                    joinReader.close();
                }
            }
        } catch (IOException e) {
            System.err.println(“Exception reading DistributedCache: “ + e);
        }
    }

    public void map(Text key, Text value,
                    OutputCollector<Text, Text> output,
                    Reporter reporter) throws IOException {

        String joinValue = joinData.get(key);
        if (joinValue != null) {
            output.collect(key, 
                           new Text(value.toString() + “,” + joinValue));
        }
    }
}

When we call confi gure(), we get an array of fi le paths to the local copy of fi les pushed 
by DistributedCache. As our driver method has only pushed one fi le (given by our 
fi rst argument) into DistributedCache, this should be an array of size one. We read 
that fi le using standard Java fi le I/O. For our purpose, the program assumes each line 
is a record, the key/value pair is comma separated, and the key is unique and will 
be used for joining. The program reads this source fi le into a Java Hashtable called 
joinData that’s available throughout the mapper’s lifespan.

The joining takes place in the map() method and is straightforward now that one of 
the sources resides in memory in the form of joinData. If we don’t fi nd the join key 
in joinData, we drop the record. Otherwise, we match the (join) key to the value in 
joinData and concatenate the values. The result is outputted directly into HDFS as we 
don’t have any reducer for further processing.

A not-infrequent situation in using DistributedCache is that the background 
data (the smaller data source in our data join case) is in the local fi lesystem of the 
client rather than stored in HDFS. One way to handle this is to add code to upload the 
local fi le on the client to HDFS before calling DistributedCache.addCacheFile(). 
Fortunately, this process is natively supported as one of the generic Hadoop command 
line arguments in GenericOptionsParser . The option is -fi les  and it automatically 
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copies a comma-separated list of fi les to all the task nodes. Our command line 
statement is

bin/hadoop jar -fi les small_in.txt DataJoinDC.jar big_in.txt output

Now that we don’t need to call DistributedCache.addCacheFile() ourselves any-
more, we no longer have to take in the fi lename of the smaller data source as one of 
the arguments. The index to the arguments has shifted.

Path in = new Path(args[0]); 
Path out = new Path(args[1]); 

With these minor changes our DistributedCache join program will take a local fi le 
on the client machine as one of the input sources.  

5.2.3 Semijoin : reduce-side join with map-side fi ltering

One of the limitations in using replicated join is that one of the join tables has to be 
small enough to fi t in memory. Even with the usual asymmetry of size in the input 
sources, the smaller one may still not be small enough. You can solve this problem by 
rearranging the processing steps to make them more effi cient. For example, if you’re 
looking for the order history of all customers in the 415 area code, it’s correct but in-
effi cient to join the Orders and the Customers tables fi rst before fi ltering out records 
where the customer is in the 415 area code. Both the Orders and Customers tables may 
be too big for replicated join and you’ll have to resort to the ineffi cient reduce-side 
join. A better approach is to fi rst fi lter out customers living in the 415 area code. We 
store this in a temporary fi le called Customers415. We can arrive at the same end re-
sult by joining Orders with Customers415, but now Customers415 is small enough that 
a replicated join is feasible. There is some overhead in creating and distributing the 
Customers415 fi le, but it’s often compensated by the overall gain in effi ciency.

Sometimes you may have a lot of data to analyze. You can’t use replicated join no 
matter how you rearrange your processing steps. Don’t worry. We still have ways to 
make reduce-side joining more effi cient. Recall that the main problem with reduce-
side joining is that the mapper only tags the data, all of which is shuffl ed across the 
network but most of which is ignored in the reducer. The ineffi ciency is ameliorated 
if the mapper has an extra prefi ltering function to eliminate most or even all the 
unnecessary data before it is shuffl ed across the network. We need to build this 
fi ltering mechanism.

Continuing our example of joining Customers415 with Orders, the join key is 
Customer ID and we would like our mappers to fi lter out any customer not from 
the 415 area code rather than send those records to reducers. We create a data set 
CustomerID415 to store all the Customer IDs of customers in the 415 area code. 
CustomerID415 is smaller than Customers415 because it only has one data fi eld. 
Assuming CustomerID415 can now fi t in memory, we can improve reduce-side join  by 
using distributed cache  to disseminate CustomerID415 across all the mappers. When 
processing records from Customers and Orders, the mapper will drop any record 
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whose key is not in the set CustomerID415. This is sometimes called a semijoin , taking 
the terminology from the database world.

Last but not least, what if the fi le CustomerID415 is still too big to fi t in memory? Or 
maybe CustomerID415 does fi t in memory but it’s size makes replicating it across all 
the mappers ineffi cient. This situation calls for a data structure called a Bloom fi lter. A 
Bloom fi lter is a compact representation of a set that supports only the contain query. 
(“Does this set contain this element?”) Furthermore, the query answer is not completely 
accurate, but it’s guaranteed to have no false negatives and a small probability of false 
positives. The slight inaccuracy is the trade-off for the data structure’s compactness. By 
using a Bloom fi lter representation of CustomerID415, the mappers will pass through 
all customers in the 415 area code. It still guarantees the correctness of the data join 
algorithm. The Bloom fi lter will also pass a small portion of customers not in the 415 
area code to the reduce phase. This is fi ne because those will be ignored in the reduce 
phase. We’ll still have improved performance by reducing dramatically the amount 
of traffi c shuffl ed across the network. The use of Bloom fi lters is in fact a standard 
technique for joining in distributed databases, and it’s used in commercial products, 
such as Oracle 11g. We’ll describe Bloom fi lter and its other applications in more 
details in the next section.  

5.3 Creating a Bloom fi lter
 If you use Hadoop for batch processing of large data sets, your data-intensive com-
puting needs probably include transaction-style processing as well. We won’t cover all 
the techniques for running real-time distributed data processing (caching, sharding, 
etc.). They aren’t necessarily Hadoop-related and are well beyond the scope of this 
book. One lesser-known tool for real-time data processing is the Bloom fi lter, which 
is a summary of a data set whose usage makes other data processing techniques more 
effi cient. When that data set is big, Hadoop is often called in to generate the Bloom 
fi lter representation. As we mentioned earlier, a Bloom fi lter is also sometimes used for 
data joining within Hadoop itself. As a data processing expert, you’ll be well rewarded 
to have the Bloom fi lter in your bag of tricks. In this section we’ll explain this data 
structure in more detail and we’ll go through an online ad network example that will 
build a Bloom fi lter using Hadoop.

5.3.1 What does a Bloom fi lter  do?

At its most basic, a Bloom fi lter object supports two methods: add() and contains(). 
These two methods work in a similar way as in the Java Set interface. The method add() 
adds an object to the set, and the method contains() returns a Boolean true/false 
value denoting whether an object is in the set or not. But, for a Bloom fi lter, contains() 
doesn’t always give an accurate answer. It has no false negatives . If contains() returns 
false, you can be sure that the set doesn’t have the object queried. It does have a small 
probability of false positives  though. contains() can return true for some objects not in 
the set. The probability of false positives depends on the number of elements in the set 
and some confi guration parameters of the Bloom fi lter itself.
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The major benefi t of a Bloom fi lter is that its size, in number of bits, is constant and is 
set upon initialization. Adding more elements to a Bloom fi lter doesn’t increase its size. 
It only increases the false positive rate. A Bloom fi lter also has another confi guration 
parameter to denote the number of hash functions it uses. We’ll discuss the reason for 
this parameter and how the hash functions are used later when we discuss the Bloom 
fi lter’s implementation. For now, its main implication is that it affects the false positive 
rate. The false positive rate is approximated by the equation

(1 – exp(-kn/m))k

where k is the number of hash functions used, m is the number of bits used to store the 
Bloom fi lter, and n is the number of elements to be added to the Bloom fi lter. In practice, 
m and n are determined by the requirement of the system, and therefore, k is chosen to 
minimize the false positive rate given m and n, which (after a little calculus) is

k = ln(2) * (m/n) ≈ 0.7 * (m/n)

The false positive rate with the given k is 0.6185m/n, and k has to be an integer. The 
false positive rate will only be an approximation. From a design point of view, one 
should think in terms of (m/n), number of bits per element, rather than m alone. For 
example, we have to store a set containing ten million URLs (n=10,000,000). Allocat-
ing 8 bits per URL (m/n=8) will require a 10 MB Bloom fi lter (m = 80,000,000 bits). 
This Bloom fi lter will have a false positive rate of (0.6185)8, or about 2 percent. If we 
were to implement the Set class by storing the raw URLs, and let’s say the average URL 
length was 100 bytes, we would have to use 1 GB. Bloom fi lter has shrunk the storage 
requirement by 2 orders of magnitude at the expense of only a 2 percent false positive 
rate! A slight increase in storage allocated to the Bloom fi lter will reduce the false posi-
tive rate further. At 10 bits per URL, the Bloom fi lter will take up 12.5 MB and have a 
false positive rate of only 0.8 percent.

In summary, the signature of our Bloom fi lter class will look like the following:

class BloomFilter<E> {
    public BloomFilter(int m, int k) { ... }
    public void add(E obj) { ... }
    public boolean contains(E obj) { ... } 
}

More applications of the Bloom fi lter
 The Bloom fi lter found its fi rst successful applications back when memory was scarce. 
One of its fi rst uses was in spellchecking. Not being able to store a whole dictionary 
in memory, spellcheckers used a Bloom fi lter representation (of the dictionary) to 
catch most misspellings. As memory size grew and became cheaper, such space 
consideration waned. Bloom fi lter usage is fi nding a resurgence in large-scale data-
intensive operations as data is fast outgrowing memory and bandwidth.

We’ve already seen commercial products, such as Oracle 11g, using  Bloom fi lters 
to join data across distributed databases. In the networking world, one successful 
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product using  Bloom fi lters is the open source distributed web proxy called Squid . 
Squid caches frequently accessed web content to save bandwidth and give users a 
faster web experience. In a cluster of Squid servers, each one can cache a different 
set of content. An incoming request should be routed to the Squid server holding a 
copy of the requested content, or in case of a cache miss, the request is passed on 
to the originating server. The routing mechanism needs to know what each of the 
Squid servers contains. As sending a list of URLs for each Squid server and storing 
it in memory is expensive, Bloom fi lters are used. A false positive means a request 
is forwarded to the wrong Squid server, but that server would recognize it as a cache 
miss and pass it on to the originating server, ensuring the correctness of the overall 
operation. The small performance hit from a false positive is far outweighed by the 
overall improvement.

Sharding systems are a similar application but more advanced. In a nutshell, 
database sharding is the partitioning of a database across multiple machines such 
that each machine only has to deal with a subset of records. Each record has some 
ID that determines which machine it’s assigned to. In more basic designs, the ID 
is hashed statically to one of a fi xed number of database machines. This approach 
is infl exible to adding more shards or rebalancing existing ones. To add fl exibility, it 
uses a dynamic look-up for each record ID, but unfortunately that adds processing 
delay if the look-up is done through a database (i.e., using disk). Like Squid, more 
advanced shard systems use in-memory Bloom fi lters as a fast look-up. It needs 
some mechanism to handle false positives, but the occurrence is small enough to 
not impact the overall performance improvement.

For online display ad networks, it’s important to be able to target an ad from the right 
category to a visitor. Given the volume of traffi c a typical ad network receives and the 
latency requirements, one can end up spending a lot of money on hardware to have 
the capability of retrieving the category in real time. A design based on Bloom fi lters 
can dramatically decrease that cost. Use an offl ine process to tag web pages (or 
visitors) on a limited number of categories (sports, family-oriented, music, etc.). Build 
a Bloom fi lter for each category and store it in memory at the ad servers. When an 
ad request arrives, the ad servers can quickly and cheaply determine which category 
of ads to show. The amount of false positives is negligible.  

5.3.2 Implementing a Bloom fi lter 

Conceptually the implementation of a Bloom fi lter is quite straightforward. We describe 
its implementation in a single system fi rst before implementing it using Hadoop in a 
distributed way. The internal representation of a Bloom fi lter is a bit array of size m. We 
have k independent hash functions, where each hash function takes an object as input 
and outputs an integer between 0 and m-1. We use the integer output as an index into 
the bit array. When we “add” an element to the Bloom fi lter, we use the hash functions 
to generate k indexes into the bit array. We set the k bits to 1. Figure 5.3 shows what 
happens when we add several objects (x, y, and z) over time, in a Bloom fi lter that uses 
three hash functions. Note that a bit will be set to 1 regardless of its previous state. The 
number of 1s in the bit array can only grow.
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When an object comes in and we want to check whether it has been previously added 
to the Bloom fi lter, we use the same k hash functions to generate the bit array indexes 
as we would do in adding the object. Now we check whether all those k bits in the bit 
array are 1s. If all k bits are 1, we return true and claim that the Bloom fi lter contains 
the object. Otherwise we return false. We see that if the object has in fact been added 
before, then the Bloom fi lter will necessarily return true. There are no false negatives 
(returning false when the object is truly in the set). The k bits corresponding to the 
queried object can all be set to 1 even though the object has never been added to the 
set. It may happen that adding other objects set those bits leading to false positives.3

Our implementation of a Bloom fi lter in Java would use the Java BitSet  class as its 
internal representation. We have a function getHashIndexes(obj) that takes an object 
and returns an integer array of size k, containing indexes into the BitSet. The main 
functions of the Bloom fi lter, add() and contains(), are quite straightforward:

class BloomFilter<E> {

    private BitSet bf;

    public void add(E obj) {
        int[] indexes = getHashIndexes(obj);

        for (int index : indexes) {
            bf.set(index);
        }
    }

    public boolean contains(E obj) {
        int[] indexes = getHashIndexes(obj);

        for (int index : indexes) {
            if (bf.get(index) == false) {
                return false;
            }
        }

3  For an accessible introduction to Bloom Filters, see http://en.wikipedia.org/wiki/Bloom_fi lter.
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Figure 5.3 A Bloom fi lter is a bit array that 
represents a set with some probability of false 
positives. Objects (such as x, y, and z) are 
deterministically hashed into positions in the 
array, and those bits are set to 1. You can check 
whether an object is in the set or not by hashing 
and checking the values of those bit positions.
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        return true;
    }

    protected int[] getHashIndexes(E obj) { ... }
}

To implement getHashIndexes() such that it works truly as k independent hash func-
tions is nontrivial. Instead, in our Bloom fi lter implementation in listing 5.4, we use a 
hack to generate k indexes that are roughly independent and uniformly distributed. 
The getHashIndexes() method seeds the Java Random number generator with an 
MD5 hash of the object and then takes k “random” numbers as indexes. The Bloom fi l-
ter class would benefi t from a more rigorous implementation of getHashIndexes(), 
but our hack suffi ces for illustration purposes.

An ingenious way of creating a Bloom fi lter from the union of two sets is by OR’ing 
the (bit array of the) Bloom fi lters of each individual set. As adding an object is setting 
certain bits in a bit array to 1, it’s easy to see why this union rule is true:

public void union(BloomFilter<E> other) {
    bf.or(other.bf);
}

We’ll be exploiting this union trick to build Bloom fi lters in a distributed fashion. Each 
mapper will build a Bloom fi lter based on its own data split. We’ll send the Bloom fi l-
ters to a single reducer, which will take a union of them and record the fi nal output.

As the Bloom fi lter will be shuffl ed around as the mappers’ output, the BloomFilter  
class will have to implement the Writable  interface, which consists of methods 
write() and readFields(). For our purpose these methods transform between the 
internal BitSet representation and a byte array such that the data can be serialized to 
DataInput/DataOutput. The fi nal code is in listing 5.4.

Listing 5.4 Basic Bloom fi lter implementation

class BloomFilter<E> implements Writable {

    private BitSet bf;
    private int bitArraySize = 100000000;
    private int numHashFunc = 6;

    public BloomFilter() {
        bf = new BitSet(bitArraySize);
    }

    public void add(E obj) {
        int[] indexes = getHashIndexes(obj);

        for (int index : indexes) {
            bf.set(index);
        }
    }

    public boolean contains(E obj) {
        int[] indexes = getHashIndexes(obj);

        for (int index : indexes) {
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            if (bf.get(index) == false) {
                return false;
            }
        }
        return true;
    }

    public void union(BloomFilter<E> other) {
        bf.or(other.bf);
    }

    protected int[] getHashIndexes(E obj) {
        int[] indexes = new int[numHashFunc];

        long seed = 0;
        byte[] digest;
        try {
            MessageDigest md = MessageDigest.getInstance(“MD5”);
            md.update(obj.toString().getBytes());
            digest = md.digest();

            for (int i = 0; i < 6; i++) { 
                seed = seed | (((long)digest[i] & 0xFF))<<(8*i);
            }
        } catch (NoSuchAlgorithmException  e) {}

        Random gen = new Random(seed);

        for (int i = 0; i < numHashFunc; i++) {
            indexes[i] = gen.nextInt(bitArraySize);
        }

        return indexes;
    }

    public void write(DataOutput out) throws IOException {
        int byteArraySize = (int)(bitArraySize / 8);

        byte[] byteArray = new byte[byteArraySize];
        for (int i = 0; i < byteArraySize; i++) {
            byte nextElement = 0;
            for (int j = 0; j < 8; j++) {
                if (bf.get(8 * i + j)) {
                    nextElement |= 1<<j;
                }
            }

            byteArray[i] = nextElement;
        }
        out.write(byteArray);
    }

    public void readFields(DataInput in) throws IOException {
        int byteArraySize = (int)(bitArraySize / 8);
        byte[] byteArray = new byte[byteArraySize];

        in.readFully(byteArray);

        for (int i = 0; i < byteArraySize; i++ ) {
            byte nextByte = byteArray[i];
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            for (int j = 0; j < 8; j++) {
                if (((int)nextByte & (1<<j)) != 0) {
                    bf.set(8 * i + j);
                }
            }
        }
    }
}

Next we’ll create the MapReduce program to make a Bloom fi lter  using Hadoop. As 
we said earlier, each mapper will instantiate a BloomFilter object and add the key 
of each record in its split into the BloomFilter instance. (We’re using the key of the 
record to follow our data joining example.) We’ll create a union of the BloomFilters 
by collecting them into a single reducer.

The driver  for the MapReduce program is straightforward. Our mappers will output 
a key/value pair where the value is a BloomFilter instance.

job.setOutputValueClass(BloomFilter.class);

The output key will not matter in terms of partitioning because we only have a single 
reducer.

job.setNumReduceTasks(1);

We want our reducer to output the fi nal BloomFilter as a binary fi le. Hadoop’s 
OutputFormats outputs either text fi les or assumes a key/value pair. Our reducer, 
therefore, won’t use Hadoop’s MapReduce output mechanism and instead we’ll write 
the result out to a fi le ourselves.  

job.setOutputFormat(NullOutputFormat.class);

WARNING  In general life gets a little more dangerous when you deviate 
from MapReduce’s input/output framework and start working with your 
own fi les. Your tasks are no longer guaranteed to be idempotent and you’ll 
need to understand how various failure scenarios can affect your tasks. 
For example, your fi les may only be partially written when some tasks are 
restarted. Our example here is safe(r) because all the fi le operations take 
place together only once in the close() method and in only one reducer. 
A more careful/paranoid implementation would check each individual fi le 
operation more closely.

Recall that our strategy for the mapper is to build a single Bloom fi lter  on the entire split 
and output it at the end of the split  to the reducer. Given that the map() method of the Map-
Class has no state information about which record in the split it’s processing, we should 
output the BloomFilter in the close() method to ensure that all the records in the 
split have been read. Although the map() method is passed an OutputCollector  to col-
lect the mapper’s outputs, the close() method is not given one. The standard pattern 
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in Hadoop to get around this situation is for MapClass itself to hold on to a reference to 
the OutputCollector when it’s passed into map(). This OutputCollector is known to 
function even in the close() method. The MapClass looks like

public static class MapClass extends MapReduceBase
        implements Mapper<K1, V1, K2, V2> {

    OutputCollector<K2, V2> oc = null;

    public void map(K1 key, V1 value,
                    OutputCollector<K2,V2> output,
                    Reporter reporter) throws IOException {

        if (oc == null) oc = output;
        ...
    }

    public void close() throws IOException {
        oc.collect(k, v);
    }
}

The BloomFilters generated by all the mappers are sent to a single reducer. The 
reduce() method in the Reduce class will do a Bloom fi lter union of all of them.

while (values.hasNext()) {
    bf.union((BloomFilter<String>)values.next());
}

As we mentioned earlier, we want the fi nal BloomFilter  to be written out in a fi le of 
our own format rather than one of Hadoop’s OutputFormats. We had already set the 
reducer’s OutputFormat to NullOutputFormat  in the driver to turn off that output 
mechanism. Now the close() method will have to handle the fi le output itself. It 
will have to know the output path as specifi ed by the user, which can be found in the 
mapred.output.dir  property of the JobConf  object. But the close() is not given the 
job confi guration object. We handle this oversight the same way we handled Output-
Collector  in the mapper. We keep a reference to the JobConf object in the Reduce 
class to be used by the close() method. The rest of the close() method will use 
Hadoop’s fi le I/O  to write out our BloomFilter in binary to a fi le in HDFS . The 
complete code is in listing 5.5.

Listing 5.5 A MapReduce program to create a Bloom fi lter

public class BloomFilterMR extends Confi gured implements Tool {

    public static class MapClass extends MapReduceBase
        implements Mapper<Text, Text, Text, BloomFilter<String>> {

        BloomFilter<String> bf = new BloomFilter<String>();
        OutputCollector<Text, BloomFilter<String>> oc = null;

        public void map(Text key, Text value,
                        OutputCollector<Text, BloomFilter<String>> output,
                        Reporter reporter) throws IOException {
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            if (oc == null) oc = output; 

            bf.add(key.toString());
        }

        public void close() throws IOException {
            oc.collect(new Text(“testkey”), bf);
        }
    }

    public static class Reduce extends MapReduceBase
        implements Reducer<Text, BloomFilter<String>, Text, Text> {

        JobConf job = null;
        BloomFilter<String> bf = new BloomFilter<String>();

        public void confi gure(JobConf job) {
            this.job = job;
        }

        public void reduce(Text key, Iterator<BloomFilter<String>> values,
                           OutputCollector<Text, Text> output,
                           Reporter reporter) throws IOException {

            while (values.hasNext()) {
                bf.union((BloomFilter<String>)values.next());
            }
        }

        public void close() throws IOException {
            Path fi le = new Path(job.get(“mapred.output.dir”) +
                                 “/bloomfi lter”);
            FSDataOutputStream out = fi le.getFileSystem(job).create(fi le);
            bf.write(out);
            out.close(); 
        }
    }

    public int run(String[] args) throws Exception {
        Confi guration conf = getConf(); 
        JobConf job = new JobConf(conf, BloomFilterMR.class);

        Path in = new Path(args[0]);
        Path out = new Path(args[1]);
        FileInputFormat.setInputPaths(job, in);
        FileOutputFormat.setOutputPath(job, out);

        job.setJobName(“Bloom Filter”);
        job.setMapperClass(MapClass.class);
        job.setReducerClass(Reduce.class);
        job.setNumReduceTasks(1);

        job.setInputFormat(KeyValueTextInputFormat.class);
        job.setOutputFormat(NullOutputFormat.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(BloomFilter.class);
        job.set(“key.value.separator.in.input.line”, “,”);

        JobClient.runJob(job);

        return 0;
    }
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    public static void main(String[] args) throws Exception {
        int res = ToolRunner.run(new Confi guration(),
                                 new BloomFilterMR(),
                                 args);

        System.exit(res);
    }
}

5.3.3 Bloom fi lter in Hadoop version 0.20+

Hadoop version 0.20 has a Bloom fi lter class in it. It plays a support role to some of 
the new classes introduced in version 0.20, and it will likely stay around for future ver-
sions as well. It functions much like our BloomFilter  class in listing 5.4, although it’s 
much more rigorous in its implementation of the hashing functions. As a built-in class, 
it can be a good choice for semijoin  within Hadoop. But it’s not easy to separate this 
class from the Hadoop framework to use it as a standalone class. If you’re building a 
Bloom fi lter for non-Hadoop applications, Hadoop’s built-in BloomFilter may not 
be appropriate.  

5.4 Exercising what you’ve learned
 You can test your understanding of more advanced MapReduce techniques through 
these exercises:

1 Anomaly detection —Take a web server log fi le . Write a MapReduce program to 
aggregate the number of visits for each IP address. Write another MapReduce 
program to fi nd the top K IP addresses in terms of visits. These frequent 
visitors may be legitimate ISP proxies (shared among many users) or they 
may be scrapers and fraudsters (if the server log is from an ad network). Chain 
these two MapReduce jobs  together such that they can be easily run on a 
daily basis.

2 Filter out records in input—In both patent data sets we’ve used (cite75_99.
txt and apat63_99.txt),  the fi rst row is metadata (column names). So far 
we’ve had to explicitly or implicitly fi lter out that row in our mappers, or 
interpret our results knowing that the metadata record has some deterministic 
infl uence. A more permanent solution is to remove the metadata row from 
the input data and keep track of it elsewhere. Another solution is to write a 
mapper as a preprocessor that fi lters all records that look like metadata. (For 
example, records that don’t start with a numeric patent number.) Write such 
a mapper and use ChainMapper /ChainReducer  to incorporate it into your 
MapReduce programs.

3 Disjoint selection—Using the same Customers and Orders example for the 
datajoin package , how will you change the code to output customers not in 
the Orders data source? Perhaps the Orders data only contains orders made 
within the last N months, and these customers haven’t purchased anything in 
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that time period. A business may choose to re-engage these customers with 
discounts or other incentives.

4 Calculating ratios—Ratios are often a better unit of analysis than raw numbers. 
For example, say you have a data set of today’s stock prices and another data 
set for stock prices from yesterday. You may be more interested in each stock’s 
growth rate than its absolute price. Use the datajoin framework to write a 
program that takes two data sources and output the ratio.

5 Product of a vector with a matrix—Look up your favorite linear algebra text on the 
defi nition of matrix multiplication. Implement a MapReduce job to take the 
product of a vector and a matrix. You should use DistributedCache to hold 
the value of the vector. You may assume the matrix is in sparse representation .

6 Spatial join —Let’s get more adventurous. Consider a two-dimensional 
space where both the x and y coordinates range from -1,000,000,000 to 
+1,000,000,000. You have one fi le with the location of foos, and another fi le 
with the location of bars. Each record in those fi les is a comma-separated (x,y) 
coordinate. For example, a couple lines may look like
145999.32455,888888880.001
834478899.2,5656.87660922
Write a MapReduce job to fi nd all foos that are less than 1 unit distance from 
a bar. Distance is measured using the familiar Euclidean distance, sqrt[(x1-
x2)2 + (y1-y2)2]. Although both foos and bars are relatively sparse in this 2D 
space, their respective fi les are too big to be stored in memory. You can’t use 
DistributedCache for this spatial join.
Hint: The datajoin package as it’s currently implemented doesn’t work that 
well for this problem either, but you can solve it with your own mapper and 
reducer that have a similar data fl ow as the datajoin package.
Hint #2: In all the MapReduce programs we’ve discussed up till now, the keys 
are only extracted and passed around, whereas the values go through various 
computations. You should consider computing the key for the mapper’s output.

7 Spatial join, enhanced with Bloom fi lter—After you’ve answered the last question, 
fi gure out how you can use a Bloom fi lter to speed up the join operation. 
Assume bars are much fewer in number than foos, but still too many to fi t all 
their locations in memory.  

5.5 Summary
We can often write the basic MapReduce programs as one job operating on one data 
set. We may need to write the more advanced programs as multiple jobs or we may 
operate them on multiple data sets. Hadoop has several different ways of coordinating 
multiple jobs together, including sequential chaining and executing them according 
to predefi ned dependencies. For the frequent case of chaining map-only jobs around 
a full MapReduce job, Hadoop has special classes to do it effi ciently.
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Joining is the canonical example for processing data from multiple data sources. 
Though Hadoop has a powerful datajoin package for doing arbitrary joins, its generality 
comes at the expense of effi ciency. A couple other joining methods can provide faster 
joins by exploiting the relative asymmetry in data source sizes typical of most data joins. 
One of these methods leverages the Bloom fi lter, a data structure that’s useful in many 
data processing tasks.

At this point, your knowledge of MapReduce programming should enable you to 
start writing your own programs. As all programmers know, programming is more 
than writing code. You have various techniques and processes—from development to 
deployment and testing and debugging. The nature of MapReduce programming and 
distributed computing adds complexity and nuance to these processes, which we’ll 
cover in the next chapter.

5.6 Further resources

 ■ http://portal.acm.org/citation.cfm?doid=1247480.1247602—MapReduce’s lack of 
simple support for joining datasets is well-known. Many of the tools to enhance 
Hadoop (such as Pig, Hive, and CloudBase) offer data joins as a fi rst-class op-
eration. For a more formal treatment, Hung-chih Yang and coauthors have 
published a paper “Map-reduce-merge: simplifi ed relational data processing 
on large clusters” that proposes a modifi ed form of MapReduce with an extra 
“merge” step that supports data joining natively.

 http://umiacs.umd.edu/~jimmylin/publications/Lin_etal_TR2009.pdf■ —Section 
5.2.2 describes the use of distributed cache to provide side data to tasks. The 
limitation of this technique is that the side data is replicated to every Task-
Tracker, and the side data must fi t into memory. Jimmy Lin and colleagues ex-
plore the use of memcached , a distributed in-memory object caching system, to 
provide global access to side data. Their experience is summarized in the paper 
“Low-Latency, High-Throughput Access to Static Global Resources within the 
Hadoop Framework.”



6

134

Programming Practices

This chapter covers
 Best practices unique to developing Hadoop programs■

 Debugging programs in local, pseudo-distributed, ■

and fully distributed modes

 Sanity checking and regression testing program outputs■

 Logging and monitoring■

 Performance tuning■

Now that you’ve gone through various programming techniques in MapReduce, 
this chapter will step back and cover programming practices.

Programming on Hadoop differs from traditional programming mainly in two 
ways.  First, Hadoop programs are primarily about processing data. Second, Hadoop 
programs are run over a distributed set of computers. These two differences will 
change some aspects of your development and debugging processes, which we 
cover in sections 6.1 and 6.2.

Performance tuning techniques tend to be specifi c to the programming platform, 
and Hadoop is no different. We cover tools and approaches to optimizing Hadoop 
programs in section 6.3.
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Let’s start with the development techniques applicable to Hadoop. Presumably 
you’re already familiar with standard Java software engineering techniques. We focus 
on practices unique to data-centric programming within Hadoop.

6.1  Developing MapReduce programs 
Chapter 2 discussed the three modes     of Hadoop: local  (standalone ), pseudo-distributed , 
and fully distributed . They correspond roughly to development, staging, and produc-
tion setups. Your development process will go through each of the three modes. You’ll 
have to be able to switch between confi gurations easily. In practice you may even have 
more than one fully distributed cluster. Larger shops may, for example, have a “devel-
opment” cluster to further harden MapReduce programs before running them on the 
real production cluster. You may have multiple clusters for different workloads. For 
example, there can be an in-house cluster for running many small- to medium-sized 
jobs and a cluster in the cloud that’s more cost effective for running large, infre-
quent jobs.

Section 2.3 discussed how you can have different versions of the hadoop-site.
xml  confi guration fi le for different setups, and you switch a symlink to point to the 
confi guration you want to work with at the moment. You can also specify the exact 
confi guration fi le you want at each Hadoop command with the -conf option. 
For example,

bin/hadoop fs -conf conf.cluster/hadoop-site.xml -lsr

will list all fi les in your fully distributed cluster, even though you may be currently work-
ing on a different mode or different cluster (assuming conf.cluster/hadoop-site.
xml is where your fully distributed cluster’s confi guration fi le is).

Before you run and test your Hadoop program, you’ll need to make data available 
for the confi guration you’re running. Section 3.1 describes various ways to get data 
into and out of HDFS. For local and pseudo-distributed modes, you’ll only want a 
subset of your full data. Section 4.4 presents a Streaming program (RandomSample.
py) that can randomly sample a percentage of records from a data set in HDFS . As it’s 
a Python script, you can also use it to sample down a local fi le with a Unix pipe:

cat datafi le | RandomSample.py 10

will give you a 10 percent sample of the fi le datafi le.
Now that you have all the different confi gurations set up and know how to put data 

into each confi guration, let’s look at how to develop and debug in local and pseudo-
distributed modes. The techniques build on top of each other as you get closer to the 
production environment. We defer the discussion of debugging on the fully distributed 
cluster ‘till the next section.

6.1.1  Local mode  

 Hadoop in local mode runs everything within one single Java Virtual Machine (JVM) 
and uses the local fi lesystem (i.e., no HDFS). Running within one JVM allows you to 
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use all the familiar Java development tools, such as a debugger . Using fi les from the 
local fi lesystem means you can quickly apply Unix commands or simple scripts on 
the input and output data. Examining fi les in HDFS, on the other hand, is limited to 
commands provided by the Hadoop command line. For example, to count how many 
records are in an output fi le, you can use wc -l  if the fi le is in the local fi lesystem. If 
the fi le is in HDFS, then you’ll either have to write a MapReduce program or download 
the fi le to local storage before applying the Unix commands. As you’ll see, being able 
to access input and output fi les easily will be important to our development practices 
under local mode.

NOTE Local mode closely adheres to Hadoop’s MapReduce programming 
model, but it doesn’t support every feature. For example, it doesn’t support 
distributed cache , and it only allows a maximum of one reducer.

A program running in local mode will output all log and error messages to the con-
sole. It will also summarize the amount of data processed at the end. For example, 
running our skeleton MapReduce job (MyJob.java) to invert the patent citation data , 
the output is quite verbose, and fi gure 6.1 is a snapshot in the middle of the job.

At the end of the job, Hadoop will print out the values of various internal counters . 
They’re the number of records and bytes going through the different stages of 
MapReduce:

09/05/27 03:34:37 INFO mapred.TaskRunner: Task

➥ attempt_local_0001_r_000000_0’ done.
09/05/27 03:34:37 INFO mapred.TaskRunner: Saved output of task

➥ attempt_local_0001_r_000000_0’ to

➥ fi le:/Users/chuck/Projects/Hadoop/hadoop-0.18.1/output/test

Figure 6.1 Running a Hadoop program in local mode outputs all the log messages to the console.
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09/05/27 03:34:37 INFO mapred.LocalJobRunner: reduce > reduce
09/05/27 03:34:37 INFO mapred.JobClient: Job complete: job_local_0001
09/05/27 03:34:37 INFO mapred.JobClient: Counters: 11
09/05/27 03:34:37 INFO mapred.JobClient:   Map-Reduce Framework
09/05/27 03:34:37 INFO mapred.JobClient:     Map output records=16522439
09/05/27 03:34:37 INFO mapred.JobClient:     Reduce input records=33044878
09/05/27 03:34:37 INFO mapred.JobClient:     Map output bytes=264075431
09/05/27 03:34:37 INFO mapred.JobClient:     Map input records=16522439
09/05/27 03:34:37 INFO mapred.JobClient:     Combine output records=0
09/05/27 03:34:37 INFO mapred.JobClient:     Map input bytes=264075431
09/05/27 03:34:37 INFO mapred.JobClient:     Combine input records=0
09/05/27 03:34:37 INFO mapred.JobClient:     Reduce input groups=6517968
09/05/27 03:34:37 INFO mapred.JobClient:     Reduce output records=6517968
09/05/27 03:34:37 INFO mapred.JobClient:   File Systems
09/05/27 03:34:37 INFO mapred.JobClient:     Local bytes written=4246405780
09/05/27 03:34:37 INFO mapred.JobClient:     Local bytes read=4276658154

The input and output of the MapReduce job are both in the local fi lesystem. We can 
examine them using standard Unix commands such as wc  -l or head.  As we are delib-
erately using smaller data sets during development, we can even load them into a text 
editor or a spreadsheet. We can use the many features of those applications to sanity 
check the correctness of our program.

SANITY CHECKING

 Most MapReduce programs involve at least some counting or arithmetic, and bugs 
(especially typos) in mathematical programming don’t call attention to themselves in 
the form of thrown exceptions or threatening error messages. Your math can be wrong 
even though your program is technically “correct,” and everything will run smoothly, 
but the end result will be useless. There’s no simple way to uncover  arithmetic mis-
takes, but some sanity checking will go a long way. At a high level you can look at the 
overall count, maximum, average, and so on, of various metrics and see if they match 
expectation. At a low level you can pick a particular output record and verify that it 
was produced correctly. For example, when we created the inverted citation graph, the 
fi rst few lines were

“CITED” “CITING”
1       3964859,4647229
10000   4539112
100000  5031388
1000006 4714284
1000007 4766693
1000011 5033339
1000017 3908629
1000026 4043055
1000033 4190903,4975983

Our job concludes that patent number 1 is cited twice, by 3964859 and 4647229. We 
can verify this claim by grepping  over the sampled input data to look for records where 
patent number 1 is cited.

grep “,1$” input/cite75_99.txt
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We indeed get the two records as expected. You can verify a few more records to gain 
confi dence in the correctness of your program’s math and logic.1

An eyesore about the output of this inverted citation graph is that the fi rst line is 
not real data.

“CITED” “CITING”

It’s an artifact from the fi rst line of the input data being used as data defi nition. Let’s 
add some code to our mapper to fi lter out non-numeric keys and values, and in the 
process demonstrate regression testing.  

REGRESSION TESTING

 Our data-centric approach to regression testing revolves around “diff  ’ing” various out-
put fi les from before and after code changes . For our particular change, we should 
only be taking out one line from the job’s output. To verify that this indeed is the case, 
let’s fi rst save the output of our current job. In local mode, we have a maximum of only 
one reducer, so the job’s output is only one fi le, which we call job_1_output.

For regression testing, it’s also useful to save the output of the map phase. This will 
help us isolate bugs to either the map phase or the reduce phase. We can save the 
output of the map phase by running the MapReduce job with zero reducers. We can 
do this easily using the -D mapred.reduce.tasks=0 option . In this mapper-only job, 
there will be multiple fi les as each map task will write its output to its own fi le. Let’s 
copy all of them into a directory called job_1_intermediate.

Having stored away the output fi les, we can make the desired code changes to the 
map() method in MapClass. The code itself is trivial. We focus on testing it.

public void map(Text key, Text value,
                OutputCollector<Text, Text> output,
                Reporter reporter) throws IOException {

    try
    {
        if (Integer.parseInt(key.toString()) > 0 && 
            Integer.parseInt(value.toString()) > 0)
        {
            output.collect(value, key);
        }
    } catch (NumberFormatException e) { }
}

Compile and execute the new code against the same input data. Let’s run it as a map-
only job fi rst and compare the intermediate data. As we’ve only changed the mapper, 
any bug should fi rst manifest in differences in the intermediate data. 

diff output/job_1_intermediate/ output/test/

1  In this case, you may suspect whether patent number 1 is really cited by those two patents. The number 1 
feels wrong, an outlier in the range of patent numbers being cited. There can be mistakes in the original 
input data. We have to track down the patents themselves if we want to verify this. In any case, ensuring data 
quality is an important topic but is beyond our discussion of Hadoop.
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We get the following output from the diff utility:

Binary fi les output/job_1_intermediate/.part-00000.crc and

➥ output/test/.part-00000.crc differ
diff output/job_1_intermediate/part-00000 output/test/part-00000
1d0
< “CITED”       “CITING”

We found differences in the binary fi le .part-00000.crc. This is an internal fi le for 
HDFS to keep checksums  for the fi le part-00000. A difference in checksum means 
that part-00000 has changed, and diff prints out the exact differences later. The new 
intermediate fi le, under output/test, is missing the quoted fi eld descriptors. More 
importantly, we fi nd no other changes. So far so good. If we run the whole job with one 
reducer, we expect the fi nal output to differ by one line too.

Well, it turns out not to be the case. If you run the whole job with one reducer and 
compare the fi nal output with job_1_output from the original run, you’ll fi nd many 
differences. What do you think happened? Let’s look at the fi rst few lines of the diff 
to fi nd out.

$ diff output/job_1_output output/test/part-00000 | head -n 15
1,2c1
< “CITED”       “CITING”
< 1     3964859,4647229
---
> 1     4647229,3964859
19c18
< 1000067       5312208,4944640,5071294
---
> 1000067       4944640,5071294,5312208
22,23c21,22
< 1000076       4867716,5845593
< 1000083       5566726,5322091
---
> 1000076       5845593,4867716
> 1000083       5322091,5566726

We see that the line with the fi eld descriptors (“CITED” and “CITING”) are taken out 
as expected. As to the rest of the differences, there’s a defi nite pattern.

In our reduce()  method, we have concatenated the list of values for each key in 
the order Hadoop has given them to us. Hadoop doesn’t provide any guarantee as 
to the order of those values. We see that taking out one line in the intermediate data 
impacts the order of the values for many keys at the reducer . As we know that this job’s 
correctness is invariant to the ordering, we can ignore the differences. Regression 
testing is inherently conservative and tends to set off false alarms. You should use it 
with that in mind.

We have advocated the use of a sampled data set for development, because it is more 
representative of the structure and properties of the data set we use in production. We 
have used the same sampled data set for regression testing, but you can also manually 
construct a separate input data set with edge cases that are atypical of the production 
data. For example, you may put in empty values or extra tab characters or other unusual 
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records in this constructed data set. This test data set  is for ensuring that your program 
continues to handle the edge cases even as it evolves. This test data set doesn’t need to 
have more than several dozen records. You can visually inspect the entire output to see 
if your program still functions as expected.   

CONSIDER USING LONG INSTEAD OF INT

Most Java programmers instinctively default to the int type  (or Integer or IntWritable ) 
to represent integer values. In Java the int type can hold any integer between 231-1 and 
-231, or between 2,147,483,647 and -2,147,483,648. This is adequate for most applica-
tions. Rarely do programmers put too much thought into it. When you’re processing 
Hadoop-scale data, it’s not unusual for some counter variables to need a bigger range. 
You won’t see this requirement under your development data set , which by design is 
small. It may not even matter to your current production data, but as your business 
operation grows, your data set will get bigger. It may get to a point where some vari-
ables will outgrow the int range and cause arithmetic errors. Take the canonical word 
counting example. When processing millions of documents, you won’t have any word 
count that goes beyond 2 billion,2 and an int is adequate. But as you grow to process 
tens of millions or hundreds of millions of documents, counting frequent words like 
the can cross the limit of an int type. Rather than wait for this kind of bug to creep up 
on you in production, which is much harder to debug and costlier to fi x, now is the 
time you should go through your code and carefully consider whether your numeric 
variables should be long  or LongWritable  to handle future scale.3

6.1.2  Pseudo-distributed mode 

 Local mode has none of the distributed characteristics of a production Hadoop cluster. 
We may not see many bugs when running in local mode. Hadoop provides a pseudo-
distributed mode that has all the functionality and “nodes” of a production cluster—Name
Node , SecondaryNameNode , DataNode , JobTracker , and TaskTracker , each running on 
a separate JVM. All the software components are distributed, and pseudo-distributed 
mode differs from a production cluster at only the system-and-hardware level. It uses 
only one physical machine—your own local computer. We should make sure our jobs 
can run in pseudo-distributed mode before deploying them to a full production cluster.

Chapter 2 describes the confi guration and commands to start pseudo-distributed 
mode. You’ll start all the daemons on your computer to make it function like a cluster. 
You interface with it as if it is a distinct Hadoop cluster. You put data into its own HDFS 
fi lesystem. You submit your jobs to it for running rather than run them in the same 
user space. Most importantly, you now monitor it “remotely” through log fi les and the 
web interface. You’ll use the same tools later to monitor a production cluster .

2 This is not absolutely true and will depend on your documents’ size and content.
3  The problem of exceeding a numeric range is not unique to Hadoop. You’ll remember the famous Y2K 

problem where older programs only allocated two digits to represent year. More recently, almost all web 
operations that have experienced explosive growth (such as Facebook, Twitter, and RockYou) have had to 
retool their systems to handle a bigger range of user IDs or document IDs than they originally expected.
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LOGGING

Let’s run in the pseudo-distributed cluster the same job we had in local mode. You put 
the input fi le into HDFS using the hadoop fs command. Submit the job for running 
using the same hadoop jar command as in local mode.

The fi rst thing you’ll notice is that you no longer have the torrent of messages on 
your console. You only get a measure of progress in the map phase and reduce phase, 
and the same summary of counters  at the end as in local mode. You can see this in 
fi gure 6.2.

Figure 6.2 In pseudo-distributed mode, the console only outputs a job’s progress and its counters at 
the end.
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Hadoop hasn’t stopped outputting debugging messages. In fact, it’s outputting much 
more now. These messages don’t go to the console screen. Instead, they’re saved into 
log fi les.

You can fi nd the log fi les under the /logs directory. Different services (NameNode, 
JobTracker, etc.) create separate log fi les. The fi lename should distinguish the service 
logging a fi le. Hadoop rotates log fi les daily. The most recent one ends in .log. It 
further appends the older ones with their date. Under the default setting, Hadoop 
doesn’t delete old log fi les automatically. You should proactively archive and delete 
them to make sure they’re not taking up too much space.

Log fi les for the NameNode , SecondaryNameNode , DataNode , and JobTracker  
are used for debugging the respective services. They’re not too important in pseudo-
distributed mode. In production clusters, you as a system administrator can look at 
them to debug problems in those corresponding nodes. As a programmer, you are 
always interested in the TaskTracker log though, as it records exceptions thrown.

Your MapReduce program can output to STDOUT  and STDERR  (System.out and 
System.err in Java) its own logging  messages. Hadoop records those under fi les 
named stdout and stderr, respectively. There will be a distinct fi le for each task 
attempt. (A task can have more than one attempt if the fi rst one fails.) These user log 
fi les are under the /logs/userlogs subdirectory. 

Besides logging to STDOUT and STDERR, your program can also send out live status 
messages  using the setStatus()  method on the Reporter  object being passed to the 
map() and reduce() methods. (For Streaming  programs, the status information is 
updated by sending a string of the form reporter:status:message to STDERR.) This 
is useful for long-running jobs where you can monitor them as they run. The status 
message is shown on the JobTracker Web UI, to be described next.  

JOBTRACKER  WEB UI

 By defi nition events occur in many different places in a distributed program. This 
makes monitoring more diffi cult. The system becomes more like a black box, and we 
need specialized monitoring tools to peek into the various states within it. The Job-
Tracker provides a web interface for tracking the progress and various states of your 
jobs. Under the default confi guration, you can set your browser to

http://localhost:50030/jobtracker.jsp

to view the starting page of the administration tool for your pseudo-distributed 
cluster.4 It shows a summary of the Hadoop cluster, as well as lists of jobs that are running, 
completed, and failed. See fi gure 6.3.

Hadoop tracks jobs  internally by their job ID  . A job ID is a string prefi xed with 
job_, followed by the cluster ID  (which is a timestamp of when the cluster was started), 
followed by an auto-incremented job number. The web UI lists each job with the user 
name and job name . In pseudo-distributed mode, it’s relatively easy to identify the job 

4 In fully distributed mode, replace “localhost” with the domain of the JobTracker master.
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Figure 6.3 The JobTracker  Web UI main page

you’re currently working with, as you’ll run one job at a time. When you get to a multi-
user production environment, you’ll have to narrow down your jobs by looking for 
your Hadoop user name and the name of your current job. The name of your job is set 
using the setJobName()  method in the JobConf object. The name for a Streaming  job 
is set through a confi guration property shown in table 6.1.

Table 6.1 Confi guration property for setting a job’s name 

Property Description

mapred.job.name String property denoting the name of a job
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In the administration page, you can see each job with the completion percentage of its 
map phase. It shows the number of map tasks for the job and the number of completed 
ones. You can see the same metrics for the reduce side. This gives you a rough summa-
ry of your job’s progress. To drill down more on a particular job, you can click on the 
job ID, which is a link that’ll take you to the job’s administration page. See fi gure 6.4.

The job page shows the volume of various input/output due to the running of the 
job. The page refreshes itself periodically but you can also refresh the page manually to 
get the updated numbers. You can start exploring the various aspects of your job from 
the many links on this page. For example, clicking on the map link will take you to a list 
of all map tasks for the job. See fi gure 6.5.

Figure 6.4 The JobTracker ’s administration page for a single job
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Figure 6.5 List of tasks in the TaskTracker  Web UI. This fi gure shows all the map tasks for a 
single job. Each task can update its own status message.

Tasks are identifi ed by a task ID . To construct the task ID, you start with the job ID the 
task runs under but replace the job_ prefi x with task_. You then append it with _m for a 
map task or _r for a reduce task. You further append it with an auto-incremented number 
within each group. In the TaskTracker Web UI, you’ll see each task with its status , which 
you can programmatically set through the setStatus()  method described earlier.

Clicking on a task ID will bring you to a page that further describes different attempts of 
a task. Hadoop makes several retry attempts at a failed task before failing the entire job.

The JobTracker and TaskTracker UIs provide many other links and metrics. Most 
should be self-explanatory. 

KILLING JOBS 

Unfortunately, sometimes a job goes awry after you’ve started it but it doesn’t actually 
fail. It may take a long time to run or may even be stuck in an infi nite loop. In (pseudo-) 
distributed mode you can manually kill a job using the command

bin/hadoop job -kill job_id

where job_id is the job’s ID  as given in JobTracker’s Web UI.

6.2  Monitoring and debugging on a production cluster
After successfully running your job in a pseudo-distributed cluster, you’re ready to run 
it on a production cluster using real data. We can apply all the techniques we’ve used 
for development and debugging on the production cluster, although the exact usage 
may be slightly different. Your cluster should still have a JobTracker Web UI, but the 
domain is no longer localhost. It’s now the address of the cluster’s JobTracker. The 
port number will still be 50030 unless it’s been confi gured differently.
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In pseudo-distributed mode, when there’s only one node, all the log fi les are in a 
single /logs directory that you can access locally. In a fully distributed cluster, each 
node has its own /logs directory to keep its log fi les. You can diagnose problems on a 
node through the log fi les of that particular node.

In addition to the development and testing techniques we’ve mentioned so far, you 
also have monitoring and debugging techniques that are more useful in a production 
cluster on real data, which we explore in this section.

6.2.1  Counters

 You can instrument your Hadoop job with counters to profi le its overall operation. Your 
program defi nes various counters and increments their counts in response to specifi c 
events. Hadoop automatically sums the same counter from all tasks (of the same job) 
so that it refl ects the profi le of the overall job. It displays the value of your counters in 
the JobTracker’s Web UI along with Hadoop’s internal counters.

The canonical application of counters  is for tracking different input record types, 
particularly for tracking “bad” records. Recall from section 4.4 our example for fi nding 
the average number of claims for patents from each country. We know the number of 
claims is not available for many records. Our program skips over those records, and it’s 
useful to know the number of records we’re skipping. Beyond satisfying our curiosity, 
such instrumentation allows us to understand the program’s operation and do some 
“reality checks” for its correctness.

We use counters through the Reporter.incrCounter()  method. The Reporter  
object is passed to the map() and reduce() methods. You call incrCounter() with the 
name of the counter and the amount to increment. You use uniquely named counters 
for each different event. When you call incrCounter() with a new counter name, that 
counter is initialized and takes on the increment value.

The Reporter.incrCounter() method has two signatures, depending on how you 
want to specify a counter’s name:

public void incrCounter(String group, String counter, long amount)
public void incrCounter(Enum key, long amount)

The fi rst form is more general in that it allows you to specify the counter name with 
dynamic strings at run time. The combination of two strings, group and counter, 
uniquely defi nes a counter. When counters are reported (in the Web UI or as text at 
the end of a job run), counters of the same group are reported together.

The second form uses a Java enum to specify counter  names, which forces you 
to have them defined at compile time, but it also allows for type checking. The 
enum’s name is used as the group string, whereas the enum’s field is used as the 
counter string.

Listing 6.1 is the MapClass from listing 4.12 rewritten with counters to track the 
number of missing values and “quoted” values. (Only the fi rst row of column description 
should be a “quoted” value.) An enum called ClaimsCounters is defi ned with values 
MISSING and QUOTED. Logic in the code increments the counters to refl ect the 
record it’s processing.
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Listing 6.1 A MapClass with Counters to count the number of  missing values

public static class MapClass extends MapReduceBase
    implements Mapper<LongWritable, Text, Text, Text> {

    static enum ClaimsCounters { MISSING, QUOTED };

    public void map(LongWritable key, Text value,
                    OutputCollector<Text, Text> output,
                    Reporter reporter) throws IOException {

        String fi elds[] = value.toString().split(“,”, -20);
        String country = fi elds[4];
        String numClaims = fi elds[8];

        if (numClaims.length() == 0) {
            reporter.incrCounter(ClaimsCounters.MISSING, 1);
        } else if (numClaims.startsWith(“\””)) {
            reporter.incrCounter(ClaimsCounters.QUOTED, 1);
        } else {
            output.collect(new Text(country), new Text(numClaims + “,1”));
        } 
    }
}

After running the program, we can see the defi ned counters along with Hadoop’s 
internal counters in the JobTracker’s Web UI . See fi gure 6.6.

Figure 6.6 JobTracker ’s Web UI collects and shows the counter information.
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We see that the enum’s fully qualifi ed Java name (with $ to separate out the inner class 
hierarchy) is used as the group name. The fi elds MISSING and QUOTED are used 
to defi ne separate counters. As expected, it increments the QUOTED counter only 
once and the MISSING counter 939,867 times. Does the data set have that many rows 
with missing claim counts? The originator of the data set stated that claim counts are 
missing for patents granted before 1975. Merely eyeballing fi gure 4.3, we guess that 
about a third of all the patents in our data set are granted before 1975. Looking at 
the map input records count (from fi gure 6.6) we see there’s a total of 2.9M+ records. 
The numbers seem consistent and we can feel more confi dent about the correctness 
of the processing.

A Streaming  process can also use counters. It needs to send a specially formatted 
line to STDERR  in the form of

reporter:counter:group,counter,amount

where group, counter, and amount are the corresponding arguments one would’ve passed to 
incrCounter() in Java. For example, in Python one can increment the ClaimsCounters.
MISSING counter with

sys.stderr.write(“reporter:counter:ClaimsCounters,MISSING,1\n”)

Be sure to include the newline character (“   \n”) at the end. Hadoop Streaming will not 
properly interpret the string without that.  

6.2.2  Skipping bad records 

 When dealing with large data sets, it is inevitable that some records will have errors. It’s 
not unusual to focus several iterations of your development cycle on making the pro-
gram robust to unexpected data.5 Your program may never be completely foolproof, 
though. Your program will process new data, and new data will think of new ways to 
misbehave. You may even be using a parser that depends on third-party libraries you 
have no control over. While you should make your program as robust as possible to 
malformed records, you should also have a recovery mechanism to handle the cases 
you couldn’t plan for. You don’t want your whole job to fail only because it fails to 
handle one bad record.

Hadoop’s mechanism for recovering from hardware failures doesn’t work for 
recovering from deterministic software failures caused by bad records. Instead it 
provides a feature for skipping over records that it believes to be crashing a task. If 
this skipping feature is on, a task will enter into skipping mode after the task has been 
retried several times. Once in skipping mode, the TaskTracker  will track and determine 
which record range is causing failure. The TaskTracker will then restart the task but 
skip over the bad record range.

5  Unexpected data are not always mistakes. Someone once told me he had a program that was crashing in 
processing users’ geographical information. Further digging revealed that one user was from a real city 
named Null.
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CONFIGURING RECORD SKIPPING IN JAVA

 The skipping feature is available starting with version 0.19, but it’s disabled by default. 
In Java, the feature is controlled through the class SkipBadRecords, which consists 
entirely of static methods. The job driver needs to call one or both methods:

public static void setMapperMaxSkipRecords(Confi guration conf, 
      long maxSkipRecs)
public static void setReducerMaxSkipGroups(Confi guration conf, 
      long maxSkipGrps)

to turn on record skipping for map tasks and reduce tasks, respectively. The driver calls 
the methods with the confi guration object and the maximum number of records in a 
skip range. If the maximum skip range size is set to 0 (default), then record skipping is 
disabled. Hadoop fi nds the skip range using a divide-and-conquer approach. It executes 
the task with the skip range halved each time, and determines the half with the bad 
record(s). The process iterates until the skip range is within the acceptable size. This is 
a rather expensive operation, particularly if the maximum skip range size is small. You 
may need to increase the maximum number of task attempts in Hadoop’s normal task 
recovery mechanism to accommodate the extra attempts. You can do this using the 
methods JobConf.setMaxMapAttempts()  and  JobConf.setMaxReduceAttempts() , 
or set the equivalent properties mapred.map.max.attempts  and mapred.reduce.
max.attempts .

If skipping  is enabled, Hadoop enters skipping mode after the task has failed 
twice. You can set the number of task failures needed to trigger skipping mode in 
SkipBadRecords’s setAttemptsToStartSkipping() method:

public static void setAttemptsToStartSkipping(Confi guration conf, 
      int attemptsToStartSkipping)

Hadoop will log skipped records to HDFS for later analysis. They’re written as se-
quence fi les in the _log/skip directory. We cover sequence fi les in more detail in 
section 6.3.3. For now you can think of it as a Hadoop-specifi c compressed format. It 
can be uncompressed and read using the command:

bin/hadoop fs -text <fi lepath>

You can change the log directory for skipped records from _log/skip using the meth-
od SkipBadRecords.setSkipOutputPath(JobConf conf, Path path). If path 
is set to null or to a Path with a string value of “none”, Hadoop will not record the 
skipped records.

CONFIGURING RECORD SKIPPING OUTSIDE OF JAVA

Although you can set the record-skipping feature in Java by calling methods in Skip-
BadRecords in your driver, sometimes you may want to set this feature using the ge-
neric options available in GenericOptionsParser  instead. This is because the person 
running the program can have a better idea about the range of bad records to expect 
and set the parameters more appropriately than the original developer. Furthermore, 
Streaming programs can’t access SkipBadRecords; the record skipping features must 
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be confi gured using Streaming’s -D property (-jobconf in version 0.18). Table 6.2 
shows the JobConf properties being set by the SkipBadRecords method calls.

Table 6.2 Equivalent JobConf  properties to method calls in SkipBadRecords 

SkipBadRecords method JobConf property

setAttemptsToStartSkipping() mapred.skip.attempts.to.start.
skipping 

setMapperMaxSkipRecords() mapred.skip.map.max.skip.records

setReducerMaxSkipGroups() mapred.skip.reduce.max.skip.groups

setSkipOutputPath() mapred.skip.out.dir

setAutoIncrMapperProcCount() mapred.skip.map.auto.incr.proc.count

setAutoIncrReducerProcCount() mapred.skip.reduce.auto.incr.proc.
count

We haven’t explained the last two properties yet. Their default values are fi ne for most 
Java programs but we need to change them for Streaming ones.

In determining the record range to skip, Hadoop needs an accurate count of the 
number of records a task has processed. Hadoop uses an internal counter and by default 
it’s incremented after each call to the map (reduce) function. For Java programs this is 
a good approach to track the number of records processed. It can break down in some 
cases, such as programs that process records asynchronously (say, by spawning threads) 
or buffer them to process in chunks, but it usually works. In Streaming  programs, 
this default behavior wouldn’t work at all because there’s no equivalent of the map 
(reduce) function that gets called to process each record. In those situations you have 
to disable the default behavior by setting the Boolean properties to false, and your task 
has to update the record counters itself. 

In Python, the map task can update the counter with

sys.stderr.write(

    ➥ ”reporter:counter:SkippingTaskCounters,MapProcessedRecords,1\n”)

and the reduce task can use

sys.stderr.write(

    ➥ ”reporter:counter:SkippingTaskCounters,ReduceProcessedGroups,1\n”)

Java programs that cannot depend on the default record counting should use

reporter.incrCounter(SkipBadRecords.COUNTER_GROUP,
    SkipBadRecords.COUNTER_MAP_PROCESSED_RECORDS, 1);

and

reporter.incrCounter(SkipBadRecords.COUNTER_GROUP,
    SkipBadRecords.COUNTER_REDUCE_PROCESSED_GROUPS, 1);

when it has processed a key/value pair in its Mapper and Reducer, respectively.   
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6.2.3  Rerunning failed tasks  with IsolationRunner

Debugging through log fi les is about reconstructing events using generic historical 
records. Sometimes there’s not enough information in the logs to trace back the cause 
of failure. Hadoop has an IsolationRunner  utility that functions like a time machine 
for debugging. This utility can isolate and rerun the failed task with the exact same 
input on the same node. You can attach a debugger to monitor the task as it runs and 
focus on gathering evidence specifi c to the failure.

To use the IsolationRunner feature, you must run your job with the confi guration 
property keep.failed.tasks.fi les  set to true. This tells every TaskTracker to keep 
all the data necessary to rerun the failed tasks.

When a job fails, you use the JobTracker Web UI to locate the node, the job ID, and 
the task attempt ID of the failed task. You log into the node where the task failed and 
go to the work directory under the directory for the task attempt. Go to

local_dir/taskTracker/jobcache/job_id/attempt_id/work

where job_id and attempt_id are the job ID and task attempt ID of the failed task. (The 
job ID  should start with “job_” and the task attempt ID  should start with “attempt_”.) 
The root directory local_dir is what is set in the confi guration property mapred.local.
dir . Note that Hadoop allows a node to use multiple local directories (by setting 
mapred.local.dir to a comma-separated list of directories) to spread out disk I/O 
among multiple drives. If the node is confi gured that way, you’ll have to look in all the 
local directories to fi nd the one with the right attempt_id subdirectory.

Within the work directory you can execute IsolationRunner to rerun the failed task 
with the same input that it had before. In the rerun, we want the JVM to be enabled 
for remote debugging. As we’re not running the JVM directly but through the bin/
hadoop script, we specify the JVM debugging options through HADOOP_OPTS:

export HADOOP_OPTS=”-agentlib:jdwp=transport=dt_socket,

                   ➥ server=y,address=8000”

It tells the JVM to listen for the debugger at port 8000 and to wait for the debugger 
getting attached before running any code.6 We now use IsolationRunner to rerun 
the task:

bin/hadoop org.apache.hadoop.mapred.IsolationRunner ../job.xml

The job.xml fi le contains all the confi guration information IsolationRunner needs. 
Given our specifi cation, the JVM will wait for a debugger’s attachment before execut-
ing the task. You can attach to the JVM any Java debugger  that supports the Java Debug 
Wire Protocol (JDWP). All the major Java IDEs do so. For example, if you’re using jdb , 
you can attach it to the JVM via

jdb -attach 8000

6  Options to confi gure the Sun JVM for debugging are further explained in Sun’s documentation: http://
java.sun.com/javase/6/docs/technotes/guides/jpda/conninv.html#Invocation.
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(Of course, this is only an example. I hope you’re using something better than jdb!) 
Consult your IDE’s documentation for how to connect its debugger to a JVM.   

6.3  Tuning for performance
After you have developed your MapReduce  program and fully debugged it, you may 
want to start tuning it for performance. Before doing any optimization, note that one 
of the main attractions of Hadoop  is its linear scalability . You can speed up many jobs 
by adding more machines. This makes economic sense when you have a small cluster. 
Consider the value of time it takes to optimize your program to gain a 10 percent im-
provement. For a 10-node cluster, you can get the same 10 percent performance gain 
by adding one machine (and this gain applies to all jobs on that cluster). The cost of 
your development time may well be higher than the cost of the additional computer. 
On the other hand, for a 1,000-node cluster, squeezing a 10 percent improvement 
through hardware will take 100 new machines. At that scale the brute force approach 
of adding hardware to boost performance may be less cost effective. 

Hadoop has a number of specifi c levers and knobs for tuning performance, some 
of which boost the effectiveness of the cluster as a whole. We cover those in the next 
chapter when we discuss system administration issues. In this section we examine 
techniques that can be applied on a per-job basis.

6.3.1  Reducing network traffi c with combiner

Combiner can reduce the amount of data shuffl ed between the map and reduce phases, 
and lower network traffi c improves execution time. The details and the benefi ts of 
using combiner  are thoroughly described in section 4.6. We mention it here again for 
the sake of completeness.

6.3.2  Reducing the amount of input data

When processing large data sets , sometimes a nontrivial portion of the processing time 
is spent scanning data from disk. Reducing the number of bytes to read can enhance 
overall throughput. There are several ways to do this.

The simplest way to reduce the amount of bytes processed is to reduce the amount 
of data processed. We can choose to process only a sampled subset of the data. This 
is a viable option for certain analytics applications. For those applications, sampling  
reduces precision but not accuracy. Their results remain useful for many decision 
support systems.

Often your MapReduce jobs don’t use all the information in the input data set. 
Recall our patent description data set from chapter 4. It has almost a couple dozen 
fi elds, yet most of our jobs access only a few common ones. It’s ineffi cient for every 
job on that data set to read the unused fi elds every time. One can “refactor” the input 
data into several smaller data sets. Each has only the fi elds necessary for a particular 
type of data processing. The exact refactoring will be application dependent. This 
technique is similar in spirit to vertical partitioning and column-oriented databases in 
the relational database management system (RDBMS) world .
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Finally, you can reduce the amount of disk and network I/O by compressing your 
data. You can apply this technique to the intermediate as well as output data sets. 
Hadoop has many options for data compression, and we devote the next subsection 
to this topic.

6.3.3  Using compression

 Even with the use of a combiner, the output of the map phase can be large. This inter-
mediate data has to be stored on disk and shuffl ed across the network. Compressing 
this intermediate data will improve performance for most MapReduce jobs, and it’s 
easy too.

Hadoop has built-in support for compression and decompression. Enabling 
compression on the mapper’s output involves setting two confi guration properties, as 
you can see in table 6.3.

Table 6.3 Confi guration properties to control the compression of mapper ’s output

Property Description

mapred.compress.map.output Boolean property denoting whether the output of 
mapper should be compressed

mapred.map.output.
compression.codec

Class property denoting which CompressionCodec 
to use for compressing mapper’s output

To enable compression on the mapper’s output, you set mapred.compress.map.
output  to true. In addition, you should set mapred.map.output.compression.codec  to 
the appropriate codec class. All codec classes in Hadoop implement the Compression-
Codec interface. Hadoop supports a number of compression codecs (see table 6.4). For 
example, to use GZIP compression, you can set the confi guration object:

conf.setBoolean(“mapred.compress.map.output”, true);
conf.setClass(“mapred.map.output.compression.codec”,
             GzipCodec.class, 
             CompressionCodec.class);

You can also use the convenience methods setCompressMapOutput()  and set-
MapOutputCompressorClass()  in JobConf instead of setting the properties directly.

Table 6.4 List of codecs  available under the org.apache.hadoop.io.compress package

Codec Hadoop version Description

DefaultCodec 0.18, 0.19, 0.20 Works with fi les in the zlib format. By Hadoop convention 
fi lenames for these fi les end in .defl ate.

GzipCodec 0.18, 0.19, 0.20 Works with fi les in the gzip format. These fi les have a 
fi lename extension of .gz.

BZip2Codec 0.19, 0.20 Works with fi les in the bzip2 format. These fi les have a 
fi lename extension of .bz2. This compression format is 
unique in that it’s splittable for Hadoop, even when used 
outside the sequence fi le format.
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 Data output from the map phase of a job is used only internally to the job, so en-
abling compression for this intermediate data is transparent to the developer and is 
a no-brainer. As many MapReduce applications involve multiple jobs, it makes sense 
for jobs to be able to output and input in compressed form. It’s highly recommended 
that data that are passed between Hadoop jobs use the Hadoop-specifi c sequence 
fi le format.

Sequence fi le  is a compressable binary fi le format for storing key/value pairs. 
It is designed to support compression while remaining splittable . Recall that one 
of the parallelisms of Hadoop is its ability to split an input fi le  for reading and 
processing by multiple map tasks. If the input fi le is in a compressed format, Hadoop 
will have to be able to split the fi le such that each split can be decompressed by 
the map tasks independently. Otherwise parallelism is destroyed if Hadoop has to 
decompress the fi le as a whole fi rst. Not all compressed fi le formats are designed 
for splitting and decompressing in chunks. Sequence fi les were specially developed 
to support this feature. The fi le format provides sync markers  to Hadoop to denote 
splittable boundaries.7

In addition to its compressability and splittability, sequence fi les  support binary keys 
and values. Therefore, a sequence fi le is often used for processing binary documents, 
such as images, and it works great for text documents and other large key/value objects 
as well. Each document is considered a record within the sequence fi le.

You can make a MapReduce job output a sequence fi le by setting its output format 
to SequenceFileOutputFormat . You’ll want to change its compression type from the 
default RECORD to BLOCK. With record compression, each record is compressed 
separately. With block compression, a block of records is compressed together and 
achieves a higher compression ratio. Finally, you have to call the static methods 
setCompressOutput() and setOutputCompressorClass() in FileOutputFormat  
(or SequenceFileOutputFormat , which inherits those methods) to enable output 
compression using a specifi c codec. The supported codecs are the same as those given 
in table 6.4. You add these lines to the driver:

conf.setOutputFormat(SequenceFileOutputFormat.class);
SequenceFileOutputFormat.setOutputCompressionType(conf,

    ➥ CompressionType.BLOCK);
FileOutputFormat.setCompressOutput(conf, true);
FileOutputFormat.setOutputCompressorClass(conf, GzipCodec.class);

Table 6.5 lists the equivalent properties for confi guring for sequence fi le output. 
A Streaming program can output sequence fi les when given the following options:

-outputformat org.apache.hadoop.mapred.SequenceFileOutputFormat
-D mapred.output.compression.type=BLOCK
-D mapred.output.compress=true
-D mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCode

7  All the input fi les we’ve seen so far are uncompressed text fi les where each record is a line. The newline 
character (\n) can trivially be thought of as the sync marker pointing out to both splittable boundaries and 
record boundaries.
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Table 6.5 Confi guration properties for outputting compressed sequence fi le 

Property Description

mapred.output.
compression.type

String property to denote the sequence fi le’s compression type. 
Can be one of NONE, RECORD, or BLOCK. Default is RECORD 
but BLOCK almost always compresses better.

Convenience method:

SequenceFileOutputFormat.
    ➥ setOutputCompressionType()

mapred.output.compress Boolean property on whether to compress the job’s output.

Convenience method:

FileOutputFormat.setCompressOutput()

mapred.output.
compression.codec

Class property that is used to specify which compression codec 
to use for compressing the job’s output.

Convenience method:

FileOutputFormat.
    ➥ setOutputCompressorClass()

To read a sequence fi le as input, set the input format to SequenceFileInputFormat . 
Use 

conf.setInputFormat(SequenceFileInputFormat.class);

or

-inputformat org.apache.hadoop.mapred.SequenceFileInputFormat

for Streaming . There’s no need to confi gure the compression type or codec class, 
as the SequenceFile.Reader class (used by SequenceFileRecordReader) will auto-
matically determine those settings from the fi le header.   

6.3.4  Reusing the JVM

 By default, the TaskTracker runs each Mapper and Reducer task in a separate JVM as a 
child process. This necessarily incurs the JVM start-up cost for each task. If the mapper 
does its own initialization, such as reading into memory a large data structure (see the 
example of joining using distributed cache in section 5.2.2), that initialization  is part 
of the start-up cost as well. If each task runs only briefl y, or if the mapper initialization 
takes a long time, then the start-up cost can be a signifi cant portion of a task’s total 
run time.

Starting with version 0.19.0, Hadoop allows the reuse of a JVM across multiple tasks 
of the same job. The start-up cost can, therefore, be amortized across many tasks. A 
new property, mapred.job.reuse.jvm.num.tasks , specifi es the maximum number 
of tasks (of the same job) a JVM can run. The default value is 1; JVM is not reused. You 
can enable JVM reuse by setting the property to a higher number. You can also set it to 
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-1, which means there’s no limit to the number of tasks a JVM can be reused for. The 
JobConf object has a convenience method, setNumTasksToExecutePerJvm(int) , to 
set the property for a job. This is summarized in table 6.6.

Table 6.6 Confi guration property for enabling JVM  reuse

Property Description

mapred.job.reuse.jvm.num.tasks Integer property for setting the maximum number of 
tasks a JVM can run. A value of -1 means no limit.

6.3.5  Running with speculative execution

 One of the original design assumptions of MapReduce (as stated in the Google 
MapReduce paper) is that nodes are unreliable and the framework must handle 
the situation where some nodes fail in the middle of a job. Under this assumption, 
the original MapReduce  framework specifi es the map tasks and the reduce tasks to 
be idempotent . This means that when a task fails, Hadoop can restart that task and 
the overall job will end up with the same result. Hadoop can monitor the health of 
running nodes and restart tasks  on failed nodes automatically. This makes fault toler-
ance transparent to the developer.

Often nodes don’t suddenly fail but experience slowdown as I/O devices go bad. In 
such situations everything works but the tasks run slower. Sometimes tasks also run slow 
because of temporary congestion. This doesn’t affect the correctness of the running 
job but certainly affects its performance. Even one slow-running task will delay the 
completion of a MapReduce job. Until all mappers have fi nished, none of the reducers 
will start running. Similarly, a job is not considered fi nished until all the reducers 
have fi nished. 

Hadoop uses the idempotency property again to mitigate the slow-task problem. 
Instead of restarting a task only after it has failed, Hadoop will notice a slow-running 
task and schedule the same task  to be run in another node in parallel. Idempotency 
guarantees the parallel task will generate the same output. Hadoop will monitor the 
parallel tasks. As soon as one fi nishes successfully, Hadoop will use its output and kill 
the other parallel tasks. This entire process is called speculative execution.

Note that speculative execution of map tasks will take place only after all map tasks 
have been scheduled to run, and only for map tasks that are making much less progress 
than is average on the other map tasks. It’s the same case for speculative execution of 
reduce tasks. Speculative execution does not “race” multiple copies of a task to get the 
best completion time. It only prevents the slow tasks from dragging down the job’s 
completion time.

By default, speculative execution is enabled. One can turn it off for map tasks and 
reduce tasks separately. To do this, set one or both of the properties in table 6.7 to 
false. They’re applied on a per-job basis, but you can also change the cluster-wide 
default by setting them in the cluster confi guration fi le.
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Table 6.7 Confi guration properties for enabling and disabling speculative execution 

Property Description

mapred.map.tasks.speculative.
execution

Boolean property denoting whether speculative 
execution is enabled for map tasks

mapred.reduce.tasks.speculative.
execution

Boolean property denoting whether speculative 
execution is enabled for reduce tasks

You should leave speculative execution on in general. The primary reason to turn it off 
is if your map tasks or reduce tasks  have side effects and are therefore not idempotent. 
For example, if a task writes to external fi les, speculative execution can cause multiple 
copies of a task to collide in attempting to create the same external fi les. You can turn 
off speculative execution to ensure that only one copy of a task is being run at a time. 

NOTE If your tasks have side effects, you should also think through how 
Hadoop’s recovery mechanism would interact with those side effects. For 
example, if a task writes to an external fi le, it’s possible that the task dies right 
after writing to the external fi le. In that case, Hadoop will restart the task, 
which will try to write to that external fi le again. You need to make sure your 
tasks’ operation remains correct in such situations.

6.3.6  Refactoring code and rewriting algorithms

If you’re willing to rewrite your MapReduce programs to optimize performance, some 
straightforward techniques and some nontrivial, application-dependent rewritings can 
speed things up.

One straightforward technique for a Streaming  program is to rewrite it for Hadoop 
Java. Streaming is great for quickly creating a MapReduce job for ad hoc data analysis, 
but it doesn’t run as fast as Java under Hadoop. Streaming jobs that start out as one-off 
queries but end up being run frequently can gain from a Java re-implementation. 

If you have several jobs that run on the same input data, there are probably 
opportunities to rewrite them into fewer jobs. For example, if you’re computing the 
maximum as well as the minimum of a data set , you can write a single MapReduce job 
that computes both rather than compute them separately using two different jobs. This 
may sound obvious, but in practice many jobs are originally written to do one function 
well. This is a good design practice. A job’s conciseness makes it widely applicable 
to different data sets for different purposes. Only after some usage should you start 
looking for job groupings that you can rewrite to be faster.

One of the most important things you can do to speed up a MapReduce  program 
is to think hard about the underlying algorithm and see if a more effi cient algorithm 
can compute the same results faster. This is true for any programming, but it is more 
signifi cant for MapReduce programs. Standard text books on algorithm and data 
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structure (sorting, lists, maps, etc.) comprehensively cover design choices for most 
traditional programming. Hadoop programs, on the other hand, tend to touch on 
“exotic” areas, such as distributed computing, functional programming, statistics, and 
data-intensive processing, where best practices are less known to most programmers 
and there is still exciting research today to explore new approaches.

One example we’ve already seen that leverages a new data structure to speed up  
MapReduce programs is the use of Bloom fi lters in semi-joins (section 5.3). The Bloom 
fi lter  is well-known in the distributed computing community but relatively unknown 
outside of it.

Another classic example of using a new algorithm to speed up a MapReduce 
program comes from statistics in the calculation of variance . Non-statisticians may 
compute variance using its canonical defi nition:

(1/N) * Sum
i
[(X

i
 – X

avg
)2]

where Sumi denotes summation over the data set. The variable Xavg is the average of 
the data set. If we don’t know that average ahead of time, then a non-statistician may 
decide to run one MapReduce job to fi nd the average fi rst, and a second MapReduce 
job to compute the variance. Someone more familiar with computing statistics will use 
an equivalent defi nition:

(1/N) * Sum
i
[(X

i
)2] – ((1/N) * Sum

i
[X

i
])2

From this defi nition one needs the sum of X as well as the sum of X2, but you can 
compute both sums together in one scan of the data, using only a single MapReduce 
job. (This is analogous to the example of calculating maximum and minimum in a 
single job.) A little statistical background has halved the processing time in comput-
ing variance.8

You should also pay attention to the computational complexity of your algorithms . 
Hadoop provides “only” linear scalability , and you can still bring it to its knees 
with large data sets running under computationally intensive algorithms that are 
quadratic or worse. You certainly should look for more effi cient algorithms in 
those cases, and sometimes you may have to settle for faster algorithms that only 
give approximate results.

6.4  Summary
Development methodologies for Hadoop build on top of best practices for Java pro-
gramming, such as unit testing and test-driven development. Hadoop’s central role 
of processing data calls for more data-centric testing processes. Math and logic errors 
are more prevalent in data-intensive programs and they’re often inconspicuous. The 

8  There’s a lot of nuisance in numerical computation over large data. In this variance calculation example we 
note our refactored MapReduce job has lower numerical precision and is more likely to run into overfl ow 
problems.
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distributed nature of Hadoop makes debugging much harder. To lessen the burden, 
you should test in stages, from a nondistributed (i.e., local) mode to a single-node 
pseudo-distributed mode, and fi nally to a fully distributed mode.

The famous computer scientist Donald Knuth once said that “premature 
optimization is the root of all evil.” You should tune your Hadoop program for 
performance only after it’s been fully debugged. Beyond thinking through general 
algorithmic and computational issues, performance enhancement is platform-specifi c, 
and Hadoop has a number of specifi c techniques to make jobs run more effi ciently.
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Cookbook

This chapter covers
 Passing custom parameters to tasks■

 Retrieving task-specifi c information■

 Creating multiple outputs■

 Interfacing with relational databases■

 Making output globally sorted■

This book so far has covered the core techniques for making a MapReduce pro-
gram. Hadoop is a big framework that supports many more functionalities than 
those core techniques. In this age of Bing and Google, you can look up specialized 
MapReduce techniques rather easily, and we don’t try to be an encyclopedic refer-
ence. In our own usage and from our discussion with other Hadoop users, we’ve 
found a number of techniques generally useful, techniques such as being able to 
take a standard relational database as input or output to a MapReduce job. We’ve 
collected some of our favorite “recipes” in this cookbook chapter.

7.1  Passing job-specifi c parameters  to your tasks 
In writing your Mapper  and Reducer , you often want to make certain aspects con-
fi gurable. For example, our joining program in chapter 5 is hardcoded to take the 
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fi rst data column as the join key. The program can be more generally applicable if the 
column for the join key can be specifi ed by the user at run time. Hadoop itself uses a 
confi guration object to store all the confi guration properties for a job. You can use the 
same object to pass parameters to your Mapper and Reducer.

We’ve seen how the MapReduce driver confi gures the JobConf  object with 
properties, such as input format, output format, mapper class, and so forth. To 
introduce your own property, you give your property a unique name and set it with 
a value in the same confi guration object. This confi guration object is passed to all 
TaskTrackers , so the properties in the confi guration object are available to all tasks 
in that job. Your Mapper and Reducer can read the confi guration object and retrieve 
the property value.

The Confi guration  class (parent of JobConf) has a number of generic setter 
methods. Properties are key/value pairs, where key has to be a String, but value can 
be one of a number of common types. Signature for the common setter methods are

public void set(String name, String value)
public void setBoolean(String name, boolean value)
public void setInt(String name, int value)
public void setLong(String name, long value)
public void setStrings(String name, String... values)

Note that Hadoop stores all properties internally as strings. All the other setter 
methods are convenience methods for set(String, String). For example, the 
setStrings(String, String...) method takes a String array , turns it into a 
single comma-separated String, and sets that String as the property value. The get-
Strings() retrieval method similarly splits the concatenated string back into an array. 
With that in mind, don’t keep any commas in the strings in the original array. If you 
want commas, you should use your own string-encoding function.

Your driver  will fi rst set the properties in the confi guration object to make them 
available to all tasks. Your Mapper and Reducer have access to the confi guration 
object in the confi gure()  method. When a task initializes, it calls confi gure(), 
which you override to retrieve and store your properties . Your map() and reduce() 
methods will access your copy of those properties later. In the following example we 
call our new property myjob.myproperty, and it takes an integer value specifi ed by 
the user.

public int run(String[] args) throws Exception {

    Confi guration conf = getConf(); 
    JobConf job = new JobConf(conf, MyJob.class);

    ...

    job.setInt(“myjob.myproperty”, Integer.parseInt(args[2])); 

    JobClient.runJob(job); 
    return 0; q
}

In MapClass , the confi gure() method retrieves the property value and stores it in 
the object’s scope. The getter methods of the Confi guration class require specifying 

Set custom 
property
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default values, which will be returned if the requested property is not set in the con-
fi guration object. For this example we use a default of 0:

public static class MapClass extends MapReduceBase
    implements Mapper<Text, Text, Text, Text> {

    int myproperty;

    public void confi gure(JobConf job) {
        myproperty = job.getInt(“myjob.myproperty”, 0); 
    }

    ... q
}

If you want to use the property in the Reducer, it will also have to retrieve the 
property.

public static class Reduce extends MapReduceBase
    implements Reducer<Text, Text, Text, Text> {

    int myproperty;

    public void confi gure(JobConf job) {
        myproperty = job.getInt(“myjob.myproperty”, 0);
    }

    ...
}

The Confi guration class  has a larger list of getter methods than setter methods, 
although they are largely self-explanatory. Almost all the getter methods require a 
default value as argument. The exception is get(String) , which returns null if the 
property with the specifi ed name is not set.

public String get(String name)
public String get(String name, String defaultValue)
public boolean getBoolean(String name, boolean defaultValue)
public fl oat getFloat(String name, fl oat defaultValue)
public int getInt(String name, int defaultValue)
public long getLong(String name, long defaultValue)
public String[] getStrings(String name, String... defaultValue)

Given that our job class implements the Tool  interface and uses ToolRunner , we can 
also let the user set custom properties directly using the generic options syntax, in the 
same way the user would set Hadoop confi guration properties.

bin/hadoop jar MyJob.jar MyJob -D myjob.myproperty=1 input output

We can remove the line in the driver that requires the user to always specify the value 
of this property as an argument. This is more convenient for the user when the default 
value would work most of the time.

public int run(String[] args) throws Exception {

    Confi guration conf = getConf(); 
    JobConf job = new JobConf(conf, MyJob.class);

Get custom 
property
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    ...

    int myproperty = job.getInt(“myjob.myproperty”, 0);
    if (myproperty < 0) {
        System.err.println(“Invalid myjob.myproperty: “ + myproperty);
        System.exit(0);
    }

    JobClient.runJob(job);
    return 0;
}

When you allow the user to specify custom properties, it’s good practice for the driver 
to validate any user input. The example above ensures that the user will not be allowed 
to specify a negative value for myjob.myproperty.

7.2  Probing for task -specifi c information
In addition to retrieving custom properties and global confi guration, we can also use 
the getter methods  on the confi guration object to obtain certain state information 
about the current task and job. For example, in the Mapper you can grab the map.
input.fi le property to get the fi le path to the current map task. This is exactly what 
the confi gure() method in the datajoin package’s DataJoinMapperBase  does to 
infer a tag for the data source.

this.inputFile = job.get(“map.input.fi le”);
this.inputTag = generateInputTag(this.inputFile);

Table 7.1 lists some of the other task-specifi c state information.

Table 7.1 Task-specifi c state information one can get in the confi guration object 

Property Type Description

mapred.job.id String The job ID

mapred.jar String The jar location in job directory

job.local.dir String The job’s local scratch space

mapred.tip.id String The task ID

mapred.task.id String The task attempt ID

mapred.task.is.map boolean Flag denoting whether this is a map task

mapred.task.partition int The ID of the task within the job

map.input.fi le String The fi le path that the mapper is reading from

map.input.start long The offset into the fi le of the start of the current 
mapper’s input split

map.input.length long The number of bytes in the current 
mapper’s input split

mapred.work.output.dir String The task’s working (i.e., temporary) output directory
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Confi guration properties are also available to Streaming  programs through environment 
variables. Before executing a script, the Streaming API will have added all confi gura-
tion properties to the running environment. The property names are reformatted such 
that non-alphanumeric characters are replaced with an underscore (_). For example, a 
Streaming script should look at the environment variable map_input_fi le  for the full 
fi le path that the current mapper is reading from.

import os

fi lename = os.environ[“map_input_fi le”]
localdir = os.environ[“job_local_dir”]

The preceding code shows how one would access confi guration properties in Python.

7.3  Partitioning  into  multiple output fi les
Up ‘till now all the MapReduce jobs we’ve seen output a single set of fi les. However, 
there are often cases where it’s more convenient to output multiple sets of fi les, or split 
a data set into multiple data sets . A popular example is the partitioning of a large log 
fi le into distinct sets of log fi les for each day.

MultipleOutputFormat  provides a simple way of grouping similar records into 
separate data sets. Before writing each output record, this OutputFormat class  calls 
an internal method to determine the fi lename to write to. More specifi cally, you 
will extend a particular subclass of MultipleOutputFormat and implement the 
generateFileNameForKeyValue() method. The subclass you extend will determine 
the output format. For example, MultipleTextOutputFormat  will output text fi les 
whereas MultipleSequenceFileOutputFormat will output sequence fi les. In either 
case, you’ll override the following method to return the fi lename for each output key/
value pair: 

protected String generateFileNameForKeyValue(K key, V value, String name)

The default implementation returns the argument name, which is the leaf fi lename. 
You can make the method return a fi lename that’s dependent on the content of 
the record.

For our example here, we take the patent metadata and partition it by country. All 
patents from U.S. inventors will go into one set of fi les, all patents from Japan into 
another pile, and so forth. The skeleton of this example program is a map-only job that 
takes its input and immediately outputs it. The main change we’ve made is to create 
our own subclass of MultipleTextOutputFormat  called PartitionbyCountryMTOF. 
(Note that MTOF is an acronym for MultipleTextOutputFormat .) Our subclass will 
store each record to a location based on the inventing country listed in that record. 
As we treat the value returned by generateFileNameForKeyValue() as a fi le path, 
we’re able to create a subdirectory for each country by returning country + “/” + 
fi lename. See listing 7.1. 
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Listing 7.1 Partition patent  metadata into multiple directories based on country

public class MultiFile extends Confi gured implements Tool {

    public static class MapClass extends MapReduceBase
        implements Mapper<LongWritable, Text, NullWritable, Text> {

        public void map(LongWritable key, Text value,
                        OutputCollector<NullWritable, Text> output,
                        Reporter reporter) throws IOException {

            output.collect(NullWritable.get(), value);
        }
    }

    public static class PartitionByCountryMTOF
        extends MultipleTextOutputFormat<NullWritable,Text>
    {
        protected String generateFileNameForKeyValue(NullWritable key,
                                                     Text value,
                                                     String fi lename)
        {
            String[] arr = value.toString().split(“,”, -1);
            String country = arr[4].substring(1,3);
            return country + “/” + fi lename;
        }
    }

    public int run(String[] args) throws Exception {
        Confi guration conf = getConf();

        JobConf job = new JobConf(conf, MultiFile.class);

        Path in = new Path(args[0]);
        Path out = new Path(args[1]);
        FileInputFormat.setInputPaths(job, in);
        FileOutputFormat.setOutputPath(job, out);

        job.setJobName(“MultiFile”);
        job.setMapperClass(MapClass.class);

        job.setInputFormat(TextInputFormat.class);
        job.setOutputFormat(PartitionByCountryMTOF.class);
        job.setOutputKeyClass(NullWritable.class);
        job.setOutputValueClass(Text.class);

        job.setNumReduceTasks(0);

        JobClient.runJob(job);

        return 0;
    }

    public static void main(String[] args) throws Exception {
        int res = ToolRunner.run(new Confi guration(),
                                 new MultiFile(),
                                 args);

        System.exit(res);
    }
}
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After executing the preceding program, we can see that the output directory now has 
a separate directory for each country.

ls output/
AD      BN      CS      GE      IN      LC      MT      PH      SV      VE
AE      BO      CU      GF      IQ      LI      MU      PK      SY      VG
AG      BR      CY      GH      IR      LK      MW      PL      SZ      VN
AI      BS      CZ      GL      IS      LR      MX      PT      TC      VU
AL      BY      DE      GN      IT      LT      MY      PY      TD      YE
AM      BZ      DK      GP      JM      LU      NC      RO      TH      YU
AN      CA      DO      GR      JO      LV      NF      RU      TN      ZA
AR      CC      DZ      GT      JP      LY      NG      SA      TR      ZM
AT      CD      EC      GY      KE      MA      NI      SD      TT      ZW
AU      CH      EE      HK      KG      MC      NL      SE      TW
AW      CI      EG      HN      KN      MG      NO      SG      TZ
AZ      CK      ES      HR      KP      MH      NZ      SI      UA
BB      CL      ET      HT      KR      ML      OM      SK      UG
BE      CM      FI      HU      KW      MM      PA      SM      US
BG      CN      FO      ID      KY      MO      PE      SN      UY
BH      CO      FR      IE      KZ      MQ      PF      SR      UZ
BM      CR      GB      IL      LB      MR      PG      SU      VC

And within the directory for each country are fi les with only records (patents) created 
by those countries.

ls output/AD
part-00003      part-00005      part-00006

head output/AD/part-00006
5765303,1998,14046,1996,”AD”,””,,1,12,42,5,59,11,1,0.4545,0,0,1,67.3636,,,,
5785566,1998,14088,1996,”AD”,””,,1,9,441,6,69,3,0,1,,0.6667,,4.3333,,,,
5894770,1999,14354,1997,”AD”,””,,1,,82,5,51,4,0,1,,0.625,,7.5,,,,

We’ve written this simple partitioning exercise as a map-only program. You can apply 
the same technique to the output of reducers as well. Be careful not to confuse this 
with the partitioner  in the MapReduce framework. That partitioner looks at the keys 
of intermediate records  and decides which reducer will process them. The partitioning 
we’re doing here looks at the key/value pair of the output and decides which fi le to 
store to.

MultipleOutputFormat  is simple, but it’s also limited. For example, we were able to 
split the input data by row, but what if we want to split by column? Let’s say we want to create 
two data sets from the patent metadata: one containing time-related information (e.g., 
publication date) for each patent and another one containing geographical information 
(e.g., country of invention). These two data sets may be of different output formats 
and different data types for the keys and values. We can look to MultipleOutputs, 
introduced in version 0.19 of Hadoop, for more powerful capabilities.

The approach taken by MultipleOutputs  is different from MultipleOutputFormat. 
Rather than asking for the fi lename to output each record, MultipleOutputs creates 
multiple OutputCollectors . Each OutputCollector can have its own OutputFormat 
and types for the key/value pair. Your MapReduce program will decide what to output 
to each OutputCollector. Listing 7.2 shows a program that takes our patent metadata 
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and outputs two data sets. One has chronological information, such as issued date. The 
other data set has geographical information associated with each patent. This, too, is 
a map-only program, but you can apply the multiple output collectors to reducers in a 
straightforward way.

Listing 7.2 Program to project different  columns of input data to different fi les

public class MultiFile extends Confi gured implements Tool {

    public static class MapClass extends MapReduceBase
        implements Mapper<LongWritable, Text, NullWritable, Text> {

        private MultipleOutputs mos;
        private OutputCollector<NullWritable, Text> collector;

        public void confi gure(JobConf conf) {
            mos = new MultipleOutputs(conf);
        }

        public void map(LongWritable key, Text value,
                        OutputCollector<NullWritable, Text> output,
                        Reporter reporter) throws IOException {

            String[] arr = value.toString().split(“,”, -1);
            String chrono = arr[0] + “,” + arr[1] + “,” + arr[2];
            String geo    = arr[0] + “,” + arr[4] + “,” + arr[5];

            collector = mos.getCollector(“chrono”, reporter);
            collector.collect(NullWritable.get(), new Text(chrono));
            collector = mos.getCollector(“geo”, reporter);
            collector.collect(NullWritable.get(), new Text(geo));
        }

        public void close() throws IOException {
            mos.close();
        }
    }

    public int run(String[] args) throws Exception {
        Confi guration conf = getConf();

        JobConf job = new JobConf(conf, MultiFile.class);

        Path in = new Path(args[0]);
        Path out = new Path(args[1]);
        FileInputFormat.setInputPaths(job, in);
        FileOutputFormat.setOutputPath(job, out);

        job.setJobName(“MultiFile”);
        job.setMapperClass(MapClass.class);

        job.setInputFormat(TextInputFormat.class);
        job.setOutputKeyClass(NullWritable.class);
        job.setOutputValueClass(Text.class);
        job.setNumReduceTasks(0);

        MultipleOutputs.addNamedOutput(job,
                                       “chrono”,
                                       TextOutputFormat.class,
                                       NullWritable.class,
                                       Text.class);
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        MultipleOutputs.addNamedOutput(job,
                                       “geo”,
                                       TextOutputFormat.class,
                                       NullWritable.class,
                                       Text.class);

        JobClient.runJob(job);

        return 0;
    }

    public static void main(String[] args) throws Exception { 
        int res = ToolRunner.run(new Confi guration(),
                                 new MultiFile(),
                                 args);

        System.exit(res);
    }
}

To use MultipleOutputs, the driver of the MapReduce program must set up the output 
collectors it expects to use. Creating the collectors involves a call to MultipleOutputs’ 
static method addNamedOutput(). We’ve created one output collector called chrono 
and another one called geo. We’ve created them both to use TextOutputFormat and 
have the same key/value types, but we can choose to use different output formats or 
data types.

After setting up the output collectors in the driver, we need to get the 
MultipleOutputs object that tracks them when the mapper is initialized in the 
confi gure() method. This object must be available throughout the duration of 
the map task. In the map() function itself, we call the getCollector()  method on the 
MultipleOutputs object to get back the chrono and the geo OutputCollectors. We 
will write out different data that’s appropriate for each output collector.

We have given a name to each output collector in MultipleOutputs , and 
MultipleOutputs will automatically generate the output fi lenames. We can look at 
the fi les outputted by our script to see how MultipleOutputs generates the output 
names:

ls -l output/
total 101896
-rwxrwxrwx 1 Administrator None 9672703 Jul 31 06:28 chrono-m-00000
-rwxrwxrwx 1 Administrator None 7752888 Jul 31 06:29 chrono-m-00001
-rwxrwxrwx 1 Administrator None 6884496 Jul 31 06:29 chrono-m-00002
-rwxrwxrwx 1 Administrator None 6933561 Jul 31 06:29 chrono-m-00003
-rwxrwxrwx 1 Administrator None 7164558 Jul 31 06:29 chrono-m-00004
-rwxrwxrwx 1 Administrator None 7273561 Jul 31 06:29 chrono-m-00005
-rwxrwxrwx 1 Administrator None 8281663 Jul 31 06:29 chrono-m-00006
-rwxrwxrwx 1 Administrator None 9428951 Jul 31 06:28 geo-m-00000
-rwxrwxrwx 1 Administrator None 7464690 Jul 31 06:29 geo-m-00001
-rwxrwxrwx 1 Administrator None 6580482 Jul 31 06:29 geo-m-00002
-rwxrwxrwx 1 Administrator None 6448648 Jul 31 06:29 geo-m-00003
-rwxrwxrwx 1 Administrator None 6432392 Jul 31 06:29 geo-m-00004
-rwxrwxrwx 1 Administrator None 6546828 Jul 31 06:29 geo-m-00005
-rwxrwxrwx 1 Administrator None 7450768 Jul 31 06:29 geo-m-00006
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-rwxrwxrwx 1 Administrator None       0 Jul 31 06:28 part-00000
-rwxrwxrwx 1 Administrator None       0 Jul 31 06:28 part-00001
-rwxrwxrwx 1 Administrator None       0 Jul 31 06:29 part-00002
-rwxrwxrwx 1 Administrator None       0 Jul 31 06:29 part-00003
-rwxrwxrwx 1 Administrator None       0 Jul 31 06:29 part-00004
-rwxrwxrwx 1 Administrator None       0 Jul 31 06:29 part-00005
-rwxrwxrwx 1 Administrator None       0 Jul 31 06:29 part-00006

We have a set of fi les prefi xed with chrono and another set of fi les prefi xed with geo. 
Note that the program created the default output fi les part-* even though it wrote 
nothing explicitly. It’s entirely possible to write to these fi les using the original 
OutputCollector passed in through the map() method. In fact, if this was not a 
map-only program, records written to the original OutputCollector, and only those
records, would be passed to the reducers for processing.

One of the trade-offs with MultipleOutputs  is that it has a rigid naming structure 
compared to MultipleOutputFormat. Your output collector’s name cannot be part, 
because that’s already in use for the default. The output fi lename is also strictly defi ned 
as the output collector’s name followed by m or r depending on whether the output was 
collected at the mapper or the reducer. It’s fi nally followed by a partition number.

head output/chrono-m-00000
“PATENT”,”GYEAR”,”GDATE”
3070801,1963,1096
3070802,1963,1096
3070803,1963,1096
3070804,1963,1096
3070805,1963,1096
3070806,1963,1096
3070807,1963,1096
3070808,1963,1096
3070809,1963,1096

head output/geo-m-00000
“PATENT”,”COUNTRY”,”POSTATE”
3070801,”BE”,””
3070802,”US”,”TX”
3070803,”US”,”IL”
3070804,”US”,”OH”
3070805,”US”,”CA”
3070806,”US”,”PA”
3070807,”US”,”OH”
3070808,”US”,”IA”
3070809,”US”,”AZ”

Looking at the output fi les, we see that we’ve successfully projected out the columns on 
the patent data set into distinct fi les.

7.4  Inputting from  and outputting to a database 
Although Hadoop is useful for processing large data, relational databases remain 
the workhorse of many data processing applications. Oftentimes Hadoop will need to 
interface with databases.
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Although it’s possible to set up a MapReduce program to take its input by directly 
querying a database rather than reading a fi le in HDFS , the performance is less than 
ideal. More often you would copy a data set from a database to HDFS. You can easily 
do it with a standard database dump utility to get a fl at fi le. You then upload to HDFS 
using its fi le put shell command.

But sometimes it is sensible having a MapReduce program write directly to a 
database. Many MapReduce programs take large data sets and process them into a 
manageable size for databases to handle. For example, we often use MapReduce  in the 
ETL-like process of taking humongous log fi les and computing a much smaller and 
more manageable set of statistics for analysts to look at.

The  DBOutputFormat  is the crucial class for accessing databases. In your driver 
you set the output format to this class. You’ll need to specify the confi guration for 
connecting to your database. You can do this through the static confi gureDB() method 
in DBConfi guration :

public static void confi gureDB(JobConf job, String driverClass,

    ➥ String dbUrl, String userName, String passwd)

After that, you’ll specify what table you’re writing to and what fi elds are there. This is 
done with the static setOutput() method in DBOutputFormat.

public static void setOutput(JobConf job, String tableName,

    ➥ String... fi eldNames)

Your driver should have a few lines that look like this:

conf.setOutputFormat(DBOutputFormat.class);
DBConfi guration.confi gureDB(job,
                            “com.mysql.jdbc.Driver”,
                            “jdbc:mysql://db.host.com/mydb”,
                            “username”,
                            “password”)
DBOutputFormat.setOutput(job, “Events”, “event_id”, “time”);

Using DBOutputFormat forces your output key to implement the DBWritable in-
terface. Only the key is written to the database. As usual, the keys have to imple-
ment Writable. The signatures for Writable  and DBWritable  are similar; only the 
argument types are different. The write() method in Writable takes a DataOutput, 
whereas write() in DBWritable takes a PreparedStatement. Similarly the read-
Fields() method for Writable takes a DataInput, whereas readFields() for 
DBWritable takes a ResultSet. Unless you plan on fetching input data straight 
from the database using DBInputFormat, readFields() in DBWritable will never 
be called.

public class EventsDBWritable implements Writable, DBWritable {
    private int id;
    private long timestamp;

    public void write(DataOutput out) throws IOException {
        out.writeInt(id);
        out.writeLong(timestamp);
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    }

    public void readFields(DataInput in) throws IOException {
        id = in.readInt();
        timestamp = in.readLong();
    }

    public void write(PreparedStatement statement) throws SQLException {
        statement.setInt(1, id);
        statement.setLong(2, timestamp);
    }

    public void readFields(ResultSet resultSet) throws SQLException {
        id = resultSet.getInt(1);
        timestamp = resultSet.getLong(2);
    } 
}

We want to emphasize again that reading and writing to databases from within Hadoop 
is only appropriate for data sets that are relatively small by Hadoop standards. Unless 
your database setup is as parallel as Hadoop (which can be the case if your Hadoop 
cluster is relatively small while you have many shards in your database system), your 
DB will be the performance bottleneck, and you may not gain any scalability advan-
tage from your Hadoop cluster. Oftentimes, it’s better to bulk load data into a data-
base  rather than make direct writes from Hadoop. You’ll need custom solutions for 
extremely large-scale databases.1

7.5  Keeping all output  in sorted order
The MapReduce framework guarantees the input to each reducer to be in sorted 
order based on key. In many cases, the reducer only does a simple computation on 
the value part of a key/value pair. The output also stays in sorted order. Keep in mind 
that the MapReduce framework does not guarantee the sorted order of the reducer 
output. Rather, it’s a byproduct of the sorted input and the typical type of operations 
reducers perform.

For some applications, the sorted order  is unnecessary, and sometimes questions 
are raised about turning off the sorting operation to eliminate an unnecessary step 
in the reducer. The truth is that the sorting operation is not so much about enforcing 
the sorted order of the reducer’s input. Rather, sorting is an effi cient way to group 
all records of the same key together. If the grouping function is unnecessary, then 
we can directly generate an output record from a single input record. In that case, 
you’ll be able to improve performance by eliminating the entire reduce phase. You 
can do this by setting the number of reducers to 0, making the application a map-
only job.

1  LinkedIn has an interesting blog post on challenges faced in moving massive amounts of data resulting from 
offl ine processes (i.e., Hadoop) into live systems: http://project-voldemort.com/blog/2009/06/building-a-
1-tb-data-cycle-at-linkedin-with-hadoop-and-project-voldemort/.
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On the other hand, for some applications it’s desirable that all output  is sorted 
in total . Each output fi le (generated by one reducer) is already in sorted order; it would 
be nice to also have all the records in part-00000 be smaller than records in part-
00001, and part-00001 be smaller than part-00002, and so forth. The key to doing 
this is the partitioner  operation in the framework.

The job of the partitioner is to deterministically assign a reducer  to each key. All 
records of the same key are grouped and processed together in the reduce stage. An 
important design requirement of the partitioner is to balance load across reducers; 
no one reducer is given many more keys than other reducers. Without any prior 
information about the distribution of keys, the default partitioner uses a hashing 
function to uniformly assign keys to reducers. This often works well in distributing 
work evenly across reducers, but the assignment is intentionally arbitrary and not 
in any order. If we have prior knowledge that the keys are approximately uniformly 
distributed, we can use a partitioner that assigns key ranges to each reducer and still 
be certain that the reducers’ loads are fairly balanced.

TIP The hash partitioner   can also fail to evenly distribute work if certain keys 
take much more time to process than others. For example, in highly skewed 
data sets, a signifi cant number of records may have the same key. If possible, 
you should use a combiner to lessen the load at the reduce phase by doing as 
much preprocessing as possible at the map phase. In addition, you can also 
choose to write a special partitioner to distribute keys unevenly in such a way 
that it balances out the inherent skew of the data and its processing.

The TotalOrderPartitioner  is a partitioner that ensures sortedness between 
output partitions, not only within. Sorting of large-scale data (i.e., the TeraSort 
benchmark) originally used a similar version of this class. This class takes a sequence 
fi le with a sorted partition keyset and proceeds to partition keys in different ranges 
to the reducers.

7.6  Summary
This chapter discussed many tools and techniques to make your Hadoop job more 
user-friendly or make it interface better with other components of your data process-
ing infrastructure. The full extent of the capabilities available in a Hadoop job is doc-
umented in the Hadoop API: http://hadoop.apache.org/common/docs/current/
api/index.html. You may also want to check out additional abstractions such as Pig and 
Hive to simplify your programming. We’ll cover these tools in chapters 10 and 11.

If your role involves administrating a Hadoop cluster, you will fi nd the tips on 
managing a Hadoop cluster in the next chapter useful.
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Managing Hadoop

This chapter covers
 Confi guring for a production system■

 Maintaining the HDFS fi lesystem■

 Setting up a job scheduler■

The installation instructions in chapter 2 produced a running Hadoop cluster fairly 
quickly. The confi guration was relatively simple, but unfortunately it’s not good for 
a production cluster, which will be under heavy sustained use. There are various 
confi guration parameters that you would want to tune for a production cluster, and 
section 8.1 will cover those parameters.

In addition, like any system, a Hadoop  cluster will change over time and you (or 
some administrator) will have to know how to maintain it to keep it running in good 
shape. This is particularly true for the HDFS fi lesystem. In sections 8.2 through 
8.5, we cover various standard fi lesystem maintenance tasks, such as checking its 
health, setting permissions, quotas, and recovering deleted fi les (trash). Sections 
8.6 through 8.10 will cover the bigger but rarer administrative tasks more specifi c 
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to HDFS. These include adding/removing nodes (capacity) and recovery from 
NameNode failure. We end the chapter with a section on setting up a scheduler to 
manage multiple running jobs.

8.1  Setting up parameter values  for practical use
Hadoop has many different parameters. Their default values tend to target running in 
standalone mode. They also tend to veer toward being idiotproof. The default values 
are more likely to work on more systems without causing any errors. However, often-
times they’re far from optimal in a production cluster. Table 8.1 shows some of the 
system properties that you’ll want to change for a production cluster.

Table 8.1 Hadoop  properties that you can tune for a production cluster

Property Description Suggested value

dfs.name.dir Directory in NameNode’s local fi lesystem to 
store HDFS’s metadata

/home/hadoop/
dfs/name

dfs.data.dir Directory in a DataNode’s local fi lesystem to 
store HDFS’s fi le blocks

/home/hadoop/
dfs/data

mapred.system.dir Directory in HDFS for storing shared MapReduce 
system fi les

/hadoop/
mapred/system

mapred.local.dir Directory in a TaskNode’s local fi lesystem to 
store temporary data

mapred.
tasktracker.
{map|reduce}
.tasks.maximum

Maximum number of map and reduce tasks that 
can run simultaneously in a TaskTracker

hadoop.tmp.dir Temporary Hadoop directories /home/hadoop/
tmp

dfs.datanode.du
.reserved

Minimum amount of free space a DataNode 
should have

1073741824

mapred.child.
java.opts

Heap size allocated to each child task -Xmx512m

mapred.reduce. 
tasks

Number of reduce tasks for a job

The default values for dfs.name.dir and dfs.data.dir point to directories under 
/tmp, which is intended only for temporary storage in almost all Unix systems. You will 
defi nitely want to change those properties for a production cluster. 1 In addition, these 
properties can take comma-separated lists of directories. In the case of dfs.name.
dir, multiple directories are good for backup purposes. If a DataNode  has multiple 
drives, you should have a data directory in each one and list them all in dfs.data.dir. 

1  The rationale for using /tmp illustrates how default values are idiotproof. Every Unix system has the /tmp 
directory so you won’t get a “directory not found” error.
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The DataNode will use them all in parallel to speed up I/O.2 You should also specify 
directories in multiple drives for mapred.local.dir to speed up processing of tem-
porary data.

The default confi guration for Hadoop’s temporary directories, hadoop.tmp.dir, 
is dependent on the user name. You should avoid having any Hadoop property that 
depends on a user name, as there can be mismatches between the user name used 
to submit a job and the user name used to start a Hadoop node. You should set it 
to something like /home/hadoop/tmp to be independent of any user name. Another 
problem with the default value of hadoop.tmp.dir is that it points to the /tmp 
directory. Although that’s an appropriate place for temporary storage, most default 
Linux confi gurations have a quota on /tmp that is too small for Hadoop. Rather than 
increase the quota for /tmp, it’s better to point hadoop.tmp.dir to a directory that’s 
known to have a lot of space.

By default, HDFS  doesn’t require DataNodes to have any reserved free space. In 
practice, most systems have questionable stability when the amount of free space gets 
too low. You should set dfs.datanode.du.reserved to reserve 1 GB of free space in a 
DataNode. A DataNode will stop accepting block writes when its amount of free space 
falls below the reserved amount.

Each TaskTracker  is allowed to run a confi gurable maximum number of map and 
reduce tasks. Hadoop’s default is four tasks (two map tasks and two reduce tasks). 
The right number depends on many factors, although most setups call for one to 
two tasks per core. You can set a quad core machine to have a maximum of six map 
and reduce tasks (three each), because there will already be one task each allocated 
for TaskTracker and DataNode, to make a total of eight. Similarly, you can set up 
a dual quad core machine to have a maximum of fourteen map and reduce tasks. 
This predicates on most MapReduce jobs being I/O heavy. You should reduce the 
maximum number of tasks allowed if you expect more CPU-intensive loads .

In considering the number of tasks allowed, you should also consider the amount 
of heap memory  allocated to each task. Hadoop’s default of 200 MB per task is 
quite underwhelming. Many setups bump up the default to 512 MB, some even at 
1 GB. This is not a fi nal property. Each job can request more (or less) heap space 
per task. Be sure that you have suffi cient usable memory in your machines for your 
confi guration parameters. Keep in mind that DataNode  and TaskTracker  each 
already uses 1 GB of RAM.

Although you can set the number of reduce tasks per each individual MapReduce 
job, it’s desirable to have a default that works well most of the time. Hadoop’s 

2  There’s been some discussion in the Hadoop forums about whether one should confi gure multiple hard 
drives in a DataNode as RAID or JBOD. Hadoop doesn’t need RAID’s data redundancy because HDFS 
already replicates data across machines. Furthermore, Yahoo has stated that they were able to get noticeable 
performance improvement using JBOD. The stated reason is that hard drives, even of the same model, 
have high variance in their speed. A RAID confi guration would slow down the I/O to the slowest drive. On 
the other hand, letting each drive function independently will allow each one to operate at its top speed, 
making the overall throughput of the system higher.
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default of one reduce task per job is certainly suboptimal in most cases. The general 
recommendation is to set the default to either 0.95 or 1.75 times the maximum 
number of reduce TaskTrackers in the cluster. This means that the number of reduce 
tasks in a job should be 0.95 or 1.75 multiplied by number of worker nodes multiplied by 
mapred.tasktracker.reduce.tasks.maximum. A factor of 0.95 will have all the reduce 
tasks launched immediately and start copying map tasks’ output as they fi nish. At a 
factor of 1.75, some reduce tasks will be able to launch immediately whereas others 
will wait. The faster nodes will fi nish the fi rst round of reduce tasks earlier and start on 
the second round. The slowest nodes won’t need to process any reduce tasks from the 
second round. This can result in better load balancing. 

8.2  Checking system’s  health
Hadoop provides a fi lesystem  checking utility called fsck . You call it with a fi le path 
and it’ll recursively check the health of all the fi les under that path. Call it with the 
argument / and it’ll check the entire fi lesystem. An example output looks like this:

bin/hadoop fsck /
Status: HEALTHY
 Total size:    143106109768 B
 Total dirs:    9726
 Total fi les:    41532
 Total blocks (validated):      42419 (avg. block size 3373632 B)
 Minimally replicated blocks:   42419 (100.0 %)
 Over-replicated blocks:        0 (0.0 %)
 Under-replicated blocks:       0 (0.0 %)
 Mis-replicated blocks:         0 (0.0 %)
 Default replication factor:    3
 Average block replication:     3.0
 Corrupt blocks:                0
 Missing replicas:              0 (0.0 %)
 Number of data-nodes:          8
 Number of racks:               1

Most of the information should be self-explanatory. By default fsck will ignore fi les 
still open for writing by a client. You can get a list of such fi les by running fsck with 
the -openforwrite argument.

As fsck checks the fi lesystem, it will print out a dot for each fi le it found healthy 
(not shown in the above output). It’ll print out a message for each fi le that is less than 
healthy, including ones that have over-replicated blocks , under-replicated blocks , mis-
replicated blocks , corrupt blocks , and missing replicas . Over-replicated blocks, under-
replicated blocks, and mis-replicated blocks are not too alarming as HDFS is self-healing. 
But, corrupt blocks and missing replicas mean that data has been permanently lost. By 
default fsck doesn’t act on those corrupt fi les, but you can run fsck with the -delete 
option to remove them. Better yet is to run fsck with the -move option, which moves 
corrupted fi les into the /lost+found directory for salvaging.

You can tell fsck  to print out more information by adding -fi les, -blocks, 
-locations, and -racks options to fsck. Each successive option requires the 
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preceding option be used as well. The -blocks option requires the -fi les option be 
used. The -locations option requires both -fi les and -blocks options be used, 
and so forth. The -fi les option tells fsck to print out, for each fi le it checks, a line of 
information containing the fi le’s path, the fi le’s size in bytes and blocks, and the fi le’s 
status. The -blocks option tells fsck to go further and print out a line of information 
for each block in the fi le. This line will include the block’s name, its length, and its 
number of replicas. The -locations option will include in each line the location 
of the block’s replicas. The -racks option will add the rack name to the location 
information. For example, a short one-block fi le will have its report as

bin/hadoop fsck /user/hadoop/test -fi les -blocks -locations -racks
/user/hadoop/test/part-00000 35792 bytes, 1 block(s):  OK
0. blk_-4630072455652803568_97605 len=35792 repl=3 

➥ [/default-rack/10.130.164.71:50010, /default-rack/10.130.164.177:50010,

➥ /default-rack/10.130.164.186:50010]

Status: HEALTHY
 Total size:    35792 B
 Total dirs:    0
 Total fi les:    1
 Total blocks (validated):      1 (avg. block size 35792 B)
 Minimally replicated blocks:   1 (100.0 %)
 Over-replicated blocks:        0 (0.0 %)
 Under-replicated blocks:       0 (0.0 %)
 Mis-replicated blocks:         0 (0.0 %)
 Default replication factor:    3
 Average block replication:     3.0
 Corrupt blocks:                0
 Missing replicas:              0 (0.0 %)
 Number of data-nodes:          8
 Number of racks:               1

While fsck reports on each fi le in HDFS, there is a dfsadmin command for report-
ing on each DataNode. You can get it through the -report option on the dfsadmin  
command:

bin/hadoop dfsadmin -report
Total raw bytes: 535472824320 (498.7 GB)
Remaining raw bytes: 33927731366 (31.6 GB)
Used raw bytes: 379948188541 (353.85 GB)
% used: 70.96%

Total effective bytes: 0 (0 KB)
Effective replication multiplier: Infi nity
-------------------------------------------------
Datanodes available: 8

Name: 123.45.67.89:50010
State          : In Service
Total raw bytes: 76669841408 (71.4 GB)
Remaining raw bytes: 2184594843(2.03 GB)
Used raw bytes: 56598956650 (52.71 GB)
% used: 73.82%
Last contact: Sun Jun 21 16:13:32 PDT 2009
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Name: 123.45.67.90:50010
State          : In Service
Total raw bytes: 76669841408 (71.4 GB)
Remaining raw bytes: 6356175381(5.92 GB)
Used raw bytes: 54220537856 (50.5 GB)
% used: 70.72%
Last contact: Sun Jun 21 16:13:33 PDT 2009

Name: 123.45.67.91:50010
State          : In Service
Total raw bytes: 76669841408 (71.4 GB)
Remaining raw bytes: 6106387206(5.69 GB)
Used raw bytes: 52412190091 (48.81 GB)
% used: 68.36%
Last contact: Sun Jun 21 16:13:33 PDT 2009

...

To look at the NameNode ’s current activity, you can use the -metasave option 
in dfsadmin:

bin/hadoop dfsadmin -metasave fi lename

This will save some of NameNode’s metadata into its log directory under fi lename. 
In this metadata, you’ll fi nd lists of blocks waiting for replication, blocks being repli-
cated, and blocks awaiting deletion. For replication each block will also have a list of 
DataNodes being replicated to. Finally, the metasave fi le will also have summary 
statistics on each DataNode. 

8.3  Setting permissions 
HDFS has a basic fi le permission  system similar to the POSIX model. Each fi le has 
nine permission settings: the read (r), write (w), and execute (x) permissions for each 
of the fi le’s associated owner, group, and other users. Not all permission settings are 
meaningful. Under HDFS, we can’t execute fi les; so we can’t set the x permission.

Permission settings for directories also closely follow the POSIX  model. The r 
permission allows listing of the directory. The w permission allows creation or deletion 
of fi les or directories. The x permission allows one to access children of the directory.

Current HDFS releases don’t provide much in terms of security. You should use the 
HDFS  permission system only to prevent accidental misuse and overwriting of data among 
trusted users sharing a Hadoop cluster. HDFS doesn’t authenticate users and believes the 
user identity to be whatever the host operating system says it is. Your Hadoop username 
is your login name, which is equivalent to what’s shown by whoami . Your group list is 
equivalent to bash -c groups. An exception is the username that started the name node. 
That username has a special Hadoop username superuser . This superuser  can perform any 
fi le operation regardless of permission settings. In addition, the administrator can specify 
members in a supergroup  through the confi guration parameter dfs.permissions.
supergroup . All members of the supergroup are also superusers.
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You can change permission settings and ownership using bin/hadoop fs -chmod, 
-chown, and -chgrp. They behave similarly to Unix commands of the same name.

8.4  Managing  quotas
By default HDFS doesn’t have any quota  to limit how much you can put in a direc-
tory. You can enable and specify name quotas  on specifi c directories, which place a 
hard limit on the number of fi le and directory names under that directory. The main 
use case for name quotas is to prevent users from generating too many small fi les 
and overwork the NameNode . The following commands are for setting and clearing 
name quotas:

bin/hadoop dfsadmin -setQuota <N> directory [...directory]
bin/hadoop dfsadmin -clrQuota directory [...directory]

Starting with version 0.19, HDFS also supports space quotas on a per directory basis. 
This helps manage the amount of storage a user or application can take up. 

bin/hadoop dfsadmin -setSpaceQuota <N> directory [...directory]
bin/hadoop dfsadmin -clrSpaceQuota directory [...directory]

The setSpaceQuota command  takes an argument for the number of bytes as each 
directory’s quota. The argument can have a suffi x to represent unit. For example, 
20g will mean 20 gigabytes, and 5t would mean 5 terabytes. All replicas count towards 
the quota.

To get the quotas associated with a directory as well as a count of the number of 
names and bytes it uses, use the HDFS shell command count with the -q option.

bin/hadoop fs -count -q directory [...directory]

8.5  Enabling trash 
In addition to fi le permissions, an additional safeguard against accidental deletion of 
fi les in HDFS is the trash - feature. By default this feature is disabled. When this feature 
is enabled, the command line utilities for deleting fi les don’t delete fi les immediately. 
Instead, they move the fi les temporarily to a .Trash/ folder  under the user’s working 
directory. The fi les are not permanently removed until after a user-confi gurable time 
delay. As long as a fi le is still in the .Trash/ folder, you can restore it by moving it back 
to its original location.

To enable the trash feature and set the time delay for the trash removal, set the 
fs.trash.interval  property in core-site.xml to the delay (in minutes). For example, 
if you want users to have 24 hours (1,440 minutes) to restore a deleted fi le, you should 
have in core-site.xml

<property>
  <name>fs.trash.interval</name>
  <value>1440</value>
</property>

Setting the value to 0 will disable the trash feature.
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8.6 Removing DataNodes 
You may want to remove DataNodes from your HDFS cluster at some point. For 
example, you want to take a machine offl ine for upgrade or maintenance. Remov-
ing nodes in Hadoop can be straightforward. Although it’s not recommended, you 
can kill the nodes or disconnect them from the cluster. HDFS is designed to be re-
silient. Taking one or two DataNodes offl ine  will not affect ongoing operation. The 
NameNode will detect their death and will initiate replication of blocks that have 
fallen below the desired replication factor. For a smoother and safer operation, par-
ticularly when retiring large number of DataNodes, you should use Hadoop’s decom-
missioning  feature. Decommissioning ensures that all blocks will have the desired 
replication factor among the remaining active nodes. In order to use this feature, 
you must create an (initially empty) exclude fi le in the NameNode’s local fi le- system, 
and the confi guration parameter dfs.hosts.exclude  must point to this fi le during 
NameNode’s startup. When you want to retire DataNodes, list them in the exclude 
fi le, one node per line. You have to specify the nodes using the full hostname, IP, or 
IP:port format. Execute

bin/hadoop dfsadmin -refreshNodes

to force the NameNode to reread the exclude fi le and start the decommissioning pro-
cess. Messages like “Decommission complete for node 172.16.1.55:50010” will appear 
in the NameNode log fi les when it fi nishes decommissioning, at which point you can 
remove the nodes from the cluster.

If you have started HDFS without setting dfs.hosts.exclude to point to an exclude 
fi le, the proper way to decommission DataNodes is this: Shut down the NameNode. 
Set dfs.hosts.exclude to point to an empty exclude fi le. Restart NameNode. After 
NameNode has successfully restarted, follow the procedure above. Note that if you list 
the retiring DataNodes in the exclude fi le before restarting NameNode, the NameNode 
will be confused and throw messages like “ProcessReport from unregistered node: 
node055:50010” in its logs. The NameNode thinks that it is being contacted by a 
DataNode outside the system rather than a node to be decommissioned.

If the decommissioned machines may rejoin the cluster at some later point, 
you should remove them from the exclude fi le and rerun bin/hadoop dfsadmin 

-refreshNodes now to update the NameNode. When the machines are ready to rejoin 
the cluster, you can add them using the procedure described in the next section.

8.7 Adding  DataNodes
Besides bringing back a machine from offl ine maintenance, you may want to add 
DataNodes to your Hadoop cluster as you use it for more processing jobs with more 
data. On the new node, install Hadoop and set up the confi guration fi les as you would 
any DataNode in the cluster. Start the DataNode daemon  manually (bin/hadoop 
datanode). It will automatically contact the NameNode and join the cluster. You 
should also add the new node to the conf/slaves fi le in the master server. The script-
based commands will recognize the new node.
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When you add a new DataNode, it will initially be empty, whereas existing DataNodes 
will already be fi lled to some capacity. The fi lesystem  is considered unbalanced. New fi les 
will likely go to the new node, but their replicated blocks will still go to the old nodes. 
One should proactively start the HDFS  balancer to balance the cluster for optimal 
performance. Run the balancer script:

bin/start-balancer.sh

The script will run in the background until the cluster is balanced. An administrator 
can also terminate it earlier by running

bin/stop-balancer.sh

A cluster is considered balanced when the utilization rates of all the DataNodes are 
within the range of the average utilization rate plus or minus a threshold. This thresh-
old is 10 percent by default. You can specify a different threshold when you start the 
balancer script. For example, to set the threshold to 5 percent for a more evenly 
distributed cluster, start the balancer with

bin/start-balancer.sh -threshold 5

As balancing can be network intensive, we recommend doing it overnight or over a 
weekend when your cluster may be less busy. Alternatively, you can set the dfs.balance.
bandwidthPerSec  confi guration parameter to limit the bandwidth devoted to balancing.

8.8 Managing NameNode and Secondary NameNode 
NameNode  is one of the most important components in the HDFS architecture. It 
holds the fi lesystem’s metadata and caches the cluster’s blockmap in RAM for rea-
sonable performance. When you have anything other than a tiny cluster, you should 
dedicate a machine to run as NameNode and don’t put any DataNode, JobTracker, or 
TaskTracker service on it. This NameNode machine should be the most powerful ma-
chine in the cluster. Give it as much RAM as possible. Although DataNodes may have 
higher performance with JBOD  disk drives, you should defi nitely use RAID  drives in 
your NameNode  for higher reliability against any single drive failure.

One approach to reducing the burden on the NameNode is to reduce the amount 
of fi lesystem  metadata  by increasing the block size. Doubling the block size will almost 
half the amount of metadata. Unfortunately, this also decreases parallelism for fi les that 
are not large. The ideal block size will depend on your specifi c deployment. The block 
size is set in the confi guration parameter dfs.block.size . For example, to double the 
block size from the default 64 MB to 128 MB, set dfs.block.size to 134217728.

By default, the Secondary NameNode3 and the NameNode run on the same 
machine. For moderate size clusters  (10 or more nodes), you should separate the 

3  As of this writing, the Secondary NameNode is slated to be deprecated by version 0.21 of Hadoop, which 
should be released as this book goes to press. The Secondary NameNode will be replaced by a more robust 
design for warm standby. You should check the online documentation of the version of Hadoop you’re 
using to confi rm whether it’s still using Secondary NameNode or not. The particular patch for this change 
is at https://issues.apache.org/jira/browse/HADOOP-4539.



182 CHAPTER 8 Managing Hadoop

Secondary NameNode into its own machine, the spec of which should be comparable 
to the NameNode. But, before going into how to set up a separate server as a 
Secondary NameNode, I should explain what the Secondary NameNode does and 
doesn’t do, and in turn some of NameNode’s underlying mechanics.

Due to its unfortunate naming, the Secondary NameNode  (SNN) is sometimes 
confused with a failover backup for NameNode. It most certainly is not. The SNN 
only serves to periodically clean up and tighten the fi lesystem’s state information in 
NameNode, helping NameNode become more effi cient. NameNode manages the 
fi lesystem’s state information using two fi les, FsImage  and EditLog . The fi le FsImage is 
a snapshot of the fi lesystem at some checkpoint, and EditLog records each incremental 
change (delta) to the fi lesystem after that checkpoint. These two fi les can completely 
determine the current state of the fi lesystem. When you initialize NameNode, it merges 
these two fi les to create a new snapshot. At the end of NameNode’s initialization, 
FsImage will contain the new snapshot and EditLog will be empty. Afterward any 
operation that changes the state of HDFS is appended to EditLog, whereas FsImage will 
remain unchanged. When you shut down NameNode and restart it, the consolidation 
will take place again and make a new snapshot. Note that the two fi les are only for 
retaining the fi lesystem’s state information while NameNode is not running (either 
intentionally shut down or due to system malfunction ). NameNode keeps in memory 
a constantly maintained copy of the fi lesystem’s state information  to quickly answer 
queries about the fi lesystem.

For a busy cluster , the EditLog fi le will grow quite large, and the next restart of 
NameNode will take a long time to merge EditLog into FsImage. For busy clusters, 
it can also be a long time in between NameNode restarts, and you may want more 
frequent  snapshots for archival purposes. This is where SNN comes in. It consolidates 
FsImage and EditLog into a new snapshot and leaves the NameNode alone to serve 
live traffi c. Therefore, it’s more appropriate to think of the SNN as a checkpointing 
server. Merging FsImage and EditLog is memory intensive, requiring an amount of 
memory on the same order as normal NameNode operation. It’s best for the SNN to 
be on a separate server that is as powerful as the primary NameNode.

To confi gure HDFS to use a separate server as the SNN, fi rst list that server’s host 
name or IP address in the conf/masters fi le. Unfortunately, this fi le name is also 
confusing. The masters in Hadoop (NameNode and JobTracker) are whichever 
machine you run bin/start-dfs.sh and bin/start-mapred.sh on. What’s listed in 
conf/masters is the SNN, not any of the masters.

You should also modify the conf/hdfs-site.xml fi le on the SNN such that the dfs.
http.address  property points to port 50070 of the NameNode’s host address, like

<property>
    <name>dfs.http.address</name>
    <value>namenode.hadoop-host.com:50070</value>
</property>

You should set this property because the SNN retrieves FsImage and EditLog from the 
NameNode by sending HTTP Get requests to the URLs:
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 ■ FsImage—http://namenode.hadoop-host.com:50070/getimage?getimage=1
 ■ EditLog—http://namenode.hadoop-host.com:50070/getimage?getedit=1

The SNN also updates the NameNode with the merged metadata using the same ad-
dress and port. 

8.9 Recovering from a failed NameNode 
Failures happen, and Hadoop has been designed to be quite  resilient. The NameNode, 
unfortunately, remains a weak point. HDFS is out of commission if the NameNode is 
down. A common design for setting up a backup NameNode server is by reusing the SNN.4 
After all, the SNN has similar hardware specs as the NameNode, and Hadoop should’ve 
already been installed with the same directory confi gurations. If we do some additional 
work of maintaining the SNN to be a functional mirror image of the NameNode, we can 
quickly start this backup machine as a NameNode instance in the case of a NameNode 
failure. Some manual intervention and time are necessary to start the backup node as the 
new NameNode, but at least we wouldn’t lose any data.

NameNode keeps all the fi lesystem’s metadata, including the FsImage and EditLog 
fi les, under the dfs.name.dir  directory. Note that the SNN server  doesn’t use that 
directory at all. It downloads the system’s metadata into the fs.checkpoint.dir  directory 
and proceeds to merge FsImage and EditLog there. As the dfs.name.dir directory 
on the SNN is unused, we can expose it to the NameNode via the Network File System 
(NFS). We instruct the NameNode to always write to this mounted directory in addition to 
writing to the NameNode’s local metadata directory. HDFS supports this ability to write the 
metadata to multiple directories. You have to specify dfs.name.dir on the NameNode 
with a comma separated list, like

<property>
    <name>dfs.name.dir</name>
    <value>/home/hadoop/dfs/name,/mnt/hadoop-backup</value>
    <fi nal>true</fi nal>
</property>

This works, assuming the local dfs.name.dir directory at both the NameNode and the 
Secondary NameNode are at /home/hadoop/dfs/name, and that the directory on the 
SNN is mounted to the NameNode at /mnt/hadoop-backup. When HDFS sees a comma-
separated list in dfs.name.dir, it writes its metadata to every directory on the list.

Given this setup, when the NameNode dies, the local dfs.name.dir directory at 
both the NameNode and the backup node (SNN) should have the same content. To 
have the backup node serve as the replacement NameNode, you’ll have to switch its 
IP address to the original NameNode’s IP address. (Unfortunately, changing only the 
hostname is not suffi cient as the DataNodes cache the DNS entry.) You’ll also have to 
run the backup node as a NameNode by executing bin/start-dfs.sh on it.

4  Unfortunately, this common design also contributes to the misperception of the Secondary NameNode as a 
backup node. You can set up the backup node in a totally different machine from the NameNode and SNN, 
but that machine would be idle almost all the time.
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To be safer, this new NameNode  should also have a backup node set up before you 
start it. Otherwise you’ll be in trouble if this new NameNode fails too. If you don’t have 
a machine readily available as a backup, you should at least set up an NFS-mounted 
directory. This way the fi lesystem’s state information is in more than one location.

As HDFS writes its metadata to all directories listed in dfs.name.dir, if your 
NameNode  has multiple hard drives, you can specify directories from different drives 
to hold replicas of the metadata. This way if one drive fails, it’s easier to restart the 
NameNode without the bad drive than to switch over to the backup node, which 
involves moving the IP address, setting up a new backup node, and so on.

Recall that the SNN creates a snapshot of the fi lesystem’s metadata in the 
fs.checkpoint.dir directory. As it checkpoints only periodically (once an hour 
under the default setup), the metadata is too stale to rely on for failover. But it’s still a 
good idea to archive this directory periodically over to remote storage . In catastrophic 
situations, recovering from stale data is better than no data at all. This can be true if 
both the NameNode and the backup fail simultaneously (say, a power surge affecting 
both machines). Another unfortunate scenario is if the fi lesystem’s metadata has been 
corrupted (say, by human error or a software bug) and has poisoned all the replicas. 
Recovering from a checkpoint image is explained in http://issues.apache.org/jira/
browse/HADOOP-2585.

HDFS’s backup and recovery mechanism is undergoing active improvements as 
of this writing. You should check with HDFS’s online documentation for the latest 
news. There have also been applications of specialized Linux software such as DRBD 5 
to Hadoop clusters for high availability. You can fi nd one example in http://www.
cloudera.com/blog/2009/07/22/hadoop-ha-confi guration/.  

8.10 Designing network  layout and rack awareness
 When your Hadoop cluster gets big, the nodes will be spread out in more than one 
rack and the cluster’s network topology starts to affect reliability and performance. 
You may want the cluster to survive the failure of an entire rack. You should place your 
backup server for NameNode, as described in the previous section, in a separate rack 
from the NameNode itself. This way the failure of any one rack will not destroy all cop-
ies of the fi lesystem’s metadata.

 With more than one rack, the placement of both block replicas and tasks becomes 
more complex. Replicas of a block should be placed in separate racks to reduce the 
potential of data loss. For the standard replication value of 3, the default placement 
policy for writing a block is this: If the client performing the write operation is part of 
the Hadoop cluster, place the fi rst replica  on the DataNode where the client resides. 
Otherwise randomly place the replica in the cluster. Place the second replica on a 
random rack different from the rack where the fi rst replica resides. Write the third 
replica to a different node on the same rack as the second replica. For replication 
values higher than 3, place the subsequent replicas on random nodes. As of this 

5 http://www.drbd.org.
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writing, this block placement policy is baked into the NameNode. A pluggable policy 
is targeted for version 0.21.6

Besides block placement, task placement  is also rack aware . A task is usually placed 
on a node that has a copy of the block the task is assigned to process. When no such 
node is available to take on the new task, the task is randomly assigned to a node on a 
rack where a copy of the block is available somewhere on that rack. That is, when data 
locality can’t be enforced at a node level, Hadoop tries to enforce it at the rack level. 
Failing that, a task would be randomly assigned to one of the remaining nodes.

At this point you may wonder how Hadoop knows which rack a node is at. It requires 
you to tell it. It assumes a hierarchical network topology  for your Hadoop cluster, 
structurally similar to fi gure 8.1. Each node has a rack name similar to a fi le path. 
For example, the nodes H1, H2, and H3 in fi gure 8.1 all have a rack name of /D1/R1. 
Figure 8.1 shows a case where you have multiple datacenters (D1 and D2) each with 
multiple racks (R1 to R4). In most cases you’ll be dealing with multiple racks co-located 
together. Your rack names will be in a fl at namespace, such as /R1 and /R2.

To help Hadoop know the location of each node, you have to provide an executable 
script that can map IP addresses into rack names. This network topology script  must reside 
on the master node and its location is specifi ed in the topology.script.fi le.name  
property in core-site.xml. Hadoop will call this script with a set of IP addresses as 
separate arguments. The script should print out (through STDOUT) the rack name 
corresponding to each IP address in the same order, separated by whitespace. The 
topology.script.number.args property controls the maximum number of IP 
addresses Hadoop will ask for at any one time . It’s convenient to simplify your script by 
setting that value to 1. Here is an example a network topology script.

/

D1

R1

H1

D2

R2 R3 R4

H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

Figure 8.1 A cluster with a hierarchical network topology. This cluster spans 
multiples datacenters (D1 and D2). Each datacenter has multiple racks (R), and 
each rack has multiple machines.

6 See http://issues.apache.org/jira/browse/HDFS-385 for the description of this change.
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#!/bin/bash

ipaddr=$1
segments=`echo $ipaddr | cut --delimiter=. --fi elds=4`
if [ “$segments” -lt 128 ]; then
    echo /rack-1
else
    echo /rack-2
fi 

This bash script takes an IPv4 address and looks at the last of the four octets (assuming 
dot-decimal notation). The node is considered in rack 1 if the last octet is less than 
128, and the node is considered in rack 2 otherwise. A table lookup may make more 
sense for more complex cluster topologies. On the other hand, if there is no net-
work topology script, Hadoop assumes a fl at topology where all nodes are assigned to 
/default-rack.

8.11 Scheduling jobs from multiple users
 As you have more and more jobs coming from multiple users for your Hadoop cluster, 
you’ll need some control to prevent contention. Under Hadoop’s default FIFO sched-
uler , as soon as a job is sent to Hadoop for execution, the JobTracker will assign as 
many TaskTrackers as necessary to process that job. This works fairly well when things 
are not busy and you have a good amount of processing capacity to spare. But some big 
Hadoop jobs can easily tie up the cluster for a long time and force the smaller jobs to 
wait. Wouldn’t it be great if something akin to an express checkout existed for smaller 
jobs in a Hadoop cluster?

8.11.1  Multiple JobTracker s

Back in the days before Hadoop version 0.19, you had to physically set up multiple 
MapReduce clusters to provide rudimentary CPU allocation among jobs. To keep 
storage utilization reasonably effi cient though, there would still be one single HDFS 
cluster. Let’s say, you have Z slave nodes  available for your Hadoop cluster. You’ll 
have a single NameNode that takes all Z nodes as DataNodes. All Z nodes will also 
be TaskTrackers. Until now, all these TaskTrackers would point to the same/only 
JobTracker.

The trick in making a multicluster  setup is having multiple JobTrackers, and each 
JobTracker controls a (mutually exclusive) subset of TaskTrackers. For example, to 
create two MapReduce clusters, you have X TaskTrackers point to one JobTracker (via 
the mapred.job.tracker  property) and Y  TaskTrackers confi gured to use the second 
JobTracker. The slave nodes between the two MapReduce clusters are distinct to give 
X+Y=Z. To use this setup, you submit certain jobs to one JobTracker, whereas other 
jobs go to the other JobTracker. This limits the number of TaskTrackers available to 
each type of job. The job type need not necessarily determine the assignment of jobs 
to the MapReduce pool. More typical is to allocate each MapReduce pool to one user 
group. This enforces a limit to how much resource one group can take up.
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Physically setting up multiple MapReduce clusters this way has many drawbacks. It’s 
not very user-friendly as one has to remember which pool to use. It’s less likely that 
a task is data-local. (It may be the case that all replicas are in DataNodes outside of 
one’s pool.) The setup is not fl exible to changing resource requirements. Fortunately, 
starting with version 0.19, Hadoop has a pluggable architecture for the scheduler, and 
two new schedulers have become available for resolving job contention. One is the Fair 
Scheduler developed at Facebook, and another one is the Capacity Scheduler developed 
at Yahoo.

8.11.2 Fair Scheduler 

The Fair Scheduler introduced the notion of pools . Jobs  are tagged to belong to specifi c 
pools, and each pool is confi gured to have a guaranteed capacity of a certain number 
of map slots and a certain number of reduce slots. When task slots are freed up, the Fair 
Scheduler will allocate them to meet these minimum guarantees fi rst. After it meets 
the guarantees, slots are allocated between jobs using “fair sharing,” such that each job 
gets roughly an equal amount of compute resource. You can set priority on jobs to give 
more capacity to higher priority jobs. (Some jobs are more equal than others.)

The Fair Scheduler is available as the jar fi le hadoop-*-fairscheduler.jar under 
the contrib/fairscheduler directory of the Hadoop installation. To install it, you 
can move the jar fi le directly into Hadoop’s lib/ directory. Alternatively, you can 
modify HADOOP_CLASSPATH  in the script conf/hadoop-env.sh to include this jar.

You’ll need to set a few properties in hadoop-site.xml to fully enable and confi gure 
the Fair Scheduler. You fi rst instruct Hadoop to use the Fair Scheduler instead of the 
default one by setting mapred.jobtracker.taskScheduler  to org.apache.hadoop.
mapred.FairScheduler. You then confi gure a few Fair Scheduler properties. The 
most important is mapred.fairscheduler.allocation.fi le, which points to the fi le 
that defi nes the different pools. This fi le is typically named pools.xml and specifi es 
each pool’s name and capacity. The mapred.fairscheduler.poolnameproperty 
defi nes the jobconf property the scheduler will use to determine which pool to use 
for a job. A useful confi guration pattern is to set this to a new property, say pool.name, 
and assign pool.name to have a default value of ${user.name}. The Fair Scheduler 
automatically gives each user her own individual pool. This particular pool.name 
will by default assign each job to its owner’s pool. You can change the pool.name 
property in a job’s jobconf to assign the job to a different pool.7 Finally, the mapred.
fairscheduler.assignmultiple property, when set to true, allows the scheduler to 
assign both a map task and a reduce task on each heartbeat, which improves ramp-up 
speed and throughput. To summarize, your mapred-site.xml will have the following 
properties set:

7  Yes, you can run your job in another user’s pool, but that’s not very polite. The main usage is to assign 
special jobs to specifi c pools. For example, you may want all cron jobs to go to a single pool rather than have 
them run under each individual user’s pool.
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<property>
  <name>mapred.jobtracker.taskScheduler</name>
  <value>org.apache.hadoop.mapred.FairScheduler</value>
</property> 
<property>
  <name>mapred.fairscheduler.allocation.fi le</name>
  <value>HADOOP_CONF_DIR/pools.xml</value>
</property> 
<property>
  <name>mapred.fairscheduler.assignmultiple</name>
  <value>true</value>
</property> 
<property>
  <name>mapred.fairscheduler.poolnameproperty</name>
  <value>pool.name</value>
</property> 
<property>
  <name>pool.name</name>
  <value>${user.name}</value>
</property>

The allocation fi le pools.xml defi nes the pools for the scheduler. It gives each pool 
a name and capacity constraints. The constraints can include the minimum number 
of map slots or reduce slots. They can also include the maximum number of running 
jobs. In addition, you can set the maximum number of running jobs  per user, and also 
override this maximum for specifi c users. An example pools.xml looks like this:

<?xml version=”1.0”?>
<allocations>
  <pool name=”ads”>
    <minMaps>2</minMaps>
    <minReduces>2</minReduces>
  </pool>
  <pool name=”hive”>
    <minMaps>2</minMaps>
    <minReduces>2</minReduces>
    <maxRunningJobs>2</maxRunningJobs>
  </pool>
  <user name=”chuck”>
    <maxRunningJobs>6</maxRunningJobs>
  </user>
  <userMaxJobsDefault>3</userMaxJobsDefault>
</allocations>

This pools.xml defi nes two special pools, “ads” and “hive”. Each is guaranteed to have 
at least two map slots and two reduce slots. The “hive” pool is limited to running at 
most two jobs at once. To use these pools, you set the pool.name property in a job’s 
confi guration to either “ads” or “hive”. This pools.xml also caps the number of simul-
taneous running jobs a user can have to three, but the user “chuck” is given a higher 
cap of six.

Note that the pools.xml fi le is reread every 15 seconds. You can modify this fi le and 
dynamically reallocate capacity at run time. Any pool not defi ned in this fi le has no 
guaranteed capacity and no limit on number of jobs running at once.
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Figure 8.2 The Web UI to monitor Hadoop’s fair scheduler. The top table shows all the available 
pools and each pool’s usage. The table showing “Running Jobs” has a Pool column where you can 
monitor or change the pool of each job.

When you have your Hadoop cluster running with the Fair Scheduler , there’s a Web 
UI  available to administer the scheduler . The page is at http://<jobtracker URL>/
scheduler. Besides letting you know how the jobs are scheduled, it also allows you to 
change the pool a job belongs to and the job’s priority. Figure 8.2 shows an example 
screenshot of this page.

The Capacity Scheduler  shares similar goals with the Fair Scheduler. The Capacity 
Scheduler works on queues rather than pools. The interested reader can learn more 
about the Capacity Scheduler from the online documentation at http://hadoop.
apache.org/common/docs/r0.20.0/capacity_scheduler.html.

8.12 Summary
Managing distributed clusters is complicated and Hadoop is no different. We’ve 
covered many common administrative tasks in this chapter. If you have a complex setup 
and have more sophisticated questions, a useful resource is the Hadoop mailing lists.8 
Many Hadoop administrators with deep expertise are active on those mailing lists, and 
chances are that one of them will have encountered your situation. On the other hand, 
if you mostly want a basic Hadoop cluster without all the hassle of administration, you 
may want to consider using the Cloudera distribution9 or checking out one of the 
Hadoop cloud services, which we cover in the next chapter. 

8 http://hadoop.apache.org/common/mailing_lists.html.
9 http://www.cloudera.com/distribution.



Part 3

Hadoop Gone Wild

Part 3 explores the larger ecosystem around Hadoop. Cloud services provide 
an alternative to buying and hosting your own hardware to create a Hadoop clus-
ter. Many add-on packages provide higher-level programming abstractions over 
MapReduce. We show several case studies where Hadoop solves real business 
problems in practice.
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9Running Hadoop 
in the cloud

This chapter covers
 Setting up a compute cloud with Amazon Web Services (AWS)■

 Running Hadoop in the AWS cloud■

 Transferring data into and out of an AWS Hadoop cloud■

Depending on your data processing needs, your Hadoop workload can vary widely 
over time. You may have a few large data processing jobs that occasionally take ad-
vantage of hundreds of nodes, but those same nodes will sit idle the rest of the time. 
You may be new to Hadoop and want to get familiar with it fi rst before investing in 
a dedicated cluster. You may own a startup that needs to conserve cash and wants 
to avoid the capital expense of a Hadoop cluster. In these and other situations, it 
makes more sense to rent a cluster of machines rather than buy it.

The general paradigm of provisioning compute resources as a remote service in a 
fl exible, cost-effective manner is called cloud computing. The best-known infrastructure 
service platform for cloud computing is Amazon Web Services (AWS). You can rent 
computing and storage services from AWS on demand as your requirement scales. 
As of this writing, renting a compute unit with the equivalent power of a 1.0 GHz 
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32-bit Opteron with 1.7 GB RAM and 160 GB disk storage costs $0.10 per hour. Using a 
cluster of 100 such machines for an hour will cost a measly $10! It wasn’t too long ago 
that only a select few had access to clusters on this scale. Thanks to AWS and other such 
services, large-scale compute power is available to many people today.

Because of its fl exibility and cost effectiveness, running Hadoop on the AWS cloud is a 
popular setup, and we learn how to install and confi gure this confi guration in this chapter.

9.1  Introducing  Amazon Web Services 
Learning all the capabilities of Amazon Web Services is worthy of a book itself. Amazon 
is constantly adding new services and features. We recommend you to explore the AWS 
website (http://aws.amazon.com) to get more details and the latest offerings. We only 
cover enough basics here to get a Hadoop cluster running.

Of all the services AWS offers, its Elastic Compute Cloud (EC2) and Simple Storage 
Service (S3 ) are the two core services you need to understand to run Hadoop in the 
cloud  . The EC2 service provides compute capacity for running Hadoop nodes. You can 
think of EC2 as a large farm of virtual machines. An EC2 instance is the AWS terminology 
for a virtual compute unit. Each Hadoop node will take up an EC2 instance. You rent 
an EC2 instance for only as long as you need and pay on an hourly basis.

A car rental company throws out whatever you leave in the trunk when you return it. 
Similarly, all your data on an EC2 instance is deleted when you terminate the instance. 
If you want the data to be around for future use, you have to ensure that it’s in some 
persistent storage. The Amazon S3 service is a cloud storage service that you may use 
for such purposes.

Each EC2 instance functions like a commodity Intel machine that you can access 
and control over the internet. You boot up an instance using an Amazon Machine 
Image , also known as an AMI or an image. More demanding users can create their own 
images, but most users are well served by one of the many preconfi gured ones. Some 
images are only basic bare-bones operating systems. Supported operating systems on 
EC2  include more than six variants of Linux, plus Windows Server and OpenSolaris. 
Other images include one of the operating systems plus pre-installed software, such as 
database server, Apache HTTP server, Java application server, and others. AWS offers 
preconfi gured images of Hadoop running on Linux, and Hadoop has built-in support 
for working with both EC2 and S3.

9.2  Setting up AWS 
This section is a quick introduction to setting up AWS. We only cover the essentials to 
get a Hadoop cluster running. If you are already familiar with launching and using EC2 
instances, you should skip directly to the next section on setting up Hadoop on AWS.

To start using AWS, you fi rst have to sign up for an account. Go to http://aws.
amazon.com/ and click on the button urging you to “Sign Up Now.” The process is 
self-explanatory. It’s no more complicated than buying a book from Amazon. The 
sign-up process sets up your Amazon account (which you may already have if you have 
bought stuff from Amazon before) and activates it to pay for your usage of AWS.
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NOTE Amazon has introduced the Elastic MapReduce (EMR) service that vastly 
simplifi es the use of Hadoop on AWS. The most important simplifi cation is that 
you no longer have to set up and launch your own cluster of EC2 instances. 
The trade-off is that you lose some control over how the cluster works and you 
have to pay extra for this EMR service. We discuss EMR in section 9.6. But we 
highly encourage you to keep on reading and understand how to set up your 
own EC2 cluster running Hadoop, even if you don’t go through the process of 
setting it up. At the very least, knowing more details about how Hadoop runs 
on an EC2 cluster will clarify what EMR is doing underneath the hood.

After you have activated your Amazon account for AWS, there are three more steps 
before you can start creating machine instances and using them:

1 Obtain your  account IDs and your authentication keys and certifi cates. You’ll 
set these up on your local machine to secure your communication with AWS. 
These security mechanisms ensure that only you can rent compute resources 
with your account.

2 Download and set up command line tools to manage your EC2  instances. These 
include special programs to start and stop EC2 instances in your virtual cluster.

3 Generate an SSH key pair. After you have started an EC2  instance, you’ll log 
into it using SSH (either directly or indirectly through the use of special tools). 
The default SSH mechanism uses the SSH key pair to authenticate you to your 
EC2 instance in lieu of using a password.

We go through each step in a subsection below.

9.2.1  Getting your AWS authentication credentials

AWS supports two types of authentication  mechanisms: the AWS Access Key Identifi er  
and X.509 certifi cate  . To run Hadoop on AWS you’ll need both mechanisms, and they 
can be set up from the Access Identifi ers page where you manage your AWS account 
(http://aws.amazon.com/account/). The AWS Access Key Identifi er consists of an Access 
Key ID and a Secret Access Key. Figure 9.1 shows a section of the Access Identifi ers 
page. An Access Key ID is a 20-character alphanumeric sequence whereas a Secret Ac-
cess Key is a 40-character sequence. Don’t  share your Secret Access Key with anyone. 
The web page requires an extra click on Show to display it (in case anyone is looking 
over your shoulder). You should generate a new Secret Access Key if the one you have 
has been compromised. You’ll need to specify your Access Key ID and Secret Access 
Key later when you set up the Hadoop cluster.

TIP In some situations when you want Hadoop to access S3, you’ll tell Hadoop 
your AWS Access Key ID and Secret Access Key  in a specially formatted URI. 
Unfortunately, AWS allows slashes (/) in its Secret Access Keys, which will 
cause confusion inside a URI. Although there are ways you can tell Hadoop 
your AWS Access Key ID without using a URI, it may be more convenient to 
regenerate your Secret Access Key until you get one without a slash (/) in it.
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Figure 9.1 Getting AWS Access Key ID and Secret Access Key

Setting up the X.509 Certifi cate involves a bit more work. At the same Access Identi-
fi ers page is a section titled X.509 Certifi cate, as seen in fi gure 9.2. You click on Create 
New to generate a new X.509 certifi cate. A certifi cate has two keys: a public key and a 
private key. Unlike the Access Key ID  and the Secret Access Key, the public and private 
keys in your X.509 certifi cate are hundreds of characters long, and they have to be 
stored and managed as fi les. After creating a new X.509 certifi cate, you’ll arrive at a 
page to download both keys/fi les. See fi gure 9.3.

Figure 9.2 Managing your X.509 certifi cate. You can upload your own, or ask AWS to create one.



Figure 9.3 Download the private key and certifi cate fi le of your X.509 Certifi cate.

The public key  is also called a certifi cate fi le . Your private key, as the name implies, 
should not be shared with anyone. Even Amazon itself doesn’t store a copy of it. AWS 
specifi es fi lenames for the certifi cate and the private key , and you should keep those 
names when you save them. The fi lenames for the certifi cate and the private key are 
prefi xed with cert- and pk-, respectively, and they have the .pem fi le extension. You 
should create a directory called .ec2 under your home directory on your local machine 
and save those two fi les in the new directory. On Linux you’ll have saved the following 
fi les to your local machine:

~/.ec2/cert-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem
~/.ec2/pk-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem

Finally, you should also note your AWS Account Number . It’s near the top right side 
of the Access Identifi ers page, and it’s a 12-digit hyphenated number that looks like 
“4952-1993-3132.” Your Account ID is the unhyphenated version of that—something 
like “495219933132.” Your Account ID is what you’ll use in setting up Hadoop on EC2.
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You may think these are a lot of values to generate and write down. To summarize, 
here are the fi ve values you should have at this point:

 Your 20-character, alphanumeric Access Key ID■  
 Your 40-character Secret Access Key■  
 Your X.509 Certifi cate■   fi le under the .ec2 directory
 Your X.509 private key■   fi le under the .ec2 directory
 Your 12-digit (unhyphenated) AWS Account■   ID

You’ll use these values later to authenticate yourself to AWS and control your 
Hadoop cluster.

9.2.2  Getting  command line tools 

After getting all the security credentials, you should download and confi gure the AWS 
command line tools to instantiate and manage your EC2 instances. These tools are 
written in Java, which presumably is already installed on your local machine.

The EC2  command line tools  are self-contained in one downloadable ZIP fi le from 
the AWS EC2 Resource Center.1 Unzip the fi le into a directory you use for your AWS 
work. In the unzipped fi les you’ll see the Java tools plus shell scripts for Windows, 
Linux, and Mac OS X.

You don’t have to confi gure the command line tools, but you do have to set a 
few environment variables before using them. The environment variable EC2_HOME 
should be a path pointing to the directory where the command line tools were 
unzipped. Unless you have renamed that directory, its name is ec2-api-tools-A.B-nnnn, 
where A, B, and n are version/release numbers. You should also set EC2_CERT and 
EC2_PRIVATE_KEY to point to your X.509 certifi cate and private key fi les, respectively. 
I’ve found it useful to have a script for setting up all the necessary environment variables 
to use the AWS command line tools. A version for Linux, Unix, and Mac OS X, called 
ec2-init.sh, is in listing 9.1. You run this script before using any AWS related tools 
by executing

source ec2-init.sh

or

. ec2-init.sh

Listing 9.1 ec2-init.sh: a Unix script setting up variables for EC2 tools

export JAVA_HOME = /Library/Java/Home
export EC2_HOME = ~/Projects/Hadoop/aws/ec2-api-tools-1.3-30349
export PATH = $PATH:$EC2_HOME/bin:$HADOOP_HOME/src/contrib/ec2/bin
export EC2_PRIVATE_KEY = ~/.ec2/pk-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem 
export EC2_CERT = ~/.ec2/cert-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem

1 http://developer.amazonwebservices.com/connect/entry.jspa?externalID=351&categoryID=88.



An analogous version for Windows is in listing 9.2. You can run it in a command prompt 
by executing ec2-init.bat.

Listing 9.2 ec2-init.bat: a Windows script setting up variables for EC2 tools

set JAVA_HOME = "C:\Program Files\Java\jdk1.6.0_08"
set EC2_HOME = "C:\Program Files\Hadoop\aws\ec2-api-tools-1.3-30349"
set PATH = %PATH%;%EC2_HOME%\bin;%HADOOP_HOME%\src\contrib\ec2\bin
set EC2_PRIVATE_KEY = c:\ec2\pk-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem 
set EC2_CERT = c:\ec2\cert-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem

If you’ll be working with AWS often, you may choose to not use a separate script and 
instead integrate it directly into your operating system’s start-up script (for example, 
.profi le and autoexec.bat).

The pathnames in the script will be different for your particular installation. The 
environment variable JAVA_HOME needs to be set for the AWS command line tools 
to work. We set it here although most likely it has already been set elsewhere. The 
script adds the command line tools’ bin directory to your system PATH. This makes 
executing the tools much easier, as you don’t need to specify the full path every time. 
The Hadoop EC2 tools’ directory is also added to PATH, although we won’t cover them 
until the next section.

AWS  has machines located in different regions of the world. As of this writing, AWS 
supports two regions, the U.S. and the E.U. As an optional step, you can choose which 
region to run your EC2 instances to reduce latency. After you have run the preceding 
script to set up the environment variables, let’s run our fi rst AWS command line tool 
to ask Amazon what regions are currently available:

ec2-describe-regions

You’ll get back something like this:

REGION        us-east-1        us-east-1.ec2.amazonaws.com
REGION        eu-west-1        eu-west-1.ec2.amazonaws.com

The second column is the region names (us-east-1 and eu-west-1) and the third 
column is the corresponding service endpoints. The default region is us-east-1. Set the 
environment variable EC2_URL to the service endpoint of a different region if you 
choose to. You can do this within the preceding AWS initialization shell script.

TIP Besides the offi cial command line tools, there are also GUI tools  for 
managing your EC2  and S3  usage. These GUI tools tend to be more user-
friendly. Two of the more popular ones are both Firefox extensions:  Elasticfox 
and S3Fox. Elasticfox (http://developer.amazonwebservices.com/connect/
entry.jspa?entryID=609) provides basic EC2 management features, such 
as launching new EC2 instances and listing currently running ones. S3Fox 
(http://www.suchisoft.com/ext/s3fox.php) is a third-party tool for organizing 
your S3 storage. It functions much like a GUI-based FTP client in managing 
remote storage.
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9.2.3  Preparing an SSH key pair 

After starting an EC2 instance, you’ll want to log into it to run programs and services. 
The default login mechanism (of public images) uses SSH with a key pair. Half of this 
key pair (public key ) is embedded in the EC2 instance, and the other half (private key ) 
is in your local machine. Together, the key pair secures the communication between 
your local machine and the EC2 instance.

NOTE Some of you may be more familiar with logging into a remote machine 
using SSH  with a password. Using SSH with a key pair is an alternative 
mechanism. Instead of a password, you authenticate yourself with a private key 
that’s stored as a fi le on your local machine. Like your password, your private 
key fi le should not be accessible by unauthorized people.

Each SSH key pair  has a key name to identify it. When requesting Amazon EC2 to cre-
ate an instance, you have to specify the public key to be embedded in that instance by 
its corresponding key name. The SSH public key has to exist and be registered with 
Amazon before creating any EC2 instances.

The following command generates an SSH  public/private key pai r and registers the 
public key to Amazon EC2 under the key name gsg-keypair.

ec2-add-keypair gsg-keypair

Interestingly, the command doesn’t save the private key to a local fi le. Instead, it 
generates a standard output (stdout) similar to fi gure 9.4, part of which is the pri-
vate key. You’ll have to manually save it to a fi le using a text editor. Specifi cally, copy 
and paste the output between the following two lines, inclusive, to a new fi le named 
id_rsa-gsg-keypair.

-----BEGIN RSA PRIVATE KEY-----
-----END RSA PRIVATE KEY-----

For ease of management, you should save the fi le to the same .ec2 directory for your 
X.509 private key and certifi cate. You’ll also need to lock down the fi le permission 
such that it’s only readable by you. On Linux and other Unix-based systems, use the 
following command:

chmod 600 ~/.ec2/id_rsa-gsg-keypair

All EC2 instances in a single Hadoop cluster will have the same public key . A single 
private key can log into any node in the cluster, and only one SSH key pair is needed. 
You can also choose to use more than one SSH key pair when working with multiple 
Hadoop  clusters, or when you use extra EC2 instances outside of your Hadoop cluster.

At this point you have fi nished the one-time setup of credentials and certifi cates to 
start a compute cluster in the Amazon cloud. You can manually use the AWS tools to 
launch EC2 instances and log into them to launch your Hadoop cluster . This approach 
is time consuming and error prone, though. Fortunately, Hadoop has included tools 
to work with AWS, which we discuss in the next section. Before we fi nish this section, we 
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Figure 9.4 Example output of ec2-add-keypair. The fi rst line is a key signature and the rest is the 
private key.

do recommend that you spend some time reading the EC2 documentation, includ-
ing the Getting Started Guide.2 EC2 has many confi guration and customization 
options. Understanding them will come in handy when you start to tune your AWS 
Hadoop cluster. 

9.3  Setting up Hadoop  on EC2
To run Hadoop on an EC2 cluster, you fi rst need to install Hadoop on your local ma-
chine and be able to run it in standalone mode. Your local Hadoop installation con-
tains scripts to help you launch and log into an EC2 Hadoop cluster. These scripts are 
in the directory src/contrib/ec2/bin under your Hadoop installation.

9.3.1  Confi guring security  parameters 

You must confi gure the single initialization script at src/contrib/ec2/bin/hadoop-
ec2-env.sh. Inside that script, set the following three variables to values you obtained 
in section 9.2.1:

 ■ AWS_ACCOUNT_ID—Your 12-digit AWS account ID

2 http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/
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 ■ AWS_ACCESS_KEY_ID—Your 20-character, alphanumeric Access Key ID
 ■ AWS_SECRET_ACCESS_KEY—Your 40-character Secret Access Key

The tools for Hadoop on EC2 get the other security parameters from environment 
variables (which should be set when you source aws-init.sh) or are based on 
defaults that should work fi ne if you have followed the AWS setup in section 9.2.

9.3.2  Confi guring cluster  type

You’ll need to specify the confi guration of your Hadoop cluster in hadoop-ec2-env.
sh. You need to set three main parameters:  HADOOP_VERSION, INSTANCE_TYPE, and 
S3_BUCKET. Before telling you how to set these parameters, let’s go over a little 
background.

Before the creation of an instance, Amazon EC2 must know the instance type and 
the image used to boot up the instance. Instance type is the physical confi guration of 
the virtual machine (CPU, RAM, disk space, etc.). As of this writing, fi ve instance types 
are available, grouped into two families: standard and high-CPU. High-CPU types are 
for compute-intensive work. Rarely are they used for Hadoop applications, which tend 
to be data-intensive. The standard family has three instance types, and table 9.1 lists 
their attributes.

Table 9.1 Specifi cation for various EC2 instance types

Type CPU Memory  Storage Platform I/O Name

Small 1 EC2 Compute Unit 1.7 GB 160 GB 32-bit Moderate m1.small

Large 4 EC2 Compute Unit 7.5 GB 850 GB 64-bit High m1.large

Extra Large 8 EC2 Compute Unit 15 GB 1690 GB 64-bit High m1.xlarge

The more powerful instance types cost more, and you should look up the AWS website 
to fi nd the latest pricing.

Only Amazon’s S3  storage service can store images for booting up EC2 instance. 
Many existing images are available for all kinds of setups. You can use one of the public 
images, or pay for special custom images, or even create your own. Similar images are 
stored in the same S3 bucket .3 The standard public Hadoop images are either in the 
hadoop-ec2-images bucket or the hadoop-images bucket. In fact, we only use the hadoop-
images bucket  because the newer versions of Hadoop (after 0.17.1) aren’t available in 
the hadoop-ec2-images bucket. The Hadoop team puts new EC2 images in the hadoop-
images bucket when signifi cant versions of Hadoop are released. At any point in time, 
execute the following EC2 command to see the available Hadoop images:

ec2-describe-images -x all | grep hadoop-images

3  An S3 bucket is the top-level partition in S3’s namespace. A bucket is owned by exactly one AWS account 
and must have a globally unique name.



Figure 9.5 Some of the available Hadoop images in AWS.

Figure 9.5 shows an example output from the previous command. Each row describes 
one available EC2  image. Each image lists eleven properties, most of which are useful 
only for advanced AWS users. For our purpose, all the information we need can be read 
from the third column, also known as the manifest location of the image. These are ex-
pressed in a two-level hierarchy, in which the top level is the S3 bucket where the image 
resides. As mentioned earlier, the hadoop-images bucket is the one we focus on.

The manifest location includes the Hadoop version number. The manifest 
location also includes a term that’s either i386 or x86_64. This tells you whether 
the image is for a 32-bit instance or a 64-bit instance. An example image that’s 
available as of this writing has a manifest location of hadoop-images/hadoop-0.19.0-
i386.manifest.xml. That image uses Hadoop version 0.19.0 and can run on 32-bit 
EC2 instances.

After seeing the available Hadoop images, we’re ready to set HADOOP_VERSION, 
INSTANCE_TYPE, and S3_BUCKET in hadoop-ec2-env.sh. Unless you’re using a 
custom image, you should set S3_BUCKET to hadoop-images. INSTANCE_TYPE defaults 
to m1.small, which should work fi ne. The main point to remember is that the instance 
type directly specifi es whether the CPU is 32-bit or 64-bit and must be booted from 
a compatible image (i386 or x86_64). Finally, HADOOP_VERSION should be set to the 
Hadoop version you want to use. The particular combination of HADOOP_VERSION, 
INSTANCE_TYPE, and S3_BUCKET has to be available as seen in the output of the 
ec2-describe-images command. 

9.4  Running MapReduce  programs on EC2 
The Hadoop EC2 tools are in the directory src/contrib/ec2/bin under your Hadoop 
installation. Recall that our ec2-init.sh script has already added that directory to your 
system PATH. Within that directory is hadoop-ec2, which is a meta-command for execut-
ing other commands. To launch a Hadoop cluster on EC2, use

hadoop-ec2 launch-cluster <cluster-name> <number-of-slaves>

This fi rst launches a master EC2 instance. After this it boots the requested number 
of slave nodes to point to the master node. When this command returns, it will print 
out the public DNS name to the master node, which we denote <master-host>. At 
this point, not all slave nodes necessarily have been fully booted. You can view the 
master node’s JobTracker web interface at http://<master-host>:50030/ to monitor 
the cluster and the operational status of the slave nodes.
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NOTE New EC2  users can’t run more than 20 concurrent instances. You can 
request a higher limit through the Amazon EC2 Instance Request Form at 
http://www.amazon.com/gp/html-forms-controller/ec2-request.

After launching a Hadoop cluster, you’re ready to log into the master node and use the 
cluster as if you’ve set it up on your own machines. To log in, use this command:

hadoop-ec2 login <cluster-name>

The $HADOOP_HOME for a Hadoop EC2 instance is /usr/local/hadoop-x.y.z, where 
x.y.z is the Hadoop version number. We run a quick test to show that Hadoop is running 
in this cluster:

# cd /usr/local/hadoop-*
# bin/hadoop jar hadoop-*-examples.jar pi 10 10000000

For the rest of this chapter, a hash mark (#) character in the beginning of a command 
line denotes that line should be executed in the master node of your Hadoop EC2 cluster, 
rather than at your local machine. The commands above run an example Hadoop program 
to estimate the value of pi. You can monitor the job at http://<master-host>:50030/.

9.4.1  Moving your code to the Hadoop cluster 

All Hadoop applications consist of two components: code and data. We fi rst move our 
code to the Hadoop cluster. In the next subsection we discuss making our data acces-
sible (which may or may not involve moving data to the cluster).

You’ll copy your application code to the master node in your Hadoop EC2 cluster 
using scp. Execute the following commands from your local machine:

source hadoop-ec2-env.sh
scp $SSH_OPTS <local-fi lepath> root@$MASTER_HOST:<master-fi lepath>

where <local-fi lepath> points to the application code on your local machine and 
<master-fi lepath> points to the destination fi le path on the master node.

9.4.2  Accessing your data from the Hadoop cluster 

As the Hadoop EC2 cluster is being rented, data stored in the cluster (including in 
HDFS) is not persistent. Your input data has to persist somewhere else and be brought 
into the EC2 cluster for processing. Many options exist for where to put your data and 
bring it into the Hadoop cluster, and each option has its trade-offs.

MOVING DATA DIRECTLY INTO HDFS 

When the input data is small (<100 GB) and is processed only once, the simplest 
approach is to copy the data into the master node and then copy it from there to 
the cluster’s HDFS. Copying data into the master node is no different than copying 
application code into the master node (see section 9.4.1). Once the data is in the 
master node, you log into the master node and copy the data into HDFS using the 
standard Hadoop command:

# bin/hadoop fs –put <master-fi lepath> <hdfs-fi lepath>



Figure 9.6 Transferring data to the Hadoop EC2 cloud directly

The data fl owpath is depicted graphically in fi gure 9.6. Some issues are worth noting 
in this data fl owpath. One is that AWS charges for bandwidth between AWS and the 
outside world (in addition to hourly charges of each EC2 instance), but bandwidth 
within AWS is free. In this case there’s a monetary cost to copying data into the mas-
ter node but not the copying of the data from the master node into HDFS. (There’s 
also no cost to any of the communication within MapReduce processing and between 
MapReduce and HDFS.) Whichever way you get data into the Hadoop cluster, you’ll 
incur this bandwidth cost at least once. The time it takes to move data into the master 
node will also be relatively long, as the connection between your machine and AWS is 
much slower than the connections within AWS. Again, this sunk time will be incurred 
at least once no matter how you architect the datafl ow. The problem with the current 
datafl ow architecture is that you’ll incur the time and monetary costs each time you 
bring up the Hadoop cluster. If the input data will be processed in different ways over 
multiple sessions, this datafl ow is not recommended.

Another shortcoming to the existing fl owpath is the size limitation on the input 
data. All the data must be able to reside at the master node fi rst, and a small EC 
instance only has 150 GB of disk partition. You can overcome this limitation if you 
can divide your input data over several chunks and move one chunk at a time. You 
may also choose to use bigger instances, which have multiple 420 GB disk partitions. 
But before trying these more complicated schemes, you should consider using S3 in 
your datapath.

MOVING DATA INTO HDFS THROUGH S3 

S3 is a cloud storage service offered by AWS. You’ve already seen it in action as storage 
for EC2 images. Storing data  in S3 is charged by bandwidth for data I/O with non-
AWS machines, plus a monthly storage charge based on the size of the data. The cost 
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model makes it an attractive storage service for many applications. More particularly, 
it’s well suited for use with Hadoop EC2 clusters. 

You can see the datafl ow model  in fi gure 9.7. The main change from the datafl ow of 
fi gure 9.6 is that your input data is fi rst transferred to the S3 cloud instead of the master 
node. Note that, unlike the master node, the S3 cloud storage persists independently of 
your Hadoop EC2 cluster. You can create and terminate multiple Hadoop EC2 clusters 
over time, and they can all read the same input data from S3. The benefi t of this setup 
is that you incur the monetary and time costs of copying your input data into AWS only 
once, when it’s copied into S3, whereas in the datafl ow of fi gure 9.6 they’re incurred 
on every session of the Hadoop EC2 cluster. After the input data is copied into S3, 
copying it from the S3 cloud to the cluster’s HDFS is fast and free, because both S3 and 
EC2 are managed within the AWS system. There’s now an additional monthly storage 
cost for hosting your input data in S3, but it’s usually minimal. If you need to have a 
scalable archival storage for your data, S3 can function in that role under this datafl ow 
architecture, further justifying its cost model. 

The default Hadoop installation has built-in support for using S3. There’s a special 
Hadoop fi lesystem for S3, called S3 Block FileSystem , built on top of S3 to enable large 
fi le sizes. (S3 imposes a fi le size limit of 5 GB.) You’ll need to consider the S3 Block 
FileSystem a separate fi lesystem from S3, just as HDFS is treated distinctly from the 
underlying Unix fi lesystem.

The S3 Block FileSystem requires a dedicated S3 bucket . Once you’ve created that 
S3 bucket, you can move your data from the local machine to S3:

bin/hadoop fs –put <local-fi lepath> 

➥ s3://<access-key-id>:<secret-access-key>@<s3-bucket>/<s3-fi lepath>

Figure 9.7 Using Hadoop on AWS with both S3 and HDFS
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Recall that <access-key-id> and <secret-access-key> are authentication param-
eters from section 9.2.1, and <s3-bucket> is the name of the S3 bucket you’ve created 
for the S3 Block FileSystem.

After your data is in S3, you can copy it to any Hadoop EC2 cluster. From the master 
node of the cluster, run

# bin/hadoop distcp s3://<access-key-id>:<secret-access-key>@<s3-bucket>/

➥ <s3-fi lepath> <hdfs-fi lepath>

After the data is in HDFS, you can run your Hadoop program in the cluster in the 
usual fashion.

ACCESSING DATA DIRECTLY FROM S3 

Up ’till now we’ve always copied data into the cluster’s HDFS before running our 
Hadoop applications. This preserves data locality between storage and the MapReduce 
program. For very small jobs, you may choose to bypass HDFS and forego data locality, 
in return for skipping the copying of data from S3 to HDFS. You can see this datapath  
in fi gure 9.8.

To work in this architecture, specify S3 as the input fi lepath when executing your 
Hadoop application:

# bin/hadoop jar <app-jar-fi lepath> s3://<access-key-id>:

➥ <secret-access-key>@<s3-bucket>/<s3-fi lepath> <hdfs-fi lepath>

The preceding command will store the output fi le in HDFS, but you can change that 
to be S3 as well.

MORE OPTIONS IN USING S3  FOR HADOOP

There are a couple of variations on how you can use S3 that may be useful in some 
situations.

Figure 9.8 Hadoop running on EC2 can directly access data in S3.
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Up  ’till now we’ve used a special Hadoop S3 fi lesystem (the S3 Block FileSystem) to 
store data in S3. An alternative is to use S3’s native fi lesystem. The main disadvantage 
with the native system is a limitation on fi le size of 5 GB. If the fi les for your input data 
are smaller than that limit, the native system can be an excellent option. It’s compat-
ible with all the standard S3 tools, whereas Hadoop’s S3 fi lesystem is in a special and 
unique format. Standard S3 tools make the S3 native fi lesystem more transparent and 
easier to understand. To use the S3 native fi lesystem instead of the S3 Block FileSystem, 
substitute s3 with s3n when specifying fi le locations. For example, use

s3n://<access-key-id>:<secret-access-key>@<s3-bucket>/<s3-fi lepath>

in place of

s3://<access-key-id>:<secret-access-key>@<s3-bucket>/<s3-fi lepath>

If you’re using S3 often, you’ll fi nd it cumbersome to type out the long URI for 
each fi le you want to access. One way to shorten it is to add the following to your 
conf/core-site.xml fi le:

<property>
  <name>fs.s3.awsAccessKeyId</name>
  <value>AWS_ACCESS_KEY_ID</value>
</property>

<property>
  <name>fs.s3.awsSecretAccessKey</name>
  <value>AWS_SECRET_ACCESS_KEY</value>
</property>

Note that you have to replace AWS_ACCESS_KEY_ID with your 20-character Access Key 
ID and AWS_SECRET_ACCESS_KEY with your 40-character Secret Access Key . After add-
ing the two properties to core-site.xml, the URI for S3 fi les can be shortened to

s3://<s3-bucket>/<s3-fi lepath>

or

s3n://<s3-bucket>/<s3-fi lepath>

for the native S3 fi lesystem.

NOTE If you’re unfortunate enough to be stuck using a Secret Access Key 
that has a slash (/) in it, you can’t embed the secret key inside a URI. The 
only way to use that AWS/S3 account is by embedding the secret key in core-
site.xml as described before. (Some documentation has suggested escaping 
the secret key by replacing the slash (/) with the string %2F inside a URI, 
although that doesn’t seem to work in practice.)

For an additional shortcut, it may be appropriate to make S3 your default fi lesystem , 
in place of HDFS. To do this, change the fs.default.name property in conf/core-
site.xml after adding the two properties above:

<property>
  <name>fs.default.name</name>



  <value>s3://S3_BUCKET</value>
</property>

where S3_BUCKET is the S3 bucket you had chosen to use as your Hadoop S3 Block 
FileSystem (which we had denoted <s3-bucket> earlier). 

9.5 Cleaning up and shutting down your EC2  instances
Hadoop stores the output data of your Hadoop job in the cluster’s HDFS by default, 
and you should save it to somewhere more persistent. The options for retrieving out-
put data are the same as the options for copying input data into the Hadoop EC2 
cluster, only running in reverse. The main difference is that the output data is usually 
orders of magnitude smaller than the input data. Given generally small output data, 
copying through the master node may turn out to be your best option.

As you’re renting your EC2 instances from AWS on an hourly basis, it’s important 
that you shut down the instances when you’re done and tell AWS to stop charging you. 
It’s easy to log out of a cluster and forget that the instances are still running and you’re 
being charged! To properly terminate a cluster, use the following command:

bin/hadoop-ec2 terminate-cluster <cluster-name>

All the EC2 instances in the cluster will shut down and data in them lost. No further 
cleanup is necessary.

9.6 Amazon Elastic MapReduce and other AWS services
Amazon Web Services is constantly adding new capabilities, many of which will make 
life easier for Hadoop developers. Two of the newest services that they’ve announced 
during the writing of this book include Amazon Elastic MapReduce (EMR) and AWS 
Import/Export.

9.6.1 Amazon Elastic MapReduce

 For a small extra fee, the EMR service will launch a preconfi gured Hadoop cluster  for 
you to run your MapReduce programs. The major simplifi cation this service provides 
is that you don’t need to worry about setting up EC2 instances, and therefore you 
don’t need to deal with all the certifi cates and command line tools and so forth. You 
interact with EMR purely through a web-based console at https://console.aws.amazon.
com/elasticmapreduce/home. You can see its initial screen in fi gure 9.9.

The design targets the processing of single jobs. You submit a MapReduce job, 
either as a (Streaming, Pig, or Hive) script or a JAR fi le, and EMR will set up a cluster 
to run the job. By default the cluster will shut down at the end of the job . The input 
(output) of the job is read (written) directly to S3. A heavy user of Hadoop usually 
has many jobs running against the same data, making this setup relatively ineffi cient, 
as explained in section 9.4.2. But a light user will fi nd EMR dramatically simplifi es 
running MapReduce in the cloud. In addition, it’s not diffi cult to imagine that the 
sophistication of EMR will only grow in the future and eventually become the primary 
way to run Hadoop on AWS.
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Figure 9.9 The introductory screen of the web console to Amazon Elastic MapReduce. You can follow 
the steps onscreen to create a job fl ow.

You can fi nd more information about Amazon Elastic MapReduce at these sites:
http://aws.amazon.com/elasticmapreduce/
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/ 

9.6.2  AWS Import/Export

 One of the main obstacles to large-scale data processing in the cloud is the diffi culty 
of moving large data sets into the cloud. If you already have an existing process that 
stores your data in S3, then it’s relatively straightforward to run Hadoop on EC2 to 
access that data. On the other hand, if you have to move data to the Amazon cloud 
for the sole purpose of analyzing it, then the data transfer itself can be a signifi -
cant hurdle. Amazon introduced the AWS Import/Export service by which you can 
physically send a hard drive to them and they upload the data to S3 using their 
high-speed internal network. The point at which this service makes sense depends 
on your available internet connection speed. Table 9.2 is a rough guideline given 
by AWS.



Table 9.2 Size of data set at which AWS Import/Export  is more practical than internet upload

Available internet 
connection

Theoretical min. number of days to 
transfer 1 TB at 80% network utilization

When to consider AWS 
Import/Export

T1 (1.544 Mbps) 82 days 100 GB or more

10 Mbps 13 days 600 GB or more

T3 (44.736 Mbps) 3 days 2 TB or more

100 Mbps 1 to 2 days 5 TB or more

1000 Mbps Less than 1 day 60 TB or more

You can fi nd more details about AWS Import/Export at http://aws.amazon.com/
importexport/. 

9.7  Summary
Cloud infrastructure is a great place for running Hadoop, as it allows you to easily 
scale to hundreds of nodes and gives you the fi nancial fl exibility to avoid upfront 
investments. Hadoop has native support for Amazon Web Services (AWS). This chapter 
started with the basics of setting up an account and renting compute services from 
AWS. Once you’re ready to rent computing nodes from AWS, you’ll fi nd Hadoop tools 
for automating the setting up and running of a Hadoop cluster. AWS also has a cloud 
storage service (S3) which can be used in conjunction with or in place of HDFS. You’ll 
fi nd pros and cons to the different setups. Finally, it’s important to remember to shut 
down your Hadoop cluster when you’re fi nished. You’re renting the cloud infrastruc-
ture by the hour, and fees will continue to accrue unless you explicitly shut down 
the machines.
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Programming with Pig

This chapter covers
 Installing Pig and using the Grunt shell■

 Understanding the Pig Latin language■

 Extending the Pig Latin language with user-defi ned functions■

 Computing similar documents effi ciently, using a simple Pig Latin script■

 One frequent complaint about MapReduce is that it’s diffi cult to program. When 
you fi rst think through a data processing task, you may think about it in terms of data 
fl ow operations, such as loops and fi lters. However, as you implement the program 
in MapReduce, you’ll have to think at the level of mapper and reducer functions and 
job chaining. Certain functions that are treated as fi rst-class operations in higher-
level languages become nontrivial to implement in MapReduce, as we’ve seen for 
joins in chapter 5. Pig is a Hadoop extension that simplifi es Hadoop programming 
by giving you a high-level data processing language while keeping Hadoop’s simple 
scalability and reliability. Yahoo , one of the heaviest user of Hadoop (and a backer 
of both the Hadoop Core  and Pig), runs 40 percent of all its Hadoop jobs with Pig. 
Twitter is also another well-known user of Pig.1

1 http://www.slideshare.net/kevinweil/hadoop-pig-and-twitter-nosql-east-2009.
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Pig has two major components:

1 A high-level data processing language called Pig Latin .
2 A compiler that compiles and runs your Pig Latin script  in a choice of 

evaluation mechanisms . The main evaluation mechanism is Hadoop. Pig also 
supports a local mode for development purposes.

Pig simplifi es programming because of the ease of expressing your code in Pig Latin. 
The compiler helps to automatically exploit optimization opportunities in your script. 
This frees you from having to tune your program manually. As the Pig compiler im-
proves, your Pig Latin program will also get an automatic speed-up.

10.1 Thinking like a Pig 
Pig has a certain philosophy about its design. We expect ease of use, high perfor-
mance, and massive scalability from any Hadoop subproject. More unique and crucial 
to understanding Pig are the design choices of its programming language (a data fl ow 
language called Pig Latin), the data types it supports, and its treatment of user-defi ned 
functions (UDFs ) as fi rst-class citizens.

10.1.1 Data fl ow language

You write Pig Latin  programs in a sequence of steps where each step is a single high-
level data transformation. The transformations support relational-style operations, 
such as fi lter, union, group, and join. An example Pig Latin program that processes a 
search query log may look like

log  = LOAD 'excite-small.log' AS (user, time, query);
grpd = GROUP log BY user;
cntd = FOREACH grpd GENERATE group, COUNT(log);
DUMP cntd;

Even though the operations are relational in style, Pig Latin remains a data fl ow language. 
A data fl ow language  is friendlier to programmers who think in terms of algorithms, 
which are more naturally expressed by the data and control fl ows. On the other hand, a 
declarative language such as SQL  is sometimes easier for analysts who prefer to just state 
the results one expects from a program. Hive  is a different Hadoop subproject that tar-
gets users who prefer the SQL model. We’ll learn about Hive in detail in chapter 11.

10.1.2 Data types

We can summarize Pig’s philosophy toward data types  in its slogan of “Pigs eat any-
thing.”  Input data can come in any format. Popular formats, such as tab-delimited text 
fi les, are natively supported. Users can add functions to support other data fi le formats 
as well. Pig doesn’t require metadata or schema on data, but it can take advantage of 
them if they’re provided.

Pig can operate on data that is relational, nested, semistructured, or unstructured. 
To support this diversity of data, Pig supports complex data types, such as bags  and 
tuples  that can be nested to form fairly sophisticated data structures. 
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10.1.3 User-defi ned functions

Pig  was designed with many applications in mind—processing log data, natural lan-
guage processing, analyzing network graphs, and so forth. It’s expected that many of 
the computations will require custom processing. Pig is architected from the ground 
up with support for user-defi ned functions. Knowing how to write UDFs is a big part 
of learning to use Pig. 

10.2 Installing Pig 
You can download the latest release of Pig from http://hadoop.apache.org/pig/
releases.html. As of this writing, the latest versions of Pig are 0.4 and 0.5. Both of them re-
quire Java 1.6. The main difference between them is that Pig version 0.4 targets Hadoop 
version 0.18 whereas Pig version 0.5 targets Hadoop version 0.20. As usual, make sure 
to set JAVA_HOME  to the root of your Java installation, and Windows users should install 
Cygwin . Your Hadoop cluster  should already be set up. Ideally it’s a real cluster in fully 
distributed mode, although a pseudo-distributed setup is fi ne for practice.

You install Pig on your local machine by unpacking the downloaded distribution. 
There’s nothing you have to modify on your Hadoop cluster. Think of the Pig 
distribution as a compiler and some development and deployment tools. It enhances 
your MapReduce programming but is otherwise only loosely coupled with the 
production Hadoop cluster.

Under the directory where you unpacked Pig, you should create the subdirectories 
logs and conf (unless they’re already there). Pig will take custom confi guration 
from fi les in conf. If you are creating the conf directory just now, there’s obviously 
no confi guration fi le, and you’ll need to put in conf a new fi le named pig-env.sh. 
This script is executed when you run Pig, and it can be used to set up environment 
variables for confi guring Pig. Besides JAVA_HOME, the environment variables of 
particular interest are PIG_HADOOP_VERSION  and PIG_CLASSPATH . You set these 
variables to instruct Pig about your Hadoop cluster. For example, the following 
statements in pig-env.sh will tell Pig the version of Hadoop used by the cluster is 
0.18, and to add the confi guration directory of your local installation of Hadoop to 
Pig’s classpath:

export PIG_HADOOP_VERSION=18
export PIG_CLASSPATH=$HADOOP_HOME/conf/

We assume HADOOP_HOME is set to Hadoop’s installation directory on your local ma-
chine. By adding Hadoop’s conf directory to Pig’s classpath, Pig can automatically 
pick up the location of your Hadoop cluster’s NameNode  and JobTracker .

Instead of using Pig’s classpath, you can also specify the location of your Hadoop cluster 
by creating a pig.properties fi le . This properties fi le will be under the conf directory 
you created earlier. It should defi ne fs.default.name and mapred.job.tracker, the 
fi lesystem (i.e., HDFS’s NameNode ) and the location of the JobTracker. An example pig.
properties fi le pointing to a Hadoop set up in pseudo-distributed mode is

fs.default.name=hdfs://localhost:9000
mapred.job.tracker=localhost:9001
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For the sake of convenience, let’s add the Pig installation’s bin directory to your path. 
Assume $PIG_HOME is pointing to your Pig’s installation:

export PATH=$PATH:$PIG_HOME/bin

With Pig’s bin directory set as part of your command line path, you can start Pig with 
the command pig. You may want to fi rst see its usage options:

pig -help

Let’s start Pig’s interactive shell  to see that it’s reading the confi gurations properly.

pig
2009-07-11 22:33:04,797 [main] INFO

➥ org.apache.pig.backend.hadoop.executionengine.HExecutionEngine -

➥ Connecting to hadoop fi le system at: hdfs://localhost:9000
2009-07-11 22:33:09,533 [main] INFO

➥ org.apache.pig.backend.hadoop.executionengine.HExecutionEngine -

➥ Connecting to map-reduce job tracker at: localhost:9001
grunt>

The fi lesystem and the JobTracker Pig reports should be consistent with your confi gu-
ration setup. You’re now inside Pig’s interactive shell, also known as Grunt. 

10.3 Running  Pig
We can run Pig Latin commands in three ways—via the Grunt interactive shell, through 
a script fi le, and as embedded queries inside Java programs. Each way can work in one 
of two modes—local mode  and Hadoop mode . (Hadoop mode is sometimes called 
Mapreduce mode in the Pig documentation.) At the end of the previous section we’ve 
entered the Grunt shell running in Hadoop mode.

The Grunt  shell allows you to enter Pig commands manually. This is typically used 
for ad hoc data analysis or during the interactive cycles of program development. Large 
Pig programs or ones that will be run repeatedly are run in script fi les. To enter Grunt, 
use the command pig. To run a Pig script, execute the same pig command with the 
fi le name as the argument, such as pig myscript.pig. The convention is to use the 
.pig extension for Pig scripts.

You can think of Pig programs as similar to SQL queries , and Pig provides a 
PigServer  class that allows any Java program to execute Pig queries. Conceptually 
this is analogous to using JDBC to execute SQL queries. Embedded Pig programs is 
a fairly advanced topic and you can fi nd more details at http://wiki.apache.org/pig/
EmbeddedPig.

When you run Pig in local mode, you don’t use Hadoop at all.2 Pig commands are 
compiled to run locally in their own JVM , accessing local fi les. This is typically used 
for development purposes, where you can get fast feedback by running locally against 

2  There are plans to change Pig such that it uses Hadoop even in local mode, which helps to make some pro-
gramming more consistent. The discussion for this topic is taking place at https://issues.apache.org/jira/
browse/PIG-1053.
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a small development data set. Running Pig in Hadoop mode means the compile 
Pig program will physically execute in a Hadoop installation. Typically the Hadoop 
installation is a fully distributed cluster . (The pseudo-distributed Hadoop setup we 
used in section 10.2 was purely for demonstration. It’s rarely used except to debug 
confi gurations.) The execution mode is specifi ed to the pig command via the -x or 
-exectype option. You can enter the Grunt shell in local mode through:

pig -x local

Entering the Grunt shell in Hadoop mode is

pig -x mapreduce

or use the pig command without arguments, as it chooses the Hadoop mode by default.

10.3.1 Managing the Grunt  shell

In addition to running Pig Latin statements (which we’ll look at in a later section), the 
Grunt shell supports some basic utility commands.3 Typing help will print out a help 
screen of such utility commands. You exit the Grunt shell with quit. You can stop a 
Hadoop  job  with the kill command followed by the Hadoop job ID. Some Pig  param-
eters are set with the set command . For example,

grunt> set debug on
grunt> set job.name 'my job'

The debug parameter states whether debug-level logging is turned on or off. The job.
name parameter takes a single-quoted string and will use that as the Pig program’s 
Hadoop job name. It’s useful to set a meaningful name to easily identify your Pig job 
in Hadoop’s Web UI .

The Grunt shell also supports fi le utility commands, such as ls and cp. You can see 
the full list of utility commands and fi le commands in table 10.1. The fi le commands 
are mostly a subset of the HDFS fi lesystem  shell commands, and their usage should be 
self-explanatory.

Table 10.1 Utility and fi le commands in the Grunt shell

Utility commands help

quit

kill jobid

set debug [on|off]

set job.name 'jobname'

File commands cat, cd, copyFromLocal, copyToLocal, cp, ls, mkdir, 
mv, pwd, rm, rmf, exec, run

3  Technically these are still considered Pig Latin commands, but you’ll not likely use them outside of the 
Grunt shell.
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Two new commands are exec and run. They run Pig scripts while inside the Grunt 
shell and can be useful in debugging Pig scripts. The exec command executes a Pig 
script in a separate space from the Grunt shell. Aliases defi ned in the script aren’t 
visible to the shell and vice versa. The command run executes a Pig script in the same 
space as Grunt (also known as interactive mode ). It has the same effect as manually typ-
ing in each line of the script into the Grunt shell. 

10.4 Learning Pig Latin through Grunt
 Before formally describing Pig’s data types and data processing operators, let’s run a 
few commands in the Grunt  shell to get a feel for how to process data in Pig. For the 
purpose of learning, it’s more convenient to run Grunt in local mode:

pig -x local

You may want to fi rst try some of the fi le commands, such as pwd and ls, to orient 
yourself around the fi lesystem.

Let’s look at some data. We’ll later reuse the patent data we introduced in 
chapter 4, but for now let’s dig into an interesting data set of query logs from the 
Excite  search engine. This data set already comes with the Pig installation, and it’s 
in the fi le tutorial/data/excite-small.log under the Pig installation directory. 
The data comes in a three-column, tab-separated format. The fi rst column is an 
anonymized user ID. The second column is a Unix timestamp, and the third is the 
search query. A decidedly non-random sample from the 4,500 records of this fi le 
looks like

3F8AAC2372F6941C    970916093724    minors in possession
C5460576B58BB1CC    970916194352    hacking telenet
9E1707EE57C96C1E    970916073214    buffalo mob crime family
06878125BE78B42C    970916183900    how to make ecstacy

From within Grunt, enter the following statement to load this data into an “alias” (i.e., 
variable) called log.

grunt> log  = LOAD 'tutorial/data/excite-small.log' AS (user, time, query);

Note that nothing seems to have happened after you entered the statement. In the 
Grunt shell, Pig parses your statements but doesn’t physically execute them until you 
use a DUMP or STORE command to ask for the results. The DUMP command  prints out 
the content of an alias whereas the STORE command  stores the content to a fi le. The 
fact that Pig doesn’t physically execute any command until you explicitly request 
some end result will make sense once you remember that we’re processing large data 
sets. There’s no memory space to “load” the data, and in any case we want to verify 
the logic of the execution plan before spending the time and resources to physically 
execute it.

We use the DUMP command usually only for development. Most often you’ll STORE 
signifi cant results into a directory. (Like Hadoop, Pig will automatically partition the 
data into fi les named part-nnnnn.) When you DUMP an alias, you should be sure that 
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its content is small enough to be reasonably printed to screen. The common way to do 
that is to create another alias through the LIMIT command  and DUMP the new, smaller 
alias. The LIMIT command allows you to specify how many tuples (rows) to return 
back. For example, to see four tuples of log

grunt> lmt = LIMIT log 4;
grunt> DUMP lmt;
(2A9EABFB35F5B954,970916105432L,+md foods +proteins)
(BED75271605EBD0C,970916001949L,yahoo chat)
(BED75271605EBD0C,970916001954L,yahoo chat)
(BED75271605EBD0C,970916003523L,yahoo chat)

Table 10.2 summarizes the read and write operators in Pig Latin. LIMIT is techni-
cally not a read or write operator, but as it’s often used alongside, we’ve included it 
in the table.

Table 10.2 Data read/write operators in Pig Latin 

LOAD alias = LOAD 'fi le' [USING function] [AS schema];

Load data from a fi le into a relation. Uses the PigStorage load function as default 
unless specifi ed otherwise with the USING option. The data can be given a schema 
using the AS option.

LIMIT alias = LIMIT alias n;

Limit the number of tuples to n. When used right after alias was processed by an 
ORDER operator, LIMIT returns the fi rst n tuples. Otherwise there’s no guarantee which 
tuples are returned. The LIMIT operator defi es categorization because it’s certainly 
not a read/write operator but it’s not a true relational operator either. We include it here 
for the practical reason that a reader looking up the DUMP operator, explained later, will 
remember to use the LIMIT operator right before it.

DUMP DUMP alias;

Display the content of a relation. Use mainly for debugging. The relation should be small 
enough for printing on screen. You can apply the LIMIT operation on an alias to make 
sure it’s small enough for display.

STORE STORE alias INTO 'directory' [USING function];

Store data from a relation into a directory. The directory must not exist when this 
command is executed. Pig will create the directory and store the relation in fi les named 
part-nnnnn in it. Uses the PigStorage store function as default unless specifi ed 
otherwise with the USING option.

You may fi nd loading and storing data not terribly exciting. Let’s execute a few data 
processing statements and see how we can explore Pig Latin through Grunt.

grunt> log  = LOAD 'tutorial/data/excite-small.log' 
            ➥ AS (user:chararray, time:long, query:chararray);
grunt> grpd = GROUP log BY user;
grunt> cntd = FOREACH grpd GENERATE group, COUNT(log);
grunt> STORE cntd INTO 'output';

The preceding statements count the number of queries each user has searched for. 
The content of the output fi les (you’ll have to look at the fi le from outside Grunt) 
look like this: 
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002BB5A52580A8ED        18
005BD9CD3AC6BB38        18
00A08A54CD03EB95        3
011ACA65C2BF70B2        5
01500FAFE317B7C0        15
0158F8ACC570947D        3
018FBF6BFB213E68        1

Conceptually we’ve performed an aggregating operation  similar to the SQL query :

SELECT user, COUNT(*) FROM excite-small.log GROUP BY user;

Two main differences between the Pig Latin and SQL versions are worth pointing out. 
As we’ve mentioned earlier, Pig Latin is a data processing language. You’re specifying 
a series of data processing steps instead of a complex SQL query with clauses. The 
other difference is more subtle—relations in SQL always have fi xed schemas . In SQL, 
we defi ne a relation’s schema before it’s populated with data. Pig takes a much looser 
approach to schema. In fact, you don’t need to use schemas if you don’t want to, 
which may be the case when handling semistructured or unstructured data. Here we 
do specify a schema  for the relation log, but it’s only in the load statement and it’s not 
enforced until we’re loading in the data. Any fi eld that doesn’t obey the schema in the 
load operation is casted to a null. In this way the relation log is guaranteed to obey our 
stated schema for subsequent operations.

As much as possible, Pig tries to fi gure out the schema for a relation based on 
the operation used to create it. You can expose Pig’s schema for any relation with 
the DESCRIBE  command. This can be useful in understanding what a Pig statement is 
doing. For example, we’ll look at the schemas for grpd and cntd. Before doing this, 
let’s fi rst see how the DESCRIBE command describes log.

grunt> DESCRIBE log;
log: {user: chararray,time: long,query: chararray}

As expected, the load command gives log the exact schema we’ve specifi ed. The rela-
tion log consists of three fi elds named user, time, and query. The fi elds user and 
query are both strings (chararray in Pig) whereas time is a long integer.

A GROUP BY operation on the relation log generates the relation grpd. Based on 
the operation and the schema for log, Pig infers a schema for grpd:

grunt> DESCRIBE grpd;
grpd: {group: chararray,log: {user: chararray,time: long,query: chararray}}

group and log are two fi elds in grpd. The fi eld log is a bag with subfi elds user, time, 
and query. As we haven’t covered Pig’s type system and the GROUP BY  operation, we 
don’t expect you to understand this schema yet. The point is that relations in Pig can 
have fairly complex schemas, and DESCRIBE  is your friend in understanding the rela-
tions you’re working with: 

grunt> DESCRIBE cntd;
cntd: {group: chararray,long}

Finally, the FOREACH  command operates on the relation grpd to give us cntd. Having 
looked at the output of cntd, we know it has two fi elds—the user ID and a count of the 
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number of queries. Pig’s schema for cntd, as given by DESCRIBE, also has two fi elds. The 
fi rst one’s name—group—is taken from grpd’s schema. The second fi eld has no name, but 
it has a type of long. This fi eld is generated by the COUNT function , and the function doesn’t 
automatically provide a name, although it does tell Pig that the type has to be a long.

Whereas DESCRIBE can tell you the schema of a relation, ILLUSTRATE  does a sample 
run to show a step-by-step process on how Pig would compute the relation. Pig tries to 
simulate the execution of the statements to compute a relation, but it uses only a small 
sample of data to make the execution fast. The best way to understand ILLUSTRATE is 
by applying it to a relation. In this case we use cntd. (The output is reformatted to fi t 
the width of a printed page.)

grunt> ILLUSTRATE cntd;
----------------------------------------------------------------------
| log     | user: bytearray  | time: bytearray | query: bytearray    |
----------------------------------------------------------------------
|         | 0567639EB8F3751C | 970916161410    | "conan o'brien"     |
|         | 0567639EB8F3751C | 970916161413    | "conan o'brien"     |
|         | 972F13CE9A8E2FA3 | 970916063540    | fi nger AND download  |
----------------------------------------------------------------------
-------------------------------------------------------------------
| log     | user: chararray  | time: long   | query: chararray    |
-------------------------------------------------------------------
|         | 0567639EB8F3751C | 970916161410 | "conan o'brien"     |
|         | 0567639EB8F3751C | 970916161413 | "conan o'brien"     |
|         | 972F13CE9A8E2FA3 | 970916063540 | fi nger AND download  |
-------------------------------------------------------------------
---------------------------------------------------------------------------
| grpd     | group: chararray | log: bag({user: chararray,time: long,     |
|          |                  |           query: chararray})              |
---------------------------------------------------------------------------
|          | 0567639EB8F3751C | {(0567639EB8F3751C, 970916161410,         |
|          |                  |   "conan o'brien"),                       |
|          |                  |  (0567639EB8F3751C,970916161413,          |
|          |                  |   "conan o'brien")}                       |
|          | 972F13CE9A8E2FA3 | {(972F13CE9A8E2FA3, 970916063540,         |
|          |                  |   fi nger AND download)}                    |
---------------------------------------------------------------------------
---------------------------------------
| cntd     | group: chararray | long  |
---------------------------------------
|          | 0567639EB8F3751C | 2     |
|          | 972F13CE9A8E2FA3 | 1     |
---------------------------------------

The ILLUSTRATE command shows there to be four transformations to arrive at cntd. 
The header row of each table describes the schema of the output relation after trans-
formation, and the rest of the table shows example data. The log relation is shown as 
two transformations. The data hasn’t changed from one to the next, but the schema 
has changed from a generic bytearray  (Pig’s type for binary objects) to the specifi ed 
schema. The GROUP operation on log is executed on the three sample log tuples to 
arrive at the data for grpd. Based on this we can infer the GROUP operation to have 
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taken the user fi eld and made it the group fi eld. In addition, it groups all tuples in 
log with the same user value into a bag in grpd. Seeing sample data in a simulated 
run by ILLUSTRATE can greatly aid the understanding of different operations. Finally, 
we see the FOREACH operation applied to grpd to arrive at cntd. Having seen the data 
in grpd in the previous table, one can easily infer that the COUNT() function provided 
the size of each bag.

Although DESCRIBE and ILLUSTRATE are your workhorses in understanding Pig 
Latin statements, Pig also has an EXPLAIN command to show the logical and physical 
execution plan in detail. We summarize the diagnostic operators in table 10.3.

Table 10.3 Diagnostic operators in Pig Latin 

DESCRIBE DESCRIBE alias;

Display the schema of a relation.

EXPLAIN EXPLAIN [-out path] [-brief] [-dot] [-param ...] 
[-param_fi le ...] alias;

Display the execution plan used to compute a relation. When used with a script 
name, for example, EXPLAIN myscript.pig, it will show the execution plan 
of the script.

ILLUSTRATE ILLUSTRATE alias;

Display step-by-step how data is transformed, starting with a load command, to 
arrive at the resulting relation. To keep the display and processing manageable, 
only a (not completely random) sample of the input data is used to simulate the 
execution.

In the unfortunate case where none of Pig’s initial sample will survive the script to 
generate meaningful data, Pig will “fake” some similar initial data that will survive 
to generate data for alias. For example, consider these operations:

A = LOAD 'student.data' as (name, age);
B = FILTER A by age > 18;
ILLUSTRATE B;

If every tuple Pig samples for A happens to have age less than or equal to 18, 
B is empty and not much is “illustrated.” Instead Pig will construct for A some 
tuples with age greater than 18. This way B won’t be an empty relation and users 
can see how the script works.

In order for ILLUSTRATE to work, the load command in the fi rst step must 
include a schema. The subsequent transformations must not include the LIMIT 
or SPLIT operators, or the nested FOREACH operator, or the use of the map 
data type (to be explained in section 10.5.1).

10.5 Speaking Pig Latin 
You now know how to use Grunt to run Pig Latin statements and investigate their 
execution and results. We can come back and give a more formal treatment of the 
language. You should feel free to use Grunt to explore these language concepts as we 
present them.
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10.5.1 Data types and schemas

Let’s fi rst look at Pig data types from a bottom-up view. Pig has six simple atomic types 
and three complex types, shown in tables 10.4 and 10.5 respectively. The atomic 
types include numeric scalars as well as string and binary objects. Type casting is sup-
ported and done in the usual manner. Fields default to bytearray unless specifi ed 
otherwise.

Table 10.4 Atomic data types in Pig Latin 

int Signed 32-bit integer

long Signed 64-bit integer

fl oat 32-bit fl oating point

double 64-bit fl oating point

chararray Character array (string) in Unicode UTF-8

bytearray Byte array (binary object)

The three complex types are tuple, bag, and map.
A fi eld in a tuple or a value in a map can be null or any atomic or complex type. 

This enables nesting  and complex data structures. Whereas data structures can be 
arbitrarily complex, some are defi nitely more useful and occur more often than others, 
and nesting usually doesn’t go deeper than two levels. In the Excite log example earlier, 
the GROUP BY operator generated a relation grpd where each tuple has a fi eld that is 
a bag. The schema for the relation seems more natural once you think of grpd as the 
query history of each user. Each tuple represents one user and has a fi eld that is a bag 
of the user’s queries.

Table 10.5 Complex data types in Pig Latin 

Tuple (12.5,hello world,-2)

A tuple is an ordered set of fi elds. It’s most often used as a row in a relation. It’s 
represented by fi elds separated by commas, all enclosed by parentheses.

Bag {(12.5,hello world,-2),(2.87,bye world,10)}

A bag is an unordered collection of tuples. A relation is a special kind of bag, 
sometimes called an outer bag. An inner bag is a bag that is a fi eld within some 
complex type.

A bag is represented by tuples separated by commas, all enclosed by curly 
brackets.

Tuples in a bag aren’t required to have the same schema or even have the 
same number of fi elds. It’s a good idea to do this though, unless you’re handling 
semistructured or unstructured data.

Map [key#value]

A map is a set of key/value pairs. Keys must be unique and be a string 
(chararray). The value can be any type.



 Speaking Pig Latin 223

We can also look at Pig’s data model from the top down. At the top, Pig Latin state-
ments work with relations, which is a bag of tuples. If you force all the tuples in a bag 
to have a fi xed number of fi elds and each fi eld has a fi xed atomic type, then it behaves 
like a relational data model —the relation is a table, tuples are rows (records), and 
fi elds are columns. But, Pig’s data model has more power and fl exibility by allowing 
nested data types  . Fields can themselves be tuples, bags, or maps. Maps are helpful in 
processing semistructured data   such as JSON, XML, and sparse relational data. In ad-
dition, it isn’t necessary that tuples in a bag have the same number of fi elds. This allows 
tuples to represent unstructured data.

Besides declaring types for fi elds, schemas can also assign names to fi elds to make 
them easier to reference. Users can defi ne schemas for relations using the AS keyword 
with the LOAD, STREAM, and FOREACH operators. For example, in the LOAD statement 
for getting the Excite query log, we defi ned the data types for the fi elds in log, as well 
as named the fi elds user, time, and query.

grunt> log  = LOAD 'tutorial/data/excite-small.log' 

            ➥ AS (user:chararray, time:long, query:chararray);

In defi ning a schema, if you leave out the type, Pig will default to bytearray as the most 
generic type. You can also leave out the name, in which case a fi eld would be unnamed 
and you can only reference it by position. 

10.5.2 Expressions and functions 

You can apply expressions and functions to data fi elds to compute various values. The 
simplest expression is a constant value . Next is to reference the value of a fi eld . You can 
reference the named fi elds’ value directly by the name. You can reference an unnamed 
fi eld by $n, where n is its position inside the tuple. (Position is numbered starting at 0.) 
For example, this LOAD command provides named fi elds to log through the schema.

log  = LOAD 'tutorial/data/excite-small.log' 

       ➥ AS (user:chararray, time:long, query:chararray);

The three named fi elds are user, time, and query. For example, we can refer to the 
time fi eld as either time or $1, because the time fi eld is the second fi eld in log (posi-
tion number 1). Let’s say we want to extract the time fi eld into its own relation; we can 
use this statement:

projection = FOREACH log GENERATE time;

We can also achieve the same with

projection = FOREACH log GENERATE $1;

Most of the time you should give names to fi elds. One use of referring to fi elds by posi-
tion is when you’re working with unstructured data.

When using complex types, you use the dot notation  to reference fi elds nested 
inside tuples or bags. For example, recall earlier that we’d grouped the Excite log by 
user ID and arrived at relation grpd with a nested schema  .
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---------------------------------------------------------------------------
| grpd     | group: chararray | log: bag({user: chararray,time: long,     |
|          |                  |           query: chararray})              |
---------------------------------------------------------------------------
|          | 0567639EB8F3751C | {(0567639EB8F3751C, 970916161410,         |
|          |                  |   "conan o'brien"),                       |
|          |                  |  (0567639EB8F3751C,970916161413,          |
|          |                  |   "conan o'brien")}                       |
|          | 972F13CE9A8E2FA3 | {(972F13CE9A8E2FA3, 970916063540,         |
|          |                  |   fi nger AND download)}                    |
---------------------------------------------------------------------------

The second fi eld in grpd is named log, of type bag. Each bag has tuples with three 
named fi elds: user, time, and query. In this relation, log.query would refer to the two 
copies of “conan” “o’brien” when applied to the fi rst tuple. You can get the same fi eld 
with log.$2.

You reference fi elds inside maps through the pound operator  instead of the 
dot operator . For a map named m, the value associated with key k is referenced 
through m#k.

Being able to refer to values is only a fi rst step. Pig supports the standard arithmetic, 
comparison, conditional, type casting , and Boolean expressions  that are common in 
most popular programming languages. See table 10.6.

Table 10.6 Expressions in Pig Latin 

Constant 12, 19.2, 
'hello world'

Constant values such as 19 or “hello world.” Numeric values 
without decimal point are treated as int unless l or L is 
appended to the number to make it a long. Numeric values 
with a decimal point are treated as double unless f or F is 
appended to the number to make it a fl oat.

Basic 
arithmetic 

+,-,*,/ Plus, minus, multiply, and divide.

Sign +x, -x Negation (-) changes the sign of a number.

Cast (t)x Convert the value of x into type t.

Modulo x % y The remainder of x divided by y.

Conditional (x ? y : z) Returns y if x is true, z otherwise. This expression must be 
enclosed in parentheses.

Comparison ==,!=,<,>,
<=,>=

Equals to, not equals to, greater than, less than, etc.

Pattern 
matching 

x matches 
regex

Regular expression matching of string x. Uses Java’s regular 
expression format (under the java.util.regex.
Pattern class) to specify regex.

Null x is null,
x is not null

Check if x is null (or not).

Boolean x and y,
x or y
not x

Boolean and, or, not.
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Furthermore, Pig also supports functions. Table 10.7 shows Pig’s built-in functions, 
most of which are self-explanatory. We’ll discuss user-defi ned functions (UDF) in 
section 10.6.

Table 10.7 Built-in functions in Pig Latin 

AVG Calculate the average of numeric values in a single-column bag.

CONCAT Concatenate two strings (chararray) or two bytearrays.

COUNT Calculate the number of tuples in a bag. See SIZE for other data types.

DIFF Compare two fi elds in a tuple. If the two fi elds are bags, it will return tuples that are 
in one bag but not the other. If the two fi elds are values, it will emit tuples where 
the values don’t match.

MAX Calculate the maximum value in a single-column bag. The column must be a 
numeric type or a chararray.

MIN Calculate the minimum value in a single-column bag. The column must be a 
numeric type or a chararray.

SIZE Calculate the number of elements. For a bag it counts the number of tuples. For a 
tuple it counts the number of elements. For a chararray it counts the number of 
characters. For a bytearray it counts the number of bytes. For numeric scalars it 
always returns 1.

SUM Calculate the sum of numeric values in a single-column bag.

TOKENIZE Split a string (chararray) into a bag of words (each word is a tuple in the bag). 
Word separators are space, double quote ("), comma, parentheses, and asterisk (*).

IsEmpty Check if a bag or map is empty.

You can’t use expressions and functions alone. You must use them within relational 
operators to transform data. 

10.5.3 Relational  operators

The most salient characteristic about Pig Latin as a language is its relational opera-
tors. These operators defi ne Pig Latin as a data processing language. We’ll quickly go 
over the more straightforward operators fi rst, to acclimate ourselves to their style and 
syntax. Afterward we’ll go into more details on the more complex operators such as 
COGROUP and FOREACH.

UNION combines multiple relations together whereas SPLIT  partitions a relation 
into multiple ones. An example will make it clear:

grunt> a = load 'A' using PigStorage(',') as (a1:int, a2:int, a3:int);
grunt> b = load 'B' using PigStorage(',') as (b1:int, b2:int, b3:int);
grunt> DUMP a;
(0,1,2)
(1,3,4)
grunt> DUMP b;
(0,5,2)
(1,7,8)
grunt> c = UNION a, b;
grunt> DUMP c;
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(0,1,2)
(0,5,2)
(1,3,4)
(1,7,8)
grunt> SPLIT c INTO d IF $0 == 0, e IF $0 == 1; 
grunt> DUMP d;
(0,1,2)
(0,5,2)
grunt> DUMP e;
(1,3,4)
(1,7,8)

The UNION operator allows duplicates. You can use the DISTINCT operator to remove 
duplicates from a relation. Our SPLIT operation on c sends a tuple to d if its fi rst fi eld 
($0) is 0, and to e if it’s 1. It’s possible to write conditions such that some rows will go to 
both d and e or to neither. You can simulate SPLIT by multiple FILTER operators. The 
FILTER operator alone trims a relation down to only tuples that pass a certain test:

grunt> f = FILTER c BY $1 > 3;
grunt> DUMP f;
(0,5,2)
(1,7,8)

We’ve seen LIMIT being used to take a specifi ed number of tuples from a relation. 
SAMPLE is an operator that randomly samples tuples in a relation according to a speci-
fi ed percentage.

The operations ‘till now are relatively simple in the sense that they operate on each 
tuple as an atomic unit. More complex data processing, on the other hand, will require 
working on groups of tuples together. We’ll next look at operators for grouping. Unlike 
previous operators, these grouping operators  will create new schemas in their output 
that rely heavily on bags  and nested data types. The generated schema may take a little 
time to get used to at fi rst. Keep in mind that these grouping operators are almost 
always for generating intermediate data. Their complexity is only temporary on your 
way to computing the fi nal results.

The simpler of these operators is GROUP. Continuing with the same set of relations 
we used earlier,

grunt> g = GROUP c BY $2;
grunt> DUMP g;
(2,{(0,1,2),(0,5,2)})
(4,{(1,3,4)})
(8,{(1,7,8)})

grunt> DESCRIBE c;
c: {a1: int,a2: int,a3: int}
grunt> DESCRIBE g;
g: {group: int,c: {a1: int,a2: int,a3: int}}

We’ve created a new relation, g, from grouping tuples in c having the same value on 
the third column ($2, also named a3). The output of GROUP always has two fi elds. The 
fi rst fi eld is group key, which is a3 in this case. The second fi eld is a bag containing 
all the tuples with the same group key. Looking at g’s  dump, we see that it has three 
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tuples, corresponding to the three unique values in c’s third column. The bag in the 
fi rst tuple represents all tuples in c with the third column equal to 2. The bag in the 
second tuple represents all tuples in c with the third column equal to 4. And so forth. 
After you understand how g’s data came about, you’ll feel more comfortable looking 
at its schema. The fi rst fi eld of GROUP’s output relation is always named group, for the 
group key. In this case it may seem more natural to call the fi rst fi eld a3, but currently 
Pig doesn’t allow you to assign a name to replace group. You’ll have to adapt yourself 
to refer to it as group. The second fi eld of GROUP’s output relation is always named af-
ter the relation it’s operating on, which is c in this case, and as we said earlier it’s always 
a bag. As we use this bag to hold tuples from c, the schema for this bag is exactly the 
schema for c —three fi elds of integers named a1, a2, and a3.

Before moving on, we want to note that one can GROUP by any function or expression. 
For example, if time is a timestamp and there exists a function DayOfWeek , one can 
conceivably do this grouping that would create a relation with seven tuples.

GROUP log BY DayOfWeek(time);

Finally, one can put all tuples in a relation into one big bag. This is useful for  aggregate 
analysis on relations, as functions work on bags but not relations. For example:

grunt> h = GROUP c ALL;
grunt> DUMP h;
(all,{(0,1,2),(0,5,2),(1,3,4),(1,7,8)})
grunt> i = FOREACH h GENERATE COUNT($1);
grunt> dump i;
(4L)

This is one way to count the number of tuples in c. The fi rst fi eld in GROUP ALL’s out-
put is always the string all.

Now that you’re comfortable with GROUP, we can look at COGROUP , which groups 
together tuples from multiple relations . It functions much like a join. For example, let’s 
cogroup a and b on the third column.

grunt> j = COGROUP a BY $2, b BY $2;
grunt> DUMP j;
(2,{(0,1,2)},{(0,5,2)})
(4,{(1,3,4)},{})
(8,{},{(1,7,8)})
grunt> DESCRIBE j;
j: {group: int,a: {a1: int,a2: int,a3: int},b: {b1: int,b2: int,b3: int}}

Whereas GROUP always generates two fi elds in its output, COGROUP always generates 
three (more if cogrouping more than two relations). The fi rst fi eld is the group key, 
whereas the second and third fi elds are bags. These bags hold tuples from the co-
grouping relations that match the grouping key. If a grouping key matches only tuples 
from one relation but not the other, then the fi eld corresponding to the  nonmatching 
relation will have an empty bag. To ignore group keys that don’t exist for a relation, 
one can add the INNER keyword  to the operation, like
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grunt> j = COGROUP a BY $2, b BY $2 INNER;
grunt> dump j;
(2,{(0,1,2)},{(0,5,2)})
(8,{},{(1,7,8)})
grunt> j = COGROUP a BY $2 INNER, b BY $2 INNER;
grunt> dump j;
(2,{(0,1,2)},{(0,5,2)})

Conceptually, you can think of the default behavior of COGROUP as an outer join, and 
the INNER keyword can modify it to be left outer join, right outer join, or inner join. 
Another way to do inner join in Pig is to use the JOIN operator. The main difference 
between JOIN and an inner COGROUP is that JOIN creates a fl at set of output records, as 
indicated by looking at the schema: 

grunt> j = JOIN a BY $2, b BY $2;
grunt> dump j;
(0,1,2,0,5,2)
grunt> DESCRIBE j;
j: {a::a1: int,a::a2: int,a::a3: int,b::b1: int,b::b2: int,b::b3: int}

The last relational operator we look at is FOREACH. It goes through all tuples in a relation 
and generates new tuples in the output. Behind this seeming simplicity lies tremendous 
power though, particularly when it’s applied to complex data types outputted by the 
grouping operators. There’s even a nested form of FOREACH  designed for handling com-
plex types. First let’s familiarize ourselves with different FOREACH operations on simple 
relations.

grunt> k = FOREACH c GENERATE a2, a2 * a3;
grunt> DUMP k;
(1,2)
(5,10)
(3,12)
(7,56)

FOREACH is always followed by an alias (name given to a relation) followed by the key-
word GENERATE. The expressions after GENERATE control the output. At its simplest, 
we use FOREACH to project specifi c columns of a relation into the output. We can also 
apply arbitrary expressions, such as multiplication in the preceding example.

For relations with nested bags (e.g., ones generated by the grouping operations), 
FOREACH has special projection syntax, and a richer set of functions. For example, 
applying nested projection to have each bag retain only the fi rst fi eld:

grunt> k = FOREACH g GENERATE group, c.a1;
grunt> DUMP k;
(2,{(0),(0)})
(4,{(1)})
(8,{(1)})

To get two fi elds in each bag:

grunt> k = FOREACH g GENERATE group, c.(a1,a2);
grunt> DUMP k;
(2,{(0,1),(0,5)})
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(4,{(1,3)})
(8,{(1,7)})

Most built-in Pig functions are geared toward working on bags.

grunt> k = FOREACH g GENERATE group, COUNT(c);
grunt> DUMP k;
(2,2L)
(4,1L)
(8,1L)

Recall that g is based on grouping c on the third column. This FOREACH statement 
therefore generates a frequency count of the values in c’s third column. As we said 
earlier, grouping operators are mainly for generating intermediate data that will be 
simplifi ed by other operators such as FOREACH. The COUNT function is one of the ag-
gregate functions. As we’ll see, you can create many other functions via UDFs.

The FLATTEN function  is designed to fl atten nested data types. Syntactically it looks 
like a function, such as COUNT and AVG, but it’s a special operator as it can change the 
structure of the output created by FOREACH...GENERATE. Its fl attening  behavior is 
also different depending on how it’s applied and what it’s applied to. For example, 
consider a relation with tuples of the form (a, (b, c)). The statement FOREACH...
GENERATE $0, FLATTEN($1) will create one output tuple of the form (a, b, c) for 
each input tuple.

When applied to bags, FLATTEN modifi es the FOREACH...GENERATE statement to 
generate new tuples. It removes one layer of nesting and behaves almost the opposite 
of grouping operations. If a bag contains N tuples, fl attening it will remove the bag and 
create N tuples in its place.

grunt> k = FOREACH g GENERATE group, FLATTEN(c);
grunt> DUMP k;
(2,0,1,2)
(2,0,5,2)
(4,1,3,4)
(8,1,7,8)
grunt> DESCRIBE k;
k: {group: int,c::a1: int,c::a2: int,c::a3: int}

Another way to understand FLATTEN is to see that it produces a cross-product. This 
view is helpful when we use FLATTEN multiple times within a single FOREACH statement. 
For example, let’s say we’ve somehow created a relation l.

grunt> dump l;
(1,{(1,2)},{(3)})
(4,{(4,2),(4,3)},{(6),(9)})
(8,{(8,3),(8,4)},{(9)})
grunt> describe l;
d: {group: int,a: {a1: int,a2: int},b: {b1: int}}

The following statement that fl attens two bags outputs all combinations of those two 
bags for each tuple:

grunt> m = FOREACH l GENERATE group, FLATTEN(a), FLATTEN(b);
grunt> dump m;
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(1,1,2,3)
(4,4,2,6)
(4,4,2,9)
(4,4,3,6)
(4,4,3,9)
(8,8,3,9)
(8,8,4,9)

We see that the tuple with group key 4 in relation l has a bag of size 2 in fi eld a and 
also a bag size 2 in fi eld b. The corresponding output in m therefore has four rows rep-
resenting the full cross-product.

Finally, there’s a nested form of FOREACH to allow for more complex processing of 
bags. Let’s assume you have a relation (say l) and one of its fi elds (say a) is a bag, a 
FOREACH with nested block has this form:

alias = FOREACH l {
            tmp1 = operation on a;
            [more operations...]
            GENERATE expr [, expr...]
        }

The GENERATE statement must always be present at the end of the nested block. It will 
create some output for each tuple in l. The operations in the nested block can create 
new relations based on the bag a. For example, we can trim down the a bag in each 
element of l’s tuple.

grunt> m = FOREACH l {
        tmp1 = FILTER a BY a1 >= a2;
        GENERATE group, tmp1, b;
    }
grunt> DUMP m;
(1,{},{(3)})
(4,{(4,2),(4,3)},{(6),(9)})
(8,{(8,3),(8,4)},{(9)})

You can have multiple statements in the nested block. Each one can even be operating 
on different bags.

grunt> m = FOREACH l {
        tmp1 = FILTER a BY a1 >= a2;
        tmp2 = FILTER b by $0 < 7;
        GENERATE group, tmp1, tmp2;
    };
grunt> DUMP m;
(1,{},{(3)})
(4,{(4,2),(4,3)},{(6)})
(8,{(8,3),(8,4)},{})

As of this writing, only fi ve operators are allowed in the nested block: DISTINCT, FILTER, 
LIMIT, ORDER, and SAMPLE. It’s expected that more will be supported in the future.

NOTE Sometimes the output of FOREACH  can have a completely different 
schema from its input. In those cases, users can specify the output schema using 
the AS option after each fi eld. This syntax differs from the LOAD command 
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where the schema is specifi ed as a list after the AS option, but in both cases we 
use AS to specify a schema.

Table 10.8 summarizes the relational operators in Pig Latin. On many operators you’ll 
see an option for PARALLEL n . The number n is the degree of parallelism you want for 
executing that operator. In practice n is the number of reduce tasks in Hadoop that Pig 
will use. If you don’t set n it’ll default to the default setting of your Hadoop cluster. Pig 
documentation recommends setting the value of n according to the following guideline:

n = (#nodes - 1) * 0.45 * RAM

where #nodes is the number of nodes and RAM is the amount of memory in GB on 
each node.

Table 10.8 Relational operators in Pig Latin 

SPLIT SPLIT alias INTO alias IF expression, alias IF 
expression [, alias IF expression ...];

Splits a relation into two or more relations, based on the given Boolean 
expressions. Note that a tuple can be assigned to more than one relation, or to 
none at all.

UNION alias = UNION alias, alias, [, alias ...]

Creates the union of two or more relations. Note that

 ■ As with any relation, there’s no guarantee to the order of tuples

 Doesn’t require the relations to have the same schema or even the same ■

number of fi elds

 Doesn’t remove duplicate tuples■

FILTER alias = FILTER alias BY expression;

Selects tuples based on Boolean expression. Used to select tuples that you want 
or remove tuples that you don’t want.

DISTINCT alias = DISTINCT alias [PARALLEL n];

Remove duplicate tuples.

SAMPLE alias = SAMPLE alias factor;

Randomly sample a relation. The sampling factor is given in factor. For 
example, a 1% sample of data in relation large_data is

small_data = SAMPLE large_data 0.01;

The operation is probabilistic in such a way that the size of small_data will not 
be exactly 1% of large_data, and there’s no guarantee the operation will return 
the same number of tuples each time.

FOREACH alias = FOREACH alias GENERATE expression [,expression 
...] [AS schema];

Loop through each tuple and generate new tuple(s). Usually applied to transform 
columns of data, such as adding or deleting fi elds.

One can optionally specify a schema for the output relation; for example, naming 
new fi elds.
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Table 10.8 Relational operators in Pig Latin  (continued)

FOREACH 
(nested)

alias = FOREACH nested_alias {
   alias = nested_op;
   [alias = nested_op; ...]
   GENERATE expression [, expression ...];
};

Loop through each tuple in nested_alias and generate new tuple(s). At least 
one of the fi elds of nested_alias should be a bag. DISTINCT, FILTER, 
LIMIT, ORDER, and SAMPLE are allowed operations in nested_op to operate 
on the inner bag(s).

JOIN alias = JOIN alias BY fi eld_alias, alias BY fi eld_alias [, 
alias BY fi eld_alias …] [USING "replicated"] [PARALLEL n];

Compute inner join of two or more relations based on common fi eld values.  When 
using the replicated option, Pig stores all relations after the fi rst one in memory 
for faster processing. You have to ensure that all those smaller relations together 
are indeed small enough to fi t in memory.

Under JOIN, when the input relations are fl at, the output relation is also fl at. In 
addition, the number of fi elds in the output relation is the sum of the number of 
fi elds in the input relations, and the output relation’s schema is a concatenation of 
the input relations’ schemas.

GROUP alias = GROUP alias { [ALL] | [BY {[fi eld_alias [, fi eld_
alias]] | * | [expression]] } [PARALLEL n];

Within a single relation, group together tuples with the same group key. Usually 
the group key is one or more fi elds, but it can also be the entire tuple (*) or an 
expression. One can also use GROUP alias ALL to group all tuples into 
one group.

The output relation has two fi elds with autogenerated names. The fi rst fi eld is 
always named “group” and it has the same type as the group key. The second 
fi eld takes the name of the input relation and is a bag type. The schema for the 
bag is the same as the schema for the input relation.

COGROUP alias = COGROUP alias BY fi eld_alias [INNER | OUTER] , 
alias  BY fi eld_alias [INNER | OUTER] [PARALLEL n];

Group tuples from two or more relations, based on common group values.

The output relation will have a tuple for each unique group value. Each tuple will 
have the group value as its fi rst fi eld. The second fi eld is a bag containing tuples 
from the fi rst input relation with matching group value. Ditto for the third fi eld of 
the output tuple.

In the default OUTER join semantic, all group values appearing in any input 
relation are represented in the output relation. If an input relation doesn’t 
have any tuple with a particular group value, it will have an empty bag in the 
corresponding output tuple. If the INNER option is set for a relation, then only 
group values that exist in that input relation are allowed in the output relation. 
There can’t be an empty bag for that relation in the output.

You can group on multiple fi elds. For this, you have to specify the fi elds in a 
comma-separated list enclosed by parentheses for fi eld_alias.

COGROUP (with INNER) and JOIN are similar except that COGROUP generates 
nested output tuples.
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Table 10.8 Relational operators in Pig Latin  (continued)

CROSS alias = CROSS alias, alias [, alias …] [PARALLEL n];

Compute the (fl at) cross-product of two or more relations. This is an expensive 
operation and you should avoid it as far as possible.

ORDER alias = ORDER alias BY { * [ASC|DESC] | fi eld_alias 
[ASC|DESC] [, fi eld_alias [ASC|DESC] …] } [PARALLEL n];

Sort a relation based on one or more fi elds. If you retrieve the relation right after 
the ORDER operation (by DUMP or STORE), it’s guaranteed to be in the desired 
sorted order. Further processing (FILTER, DISTINCT, etc.) may destroy the 
ordering.

STREAM alias = STREAM alias [, alias …] THROUGH {'command' | 
cmd_alias } [AS schema] ;

Process a relation with an external script.

At this point you’ve learned various aspects of the Pig Latin language—data types, 
expressions, functions, and relational operators. You can extend the language further 
with user-defi ned functions. But before discussing that we’ll end this section with a 
note on Pig Latin compilation and optimization. 

10.5.4 Execution  optimization

As with many modern compilers, the Pig compiler  can reorder the execution sequence 
to optimize performance, as long as the execution plan remains logically equivalent to 
the original program. For example, imagine a program that applies an expensive func-
tion (say, encryption) to a certain fi eld (say, social security number) of every record, 
followed by a fi ltering function to select records based on a different fi eld (say, limit 
only to people within a certain geography). The compiler can reverse the execution 
order of those two operations without affecting the fi nal result, yet performance is 
much improved. Having the fi ltering step fi rst can dramatically reduce the amount of 
data and work the encryption step will have to do.

As Pig matures, more optimization will be added to the compiler. Therefore it’s 
important to try to always use the latest version. But there’s always a limit to a compiler’s 
ability to optimize arbitrary code. You can read Pig’s web documentation for techniques 
to improve performance. A list of tips for enhancing performance under Pig version 
0.3 is at http://hadoop.apache.org/pig/docs/r0.3.0/cookbook.html.  

10.6 Working with  user-defi ned functions 
Fundamental to Pig Latin’s design philosophy is its extensibility through user-defi ned 
functions (UDFs ), and there’s a well-defi ned set of APIs  for writing UDFs. This doesn’t 
mean that you’ll have to write all the functions you need yourself. Part of Pig’s ecosys-
tem4 is PiggyBank,  5 an online repository for users to share their functions. You should 

4  I thought about calling it a Pig pen, but PigPen is actually the name of an Eclipse plug-in for editing Pig 
Latin scripts. See http://wiki.apache.org/pig/PigPen.

5 http://wiki.apache.org/pig/PiggyBank.
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check PiggyBank fi rst for any function you need. Only if you don’t fi nd an appropriate 
function should you consider writing your own. You should also consider contributing 
your UDF back to PiggyBank to benefi t others in the Pig community.

10.6.1 Using UDFs

As of this writing UDFs are always written in Java and packaged in jar fi les. To use a 
particular UDF you’ll need the jar fi le  containing the UDF’s class fi le(s). For example, 
when using functions from PiggyBank you’ll most likely obtain a piggybank.jar  fi le.

To use a UDF, you must fi rst register the jar fi le with Pig using the REGISTER statement . 
Afterward, you invoke the UDF by its fully qualifi ed Java class name. For example, 
there’s an UPPER function in PiggyBank that transforms a string to uppercase:

REGISTER piggybank/java/piggybank.jar;
b = FOREACH a GENERATE

    ➥ org.apache.pig.piggybank.evaluation.string.UPPER($0);

If you need to use a function multiple times, it’ll get annoying to write out the fully 
qualifi ed class name every time. Pig offers the DEFINE statement to assign a name to a 
UDF. You can rewrite the above statements to

REGISTER piggybank/java/piggybank.jar;
DEFINE Upper org.apache.pig.piggybank.evaluation.string.UPPER();
b = FOREACH a GENERATE Upper($0);

Table 10.9 summarizes the UDF-related statements.

Table 10.9 UDF statements in Pig Latin 

DEFINE DEFINE alias { function | 'command' [...] };

Assign an alias to a function or command.

REGISTER REGISTER alias;

Register UDFs with Pig. Currently UDFs are only written in Java, and alias is the 
path of the JAR fi le. All UDFs must be registered before they can be used.

If you’re only using UDFs written by other people, this is all you need to know. But if 
you can’t fi nd the UDF you need, you’ll have to write your own.

10.6.2 Writing UDFs

Pig supports two main categories of UDFs: eval 6 and load/store . We use the load/
store functions only in LOAD and STORE statements to help Pig read and write special 
formats. Most UDFs are eval functions that take one fi eld value and return another 
fi eld value.

6  Some eval functions are quite common and have special considerations. They’re sometimes described in 
their own categories. These include fi lter functions (eval functions that return a Boolean) and aggregate 
functions (eval functions that take a bag and return a scalar value).



 Working with  user-defi ned functions 235

As of this writing, you can only write a UDF using Pig’s Java API. 7 To create an eval 
UDF you make a Java class that extends the abstract EvalFunc<T> class. It has only one 
abstract method which you need to implement:

abstract public T exec(Tuple input) throws IOException;

This method is called on each tuple in a relation, where each tuple is represented by 
a Tuple object. The exec() method processes the tuple and returns a type T corre-
sponding to a valid Pig Latin type. T can be any one of the Java classes in table 10.10, 
some of which are native Java classes and some of which are Pig extensions.

Table 10.10 Pig Latin  types and their equivalent classes in Java.

Pig Latin type Java class

Bytearray DataByteArray

Chararray String

Int Integer

Long Long

Float Float

Double Double

Tuple Tuple

Bag DataBag

Map Map<Object, Object>

The best way to learn about writing UDFs is to dissect one of the existing UDFs in 
PiggyBank. Even when writing your own, it’s often useful to start with a working UDF 
that’s functionally similar to what you want and only modify the processing logic. For 
our purpose, let’s explore the UPPER UDF  we used earlier from PiggyBank. The exec() 
method looks like this:

public class UPPER extends EvalFunc<String>
{
    public String exec(Tuple input) throws IOException {
        if (input == null || input.size() == 0)
            return null;

        try {
            String str = (String)input.get(0);
            return str.toUpperCase();
        } catch(Exception e){
            System.err.println("Failed to process input; error - " +

                               ➥ e.getMessage());
            return null;
        }
    }
}

7 The Javadoc for the API is at http://hadoop.apache.org/pig/javadoc/docs/api/.
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The object input belongs to the Tuple class, which has two methods for retrieving its 
content.

List<Object> getAll();
Object get(int fi eldNum) throws ExecException;

The getAll() method  return all fi elds in the tuple as an ordered list. UPPER instead 
uses the get() method  to request for a specifi c fi eld (at position 0). This method 
would throw an ExecException if the requested fi eld number is greater than the num-
ber of fi elds in the tuple. In UPPER the retrieved fi eld is casted to a Java String, which 
usually works but may cause a cast exception if we were casting  between incompatible 
data types. We’ll see later how to use Pig to ensure that our casting works. In any case, 
the try/catch block would’ve caught and handled any exception. If everything works, 
UPPER’s exec() method will return a String with characters uppercased. In addition, 
most UDFs should implement the default behavior that the output is null when the 
input tuple is null.

In addition to implementing exec(), UPPER also overrides a couple methods from 
EvalFunc, one of which is getArgToFuncMapping:

@Override
public List<FuncSpec> getArgToFuncMapping() throws FrontendException {
    List<FuncSpec> funcList = new ArrayList<FuncSpec>();
    funcList.add(new FuncSpec(this.getClass().getName(),

      ➥ new Schema(new Schema.FieldSchema(null, DataType.CHARARRAY))));

    return funcList;
}

The getArgToFuncMapping() method returns a List of FuncSpec objects  repre-
senting the schema of each fi eld in the input tuple. Pig will handle typecasting for 
you by converting the types of all fi elds in a tuple to conform to this schema before 
passing it to exec(). It will pass fi elds that can’t be converted to the desired type 
as null.

UPPER only cares about the type of the fi rst fi eld, so it adds only one FuncSpec to 
the list, and this FuncSpec states that the fi eld must be of type chararray, represented 
as DataType.CHARARRAY. The instantiation of FuncSpec is quite convoluted, which 
is due to Pig’s ability to handle complex nested types. Fortunately, unless you work 
with unusually complicated types, you’ll probably fi nd a FuncSpec instantiation for the 
type you want already in one of PiggyBank ’s UDFs. Reuse that in your code. You can 
even reuse the entire  getArgToFuncMapping() function if you have the same tuple 
schema as another UDF.

Besides telling Pig the input schema, you can also tell Pig the schema of your 
output. You may not need to do this if the output of your UDF is a simple scalar , as 
Pig will use Java’s Refl ection mechanism to infer the schema automatically. But if 
your UDF returns a tuple or a bag, the Refl ection mechanism  will fail to fi gure out 
the schema completely. In that case you should specify it so that Pig can propagate 
the schema correctly.
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In UPPER’s case it only outputs a simple String, so it’s not necessary to specify the 
output schema. But UPPER does do this by overriding outputSchema() to tell Pig that 
it’s returning a string (DataType.CHARARRAY).

@Override
public Schema outputSchema(Schema input) {
    return new Schema(
        new Schema.FieldSchema(
            getSchemaName(this.getClass().getName().toLowerCase(), input),
            DataType.CHARARRAY
        )
    );
}

Again, the Schema object construction looks convoluted because of Pig’s ability to have 
complex nested types. One special case is if the schema of your UDF’s output is the 
same as the input. We can return a copy of the input schema:

public Schema outputSchema(Schema input) {
    return new Schema(input);
}

As with the construction of FuncSpec, you’ll probably fi nd some preexisting UDFs in 
PiggyBank with your desired output schema.

A few types of UDFs call for special considerations. Filter functions  are eval functions 
that return a Boolean, and we use them in Pig Latin’s FILTER  and SPLIT  statements. 
They should extend FilterFunc instead of EvalFunc. Aggregate functions are eval 
functions that take in a bag and return a scalar. They’re usually used for computing 
aggregate metrics, such as COUNT, and we can sometimes optimize them in Hadoop 
by using a combiner. We haven’t covered the load/save UDFs for reading and writing 
data sets. These more advanced topics are covered in Pig’s documentation on UDFs: 
http://hadoop.apache.org/pig/docs/r0.3.0/udf.html. 

10.7 Working with  scripts
Writing Pig Latin scripts is largely about packaging together the Pig Latin statements 
that you’ve successfully tested in Grunt. Pig scripting does have a few unique topics 
though. They’re comments, parameter substitution, and multiquery execution.

10.7.1 Comments

As you’ll reuse your Pig Latin script, it’s obviously a good idea to leave comments  for 
other people (or yourself) to understand it in the future. Pig Latin  supports two forms 
of comments, single-line and multiline. You start the single-line comment  by a double 
hyphen and the comment ends at the end of the line. You enclose the multiline com-
ment  by the /* and */ markers, similar to multiline comments in Java. For example, a 
Pig Latin script with comments can look like

/*
 * Myscript.pig
 * Another line of comment
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 */
log = LOAD 'excite-small.log' AS (user, time, query);
lmt = LIMIT log 4; -- Only show 4 tuples
DUMP lmt;
-- End of program

10.7.2 Parameter substitution

When you write a reusable script, it’s generally parameterized such that you can vary 
its operation for each run. For example, the script may take the fi le paths of its input 
and output from the user each time. Pig supports parameter substitution  to allow the 
user to specify such information at runtime. It denotes such parameters by the $ prefi x  
within the script. For example, the following script displays a user-specifi ed number of 
tuples from a user-specifi ed log fi le:

log = LOAD '$input' AS (user, time, query);
lmt = LIMIT log $size;
DUMP lmt;

The parameters in this script are $input and $size. If you run this script using the 
pig command, you specify the parameters using the -param name=value argument.

pig -param input=excite-small.log -param size=4 Myscript.pig

Note that you don’t need the $ prefi x in the arguments. You can enclose a param-
eter value in single or double quotes, if it has multiple words. A useful technique is 
to use Unix commands  to generate the parameter values, particularly for dates. This 
is accomplished through Unix’s command substitution, which executes commands 
enclosed in back ticks (`).

pig -param input=web-'date +%y-%m-%d'.log -param size=4 Myscript.pig

By doing this, the input fi le for Myscript.pig will be based on the date the script is 
run. For example, the input fi le will be web-09-07-29.log if the script is run on July 
29, 2009.

If you have to specify many parameters, it may be more convenient to put them in 
a fi le and tell Pig to execute the script using parameter substitution based on that fi le. 
For example, we can create a fi le Myparams.txt with the following content:

# Comments in a parameter fi le start with hash
input=excite-small.log
size=4

The parameter fi le is passed to the pig command with the -param_fi le fi lename 
argument.

pig -param_fi le Myparams.txt Myscript.pig

You can specify multiple parameter fi les  as well as mix parameter  fi les with direct specifi -
cation of parameters at the command line using -param. If you defi ne a parameter mul-
tiple times, the last defi nition takes precedence. When in doubt about what parameter 
values a script ends up using, you can run the pig command with the -debug option. 
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This tells Pig to run the script and also output a fi le named original_script_name.
substituted that has the original script but with all the parameters fully substituted. Exe-
cuting pig with the -dryrun option outputs the same fi le but doesn’t execute the script.

The exec and run commands allow you to run Pig Latin scripts from within the 
Grunt shell, and they support parameter substitution using the same -param and 
-param_fi le arguments; for example:

grunt> exec -param input=excite-small.log -param size=4 Myscript.pig

However, parameter substitution in exec and run doesn’t support Unix commands, 
and there’s no debug or dryrun option.

10.7.3 Multiquery execution

In the Grunt shell, a DUMP or STORE operation processes all previous statements need-
ed for the result. On the other hand, Pig optimizes and processes an entire Pig script 
as a whole. This difference would have no effect at all if your script has only one DUMP 
or STORE command at the end. If your script has multiple DUMP/STORE, Pig  script’s mul-
tiquery  execution improves effi ciency by avoiding redundant evaluations. For example, 
let’s say you have a script that stores intermediate data:

a = LOAD ...
b = some transformation of a
STORE b ...
c = some further transformation of b
STORE c ...

If you enter the statements in Grunt, where there’s no multiquery execution, it will 
generate a chain of jobs on the STORE b command to compute b. On encountering 
STORE c, Grunt will run another chain of jobs to compute c, but this time it will evalu-
ate both a and b again! You can manually avoid this reevaluation by inserting a b = 
LOAD ... statement right after STORE b, to force the computation of c to use the saved 
value of b. This works on the assumption that the stored value of b has not been modi-
fi ed, because Grunt, by itself, has no way of knowing.

On the other hand, if you run all the statements as a script, multiquery execution 
can optimize the execution by intelligently handling intermediate data. Pig compiles 
all the statements together and can locate the dependency and redundancy. Multiquery 
execution is enabled by default and usually has no effect on the computed results. But 
multiquery execution can fail if there are data dependencies that Pig is not aware of. 
This is quite rare but can happen with, for example, UDFs. Consider this script:

STORE a INTO 'out1';
b = LOAD ...
c = FOREACH b GENERATE MYUDF($0,'out1');
STORE c INTO 'out2';

If the custom function MYUDF is such that it accesses a through the fi le out1, the Pig 
compiler would have no way of knowing that. Not seeing the dependency, the Pig com-
piler may erroneously think it OK to evaluate b and c before evaluating a. To disable 
multiquery execution, run the pig command with -M or -no_multiquery option. 



240 CHAPTER 10 Programming with Pig

10.8 Seeing Pig in action—example of computing similar patents 
Given the extra power that Pig provides, we can take on more challenging data process-
ing applications. One interesting application from the patent data set is fi nding similar 
patents based on citation data. Patents that are often cited together must be similar 
(or at least related) in some way. This application has the essence of the Amazon.com 
style collaborative fi ltering  (“Customers who have bought this have also bought that.”) 
and fi nding similar documents (by looking for documents with a similar set of words). 
For our purpose here, let’s suppose we want to look into patents that are cited together 
more than N times, where N is a fi xed number we specify.8

For applications that involve pair-wise computations  (e.g., computing number 
of cocitations for each pair of patents), it’s often easy to imagine an implementation 
involving a pair of nested loops enumerating all pair combinations and performing the 
computation on each pair. Even though Hadoop makes it easy to scale by adding more 
hardware, we should continue to remember fundamental concepts in computational 
complexity. Quadratic complexity  will still bring linear scalability to its knees. Even a small 
data set of 3 million patents can lead to 9 trillion pairs. We need smarter algorithms.

The main insight to leverage is that the resulting data is sparse  . Most pairs will 
have zero similarity as most pairs of patents are never cited together. Our similarity 
computation will become much more manageable if we redesign it to only work on 
patent pairs that are known to have been cited together. Looking at our data, this 
approach is quite natural. This implementation involves these steps for each patent:

1 Get the list of patents it cites
2 Generate all pair-wise  combinations of the list and record each pair
3 Count how many of each pair we have

If each patent cites a fi xed number of patents, say 10, this implementation would gen-
erate 45 pairs for each patent. (45 is the number of pair combinations possible from 
10 items, which mathematically is derived as 10 x 9 / 2.) With 3 million patents this 
creates 135 million pairs, which is orders of magnitude smaller than the brute force ap-
proach. This advantage would be even more apparent if the patent data set is larger.

Even though we’ve fi gured out the algorithm for this application, implementing it 
in MapReduce can still be tedious. It’ll require chaining multiple jobs together, and 
each job will require its own class. Pig Latin, on the other hand, takes only a dozen 
lines to implement the three-step program (listing 10.1), and further optimization can 
eliminate more lines and increase effi ciency still.

Listing 10.1 Pig Latin script to fi nd patents  that are often cited together

           cite = LOAD 'input/cite75_99.txt' USING PigStorage(',')

                  ➥ AS (citing:int, cited:int);
      cite_grpd = GROUP cite BY citing;

8  Variations of this may involve more advanced scoring functions, such as normalizing for frequent items, 
or computing a similarity ranking rather than a simple cutoff. The simple cutoff criterion we chose here is 
easier to implement and illustrates the essence of computing similarity.
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  cite_grpd_dbl = FOREACH cite_grpd GENERATE group, cite.cited AS cited1,

                  ➥ cite.cited AS cited2;
         cocite = FOREACH cite_grpd_dbl

                  ➥ GENERATE FLATTEN(cited1), FLATTEN(cited2);
    cocite_fl trd = FILTER cocite BY cited1 != cited2;
    cocite_grpd = GROUP cocite_fl trd BY *;
     cocite_cnt = FOREACH cocite_grpd

                  ➥ GENERATE group, COUNT(cocite_fl trd) as cnt;
     cocite_fl at = FOREACH cocite_cnt GENERATE FLATTEN(group), cnt;
cocite_cnt_grpd = GROUP cocite_fl at BY cited1;
     cocite_bag = FOREACH cocite_cnt_grpd

                  ➥ GENERATE group, cocite_fl at.(cited2, cnt);

cocite_fi nal = FOREACH cocite_cnt_grpd {
    similar = FILTER cocite_fl at BY cnt > 5;
    GENERATE group, similar;
}
STORE cocite_fi nal INTO 'output';

Pig Latin, and probably complex data processing in general, can be hard to read. For-
tunately, we can use Grunt’s ILLUSTRATE  command on cocite_bag  to get a simulated 
sample run of the statements and see what each operation is generating. (We’ve refor-
matted the output to fi t the width of the printed page.)

---------------------------------------------------
| cite     | citing: bytearray | cited: bytearray |
---------------------------------------------------
|          | 3858554           | 3601095          |
|          | 3858554           | 3685034          |
|          | 3859004           | 1730866          |
|          | 3859004           | 3022581          |
|          | 3859572           | 3206651          |
---------------------------------------------------
---------------------------------------
| cite     | citing: int | cited: int |
---------------------------------------
|          | 3858554     | 3601095    |
|          | 3858554     | 3685034    |
|          | 3859004     | 1730866    |
|          | 3859004     | 3022581    |
|          | 3859572     | 3206651    |
---------------------------------------
-------------------------------------------------------------------------
| cite_grpd     | group: int | cite: bag({citing: int,cited: int})      |
-------------------------------------------------------------------------
|               | 3858554    | {(3858554, 3601095), (3858554, 3685034)} |
|               | 3859004    | {(3859004, 1730866), (3859004, 3022581)} |
|               | 3859572    | {(3859572, 3206651)}                     |
-------------------------------------------------------------------------
---------------------------------------------------------------------------
| cite_grpd_dbl | group:  | cited1:                | cited2:              |
|               |    int  |     bag({cited: int})  |     bag({cited: int})|
---------------------------------------------------------------------------
|               | 3858554 | {(3601095), (3685034)} | {(3601095),(3685034)}|
|               | 3859004 | {(1730866), (3022581)} | {(1730866),(3022581)}|
|               | 3859572 | {(3206651)}            | {(3206651)}          |
---------------------------------------------------------------------------
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The relation cite_grpd contains a bag for each patent, and in this bag are the cited 
patents. From this relation (in this example run), we can see that patents 3601095 and 
3685034 are cited together in patent 3858554. Grouping cocited patents was done by 
the GROUP  operation in creating cite_grpd . The relation cite_grpd_dbl only re-
moves the redundant “citing” patent and creates a duplicate column. The columns 
cited1 and cited2 have the same values. This duplication will allow the cross-product 
operation to generate all pair-wise combinations .

--------------------------------------------------------
| cocite     | cited1::cited: int | cited2::cited: int |
--------------------------------------------------------
|            | 3601095            | 3601095            |
|            | 3601095            | 3685034            |
|            | 3685034            | 3601095            |
|            | 3685034            | 3685034            |
|            | 1730866            | 1730866            |
|            | 1730866            | 3022581            |
|            | 3022581            | 1730866            |
|            | 3022581            | 3022581            |
|            | 3206651            | 3206651            |
--------------------------------------------------------

The cross-product  from fl attening  each row of cite_grpd_dbl creates cocite.9  This 
is the record of all pairs of patents that have been cited together and is a major check-
point for our algorithm. We know that cocite  is a big relation, even under our scheme 
which is more effi cient than brute force. There are three ways to trim down cocite 
further. We’ll discuss them all but implement only one.

The fi rst potential reduction is to notice that each cited patent is considered to 
have been cocited with itself. As we know that it’s quite pointless for our application to 
fi gure out that a patent is similar to itself, we can ignore all such pairs. Note that if we 
keep these “identity” pairs in the calculation, the cocitation count for them will end up 
being exactly the citation count. These numbers can still be useful if we’re looking for 
the percentage of times patents are cocited. As we’re not computing percentages, that 
consideration wouldn’t affect us.

As cocitation is symmetric , pairs always appear twice, in reverse order. For example, 
we see both (3601095,3685034) and (3685034,3601095) when they appear together 
once. Given our current application need to fi nd patent pairs that are cocited more 
than N times together, we can put in a simple rule retaining only one of the two 
redundant pairs and trim cocite’s size by half. This rule can be thus: retain only 
pairs where the fi rst fi eld is smaller than the second fi eld. But keeping the redundant 
pairs can be useful for lookup later in some applications. For example, we can fi nd 
all patents cocited with X by searching for X in the fi rst fi eld. In the more condensed 
version we’d have to look for X in both fi elds.

Finally, we can use heuristics  to remove cocitation pairs that we don’t think are 
important. We compromise fi nal precision to gain effi ciency. The applicability 
and usefulness of heuristics will depend on the application semantics and the data 

9  Note that cocite can be computed from cite_grpd directly by using a more complicated FOREACH state-
ment, and you may choose to do it when you feel more comfortable reading Pig Latin.
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distribution. In our case, a patent that cites many patents together will generate a 
quadratic number of rows in cocite. If we believe that such “verbose” patents don’t 
help us understand similar patent pairs, removing them can signifi cantly reduce the 
size of data to process with little impact on fi nal results. The benefi t of this heuristic 
is much greater if we’re looking at reverse patent citation or text documents, where 
frequency of items are extremely skewed and quadratic expansion on a few popular items 
can dominate the amount of data processed. In fact, in such situations approximate 
heuristics are almost necessary.

An important process check is to note that we’ve focused on a higher level of data 
processing issues. We’ve obviated any low-level discussion about MapReduce.

--------------------------------------------------------------
| cocite_fl trd      | cited1::cited: int | cited2::cited: int |
--------------------------------------------------------------
|                  | 3601095            | 3685034            |
|                  | 3685034            | 3601095            |
|                  | 1730866            | 3022581            |
|                  | 3022581            | 1730866            |
--------------------------------------------------------------

We’ve decided to only fi lter out “identity” patent pairs :

---------------------------------------------------------------------------
| cocite_grpd | group:                      | cocite_fl trd:                |
|             | tuple({cited1::cited: int,  | bag({cited1::cited: int,    |
|             |        cited2::cited: int}) |      cited2::cited: int})   |
---------------------------------------------------------------------------
|             | (1730866, 3022581)          | {(1730866, 3022581)}        |
|             | (3022581, 1730866)          | {(3022581, 1730866)}        |
|             | (3601095, 3685034)          | {(3601095, 3685034)}        |
|             | (3685034, 3601095)          | {(3685034, 3601095)}        |
---------------------------------------------------------------------------
---------------------------------------------------------------------------
| cocite_cnt | group:                                            | cnt:   |
|            |    tuple({cited1::cited: int,cited2::cited: int}) |   long |
---------------------------------------------------------------------------
|            | (1730866, 3022581)                                | 1      |
|            | (3022581, 1730866)                                | 1      |
|            | (3601095, 3685034)                                | 1      |
|            | (3685034, 3601095)                                | 1      |
---------------------------------------------------------------------------
---------------------------------------------------------------------------
| cocite_fl at  | group::cited1::cited: | group::cited2::cited: | cnt:      |
|             |                   int |                   int |     long  |
---------------------------------------------------------------------------
|             | 1730866               | 3022581               | 1         |
|             | 3022581               | 1730866               | 1         |
|             | 3601095               | 3685034               | 1         |
|             | 3685034               | 3601095               | 1         |
---------------------------------------------------------------------------
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We grouped the patent  pair citations together, counted them, and fl attened out 
the relation. Unfortunately, ILLUSTRATE generates sample data that only has coci-
tation counts of 1. However, we see that the operations are doing basically what 
we wanted. If we stick to the original application requirement of only looking for 
patent pairs that have been cocited more than N times, we would apply a fi lter on 
cocite_fl at  and be fi nished. But we want to show how we can further group the 
tuples, which would be needed for other types of fi ltering. For example, you may 
want to fi nd the K most cocited patents for each patent. Let’s look at the rest of 
the output:

---------------------------------------------------------------------------
| cocite_cnt_grpd | group: int | cocite_fl at: bag({group::cited1::cited:   |
|                 |            | int,group::cited2::cited: int,cnt: long})|
---------------------------------------------------------------------------
|                 | 1730866    | {(1730866, 3022581, 1)}                  |
|                 | 3022581    | {(3022581, 1730866, 1)}                  |
|                 | 3601095    | {(3601095, 3685034, 1)}                  |
|                 | 3685034    | {(3685034, 3601095, 1)}                  |
---------------------------------------------------------------------------
---------------------------------------------------------------------------
| cocite_bag  | group: int | cocite_fl at:                                  |
|             |            |   bag({group::cited2::cited: int,cnt: long}) |
---------------------------------------------------------------------------
|             | 1730866    | {(3022581, 1)}                               |
|             | 3022581    | {(1730866, 1)}                               |
|             | 3601095    | {(3685034, 1)}                               |
|             | 3685034    | {(3601095, 1)}                               |
---------------------------------------------------------------------------

If we had wanted to fi nd each patent’s K most cocited patents, we would use a FOREACH 
statement to process each tuple in cocite_bag and write our own UDF to take in a bag 
(cocite_fl at) and return a bag of at most K tuples (the most cocited ones). You can 
do this fi nal step as an exercise. Let’s see an example of a nested FOREACH statement to 
fi lter out tuples inside bags that have counts of 5 or less.

cocite_fi nal = FOREACH cocite_cnt_grpd {
    similar = FILTER cocite_fl at BY cnt > 5;
    GENERATE group, similar;
}

As you can see, Pig has simplifi ed the implementation of this data processing ap-
plication tremendously. This “similar item” feature has been known to be useful in 
different applications, but it’s also quite challenging to implement. Using Pig and 
Hadoop, this turns into only an afternoon’s work. Furthermore, its improved ease 
of development enables rapid prototyping of alternative features. For your own ex-
ercise, instead of fi nding patents that are often cited together, can you fi nd patents 
that have similar citations? 
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10.9 Summary
Pig is a higher-level data processing layer on top of Hadoop. Its Pig Latin language 
provides programmers a more intuitive way to specify data fl ows. It supports schemas 
in processing structured data, yet it’s fl exible enough to work with unstructured text 
or semistructured XML data. It’s extensible with the use of UDFs. It vastly simplifi es 
data joining and job chaining—two aspects of MapReduce programming that many 
developers found overly complicated. To demonstrate its usefulness, our example of 
computing patent cocitation shows a complex MapReduce program written in a dozen 
lines of Pig Latin. 
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Hive and the Hadoop herd

This chapter covers
 What Hive is■

 Setting up Hive■

 Using Hive for data warehousing■

 Other software packages related to Hadoop■

As powerful as Hadoop is, it doesn’t offer everything for everybody. Many projects 
have sprung up to extend Hadoop for specifi c purposes. The most prominent and 
well-supported ones have offi cially become subprojects under the umbrella of the 
Apache Hadoop  project.1 These subprojects include

 ■ Pig—A high-level data fl ow language
 ■ Hive—A SQL-like data warehouse infrastructure
 ■ HBase—A distributed, column-oriented database modeled after Google’s 

Bigtable

1  What we’ve referred to in this book as “Hadoop” so far (HDFS and MapReduce) is technically called the 
“Hadoop Core” subproject of Apache Hadoop, although colloquially people tend to call it Hadoop.
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 ■ Zookeeper—A reliable coordination system for managing shared state between 
distributed applications

 ■ Chukwa—A data collection system for managing large distributed systems

We covered Pig in detail in chapter 10, and we’ll learn about Hive in this chapter. 
Furthermore, section 11.2 will briefl y describe other Hadoop-related projects. Some 
of these aren’t associated with Apache (e.g., Cascading, CloudBase). Some are in their 
nascent stages (e.g., Hama, Mahout). You’ll see some of these tools in action in the 
case studies of chapter 12.

11.1  Hive 
Hive2 is a data warehousing package built on top of Hadoop. It began its life at 
Facebook  processing large amount of user and log data. It’s now a Hadoop subproject 
with many contributors. Its target users remain data analysts who are comfortable 
with SQL and who need to do ad hoc queries , summarization , and data analysis on 
Hadoop-scale data.3 You interact with Hive by issuing queries in a SQL-like language 
called HiveQL . For example, a query to get all active users from a user table looks 
like this:

INSERT OVERWRITE TABLE user_active 
SELECT user.* 
FROM user 
WHERE user.active = 1;

Hive’s design refl ects its targeted use as a system for managing and querying structured 
data. By focusing on structured data , Hive can add certain optimization and usability 
features that MapReduce, being more general, doesn’t have. Hive’s SQL-inspired lan-
guage separates the user from the complexity of MapReduce  programming. It reuses 
familiar concepts from the relational database  world, such as tables, rows, columns, 
and schema, to ease learning. In addition, whereas Hadoop naturally works on fl at 
fi les, Hive can use directory structures to “partition” data to improve performance on 
certain queries. To support these additional features, a new and important component 
of Hive is a metastore  for storing schema information. This metastore  typically resides 
in a relational database.

You can interact with Hive using several methods, including a Web GUI  and Java 
Database Connectivity (JDBC) interface . Most interactions, though, tend to take 
place over a command line interface (CLI ), which is what we focus on. You can see a 
high-level architecture diagram of Hive in fi gure 11.1.

2 http://hadoop.apache.org/hive/.
3  Note that because Hive is built on top of Hadoop, it’s still designed for a low-latency, batch-oriented type of 

processing. It’s therefore not a direct replacement for traditional SQL data warehouses, such as ones offered 
by Oracle.
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Figure 11.1 Hive architecture. 
Queries are parsed and executed 
on Hadoop. The metastore is an 
important component that helps 
determine how queries will be run.

11.1.1  Installing and confi guring Hive 

Hive requires Java 1.6 and Hadoop version 0.17 or above. You can fi nd the latest 
release of Hive at http://hadoop.apache.org/hive/releases.html. Download and 
extract the tarball   into a directory that we call HIVE_HOME. Hadoop needs to be up 
and running already. In addition, you need to set up a couple directories in HDFS  
for Hive to use.

bin/hadoop fs -mkdir /tmp
bin/hadoop fs -mkdir /user/hive/warehouse
bin/hadoop fs -chmod g+w /tmp
bin/hadoop fs -chmod g+w /user/hive/warehouse

If you let Hive manage your data completely for you, Hive will store your data under 
the /user/hive/warehouse directory. Hive can automatically add compression  and 
special directory structures (such as partitions ) to those data to improve query perfor-
mance. It’s good to let Hive manage your data if you plan on using Hive to query it. 
But if you already have your data in some other directories in HDFS and want to keep 
them there, Hive can work with them too. In that case, Hive will take your data as is and 
won’t try to optimize your data storage for query processing . Some casual users don’t 
understand this distinction, and believe that Hive requires data to be in some special 
Hive format. This is defi nitely not true.
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Hive stores metadata  in a standard relational database. Out-of-the-box Hive comes 
with an open source, lightweight, embedded SQL database called Derby, 4 which is 
installed and run on the client machine along with Hive. If you are the only Hive user, 
this default setup should be fi ne. But beyond the initial testing and evaluation, you’ll 
most likely deploy Hive in a multi-user environment, where you wouldn’t want each 
user to have their own version of the metadata. You’ll need a centralized location 
for storing metadata. Typically, you use a shared SQL database such as MySQL, but 
any JDBC-compliant database  will do. You’ll need a database server and you’ll need 
to create a database dedicated as a Hive metastore. This database is typically named 
metastore_db. Once you have created this, confi gure every Hive installation to point 
to it as the metastore. You confi gure the installations by modifying the fi les hive-site.
xml and jpox.properties. Both are under the $HIVE_HOME/conf directory. A raw 
installation doesn’t have a hive-site.xml fi le, and you’ll have to create it. Properties 
in this fi le override the properties in hive-default.xml, in the same way that hadoop-
site.xml overrides hadoop-default.xml. The fi le hive-site.xml  should override three 
properties and look like the following:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="confi guration.xsl"?>

<confi guration>

<property>
  <name>hive.metastore.local</name>
  <value>false</value>
</property>

<property>
  <name>javax.jdo.option.ConnectionURL</name>
  <value>jdbc:mysql://<hostname>/metastore_db</value>
</property>

<property>
  <name>javax.jdo.option.ConnectionDriverName</name>
  <value>com.mysql.jdbc.Driver</value>
</property>

</confi guration>

Table 11.1 explains these properties. Specify the javax.jdo.option.ConnectionURL 
and javax.jdo.option.ConnectionDriverName properties again in the fi le jpox.
properties . In addition, the username and password to log into the database are also 
specifi ed in jpox.properties. The jpox.properties fi le should contain the following 
four lines:

javax.jdo.option.ConnectionDriverName=com.mysql.jdbc.Driver
javax.jdo.option.ConnectionURL=jdbc:mysql://<hostname>/metastore_db
javax.jdo.option.ConnectionUserName=<username>
javax.jdo.option.ConnectionPassword=<password>

4 http://db.apache.org/derby/.
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Table 11.1 Confi guration for using a MySQL database  as a metadata store in multi-user mode

Property Description

hive.metastore.local Controls whether to create and use 
a local metastore server in the client 
machine. Set this to false to use a 
remote metastore server. 

javax.jdo.option.ConnectionURL JDBC connection URL specifying the 
database for the metastore.5 For example, 
jdbc:mysql://<hostname>/
metastore_db.

javax.jdo.option.
ConnectionDriverName

The class name of the JDBC driver. For 
example, com.mysql.jdbc.Driver.

javax.jdo.option.ConnectionUserName Username for logging into the database.

javax.jdo.option.ConnectionPassword Password for logging into the database.

Once you have the database set up, or if you’re only evaluating Hive and can use its 
default single-user mode, you’re ready to go into its CLI . Type in bin/hive in the $HIVE_
HOME directory. You’ll receive the Hive prompt, ready to take your Hive commands.  

bin/hive
Hive history fi le=/tmp/root/hive_job_log_root_200908240830_797162695.txt
hive>

11.1.2 Example queries 

Before we formally explain HiveQL, it’s useful to run a few commands from the CLI. 
You’ll get a feel of how it works and can explore on your own.

Let’s assume you have the patent citation data cite75_99.txt on your local machine. 
Recall that this is a comma-separated data set of patent citations.  In Hive, we fi rst 
defi ne a table that will store this data:

hive> CREATE TABLE cite (citing INT, cited INT)
    > ROW FORMAT DELIMITED
    > FIELDS TERMINATED BY ','
    > STORED AS TEXTFILE;
OK
Time taken: 0.246 seconds

HiveQL statements  are terminated by semicolons. You can have a statement that goes over 
multiple lines as long as you type in a semicolon only at the end, as we’ve done here.

Most of the action in this four-line command is in the fi rst line. Here we defi ne a two-
column table called cite. The fi rst column is called citing and is of type INT , whereas the 
second column is called cited and is also of type INT. The other lines in this command 

5  The complete format for the MySQL JDBC driver is described in http://dev.mysql.com/doc/refman/5.0/
en/connector-j-reference-confi guration-properties.html.



 Hive 251

tell Hive how the data is stored (as a text fi le) and how it should be parsed (fi elds are 
separated by commas). 

We can see what tables are currently in Hive with the SHOW TABLES  command:

hive> SHOW TABLES;
OK
cite
Time taken: 0.053 seconds

Between Hive’s “OK” and “Time taken” messages, we see the cite table. We can check 
its schema with the DESCRIBE command :

hive> DESCRIBE cite;
OK
citing  int
cited   int
Time taken: 0.13 seconds

The table has the two columns from our defi nition, as expected. Managing and defi n-
ing tables in HiveQL are similar to standard relational databases. Let’s load the patent 
citation data into this table.

hive> LOAD DATA LOCAL INPATH 'cite75_99.txt'
    > OVERWRITE INTO TABLE cite;
Copying data from fi le:/root/cite75_99.txt
Loading data to table cite
OK
Time taken: 9.51 seconds

This tells Hive to load data from a fi le called cite75_99.txt in the local fi lesystem into 
our cite table . Underneath the hood, the local machine uploads this data into HDFS, 
under some directory managed by Hive. (Unless you’ve changed the confi guration, 
this will be some directory under /user/hive/warehouse.)

When loading data, Hive will not let any data into a table that violates its schema. In 
place of those data Hive will substitute a null. We can use a simple SELECT statement  
to browse data in the cite table:

hive> SELECT * FROM cite LIMIT 10;
OK
NULL    NULL
3858241 956203
3858241 1324234
3858241 3398406
3858241 3557384
3858241 3634889
3858242 1515701
3858242 3319261
3858242 3668705
3858242 3707004
Time taken: 0.17 seconds

Our schema defi nes the two columns to be integers. We see that there’s a row with nulls , in-
dicating that a record violated the schema. This is due to the fi rst line of cite75_99.txt, which 
has the column names rather than patent numbers. Overall this shouldn’t be alarming.
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Now that we’re pretty confi dent that Hive has read the data and is managing it, we 
can run all kinds of queries on it. Let’s start by counting how many rows are in the 
table. In SQL this is accomplished by the familiar SELECT COUNT(*). HiveQL  has a 
slightly different syntax in this case:

hive> SELECT COUNT(1) FROM cite;
Total MapReduce jobs = 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapred.reduce.tasks=<number>
Starting Job = job_200908250716_0001, Tracking URL = http://ip-10-244-199-
143.ec2.internal:50030/jobdetails.jsp?jobid=job_200908250716_0001
Kill Command = /usr/lib/hadoop/bin/hadoop job  -Dmapred.job.tracker=ip-10-
244-199-143.ec2.internal:9001 -kill job_200908250716_0001
 map = 0%,  reduce =0%
 map = 12%,  reduce =0%
 map = 25%,  reduce =0%
 map = 30%,  reduce =0%
 map = 34%,  reduce =0%
 map = 43%,  reduce =0%
 map = 53%,  reduce =0%
 map = 62%,  reduce =0%
 map = 71%,  reduce =0%
 map = 75%,  reduce =0%
 map = 79%,  reduce =0%
 map = 88%,  reduce =0%
 map = 97%,  reduce =0%
 map = 99%,  reduce =0%
 map = 100%,  reduce =0%
 map = 100%,  reduce =67%
 map = 100%,  reduce =100%
Ended Job = job_200908250716_0001
OK
16522439
Time taken: 85.153 seconds

Reading the messages, you can see that this query had created a MapReduce job . The 
beauty of Hive is that the user doesn’t need to know anything about MapReduce at 
all. As far as she’s concerned, she’s only querying a database using a language similar 
to SQL.

The result of the previous query was printed directly to the screen. In most cases the 
query result should be saved to disk, which usually would be some other Hive table. 
Our next query fi nds the citation frequency of each patent. We fi rst create a table to 
store this result:

hive> CREATE TABLE cite_count (cited INT, count INT);
OK
Time taken: 0.027 seconds
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We can execute a query to fi nd the citation frequency. The query uses the COUNT  
and GROUP BY  features, again in a way similar to SQL. There’s an additional INSERT 
OVERWRITE TABLE  clause to tell Hive to write the result to a table:

hive> INSERT OVERWRITE TABLE cite_count
    > SELECT cited, COUNT(citing)
    > FROM cite
    > GROUP BY cited;
...
 map = 100%,  reduce =89%
 map = 100%,  reduce =90%
 map = 100%,  reduce =100%
Ended Job = job_200908250716_0002
Loading data to table cite_count
3258984 Rows loaded to cite_count
OK
Time taken: 103.331 seconds

The query execution helpfully tells us that 3,258,984 rows were loaded into the cita-
tion frequency table. We can execute more HiveQL statements to browse this citation 
frequency table:

hive> SELECT * FROM cite_count WHERE count > 10 LIMIT 10;
Total MapReduce jobs = 1
Number of reduce tasks is set to 0 as there's no reduce operator
...
 map = 80%,  reduce =0%
 map = 100%,  reduce =100%
Ended Job = job_200908250716_0003
OK
163404  13
164184  16
217584  13
246144  14
288134  11
347644  11
366494  11
443764  11
459844  13
490484  13

An interesting part about this query is that Hive is intelligent enough to know that 
“Number of reduce tasks is set to 0 as there’s no reduce operator.”

When you’re fi nished with using a table, you can delete it with the DROP TABLE 
command :

hive> DROP TABLE cite_count;
OK
Time taken: 0.024 seconds

Be careful when using this command. It doesn’t ask you for confi rmation whether 
you really want to delete the table or not. It’s diffi cult to recover a table once you have 
dropped it.

Finally, you can exit your Hive session with the exit command. 
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11.1.3 HiveQL  in details

Having seen Hive in action, we’re ready to formally look at different aspects and usage 
of HiveQL.

DATA MODEL 

We’ve already seen that Hive supports tables as a fundamental data model. Physically, 
Hive  stores tables as directories under /user/hive/warehouse. For example, the cite ta-
ble we created earlier would have its data under the /user/hive/warehouse/cite direc-
tory. The output table cite_count  would be under /user/hive/warehouse/cite_count. 
In the most basic setup, the directory hierarchy under a table is only one level deep, 
and the table’s data are spread out over many fi les under that one directory.

Relational databases use indexes  on columns to speed up queries  on those columns. 
Hive, instead, uses a concept of partition columns , which are columns whose values 
would divide the table into separate partitions. For example, a state  column would 
partition a table into 50 partitions, one for each state.6 A date column  is a popular 
partition column for log data;  data for each day would belong to its own partition. Hive 
treats partition columns differently than regular data columns, and executes queries 
involving partition columns much more effi ciently. This is because Hive physically 
stores different partitions in different directories. For example, let’s say you have a 
table named users that has two partition columns date and state (plus the regular data 
columns). Hive  will have a directory structure like this for that table:

/user/hive/warehouse/users/date=20090901/state=CA
/user/hive/warehouse/users/date=20090901/state=NY
/user/hive/warehouse/users/date=20090901/state=TX
...
/user/hive/warehouse/users/date=20090902/state=CA
/user/hive/warehouse/users/date=20090902/state=NY
/user/hive/warehouse/users/date=20090902/state=TX
...
/user/hive/warehouse/users/date=20090903/state=CA
/user/hive/warehouse/users/date=20090903/state=NY
/user/hive/warehouse/users/date=20090903/state=TX
...

All user data for California (state=CA) on September 1, 2009 (date=20090901) re-
sides in one directory, and data for other partitions is in other directories. If a query 
comes in asking about California users on September 1, 2009, Hive only has to process 
data in that one directory and ignore data in the users table that have been stored in 
other partitions. Queries over ranges in the partition columns will involve processing 
multiple directories, but Hive will still avoid a full scan of all data in users. In some 
sense partitioning brings similar benefi ts to Hive as indexing provides to a traditional 
relational database, although partitioning works at a much less granular level. You’ll 
want each partition to still be big enough that a MapReduce job on it can be reason-
ably effi cient.

6 In practice you’ll also have to handle District of Columbia and various territories.
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In addition to partitions, the Hive data model also has a  concept of buckets , which 
provide effi ciency to queries that can work well on a random sample of data. (For 
example, in computing the average of a column, a random sample of data can provide 
a good approximation.) Bucketing divides data into a specifi ed number of fi les based 
on the hash of the bucket column. If we specify 32 buckets based on user id in our users 
table, the full fi le structure for our table in Hive will look like

/user/hive/warehouse/users/date=20090901/state=CA/part-00000
...
/user/hive/warehouse/users/date=20090901/state=CA/part-00031
/user/hive/warehouse/users/date=20090901/state=NY/part-00000
... 
/user/hive/warehouse/users/date=20090901/state=NY/part-00031
/user/hive/warehouse/users/date=20090901/state=TX/part-00000
...

Each partition will have 32 buckets. By bucketing on user id, Hive will know that each 
fi le in part-00000 ... part-00031 has a random sample of users. The computation 
of many aggregate statistics remains fairly accurate on a sampled data set. Bucketing is 
particularly useful for speeding up those queries. For example, Hive can run a query 
on 1/32 of all the users in a partition by using only the data in part-00000, without 
having to even read the other fi les. Hive can still do sampling without buckets (or on 
columns other than the bucket column), but this involves scanning in all the data and 
randomly ignoring much of it. Much of the effi ciency advantage of sampling would 
therefore be lost.

MANAGING  TABLES

We’ve already seen how to create a simple table for the patent citation data set. Let’s 
now break down the different parts of a more complicated table creation statement. 
This one creates a table called page_view .

CREATE TABLE page_view(viewTime INT, userid BIGINT,
                page_url STRING, referrer_url STRING, 
                ip STRING COMMENT 'IP Address of the User') 
COMMENT 'This is the page view table'
PARTITIONED BY (dt STRING, country STRING)
CLUSTERED BY (userid) INTO 32 BUCKETS
ROW FORMAT DELIMITED
        FIELDS TERMINATED BY '\t'
        LINES TERMINATED BY '\n' 
STORED AS SEQUENCEFILE;

The fi rst part looks much like the SQL equivalent:

CREATE TABLE page_view(viewTime INT, userid BIGINT,
                page_url STRING, referrer_url STRING, 
                ip STRING COMMENT 'IP Address of the User') 

It specifi es the name of the table (page_view) and its schema, which includes the name 
of the columns as well as their type. Hive supports the following data types:

 ■ TINYINT —1 byte integer
 ■ SMALLINT —2 byte integer
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 ■ INT —4 byte integer
 ■ BIGINT —8 byte integer
 ■ DOUBLE —Double precision fl oating point
 ■ STRING —Sequence of characters

Noticeably missing is the Boolean type, which is usually handled as TINYINT. Hive also 
has complex types , such as structs , maps , and arrays  that can be nested. But they’re 
currently not well supported in the language and are considered advanced topics.

We can attach a descriptive comment to each column, as was done here for the ip 
column. In addition, we also add a descriptive comment to the table:

COMMENT 'This is the page view table'

The next part of the CREATE TABLE statement specifi es the partition columns: 

PARTITIONED BY (dt STRING, country STRING)

As we’ve discussed previously, partition columns are optimized for querying. They’re 
distinct from the data columns of viewTime, userid, page_url, referrer_url, and 
ip. The value of a partition column for a particular row is not explicitly stored with 
the row; it’s implied from the directory path. But there’s no syntactical difference in 
queries over   partition columns or data columns.

CLUSTERED BY (userid) INTO 32 BUCKETS 

The CLUSTERED BY (...) INTO ... BUCKETS clause specifi es the bucketing informa-
tion, including the column that random samples will be taken from and also how many 
buckets to create. The choice of the number of buckets  will depend on the following:

1 The size of your data under each partition
2 The size of sample you intend to use

The fi rst criterion is important because after you divide a partition into the specifi ed 
number of buckets, you wouldn’t want each bucket fi le to be so small that it becomes 
ineffi cient for Hadoop to handle. On the other hand, a bucket should be the same size 
or smaller than your intended sample size. Bucketing by user into 32 buckets is a good 
setting if your sample size will be about 3 percent (~1/32) of your user base.

NOTE Unlike partitioning, Hive doesn’t automatically enforce bucketing when 
data is written to a table. Specifying bucketing information merely tells Hive 
that you’ll manually enforce the bucketing (sampling) criteria when data is 
written to a table and that Hive can take advantage of it in processing queries. 
To enforce the bucketing criteria you need to correctly set the number of 
reducers when populating the table. More detail can be found in http://wiki.
apache.org/hadoop/Hive/LanguageManual/DDL/BucketedTables.

The ROW FORMAT clause  tells Hive how the table data is stored per row. Without this 
clause, Hive defaults to the newline character as the row delimiter and an ASCII value 
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of 001 (ctrl-A) as the fi eld delimiter. Our clause tells Hive to use the tab character as the 
fi eld delimiter  instead. We also tell Hive to use the newline character as the line delim-
iter, but that’s already the default and we include it here only for illustrative purposes:

ROW FORMAT DELIMITED
        FIELDS TERMINATED BY '\t'
        LINES TERMINATED BY '\n' 

Finally, the last clause tells Hive the fi le format to store the table data:

STORED AS SEQUENCEFILE;

Currently Hive supports two formats, SEQUENCEFILE and TEXTFILE . Sequence fi le is a 
compressed format and usually provides higher performance.

We can add an EXTERNAL modifi er  to the CREATE TABLE statement such that the 
table is created to point to an existing data directory. You’ll need to specify the location 
of this directory.

CREATE EXTERNAL TABLE page_view(viewTime INT, userid BIGINT,
                           page_url STRING, referrer_url STRING, ip STRING)
LOCATION '/path/to/existing/table/in/HDFS';

After you’ve created a table, you can ask Hive the table’s schema with the DESCRIBE  
command:

hive> DESCRIBE page_view;

You can also change the table structure with the ALTER  command. This includes chang-
ing the table’s name:

hive> ALTER TABLE page_view RENAME TO pv;

or adding new columns:

hive> ALTER TABLE page_view ADD COLUMNS (newcol STRING);

or deleting a partition:

hive> ALTER TABLE page_view DROP PARTITION (dt='2009-09-01');

To delete the whole table, use the DROP TABLE  command:

hive> DROP TABLE page_view;

To know what tables are being managed by Hive, you can show them all with

hive> SHOW TABLES ;

If there are so many tables in use that it becomes unwieldy to list them all, you can 
narrow down the result with a Java regular expression :

hive> SHOW TABLES 'page_.*';

LOADING DATA 

There are multiple ways to load data into a Hive table. The LOAD DATA command  is 
the workhorse:
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hive> LOAD DATA LOCAL INPATH 'page_view.txt'
    > OVERWRITE INTO TABLE page_view;

This takes a local fi le named page_view.txt and loads its content into the page_view 
table. If we omit the OVERWRITE modifi er, the content is added to the table rather than 
replacing whatever already exists in it. If we omit the LOCAL modifi er, the fi le is taken 
from HDFS instead of the local fi lesystem. The  LOAD DATA command also allows you 
to name a specifi c partition in the table to load the data into:

hive> LOAD DATA LOCAL INPATH 'page_view.txt'
    > OVERWRITE INTO TABLE page_view
    > PARTITION (dt='2009-09-01', country='US');

When working with data from the local fi lesystem, it’s useful to know that you can 
execute local Unix  commands from within the Hive CLI. You prepend the command 
with the exclamation mark (!) and end it with a semicolon (;). For example, you can 
get a fi le listing

hive> ! ls ;

or examine the fi rst few lines of a fi le

hive> ! head hive_result ;

Note that the spaces around ! and ; aren’t necessary. We’ve added them for readability.

RUNNING QUERIES 

For the most part, running HiveQL queries  is surprisingly similar to running SQL que-
ries. One of the general differences is that the results of HiveQL queries are relatively 
large. You should almost always have an INSERT clause  to tell Hive to store your query 
result somewhere. Often it’s some other table:

INSERT OVERWRITE TABLE query_result

Other times it’s a directory in HDFS:

INSERT OVERWRITE DIRECTORY '/hdfs_dir/query_result'

And sometimes it’s a local directory:

INSERT OVERWRITE LOCAL DIRECTORY '/local_dir/query_result'

The basic queries can look almost identical to SQL:

INSERT OVERWRITE TABLE query_result
SELECT *
FROM page_view
WHERE country='US';

Note that the query is over a partition column (country), but the query would look 
exactly the same if it was a data column instead. One syntax to adjust to is that HiveQL 
uses COUNT(1) in places where SQL typically would use COUNT(*) . For example, you 
would use this HiveQL query to fi nd the number of page views from the U.S.:
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SELECT COUNT(1)
FROM page_view
WHERE country='US';

Like SQL, the GROUP BY  clause allows one to do aggregate queries on groups. This 
query will list the number of page views from each country:

SELECT country, COUNT(1)
FROM page_view
GROUP BY country;

And this query will list the number of unique users from each country:

SELECT country, COUNT(DISTINCT userid)
FROM page_view
GROUP BY country;

Table 11.2 shows all the operators supported in HiveQL. These are quite stan-
dard in SQL and programming languages and we won’t explain them in detail. 
The main exception is in regular expression matching. HiveQL provides two 
commands for regular expression matching—LIKE  and REGEXP . (RLIKE is equiv-
alent to REGEXP.) LIKE only performs simple SQL regular expression matching, 
where an underscore (_) character in B matches any single character in A and the 
percent (%) character matches any number of characters in A. REGEXP treats 
B as a full Java regular expression.7 Tables 11.3 and 11.4 list the majority of HiveQL 
functions.

Table 11.2 Standard operators in HiveQL 

Operator type Operators

Comparison A = B , A <> B , A < B , A <= B , A > B , A >= B , 
A IS NULL , A IS NOT NULL , A LIKE B , NOT A LIKE B , 
A RLIKE B , A REGEXP B

Arithmetic A + B , A - B , A * B , A / B , A % B

Bit-wise A & B , A | B , A ^ B, ~A

Logical A AND B, A && B, A OR B, A || B, NOT A, !A

One of the main motivators for users to seek a higher-level language, such as Pig Latin 
and HiveQL, is the support of joins . Currently HiveQL  only supports equijoins (joins 
on equality) . An example join query is

INSERT OVERWRITE TABLE query_result 
SELECT pv.*, u.gender, u.age 
FROM page_view pv JOIN user u ON (pv.userid = u.id);

7  The format of Java regular expression is fully explained in the Javadoc http://java.sun.com/j2se/1.4.2/
docs/api/java/util/regex/Pattern.html.
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Syntactically, in the FROM clause you add the JOIN keyword between the tables and then 
specify the join columns after the ON keyword. To join more than two tables, we repeat 
the pattern like this:

INSERT OVERWRITE TABLE pv_friends 
SELECT pv.*, u.gender, u.age, f.friends 
FROM page_view pv JOIN user u ON (pv.userid = u.id)
                  JOIN friend_list f ON (u.id = f.uid);

We can add sampling to any query by modifying the FROM clause. This query tries to 
compute the average view time, except the average is only taken from data in the fi rst 
bucket out of 32 buckets:

SELECT avg(viewTime)
FROM page_view TABLESAMPLE(BUCKET 1 OUT OF 32);

The general syntax for TABLESAMPLE is

TABLESAMPLE(BUCKET x OUT OF y)

The sample size for the query is around 1/y. In addition, y needs to be a multiple or 
factor of the number of buckets specifi ed for the table at table creation time. For ex-
ample, if we change y to 16, the query becomes

SELECT avg(viewTime)
FROM page_view TABLESAMPLE(BUCKET 1 OUT OF 16);

Then the sample size includes approximately 1 out of every 16 users (as the bucket 
column is userid). The table still has 32 buckets, but Hive tries to satisfy this query by 
processing buckets 1 and 17 together. On the other hand, if y is specifi ed to be 64, Hive 
will execute the query on half of the data in one bucket. The value of x is only used to 
select which bucket to use. Under truly random sampling its value shouldn’t matter.

Besides avg, Hive has many other built-in functions. You can see some of the more 
common ones in tables 11.3 and 11.4. Programmers can also add UDFs to Hive for 
custom processing. A brief introduction on how to create a UDF is given in http://
wiki.apache.org/hadoop/Hive/AdminManual/Plugins. 

11.1.4 Hive  Sum-up 

Hive is a data warehousing layer built on top of Hadoop’s massively scalable architec-
ture. By focusing on structured data, Hive has added many performance-enhancing 
techniques (such as partitions) and usability features (such as a SQL-like language). It 
makes certain frequent tasks, such as joining, easy. Hive is introducing Hadoop tech-
nology to a wider audience of analysts and other nonprogrammers. As of August 2009, 
Facebook  counts 29 percent of its employees as Hive users, more than half of whom 
are outside of engineering.8

8  This fact is cited in http://www.facebook.com/note.php?note_id=114588058858. An explanation of how 
Facebook decided to build out its Hadoop infrastructure is given in http://www.facebook.com/note.
php?note_id=16121578919. The presentation at http://www.slideshare.net/zshao/hive-data-warehousing-
analytics-on-hadoop-presentation gives a detailed description of how Facebook designed its data warehouse 
and analytics system around Hive.



 Hive 261

Table 11.3 Built-in functions 

Function Description

concat(string a, string b) Returns the concatenation of string a with string b.

substr(string str, int 
start)
substr(string str, int 
start, int length)

Returns the substring of str starting at start. The result 
goes until the end of str unless an optional length 
argument is specifi ed.

round(double num) Returns the closest integer (BIGINT).

fl oor(double num) Returns the largest integer (BIGINT) that’s equal to or 
smaller than num.

ceil(double num)
ceiling(double num)

Returns the smallest integer (BIGINT) that’s equal to or 
bigger than num.

sqrt(double num) Returns the square root of num.

rand()
rand(int seed)

Returns a random number (that changes from row to row). 
The optional seed value can make the random number 
sequence deterministic.

Ln(double num) Returns the natural log of num.

log2(double num) Returns the base-2 log of num.

log10(double num) Returns the base-10 log of num.

log(double num)
log(double base, double 
num)

Returns the natural log of num. Or returns the base-base 
log of num.

exp(double a) Raise e (the base of natural logarithm) to the power of a.

power(double a, double b)
pow(double a, double b)

Returns a raised to the power of b.

upper(string s)
ucase(string s)

Returns string s in uppercase.

lower(string s)
lcase(string s)

Returns string s in lowercase.

trim(string s) Returns string s with spaces trimmed on both ends.

ltrim(string s) Returns string s with spaces trimmed on the left end.

rtrim(string s) Returns string s with spaces trimmed on the right end.

regexp(string s, string 
regex)

Returns whether the string s matches the Java regular 
expression regex.

regexp_replace(string 
s, string regex, string 
replacement)

Returns a string where all parts of s that match the 
Java regular expression regex are replaced with 
replacement.

day(string date)
dayofmonth(string date)

Returns the day part of a date or timestamp string.

month(string date) Returns the month part of a date or timestamp string.

year(string date) Returns the year part of a date or timestamp string.

To_date(string timestamp) Returns the date part (year-month-day) of a 
timestamp string.

unix_timestamp(string 
timestamp)

Convert a timestamp string to UnixTime.
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Table 11.3 Built-in functions (continued )

Function Description

from_unixtime(int 
unixtime)

Convert integer in UnixTime to a timestamp string.

date_add(string date, int 
days)

Add a number of days to a date string.

date_sub(string date, int 
days)

Subtract a number of days from a date string.

datediff(string date1, 
string date2)

Calculate the difference in number of days. Result is 
negative if date1 is earlier.

Table 11.4 Built-in aggregate functions 

Function Description

count(1)
count(DISTINCT col)

Returns the number of members in the group, or the 
number of distinct values of the column.

sum(col)
sum(DISTINCT col)

Returns the sum of the values of the column, or the 
sum of the distinct values of the column.

avg(col)
avg(DISTINCT col)

Returns the average value of the column, or the 
average of the distinct values of the column.

max(col) Returns the maximum value of the column.

min(col) Returns the minimum value of the column. 

11.2 Other Hadoop -related stuff
The Hadoop ecosystem is growing every day. The following are projects or vendors 
related to Hadoop that we fi nd useful or that have tremendous potential. All of them 
except Aster Data and Greenplum are open source in some way.

11.2.1 HBase 

http://hadoop.apache.org/hbase/—HBase  is a scalable data store targeted at random read 
and write access of (fairly-)structured data. It’s modeled after Google’s Bigtable9  and 
targeted to support large tables, on the order of billions of rows and millions of col-
umns. It uses HDFS  as the underlying fi lesystem and is designed to be fully distributed 
and highly available. Version 0.20 introduces signifi cant performance improvement. 

11.2.2 ZooKeeper 

http://hadoop.apache.org/zookeeper/—Zookeeper  is a coordination service for building large 
distributed applications. You can use it independently from the Hadoop Core framework. 

9  “Bigtable: A Distributed Storage System for Structured Data” by Chang et al., OSDI ‘06—Seventh Symposium 
on Operating System Design and Implementation. http://labs.google.com/papers/bigtable.html.



 Other Hadoop-related stuff 263

It implements many of the common services used in large distributed applications, such 
as confi guration management, naming, synchronization, and group services. Histori-
cally developers have to reinvent these services for each distributed application, which 
is time consuming and error prone, as these services are notoriously diffi cult to imple-
ment correctly. By abstracting away the underlying complexity, ZooKeeper makes it easy 
to implement consensus, leader election, presence protocols, and other primitives, and 
frees the developer to focus on the semantics of her application. ZooKeeper is often a 
major component in other Hadoop-related projects, such as HBase  and Katta .

11.2.3 Cascading 

http://www.cascading.org/—Cascading  is an API for assembling and executing complex 
data processing workfl ows on Hadoop. It abstracts away the MapReduce model into 
a data processing model consisting of tuples , pipes , and (source and sink) taps. Pipes 
operate on streams of tuples, where operations include Each, Every, GroupBy, and 
CoGroup. Pipes can be assembled and nested to create an “assembly.” We create an 
executable “fl ow” when we attach a pipe assembly to a (data) source tap  and a (data) 
sink tap .

Cascading shares many design similarities and goals with Pig . One difference, 
though, is that Pig’s Grunt shell makes it easier to execute ad hoc queries. Another 
difference is that Pig programs are written in Pig Latin, whereas Cascading works more 
like a Java framework in which you create a data processing fl ow through instantiating 
various Java classes (Each, Every, etc.). Using Cascading doesn’t require learning a 
new language, and the data process fl ow created can be more effi cient because you’ve 
written it directly yourself.

11.2.4 Cloudera 

http://www.cloudera.com/—Cloudera  is attempting to do for Hadoop what RedHat  has 
done for Linux. It’s supporting and packaging Hadoop to be easy and friendly to en-
terprise users. It provides live training sessions in major cities as well as educational 
videos on their web site. You can simplify your deployment of Hadoop by using their 
free Hadoop distribution, in either RPM  or Ubuntu /Debian  Packages. Their Hadoop 
distribution is based on the most recent stable release of Hadoop, plus useful (and 
tested) patches from future releases, and additional tools such as Pig and Hive. Cloud-
era also offers consulting and support services to help enterprises use Hadoop. 

11.2.5 Katta 

http://katta.sourceforge.net/—As Hadoop can trace its origin to search engines, it should 
not be surprising to see it being applied to distributed indexing and search. Nutch  is a 
web search engine built on top of Hadoop.10 But as a web search engine, Nutch has many 
unique requirements. It is often a mismatched solution for specifi c search applications.

10 It may be more accurate to say that Nutch motivated the creation of Hadoop. See chapter 1 for full history.
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Katta  is a scalable, fault tolerant, distributed indexing system. It’s more lightweight 
and fl exible than Nutch. In some sense it’s adding some extra capabilities (such as 
replication, redundancy, fault tolerance, and scalability) to Lucene  while retaining the 
basic application semantics.

11.2.6 CloudBase 

http://cloudbase.sourceforge.net/—CloudBase  is an ANSI SQL data warehousing layer on 
top of Hadoop. Unlike Hive, CloudBase works directly on fl at fi les without any meta-
data store. It makes a stricter goal of ANSI SQL adherence, and interaction is primar-
ily through a JDBC driver, which makes it easier to connect to business intelligence 
reporting tools. For the most part, CloudBase is a compiler that takes SQL queries 
and compiles them into MapReduce programs. As of this writing, CloudBase has a less 
active developer community than Pig or Hive, and its GPL license is more restrictive 
than the Apache license.

11.2.7 Aster Data and Greenplum  

http://www.asterdata.com/; http://www.greenplum.com/—Aster Data Systems  and Green-
plum  are both commercial vendors offering high-performance, scalable data ware-
housing solutions tightly combining SQL with MapReduce. Although they support 
the MapReduce programming model, they were both created independently from Ha-
doop and had made many different underlying design choices. Unlike Hadoop, their 
offerings are architected much more specifi cally toward enterprise customers looking 
for higher-performing SQL data warehouses. As they come at the MapReduce para-
digm from a different angle than Hadoop, studying them can help understand some 
of Hadoop’s architectural trade-offs.

11.2.8 Hama and Mahout  

http://incubator.apache.org/hama/; http://lucene.apache.org/mahout/—Both Hama  and 
Mahout  are projects for scientifi c data processing using Hadoop. Hama is a matrix 
computation package for calculating products, inverse, eigenvalues, eigenvectors, and 
other matrix operations. Mahout is targeted more specifi cally at implementing ma-
chine learning algorithms on Hadoop (for more information, see Mahout in Action, 
Manning Publications). Mahout version 0.1 was released in April 2009 and included 
implementations such as Naïve Bayes classifi cation, k-means clustering, and collabora-
tive fi ltering.

At the time of this writing both projects are relatively new and under the Apache 
incubator. Interested readers should consider becoming contributors.

11.2.9 search-hadoop.com 

As a Hadoop programmer, you’ll often have the need to fi nd some piece of documen-
tation about Hadoop or its subprojects. Sematext , a company specializing in search 
and analytics, runs http://search-hadoop.com/, a site that lets you search across all 
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Hadoop subprojects and data sources—mailing list archives, Wikis, issue tracking 
systems, source code, and so on.  The underlying search index is continuously updated. 
Search results allow fi ltering by project, data source, and author, and can be sorted by 
date, relevance, or the combination of the two. 

11.3 Summary
This chapter covered many of the additional tools you can use with Hadoop. We gave 
special attention to Hive, a data warehousing package that allows you to process data 
in Hadoop using an SQL-like language. A rich ecosystem of supporting software has 
sprung up around Hadoop, and you’ll see some of them in action in the case studies 
in the next chapter.
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Case studies

This chapter covers
 The New York Times■

 China Mobile■

 StumbleUpon■

 IBM■

We’ve been through many exercises and sample programs by now. The next step is to 
integrate what you’ve learned about Hadoop into your own real-world applications. 
To help you in that transition, this chapter provides examples of how other enter-
prises have used Hadoop as part of the solution to their data processing problems.

The case studies serve two purposes. One is to step back and see the broader 
systems that utilize Hadoop as a critical part. You’ll discover complementary tools, 
such as Cascading, HBase, and Jaql. The second purpose is to demonstrate the 
variety of businesses that have used Hadoop to solve their operational challenges. 
Our case studies span industries, including media (the New York Times), telecom 
(China Mobile), internet (StumbleUpon), and enterprise software (IBM).



 Mining data at  China Mobile 267

12.1  Converting 11 million image documents 
from the   New York Times archive
In 2007, the New York Times decided to make all their public domain articles between 
1851 and 1922 freely available on their website. Doing this required a scalable image con-
version system. Because the Times had stored its older articles as scanned TIFF images , 
they needed image processing to combine different pieces of each article together into a 
single fi le in the desired PDF format. Previously, these articles were behind a paid wall and 
didn’t receive much traffi c. The Times could use a real-time approach to scale, glue, and 
convert the TIFF images. Although that worked well enough for a low volume of requests, 
it would not scale to handle the signifi cant traffi c increase expected from the articles’ free 
availability. The Times needed a better architecture to handle the opening of its archive.

The solution was to pregenerate all the articles as PDF fi les and serve them like any 
other static content. The New York Times already had the code to convert the TIFF 
images to PDF fi les. It looked like a simple matter of batch processing all the articles 
in one setting instead of dealing with each individual article as a request came in. 
The challenging part of this solution came when one realized that the archive had 
11 million articles consisting of 4 TB of data.

Derek Gottfrid , a software programmer at the Times, thought this was a perfect 
opportunity to use the Amazon Web Services (AWS ) and Hadoop. Storing and serving 
the fi nal set of PDFs from Amazon’s Simple Storage Service (S3 ) was already deemed a 
more cost-effective approach than scaling up the storage back-end of the website. Why 
not process the PDFs in the AWS cloud as well?

Derek copied the 4 TB of TIFF images into S3. He “started writing code to pull all 
the parts that make up an article out of S3, generate a PDF from them and store the 
PDF back in S3. This was easy enough using the JetS3t —Open Source Java toolkit 
for S3, iText PDF Library and installing the Java Advanced Image Extension .”1 After 
tweaking his code to work within the Hadoop framework, Derek deployed it to Hadoop 
running on 100 nodes in Amazon’s Elastic Compute Cloud (EC2 ). The job ran for 24 
hours and generated another 1.5 TB of data to be stored in S3.

At 10 cents per instance per hour, the whole job ended up costing only $240 (100 
instances x 24 hours x $0.10) in computation. The storage cost for S3 was extra, 
but as the Times had decided to archive its fi les  in S3 anyway, that cost was already 
amortized. Data transfer between S3 and EC2 being free, the Hadoop job didn’t incur 
any bandwidth cost at all.

The whole effort took only a single employee. Thanks to Derek’s work, it has become 
much easier for people to look up the New York Times’ account of historic events.  

12.2 Mining data at  China Mobile 
Contributed by ZHIGUO LUO , MENG XU , AND SHAOLING SUN —Research Institute of China 
Mobile Communication Corporation.

1 http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/.
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China Mobile Communication Corporation (CMCC) is the largest mobile phone 
operator in the world. Traded on NYSE under the symbol CHL, China Mobile is seventh 
in BrandZ’s global brand equity ranking for 2009, behind McDonald’s and Apple but 
ahead of General Electric. With more than two-thirds of China’s mobile phone market, 
CMCC serves the communication needs of 500 million subscribers. Even at its size, 
China Mobile has experienced rapid growth. For example, in 2006 when its subscriber 
base was only 300 million, its subscriber growth rate was at 22 percent, its voice usage 
was growing at 30 percent, and its SMS usage was growing at 41 percent annually.

As with any telecom operator, China Mobile generates a lot of data in the normal 
course of running its communication network. For example, each call generates a call 
data record (CDR) , which includes information such as the caller’s phone number, the 
callee’s phone number, the start time of the call, the call’s duration, information about 
the call’s routing, and so forth. In addition to CDR, a phone network also generates 
signaling data between various switches, nodes, and terminals within the network. At a 
minimum, we need this data for completing calls and accurately billing customers. We 
also need it to analyze for marketing, network tuning, and other purposes.

At China Mobile, the size of its network naturally leads to large amounts of data 
created. Every day the network generates 5 TB to 8 TB of CDR data. A branch company 
of China Mobile can have more than 20 million subscribers, leading to more than 
100 GB of CDR data for voice calls and between 100 GB to 200 GB of CDR data for 
SMS every day. In addition, a typical branch company generates around 48 GB of data 
per day for General Packet Radio Service (GPRS ) signaling and 300 GB of data per 
day for 3G signaling.

China Mobile looks to data warehousing  and mining of this data to extract insights 
for improving marketing operations, network optimization, and service optimization. 
Some typical applications include

 Analyzing user behavior■

 Predicting customer churn■

 Analyzing service association■

 Analyzing network quality of service (QOS■  )
 Analyzing signaling data■

 Filtering spam messages■

China Mobile has experiences with commercial data mining tools from some well-
known vendors. These tools’ architectural design limits China Mobile’s current data 
mining system because it requires all data to be processed within a single server. Hard-
ware capacity thus becomes a performance bottleneck. The current system at one of the 
branch companies is based on commercial solutions and consists of a Unix server  with 
eight CPU cores, 32 GB memory, and a storage array. It can only perform user behav-
ior analysis for up to 1.4 million customers, or only about 10 percent of customer data 
of that particular branch company. Even within the limitation on the amount of data 
that can be processed, the current system takes too much time for many applications. 
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In addition, the high-end Unix servers and storage arrays are expensive, and the com-
mercial package software don’t support custom algorithms well.

Because of the limitations of the current system, China Mobile initiated an 
experimental project to develop a parallel data mining tool set on Hadoop and 
evaluated it against its current system. They named the project Big Cloud–based 
Parallel Data Mining (BC-PDM ) and it was architected to achieve four objectives :

 Massive scalability■ —Using Hadoop for a scale-out architecture
 Low cost■ —Built around cheap commodity hardware and free software
 Customizable■ —Applications built around specifi c business requirements
 Ease of use■ —Graphical user interface similar to ones in commercial tools

BC-PDM implemented many of the standard ETL operations  and data mining algo-
rithms in MapReduce. The ETL operations include computing aggregate statistics, 
attribute processing, data sampling, redundancy removal, and others. It implemented 
nine data mining algorithms from three categories. The categories include clustering  
(e.g., K-means ), classifi cation  (e.g., C4.5), and association analysis  (e.g., Apriori ). The 
MapReduce programs were executed and evaluated within a Hadoop cluster consist-
ing of 256 nodes connected to a single 264-port Gbps switch. The hardware for the 
nodes are

 Datanode/TaskTracker■   —1-way 4-core Xeon 2.5 GHz CPU, 8 GB RAM, 4 x 250 GB 
SATA II disks

 Namenode/JobTracker■   —2-way 2-core AMD Opteron 2.6 GHz CPU, 16 GB RAM, 
4 x 146 GB SAS disks

China Mobile compared BC-PDM against their existing data mining solution using 
real data from China Mobile’s Business Analysis Support System (BASS) . There were 
three different data sets. They were all fairly large, and for certain evaluation tasks 
smaller, sampled subsets were needed. You’ll see the original size (Large scale) as well as 
the size of the sampled subsets (Middle scale and Small scale) in table 12.1.

Table 12.1 Size of data sets used for evaluation

Data Large scale Middle scale Small scale

Users’ behavior 12 TB 120 GB 12 GB

Users’ accessing 16  TB 160 GB 16 GB

New service association 120 GB 12 GB 1.2 GB

China Mobile evaluated BC-PDM on four dimensions : correctness, performance, cost, 
and scalability. Correctness was, of course, necessary for the new system to be useful. 
They verifi ed BC-PDM’s parallel ETL operations by ensuring the same results were 
generated as the existing serial ETL implementation. The data mining algorithms, 
on the other hand, were not expected to generate the exact same results as the existing 
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system. This is because minor implementation and execution details, such as initial 
conditions and ordering of the input data, can affect the exact output. They examined 
the results and checked for general consistency. In addition, the  UCI data sets  were 
also employed to verify BC-PDM’s parallel data mining algorithms. The UCI data sets 
are popular among researchers in the machine-learning community and are well un-
derstood. China Mobile can verify BC-PDM’s output with known expected models.

After establishing the correctness of the MapReduce implementations, the 
performance of BC-PDM was compared to the current system. The comparison used 
only a 16-node Hadoop cluster. As we’ll see, this small cluster is cheaper than the 
monolithic big-iron server of the current system. Figure 12.1 shows the timing between 
the two setups for ETL operations (left graph)  and data mining tasks (right graph).

Note that BC-PDM was tasked to process 10 times the amount of data as the current 
system. BC-PDM was faster for all ETL operations, resulting in general performance 
improvement of 12 to 16 times. For data mining tasks BC-PDM was further stress-
tested with 100 times the amount of data as the current system. Even with data size two 
orders of magnitude larger, BC-PDM  was faster than the current system at the Apriori  
(association) and C4.5 (classifi cation) algorithms. The K-means clustering algorithm 
took slightly longer to complete than the current system at 10 times the data size. Full 
end-to-end testing of three applications from the Shanghai Branch Company  showed 
performance improvement of 3 to 7 times. These real-world applications include 
channel preference modeling, new service association modeling, and subscriber 
subdivision modeling. Recall that BC-PDM in this evaluation is based on a relatively 
small 16-node Hadoop cluster . As we’ll see later, BC-PDM and Hadoop scale well with 
additional nodes. At the full size of our cluster of 256 nodes, we expect BC-PDM to be 
able to store, process, and mine data at the 100-TB scale.

Not only is the 16-node BC-PDM cluster outperforming the current system, it’s also 
signifi cantly cheaper. Table 12.2 shows a cost breakdown of the two systems. (As of 
this writing, one USD converts to a little less than seven RMB.) The 16-node Hadoop/
BC-PDM  cluster  is roughly one fi fth the cost of the current commercial solution. The 
biggest saving comes from the use of low-cost commodity servers. In fact, the hardware 
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Figure 12.1 Performance comparison of the Hadoop  cluster versus existing commercial 
Unix  server. The left graph tests ETL operations whereas the right graph is for data 
mining algorithms.
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cost of the 16-node cluster is less than one sixteenth the hardware cost of the current 
scale-up solution.

Table 12.2 Comparison of cost and confi guration between existing solution and a 16-node Hadoop 
cluster. (As of this writing, one USD converts to a little less than seven RMB.)

BC-PDM
(16 nodes)

Existing commercial
Unix server

Hardware cost Computing ability CPU: 64 cores
memory: 128 GB

CPU: 8 cores
memory: 32 GB

Storage ability 16 TB
(4 x 256 GB SATA II each node)

storage array

Cost 240,000 RMB 4,000,000 RMB

Software cost Database 500,000 RMB 1,000,000 RMB

Application software 300,000 RMB 500,000 RMB

Maintenance cost 200,000 RMB 500,000 RMB

Total 1,240,000 RMB 6,000,000 RMB

’Till now, we’ve investigated the correctness, performance, and cost of the new BC-
PDM system. Let’s examine the scalability of the system as we add more nodes to the 
cluster. We ran the ETL operations and data mining algorithms on three cluster sizes: 
32 nodes, 64 nodes, and 128 nodes. We measured the speed-up in execution on larger 
clusters, taking the execution time in the 32-node cluster as baseline. You’ll see the 
results in fi gure 12.2, with the left graph showing the speed-up for ETL operations 
and the right graph showing data mining operations. Note that the horizontal axis 
(representing cluster size) is exponential, with marks doubling from 32 to 64 to 128. 
As exact linear scalability of the operations is the best that we can hope for, the ideal 
graph would have the speed-up go from 1 to 2 to 4. We see that many ETL operations 
are close to this linear scalability ideal. In fact, when the cluster size quadrupled, from 

Figure 12.2 Scalability of ETL (left) and  data mining (right) algorithms on Hadoop cluster 
as extra nodes are added. The horizontal axis represents the number of nodes in the 
BC-PDM cluster. The vertical axis represents the speed-up, relative to the execution time 
on the 32-node cluster.
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32 nodes to 128 nodes, all but two had a speed-up greater than 2.5.2 The data min-
ing algorithms  are more complex, yet they achieve respectable scalability as well. Our 
performance testing earlier (fi gure 12.1) used only a small 16-node cluster, which we 
don’t even consider in the current scalability benchmark. Yet the 16-node cluster could 
handle an order of magnitude more data faster than the existing commercial solution. 
Together these evaluations demonstrate our BC-PDM cluster’s ability to handle data at 
the 100-TB level going forward.

After the thorough evaluation of the BC-PDM system, we worked with the Shanghai 
Branch to apply our system to some of their business needs. One application was to 
characterize their user base to enable precision marketing. More specifi cally, they 
wanted to know how their users are segmented, the characteristics and differences of 
each segment, and to classify each user for targeted marketing. We used the parallel 
K-means   algorithm from our data mining toolset to cluster their user base and created 
the market segmentation graph in fi gure 12.3. Further analysis helped to characterize 
each segment according to the average bill and types of service used. BC-PDM 
performed this analysis 3 times faster than their existing Unix solution.

In conclusion, China Mobile is a large mobile communication provider, 
and there’s tremendous and growing need to analyze large data sets . Current 
commercial offerings are expensive and inadequate for analyzing our user data. We 
investigated the use of Hadoop. We built a data mining system called BC-PDM on 
top of MapReduce and HDFS and found this system to be accurate, fast, cheap, and 
scalable. Going forward, we’ll improve BC-PDM’s effi ciency as well as expand its 
scope by implementing more ETL operations and data mining algorithms. More 
importantly, we intend to establish BC-PDM as a service platform for data analysis 
across China Mobile’s branch companies.  

12.3 Recommending the best websites at  StumbleUpon 
Contributed by KEN MACINNIS  and RYAN RAWSON 

Using a combination of human opinions and machine learning to immediately 
deliver relevant content, StumbleUpon presents only websites that have been sug-
gested by other like-minded Stumblers . Each time you click the Stumble button, you 
are  presented with a high-quality website based on the collective opinions of other 
like-minded web surfers.

StumbleUpon  uses ratings of “like” and “dislike” to form collaborative opinions on 
website quality. When you “stumble,” you’ll only see pages that friends and like-minded 

2  The two exceptions were the Join and the Duplicate Removal operations. They ran in roughly constant time 
irrespective of the cluster size. We are currently investigating the underlying reason for it. One possible 
explanation for Hadoop running a job in constant time (independent of cluster size) is that the job is not 
evenly distributed and one task is the bottleneck to the job’s completion.
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Stumblers have recommended.  This will help you discover great content that is hard 
to fi nd using a traditional search engine.

12.3.1 Distributed beginnings at StumbleUpon 

To collect and analyze this stumbling data, StumbleUpon requires its highly available 
back-end platform to collect, analyze, and transform millions of ratings per day.  With 
nearly 10 million users at present, StumbleUpon fairly quickly surpassed the abilities a 
traditional LAMP  (Linux, Apache, MySQL, PHP) stack afforded us, and we began to 
build a distributed platform for the following reasons:

 Scalability■  —Commodity hardware scales easily in many cases. Twenty Hadoop 
nodes may cost only as much as a single redundant database slave pair.

 Freedom of development■  —Developers have fewer restrictions when compared to de-
signing around a carefully architected, somewhat fragile RDBMS.

 Operational concerns■  —Removing as many single-point-of-failure cases as possible 
is crucial to smooth operation of a world-class service.

 Data processing speed■  —Many system-wide calculations were simply not possible to 
perform with a monolithic system.

Type General: no
special feature,
average bill ¥ 46 

Type Economic:
less service, some
basic calling,
average bill ¥ 54 

Type Life: high
mark in life related
services, average
bill ¥ 70 

Type Business:
high bill, high
roam call,
average bill ¥ 291 

9.2%55.0%

4.5%

1.8%

1.8%

Type White Collar:
more MMS, more
VAS, high mark in
fashion, average bill
¥ 251 

27.6%

Type Chatting:
high SMS, high
GPRS, average
bill ¥ 120 

Figure 12.3 Cluster analysis of user base for China Mobile’s Shanghai Branch using the 
K-means algorithm. The result can be used for the company’s marketing campaigns.
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12.3.2 HBase and StumbleUpon

HBase  plays a critical part in StumbleUpon ’s distributed platform.  HBase is a distrib-
uted, column-oriented database that harnesses the power of the Hadoop and HDFS 
platform underneath it.  But, as with any complex system, there are trade-offs: HBase 
shelves traditional relational database concepts, such as joins, foreign key relations, 
and triggers in the pursuit of a system that hosts immensely large, sparsely populated 
data on commodity hardware in a scalable manner.

AN INTRODUCTION TO HBASE 

HBase is modeled after Google’s Bigtable,3 a distributed storage system. Let’s recap the 
basics of Bigtable  and Bigtable-like systems:

 Shares concepts of both column- and row-oriented databases. As described by ■

the authors, Bigtable is a “a sparse, distributed multidimensional sorted map.” 
The basic unit of storage, a table, is split into multiple tablets (regions in HBase 
parlance).

 Writes are buffered in memory, then fl ushed into read-only fi les after a while.■

 To keep the number of fi les low, they are merged in a ■ compaction process that 
rewrites N fi les into 1.

 Special tablets or regions are used to track the locations of the data.■

 Due to the column-oriented nature of the datastore, ■ sparse tables—those with a 
majority of null cell values—are virtually free as null values aren’t stored explicitly.

 Column families are used to group row columns. All columns in a family ■

are stored together (for locality) and share storage and confi guration 
parameters.

 Table cells are stored with multiple versions instead of overwriting existing data.■

 Capacity (both storage size and processing speed) can be increased by simply ■

adding machines to the cluster, with no special confi guration needed.

HBase  provides many additional features:

 REST and Thrift■ 4 gateways allowing for easy access from non-Java development 
environments

 Easy integration with Hadoop MapReduce for data processing■

 Harnesses the proven reliability and scalability of Hadoop and HDFS■

 Web-based UIs for management of both the master and region servers■

 Strong open source community■

3  Bigtable: A Distributed Storage System for Structured Data. Chang, et al. http://labs.google.com/papers/
bigtable.html.

4  Thrift is a remote procedure call library originally developed at Facebook. It’s now an Apache incubator 
project at http://incubator.apache.org/thrift/.
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Figure 12.4 describes a simplistic version of the data write path in an HBase  region 
server . The write is appended to the server’s write-ahead log:

1 Data is then inserted in to the MemStore .
2 As the MemStore grows beyond a threshold, it’s fl ushed to a new fi le on disk.
3 When there are too many fi les on disk, data store fi les are compacted into 

fewer fi les (minor compaction).

Please visit the project site for further information on obtaining, running, and enhanc-
ing HBase.5

USING HBASE AT STUMBLEUPON 

StumbleUpon carefully selected HBase  from a host of candidate database and 
database-like storage and retrieval systems. We value full consistency, where any 
query subsequent to a write operation is guaranteed to refl ect that write. In addition, 
StumbleUpon is committed to the open source model where we are free to contribute 
back to the community, and HBase’s strong development community both refl ected 
that commitment and offered a valuable resource with which to drive improvements to 
the product.

Our fi rst large test of HBase was in importing existing, legacy data from our 
MySQL -based systems. In the past, we undertook this process only when absolutely 
necessary (such as migrating tables or hosts) and could take days or weeks to 
complete.

COLUMN VERSUS ROW STORE 

You can see one example of the column -store design pattern in the storage of arbitrary 
attributes for a user across multiple logical attribute groupings. In this example, we 
assume a user has

Figure 12.4 HBase write operations

5 http://hadoop.apache.org/hbase/.
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 Contact data■ —Email and web addresses, instant messaging names, profi le photo 
URLs

 Statistics■ —“Signup date,” “last login time,” “last client version seen”
 Attributes■ —For remote login credentials, to authenticate to a third-party service
 Permissions■ —For access to site features and data

In the traditional RDBMS  world, we may arbitrarily assign each group to a table. User 
attributes may be retrieved and associated simultaneously with joins and foreign keys. 
With careful design6 and a relatively moderate amount of data, such a system is fl ex-
ible and maintainable. However, as access patterns change—for instance, we desire to 
store multiple credentials per user where we assumed only one to begin—the design 
is diffi cult to change.

Furthermore, this design suffers its most fatal fl aws when the data volume scales 
past a moderate amount and the schema needs to be refactored. The idea of doing an 
ALTER TABLE  on a production database table containing millions or billions of rows 
as well as the headache of vetting systemic schema changes for both correctness and 
completeness is a daunting prospect. Even with a perfect, static, concrete table, data 
analysis becomes bottlenecked by the selection, input, and output of records.

Let’s take a look at listing 12.1. It’s a simple example where our typical user only has 
an ID and a record per Stumble:

Listing 12.1 Determining Stumbles  per user, per URL

public class CountUserUrlStumbles {
  public static class Map extends MapReduceBase
      implements Mapper<ImmutableBytesWritable, RowResult,
      Text, Text> {
    @Override
    public void map(ImmutableBytesWritable key,
                    RowResult value,
                    OutputCollector<Text, Text> output,
                    Reporter reporter) throws IOException {
      byte [] row = value.getRow();
      int userid = StumbleUtils.UserIndex.getUserId(row);
      int urlid = StumbleUtils.UserIndex.getUrlId(row);

      Text one = new Text("1");
      output.collect(new Text("U:" + Integer.toString(userid)), one);
      output.collect(new Text("Url:" + Integer.toString(urlid)), one);
    }
  }

  public static class Reduce extends MapReduceBase
      implements Reducer<Text,Text,Text,Text> {
    @Override
    public void reduce(Text key,
                       Iterator<Text> values,
                       OutputCollector<Text, Text> output,
                       Reporter reporter) throws IOException {

6 Rarely achieved on the fi rst attempt, since fi nal schemas are rarely known fully a priori!
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      int count = 0;
      while (values.hasNext()) {
        values.next();
        count++;
      }
      output.collect(key, new Text(Integer.toString(count)));
    }
  }

  public static void main(String []args) throws IOException {
    if (args.length < 2) {
      System.out.println("Give the name of the by-userid stumble table");
      return;
    }
    JobConf job = new JobConf(CountUserUrlStumbles.class);
    job.setInputFormat(TableInputFormat.class);
    FileInputFormat.setInputPaths(job, args[0]);
    job.setMapperClass(Map.class);
    job.setReducerClass(Reduce.class);
    job.setOutputFormat(TextOutputFormat.class);
    TextOutputFormat.setOutputPath(job, new Path(args[1]));
    job.setNumMapTasks(5000);
    JobClient jc = new JobClient(job);
    jc.submitJob(job);
  }
}

In this example, we look at a routine StumbleUpon task: counting stumbles per 
user as well as stumbles per URL. Although this task is not particularly complex or 
insightful, we provide it here as a concrete example to the reader of a type of analytic 
task we perform on a daily basis. The most interesting bit is that this trivial example 
completes in about 1 hour (using twenty commodity nodes) when processing a key 
count in the tens of billions. The MySQL-based counterpart doesn’t complete in a 
reasonable amount of time—at least not without special handling and support to 
dump the data from MySQL , split the lines to a reasonable chunk size, and then 
combine the results.

You may fi nd this series of operations familiar: mapping, then reducing! By using 
the generalized facilities of both HBase and Hadoop, we are able to conduct similar 
statistical surveys as needed, without special preparation and runtime handling. To 
apply this straightforward example to the real world, we are now able to complete 
all analysis tasks in the same day they’re requested. We can provide the ability to 
run ad hoc queries at a rate not thought possible before Hadoop and HBase were 
powering our platform. As a business thrives and dies on the data it can analyze, 
this decreased turnaround time makes an incredible impact from the front offi ce 
number crunching to the research engineers doing instant spam analysis on content 
submissions.

One can only imagine the diffi culty of refactoring the custom-processing pipeline 
when the data schema is more complex than this trivial example, if we didn’t have our 
distributed processing platform to power the extraction, transformation, and analysis.
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TRANSCENDING A SINGLE MACHINE 

As we’ve outlined, one of the most important scalability features of HBase is the ability 
to (fi nally) transcend the write limits of a single machine.

Typically, scaling a database involves adding read slaves  and caching  to the system. 
Read slaves can only help if your application is reading more than writing. Caching only 
helps if your data set doesn’t change too often. Even so, these architectural features 
frequently add vast application-side complexity.

HBase  hosts each region on any one of the machines in the cluster (each is a region 
server ). Writes touch the region server hosting that region, and the HBase region 
server writes to three (by default) HDFS data nodes. 7 With a large table and a similarly 
large cluster, writes are spread out to many different machines, inherently avoiding the 
single machine write problem that master-slave data stores have.

This feature can help you scale beyond traditional relational systems at a fraction 
of the cost. As larger hardware tends to become expensive faster than the actual 
performance delivered, this is a fairly profound and important ability. For the large 
work loads at StumbleUpon, the savings could literally be millions of dollars. Some 
problems simply aren’t approachable on a single machine setup!

For highly dynamic data sets, where we frequently read things that were just written, 
caching in a system, such as memcached, may not help much. HBase holds recently 
written data in a write buffer. Reads for that data come directly out of memory. This 
action could completely obviate the need for a caching layer.

One example of a highly dynamic data set is event counters. This is a diffi cult 
problem because most high-speed solutions tend to be RAM-only for performance 
(e.g., memcached), while requiring high durability as well. Enter HBase and its 
incrementColumnValue() call. These mutates  are internally treated as any other 
change, by both logging to disk and buffering up in the write buffer. Reads can come 
directly from the write buffer, accelerating both and achieving high performance 
and durability. StumbleUpon harnesses the natural ability of HBase to support event 
counters in just about every niche of the site—clicks, hits, ads served, and so on.

Furthermore, HBase offers a superior choice to typical sharding solutions. Most 
traditional sharding approaches require a priori assumptions of the key space. This can have 
surprising performance implications when the hashing function isn’t evenly distributed or 
when the keys are distributed outside the assumptions of your sharding scheme.

HBase  takes a data-sized approach to splitting tables  into regions; as the data in a 
region grows and reaches a confi gured size (currently defaulted to 256 MB), a mid-
key is picked from the middle of the data, splitting the region into two roughly equal 
chunks. Each chunk becomes its own region and now has room to grow.  Repeating 
this procedure thousands of times gives a net result of a table with 2000 roughly 
equal-sized regions. Figure 12.5 shows the operation of a simplifi ed HBase cluster 
with three writes and one read concurrently operating on a key space of 256 keys 
(0x00-0xFF).

7 HDFS writes to multiple data nodes to achieve durability of data, as well as locality-based performance.
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 The client bootstraps the ROOT table location from ZooKeeper■  .
 The ROOT table contains pointers to other META tables that hold user table ■

locations.
 The client fi nds the region for the selected operation. The location is cached in ■

the client.
 The request is sent to the region for execution.■

As StumbleUpon’s data continues to grow in an uneven manner, we don’t end up 
with unbalanced shards or regions requiring manual intervention later, a problem 
frequently encountered by most manual sharding solutions involving RDBMS.

LUDICROUS-SPEED HBASE 

For all the talk about HBase’s advantages, initially we found that the performance of the 
system was not up to online data servicing. To fi x that, Ryan contributed back a large 
number of internal performance and reliability enhancements to the HBase project.

The fi rst major contribution was the HFile  format. The previous format had 
ineffi ciencies in the index strategy, read paths, and internal APIs. Several issues were 
identifi ed:

 Stream-oriented format made caching■   diffi cult.
 Index effi ciency was sensitive to the size of the data.■

 Lots of byte array copies were made.■

 Object creation rates were too high.■

HFile  is an immutable fi le format. Once written, no value in it can change. The reader 
and writer are separated in code and there are no mutate or update methods available. 
As most HFiles are hosted on HDFS, it would be impossible anyway because HDFS fi les 
are immutable as well.

The HFile writer has a straightforward write path, with four elements:

 Open fi le, provide compression, block size, and comparator arguments. ■

 These never change for the lifetime of the fi le.■

 Append keys, in comparator sorted order. ■

 Any attempt to add keys in nonsorted order results in exceptions.■

 Optionally append metadata blocks. ■

Figure 12.5 HBase easily and automatically “shards.”



280 CHAPTER 12 Case studies

 Useful for additional data, or features, such as Bloom fi lters■  .
 Close the fi le, fi nalize the index and write the trailers.■

As keys and values are appended to the HFile , the code keeps track of how large the 
current block is. Once it exceeds the block size specifi ed, it’s fl ushed and the compres-
sion system is reset for the next block. As HFile writer appends a block, an in-memory 
index of the fi rst key of each block is formed, along with its in-fi le offset. When the 
close method is called, the block index is written immediately behind the last block. 
Optional metadata blocks are appended next, followed by the metadata block index. 
Finally, a trailer with pointers to the indexes is appended and the fi le is closed.

When a fi le is opened for reading, the data block index  and the meta block index  
are loaded. They stay in resident for the duration, until the reader object is reclaimed. 
The index allows for fast seek and reads of blocks of data. To fi nd a key in the fi le, 
fi rst the reader does a binary search of the index. Finding a block number, it reads in 
and decompresses the data block and stores it in the block cache. Code then iterates 
through the block in memory fi nding the key, or the closest match. Pointers are then 
returned, allowing clients a view into the single copy of data.

HFile gains its strengths from simplicity in both concept and implementation. The 
implementation is one fi le (tests excepted) and is about 1,600 lines for both reader 
and writer.

HFile  provided a new internal platform to rewrite the rest of the region server. 
The internal algorithms for read-merging multiple fi les into a single-scan result had 
grown organically over time and needed a fresh look. Jon Gray  and Erik Holstad  at 
Streamy.com designed and implemented a brand-new read implementation by adding 
new delete semantics and restructuring the internal key formats . By using more 
effi cient algorithms and redoing the implementation on the 0-copy HFile, more speed 
enhancements were gained from the code. 

Overall speed increases were extremely impressive, ranging from 30 times to 100 
times, depending on the particular API call involved. On the low end, scanning a 
series of rows got a 30 times speed-up. On the high end, single row gets can be up to 
100 times faster. With these performance improvements, HBase can truly be labeled 
as “web ready.”

HBASE  AND PARALLELISM

HBase demonstrates excellent parallel speed-up on read and write workloads. As 
StumbleUpon has stored so much data in MySQL, insert performance is important. To 
copy data into HBase, Hadoop jobs with only mappers that read from MySQL and subse-
quently write into HBase were written. Running on a 20-node cluster with about 80 times 
parallelism, aggregate insert performance ranged from 100,000 operations a second up 
to as much as 300,000 operations a second. The rows involved were about 100 bytes.

As impressive as the write performance is, the read performance is exceptional. Using 
an 80-times-parallel MapReduce read aggregation job, it achieves a total read speed of 
4.5 million rows a second. At this rate, reading our largest tables takes less than an hour. 
The ability to write entire table analytics is a powerful ability that previously didn’t exist.



 Recommending the best websites at  StumbleUpon  281

All the machines involved were dual quad core Intels, with 16 GB of RAM. Each node 
had two SATA disks , each 1 TB in size. These relatively modest and standard nodes provide 
an excellent level of performance, and the cluster only performs better with more.

12.3.3 More Hadoop at StumbleUpon

At StumbleUpon , we subscribe to the mantra of “Log early, log often, log everything.” 
No piece of data is too small or too noisy to be useful down the road. Hadoop excels in 
this traditionally strong area for distributed processing: log-and-click collection com-
bined with analysis. StumbleUpon harnesses this natural aptitude of Hadoop for a 
variety of analysis tasks, including Apache  logfi le collection and user-session analysis.

As an example, a basic need for any web product in the days of search engine 
optimization  experts and “black hat” attackers is to look back at a combination of web 
browser user agent strings combined with the (apparent) originating IP address and 
action context. Now imagine needing to do this across a fl eet of web server frontends, 
millions of users, and billions of clicks.

Scribe, 8 a Facebook  project made public, is a platform for aggregating real-time 
streamed log data in such a context. The service is failure tolerant at both the machine 
and network level and easily integrates into just about any infrastructure.

StumbleUpon uses Scribe to collect data directly into HDFS where it’s reviewed and 
processed by a number of systems. A combination of Cascading  and plain MapReduce-
based analysis jobs extract data from the logs for vanilla statistics (such as click counts), 
while more sophisticated consumers feed data into real-time feedback systems based 
around BerkeleyDB  and TokyoCabinet . A second set of systems use this streamed data 
for search index updates and thumbnail generation. Figure 12.6 illustrates several data 
processing modules around Hadoop .

8 http://github.com/facebook/scribe.

 

Figure 12.6 StumbleUpon  data collection, analysis, and storage using Hadoop
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We obtained an illustrative result by processing 10 GB of standard Apache log fi les 
with the Cascading log analysis example.9 Using Hadoop 0.19.1, Cascading 1.0.9, and 
the previously mentioned node confi guration, we obtained the number of Apache hits 
per minute with this example by bucketing the hits in MapReduce jobs. We wrote a 
naive single-node Perl  hash-based program as an example of a typical quick solution 
a sysadmin may create. The results shown in table 12.3 confi rm that our results easily 
achieve linear (or better) speed-up with the simple addition of more nodes to the clus-
ter. Times are the average of 10 mixed executions, to allow for variances.

Table 12.3 Apache  log processing with Cascading 

Apache Log Processing with Cascading

1 Node Runtime 21m46s
Sec/MB 0.127
Sec/MB/Node 0.127

3 Nodes Runtime 8m3s
Sec/MB 0.0471
Sec/MB/Node 0.0157

15 Nodes Runtime 1m30s

Sec/MB 0.00878
Sec/MB/Node 0.000585

Naive Perl Runtime 42m49s
Sec/MB 0.251
Sec/MB/Node 0.251

We see that even the single-node Cascading solution achieves double the throughput 
of the naive Perl application due to the intelligent segmentation and bucketing built in 
to the MapReduce framework versus the effect of keeping all data mapped to a single 
Perl hash. Given familiarity with Cascading, you may also consider the Perl code more 
complex to optimize (and maintain) to boot!

To wit, StumbleUpon uses the native map and reduce functionality in Hadoop and 
related products, including Nutch  and custom-written content surveyors, to perform 
this data retrieval, analysis, and storage. Keeping the resultant data close to the 
processing pipeline maximizes our data locality benefi ts.

Putting it all together, StumbleUpon has taken the maximum advantage of the vast 
power the MapReduce paradigm unlocks by adopting and extending Hadoop, HDFS, 
and HBase. We’re excited to help lead the future of distributed processing.  

12.4 Building analytics for enterprise search —IBM’s Project ES2 
Contributed by VUK ERCEGOVAC , RAJASEKAR KRISHNAMURTHY , SRIRAM RAGHAVAN , FREDERICK REISS , 
EUGENE SHEKITA , SANDEEP TATA , SHIVAKUMAR VAITHYANATHAN , AND HUAIYU ZHU 

In contrast with the radical advances in web search over the last several years, search 
over enterprise intranets has remained a diffi cult and largely unsolved problem. Based 

9 http://code.google.com/p/cascading/wiki/ApacheLogCascade.
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on a study of the IBM  intranet, Fagin et. al. [1] highlighted some critical differences 
between the search problem on the intranet and that on the web. They observed that 
an overwhelming majority of the queries in the intranet are “navigational.” They have 
a small set of correct answers [2,3]. For instance, a manual examination of the top 
6,500 queries (as of July 2008) on the IBM intranet revealed that more than 90 percent 
of those queries were navigational.

Several enterprise-specifi c factors complicate the task of fi nding the “correct” 
answers for these queries: 

 Absence of an economic incentive for content creators to make their pages easily ■

discoverable (in contrast with the presence of such incentives on the web) 
 The use of enterprise-specifi c vocabulary, abbreviations, and acronyms, in the ■

search queries and in the intranet pages 
 The fact that the same query can have a different “correct” answer depending on ■

the location and organizational role of the person issuing the query (of particu-
lar importance for corporations like IBM with employees and locations in over 
80 countries)

From earlier efforts at IBM [4], we learned that these problems are diffi cult to overcome 
using traditional information retrieval techniques. Subsequently, in [5], we proposed 
an approach consisting of detailed offl ine analyses to pre-identify navigational  pages 
and the use of a special-purpose navigational  index. We demonstrated the viability of 
this approach through experiments over a 5.5-million-page corpus from the IBM in-
tranet. The system in [5], uses a mix of proprietary platforms and relational databases. 
We have, since, crawled a much larger portion of the IBM intranet , having discovered 
over 100 million URLs and indexed over 16 million documents. In order to tackle 
these sizes and beyond, and having learned from previous efforts [4,5], we have devel-
oped ES2 —a scalable, high-quality search engine for the IBM intranet . ES2 is based on 
the analytics described in [5], but it leverages a number of open source platforms and 
tools, such as Hadoop, Nutch , Lucene , and Jaql. 10

In principle, the Nutch crawler, the Hadoop MapReduce framework, and the 
Lucene indexing engine provide a full suite of software components for building a 
complete search engine. But, to truly address the challenges described earlier, it’s not 
suffi cient to merely stitch these systems together. We describe how to use sophisticated 
analysis and mining of the crawled pages, and special-purpose navigational indexes 
in conjunction with intelligent query processing to ensure effective search quality. 
To understand how these elements come together, we now examine some illustrative 
search queries and their corresponding results on ES2. See fi gure 12.7.

Figure 12.7 shows the result of running the query idp  on ES2 . The IDP is an acronym 
for Individual Development Plan, a web-based HR application in IBM to assist in tracking 
employee career development. The fi rst two results returned by ES2 represent two 
different URLs that both allow the user to launch the IDP web application. The third 

10 http://code.google.com/p/jaql/.
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result entry is, in fact, a set of pages describing the IDP process, one per country, that 
have been grouped together (indicated visually through indentation and the presence 
of a globe icon). We make the following observations:

1 The fi rst result in fi gure 12.7 doesn’t have the word idp in the title and indeed 
not even in the content of the page. ES2 was able to associate this page with the 
word idp by extracting the term from the URL http://w3.ibm.com/hr/idp/. 
For the second result in fi gure 12.7, besides idp in the URL, we also extract 
idp from the title by applying a regular expression pattern that explicitly looks 
for titles ending in phrases such as “Launch Page,” “Portal,” “Main Page,” and 
so on. In ES2, we use several hundred such carefully crafted patterns applied 
to the URL, title, META headers, and various other features of a web page 
to detect and associate index terms with navigational pages.  Section 12.4.3 
describes how we execute such analysis, known as Local Analysis , in parallel on a 
Hadoop cluster.

2 Our current crawl of the IBM intranet has close to 500 pages that have a 
URL containing idp and over a 1,000 pages that have either idp or individual 
development plan in the title. To narrow down the result to the two specifi c URLs 
shown in fi gure 12.7, we use a complex set of analysis algorithms as part of a 

Figure 12.7 Illustrative search results in ES2
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process known as Global Analysis . Section 12.4.3 describes how to implement 
such analysis in ES2 using the Hadoop framework.

3 Notice that in all the result pages grouped as part of the third result in fi gure 
12.7, the text Individual Development Plan in the title has been highlighted to 
indicate a match against the query term idp . To accomplish this match, the 
following two steps took place during offl ine analysis: (1) the phrase Individual 
Development Plan was extracted as part of local analysis using patterns applied 
to the title and (2) during indexing, the extracted phrase was recognized 
to be the expansion of the acronym idp and resulted in the term idp being 
added to the index as well. In general, we employ a process known as variant 
generation  whereby multiple variants of the terms extracted through local 
analysis are generated and added to the index. ES2 employs a suite of variant 
generation strategies—from simple n-grams over the extracted phrase to more 
sophisticated ones. In the interest of space we don’t describe these algorithms 
in detail.

4 Finally, to enable results to be customized based on the search users’ 
geography and to support the type of result grouping shown in fi gure 12.7, 
we label each page in the intranet with a specifi c geography (country, 
region, and/or IBM location). In ES2, this labeling is accomplished using a 
rule-driven classifi er that uses a number of page features extracted during 
local analysis.

The examples in fi gure 12.7 motivate the vital role of offl ine analysis   and variant gen-
eration  in ES2 . Each page in the ES2 collection is pushed through multiple logical 
workfl ows, each consisting of a local analysis phase, a global analysis phase, and an 
appropriate variant generation strategy. The output of a workfl ow is some subset of the 
input pages along with a set of index terms. Depending on the particular extraction 
patterns and variant generation rules, the output of two different workfl ows will have 
correspondingly different “precision” characteristics. For example, a workfl ow consist-
ing of careful extraction of a person’s name from the title followed by name-specifi c 
variant generation is likely to yield much higher-quality answers than a workfl ow that 
only generates all possible n-grams of the title of a page. 

The creation of an index structure consisting of the output of multiple workfl ows 
with different precision characteristics is only half the story. To fully leverage 
such an index, ES2 employs a sophisticated runtime query processing strategy. A 
discussion of the runtime component of ES2 is beyond the scope of this case study. 
We restrict our attention to the offl ine analysis workfl ows and their implementation 
on Hadoop.

12.4.1 ES2  architecture

We assume that readers are broadly familiar with Hadoop and Nutch.11 Nutch is an open 
source crawler implemented on the Hadoop MapReduce platform for web crawling.

11 http://nutch.apache.org/.
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ES2 also uses Jaql ,12 a data fl ow language designed for JSON (a popular semi-
structured data model). Jaql provides a Unix pipes-like syntax to connect multiple 
stages of processing over semistructured JSON data. The ES2 workfl ow involves 
invoking multiple algorithms for local analysis, global analysis, and variant generation 
before inserting data into indexes. Without adequate data management support, this 
complex multistage workfl ow quickly becomes overwhelming. To address this problem, 
ES2  uses JSON  to represent its data and Jaql to specify the workfl ow (see fi gure 12.8).

Figure 12.8 shows the architecture of ES2. There are six components in ES2: the 
crawler, local analysis, global analysis, variant generation and indexing, background 
mining, and search runtime. ES2 uses an enhanced version of Nutch (version 0.9)—a 
scalable open source crawler based on the Hadoop platform. In addition, ES2 also 
gathers information from IBM’s social bookmarking service (called Dogear ). Much 
like delicious.com, Dogear contains various URLs that have been bookmarked by the 
IBM community along with a collection of tags associated with each URL. The tags 
associated with the URLs contain valuable clues about the page, and ES2 uses this 
information in building its indexes. All the stages use a common distributed fi lesystem, 
HDFS, for both input and output. Local analysis processes each page to extract features 
about the pages and stores the results as JSON objects in HDFS. ES2 uses Jaql to push 
each page through the rest of the pipeline, transforming the data as needed at each 

Figure 12.8 ES2 Architecture

12 http://code.google.com/p/jaql/.
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stage. Jaql queries are used to bring together the results of different local analyses and 
invoke global analysis. Jaql is also used to invoke the variant generation and indexing 
workfl ow using the outputs of local and global analyses. The indexes are periodically 
copied to a different set of machines that serve user queries.

Although not part of the main workfl ow, ES2 periodically executes several mining 
and classifi cation tasks. Examples of this include algorithms to automatically produce 
acronym libraries, regular expression libraries [6], and geo-classifi cation rules.

12.4.2 ES2  crawler

ES2 uses Nutch version 0.9. A primary data structure in Nutch is the CrawlDB : a key-
value set where the keys are the URLs known to Nutch and the value is the status of 
the URL. The status contains metadata about the URL, such as the time of discovery, 
whether it has been fetched, and so on. Nutch  is architected as a sequence of three 
MapReduce jobs: 

 Generate■ —In this phase, a fetch list is generated by scanning the input key/value 
pairs (from CrawlDB) for URLs that have been discovered, but not fetched. A 
common choice in generating this list is to select the top k unfetched URLs using 
an appropriate scoring mechanism (k is a confi guration parameter in Nutch).

 Fetch■ —In this phase, the pages associated with the URLs in the input fetch list  are 
fetched and parsed. The output consists of the URL and the parsed representa-
tion of the page.

 Update■ —The update phase collects all the URLs that have been discovered by 
parsing the contents of the pages in the fetch phase and merges them with the 
CrawlDB.

The pages fetched in each cycle of generate-fetch-update are referred to as a segment . 
Out of the box, the fi rst problem we encountered was crawl speed. Nutch’s crawl rate 

was under three pages per second—far less than the network bandwidth available to 
the cluster. A deeper problem we encountered after a sample crawl of 80 million pages 
was that the quality of discovered pages was surprisingly low. In this section, we identify 
the underlying reasons for both these problems and describe the enhancements made 
to Nutch to adapt it to the IBM intranet.

MODIFICATIONS FOR PERFORMANCE

Nutch’s design was aimed at web crawling  . When using it to crawl the IBM intranet, 
we observed multiple performance bottlenecks . We discovered that the reason for the 
bottlenecks was that the enterprise intranet contains far fewer hosts than the web, and 
some of the design choices made in Nutch assume a large number of distinct hosts. We 
describe two ways in which this problem manifests itself, and the approach used in ES2 
to adapt Nutch’s design for the enterprise.

A major performance bottleneck in the fetch  phase, called long tail problem , exhibits 
the following behavior. The crawl rate in the early part of the fetch phase is relatively 
high (typically dozens of pages a second). But this deteriorates relatively quickly to 
less than a page per second, where it remains until completion of the segment. A 
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quick examination revealed that this behavior is heavily infl uenced by the host with 
the largest number of URLs in the fetch list. You can understand this by observing 
that the fetch rate in Nutch is controlled by two parameters: the number of distinct 
hosts in the fetch list that Nutch can concurrently crawl from, and the duration 
for which Nutch waits before making consecutive requests to the same host. A 
straightforward solution to the long tail problem is to restrict the number of URLs 
for a particular host in the fetch list. Unfortunately, this is not suffi cient because not 
all host servers are identical, and the time required to fetch the same number of 
pages from different hosts can be dramatically different. We added a time-shutoff 
parameter that terminates the fetcher after a fi xed amount of time as an engineering 
fi x to this problem. While this terminates the fetch phase early (and fewer pages 
are retrieved in total in the segment), by avoiding the slow tail phase, we sustain a 
higher average crawl rate. In practice, we observed that by appropriately setting this 
shutoff parameter, the average crawl rate could be improved to nearly three times the 
original crawl rate. Ideally, the current fetch rate should determine such a shutoff; 
this unfortunately requires pooling information across map tasks and can’t easily be 
performed in Hadoop today.

A main-memory data structure in the fetcher causes a different performance 
bottleneck. The fetcher  works by fi rst creating a set of queues where each queue stores 
URLs for a particular host—we call this data structure FetchQueues . A fi xed amount of 
memory is allocated to FetchQueues to be shared across the individual queues. The 
fetcher reads the URLs to be fetched from its input and inserts them into FetchQueues 
until it exhausts the allocated memory. Worker threads assigned to each queue in 
FetchQueues concurrently fetch pages from different hosts as long as their queues are 
non-empty. The bottleneck arises because URLs in the input are ordered by host (this 
is an artifact of the generate phase) and the fetcher exhausts the memory allocated to 
FetchQueues with URLs from very few hosts. Such a design is appropriate for crawling 
a large number of hosts on the web as each host in the fetch list would then have only 
a few URLs. In the enterprise, host diversity is limited to a few thousand at best. As a 
result, few worker threads are actively fetching from FetchQueues, leading to severe 
under-utilization of resources. We address this problem by replacing FetchQueues with 
a disk-based data structure without any limits on the total size. This allows the fetcher to 
populate FetchQueues with all the URLs in the input, thereby keeping the maximum 
possible number of worker threads active. This simple change improved the fetch rate 
several fold.

12.4.3 ES2  analytics

Much of the complexity and power in ES2 lies in its analytics. In this section, we briefl y 
describe the different algorithms, paying special attention to the design choices made 
in mapping these algorithms onto Hadoop.

LOCAL ANALYSIS 

In local analysis, each page is individually analyzed to extract clues that help decide 
whether that page is a candidate navigational page . In ES2, fi ve different local analysis 
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algorithms, namely TitleHomePage, PersonalHomePage, URLHomePage, AnchorHome, and 
NavLink are used. These algorithms use rules based on regular expression patterns, 
dictionaries, and information extraction tools [7] to identify candidate navigational 
pages. For instance, using a regular expression like “\ A\ W*(.+)\s<Home>” (Java 
regular expression syntax), the PersonalHomePage algorithm can detect that a page with 
a title “G. J. Chaitin’s Home” indicates that this is the home page of G. J. Chaitin. The 
algorithm outputs the name of a feature (“Personal Home Page”) and associates a 
value with this feature (“G. J. Chaitin”). The next section describes the impact of redi-
rections on local analysis and discusses a solution.

REDIRECTION RESOLUTION 

Many sites in IBM’s intranet employ redirection for updating, load balancing, upgrad-
ing, and handling internal reorganizations. Unfortunately, redirections can cause 
complications in the local analysis algorithms. For instance, URLHomePage uses the 
text of the URL to detect a candidate navigational page. After redirection, the target 
URL may not contain the same features as the original URL. As an illustrative ex-
ample, consider the URL http://w3.can.ibm.com/hr/erbp.  Local analysis algorithms 
can correctly identify this URL as the home page for the Employee Referral Bonus 
Program (ERBP)  using clues from the URL. But this URL gets redirected to a Lotus 
Domino server at http://w3-03.ibm.com/hr/hrc.nsf/3f31db8c0ff0ac90852568f7006d
51ea/ac3f2f04ba60a6d585256d05004cef97?OpenDocument, where a Lotus Domino 
database serves information about the Employee Referral Bonus Program. The clues 
in the source URL are no longer available in the target, and the local analysis algo-
rithm can no longer identify this page as navigational. To prevent this, ES2 resolves all 
redirections, collects the set of URLs that lead to the target page through redirections, 
and provides local analysis with the appropriate URLs.

To track redirections, we modifi ed Nutch to tag every page that was a target 
of redirection with the source URL. Consider fi gure 12.9. The crawler follows 
redirections from a page A to page B, and from page B to arrive at page C. We 
track these redirections by tagging pages B and C with the source URL, A. This 
tag is stored as a metadata fi eld in the segment fi le . A segment fi le is a key/value set 

Figure 12.9 Resolving 
redirections
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where the key is the URL of a page and the value is contents of the page (along with 
additional metadata fi elds). 

Listing 12.2 (called ResolveSimple ) outlines the map and reduce functions that are 
used to resolve redirections on a segment and invoke local analysis. The map phase 
outputs the source URL and the page contents. The reduce phase brings all the 
pages with the same source URL into a single group. In the preceding example of 
fi gure 12.9, the common source URL for pages A, B, and C is A. The target page 
in this group (C) is then passed to local analysis along with the other URLs in the 
group—A and B. 

Listing 12.2 ResolveSimple

Map (Key: URL, Value: PageData)
if PageData.SourceURL exists then
    Ouput [PageData.SourceURL, PageData]
else
    Output [URL, Pagedata]
end if
End

Reduce (Key: URL, Values: Pageset)
Let URLset = Set of all URLs in Pageset
Let page = Target of redirection in Pageset
result = LocalAnalysis(page, URLset)
output [page.URL, result]
End

HADOOP IMPLEMENTATION 

In ResolveSimple, local analysis is invoked in the reducer . This requires Hadoop to 
pass along the contents of each page from the map phase to the reduce phase. This 
involves sorting and moving a large amount of data across the network. To avoid this, 
we modify ResolveSimple (listing 12.2) and separate the task of redirection resolution 
and the local analysis so that the algorithms in local analysis are run in the map phase. 
This allows the local analysis computation to be colocated with the data, and therefore 
results in signifi cant performance improvement.

We have outlined the modifi ed algorithm, called Resolve2Step, in listing 12.3. In the 
map phase of this algorithm, we only pass the metadata along and the page content 
(which accounts for a majority of the data volume) is projected out. In the reduce 
phase of ResolveSimple, we output a table with two columns: the fi rst column is the 
URL of the target page in the group of pages, and the second column is the set of 
URLs to be associated with the page when it’s submitted to local analysis. 

Listing 12.3 Resolve2Step 

1: Resolve Redirections
Map (Key: URL, Value: Page)
if PageData.SourceURL exists then
    Ouput [PageData.SourceURL, PageData.metadata]
else
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    Output [URL, Pagedata.metadata]
end if
End
Reduce (Key: URL, Values: Pageset)
Let URLset = Set of all URLs in Pageset
Let page = Target of redirections in Pageset
output [page.URL, URLset]
End

2: Run Local Analysis
Map (Key: URL, Value: Page)
Load resolveTable from output of previous step if needed
Let URLSet = resolveTable[URL]
result = LocalAnalysis(page, URLset)
output [page.URL, result]
End

If a URL results in a redirection, we don’t add an entry for it in this table. Table 12.4 
shows an example of such a table. The chain of redirections shown in the preceding 
fi gure 12.9 results in the fi rst row in table 12.4. In a subsequent map-only job for local 
analysis, the map tasks read the redirection table into memory. This table is fairly small 
for typical segments and easily fi ts in memory. For each URL in the input segment, 
the mapper looks up the table if it fi nds a non-empty entry. It passes these URLs on 
to local analysis. By invoking local analysis in the map phase, Resolve2Step avoids the 
transfer of the page contents over the network to the reducers as in ResolveSimple. We 
executed both algorithms for local analysis on a segment of around 400,000 pages on 
the cluster using eight nodes. Whereas ResolveSimple completed in about 22 minutes, 
Resolve2Step took only 7 minutes.

In order to understand how Resolve2Step scales, we ran this algorithm on the 
same segment (400,000 pages) and varied the cluster 
size from one to eight servers. The times are shown in 
fi gure 12.10. The speed-up graph shows that for the early 
part of the curve, we get linear scaling; the benefi ts of 
adding more nodes decreases after this point. This is 
because the input consists of only a single segment of 
400,000 pages. Hadoop is unable to effi ciently divide this 
task at a fi ner granularity. We’ll see in the next section 
that with larger input data sets, Hadoop can effi ciently 
divide the task and provide linear scaling.

GLOBAL ANALYSIS

The local analysis tasks  described in the previous section identify candidate navi-
gational pages by extracting relevant features from each page. But as described in 
section 12.4.1, the same navigational feature can be associated with multiple pages. 
Consider the case where homepage authors use the same title for many of their 
web pages. For example, “G. J. Chaitin home page” is the title for many pages on 
G. J. Chaitin’s website. Local analysis for personal home pages considers all such pages 
to be candidates. ES2 uses global analysis to determine an appropriate subset of pages 

Table 12.4 Resolution table in 
 Resolve2Step

URL Sources

C {A,B}

… …

X {Y}

… …
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as navigational. [5] describes two algorithms: site root analysis  and anchor text analysis . 
We briefl y review these algorithms and describe how Jaql is used to implement these 
algorithms on large data sets.

GLOBAL ANALYSIS ALGORITHMS 

Each global analysis task takes as input a set of pages and the associated features discov-
ered during local analysis. Listing 12.4 shows an example JSON record corresponding 
to the page titled “G. J. Chaitin home page.” The fi elds produced by local analysis are 
in the record titled “LA” and those produced by global analysis are in “GA.”

Listing 12.4 Example JSON output from global analysis and Jaql query

[..., 
{docid: 1879495641814943578,
  url: "http://w3.watson.ibm.com/~chaitin/index.html",
  title: "G J Chaitin Home Page",
  ...
  LA: { 
      personalHomepage: {name: G J Chaitin, begin: 0, end: 11},
      geography: {countries: "USA", ...} 
      ...},
  GA: {
      personalHomepageSiteRootAnalysis: {marked: true, ...},
      ...}
}, ...]

$alldocs  = fi le "laDocs.json";
$results  = fi le "phpGADocs.json";

$alldocs
-> fi lter not isnull($.LA.personalHomepage.name)
-> partition by $t = $.LA.personalHomepage.name
    |- SiteRootAnalysis($t, $) -|
-> write $results;

Figure 12.10 Resolve2Step for 
one segment (400K Pages) has 
a performance speed-up linear in 
cluster size.Cluster Size (# Servers) 
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The two algorithms  of global analysis  are

 Site root analysis■  —Both algorithms are used to group candidate pages and iden-
tify a set of representative pages. Given a collection of candidate pages, it’s fi rst 
partitioned by the feature of interest, for example, PersonalHomePage. For each 
group, a forest of pages is constructed where each URL is a node in the forest, 
relating the two URLS A and B as parent and child if A is the longest prefi x of B. 
(Shorter prefi xes are higher ancestors.) The forest is pruned using some com-
plex logic that may involve inputs from other local analysis algorithms, the de-
tails of which are beyond the scope of this case study. We use site root analysis not 
only for the output from PersonalHomePage, but also for TitleHomePage (e.g., 
pages titled “Working at Almaden Research Center” or “IT Help Central”).

 Anchor text analysis■  —This algorithm collects all the anchor text for each page by 
examining all the pages that point to it. The aggregated anchor text is processed 
to pick a set of representative terms for that URL. For further details on this 
algorithm, see [5].

HADOOP IMPLEMENTATION  

In global analysis, fi rst, a merge step joins together the results of local analysis on the 
main crawl and the tags for the URLs collected from Dogear. This is followed by a de-
duplication step where duplicate pages are eliminated. Each global analysis task then 
involves some standard data manipulation (e.g., partitioning, fi ltering, joining) in con-
junction with some task-specifi c user-defi ned function, such as URL forest generation 
and pruning. Jaql is used to specify these tasks at a high level, and execute them in 
parallel using Hadoop.

Consider the Jaql query in listing 12.4 used for the global analysis on 
PersonalHomePage data. The fi rst two lines specify the input and output fi les. The 
input is assumed to be a JSON array—in this case, an array of records—each record 
representing a page and the associated results from local analysis. The third line 
is the start of a Jaql pipe: pages fl ow from the input fi le, referred to by $allDocs , 
to subsequent operators. The connection between pipe operators is denoted by 
->. Following the input, the “fi lter” operator produces a value when its predicate 
evaluates to true. In the example, only pages that have a local analysis (LA) fi eld, 
a PersonalHomePage fi eld, and a non-null name are output to the next operator. 
The $ is a variable that refers to the current value in the pipe. The fi ltered pages 
are partitioned according to name. For each partition, the user-defi ned function 
SiteRootAnalysis is evaluated. The function takes as input the partitioning fi eld $t  
(a variable for name), and all pages in the partition ($). Finally, the annotated pages 
are written to $results  output fi le.

Jaql evaluates the query shown in the preceding listing 12.4 by translating to a 
MapReduce job and submitting the job to Hadoop for evaluation. In this example, the 
map stage fi lters pages and extracts the partitioning key. The reduce stage evaluates 
the SiteRootAnalysis function per partition and writes the output to a fi le. In general, 
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Figure 12.11 Global 
analysis times

Jaql automatically translates a collection of pipe defi nitions into a directed acyclic 
graph of MapReduce jobs.

In fi gures 12.11 and 12.12, we present how the global analysis  task scaled on a 
collection of 16 million documents using Jaql and Hadoop as the cluster size was 
increased from two to eight servers. Figure 12.11 shows detailed elapsed times for each 
stage involved after local analysis through the end of global analysis. Figure 12.12 shows 
that as servers were added to the cluster, the total time to evaluate merge, dedup, and 
global analysis improved proportionally.

MINING TASKS 

ES2 builds acronym libraries , regular expression patterns , and geo-classifi cation 
rules  automatically using the crawled data in background mining tasks. Recall that 
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local analysis algorithms use these resources. Periodically, the local analysis is rerun 
on all the pages after updating these resources. As an example, we provide a brief 
description of the acronym mining algorithm and the geo-classifi cation algorithm 
used in ES2 below.

Acronym mining is a computationally intensive task that benefi ts from a parallel 
implementation on Hadoop. The algorithm used in ES2 is adapted from [8]. It works 
by examining the text of each page to fi rst identify patterns of the form “longForm 
(shortForm)” or “shortForm (longForm)”. After identifying acronyms and their candidate 
longForms, the map function outputs [shortForm, longForm] as a key/value pair. The 
reduce function gathers all the possible longForms together for a given shortForm and 
ranks them by frequency before producing the output. The reduce function merges 
together longForms that are nearly identical, such as “Individual Development Plan” 
and “Individual Development Plans” as longForms for “idp .” You can see the map and 
reduce functions for the mining task in listing 12.5. This task is easily parallelized on 
a cluster. 

Listing 12.5 Mining for acronyms 

Map (Key: URL, Value: PageText)
Identify all (shortForm, longForm) pairs in the text
For each instance, output [shortForm, longForm]
End

Reduce (Key: shortForm, Values: longForms)
Canonicalize longForms that differ slightly
Compute frequency of each longForm
Output longForms in sorted order
End

Figure 12.13 shows the running time of this algorithm on a sample of 10 million docu-
ments as the number of nodes is increased from two to eight. As can be seen, the 
overall task completes in less than 25 minutes even with two nodes. But we see that this 
task doesn’t scale linearly with the size of the cluster. We suspect that this is because 
the input data is fragmented over several segments, and Hadoop chooses to split this 
job into a large number of tasks in the map phase which imposes a large, fi xed over-
head independent of the cluster size. We’re investigating methods to overcome these 
performance issues.

The goal of the geo-classifi cation  task is to label each page on the intranet with the 
country, region, and/or IBM location for which the page is most relevant. Numerous 
factors make this task particularly nontrivial. For instance, many new business 
processes and web applications within IBM are fi rst deployed in the U.S. before 
being extended to other countries and regions across the world. Site administrators 
responsible for developing the content for the subsequent rounds of deployment 
often use the U.S. page as a starting point and make appropriate edits to tailor the 
pages to their respective countries. But when performing this customization, quite 
often the administrators don’t edit the corresponding HTML meta headers that 
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convey the locale, language, and other geo-specifi c information.13 A simple-minded 
classifi er that directly exploits information from the meta headers is therefore prone 
to errors. In ES2, we’re currently employing a complex rule-driven classifi er consisting 
of a robust set of manually created rules over a small set of page features (e.g., 
presence of a country name in the title, a country code in the URL, etc.). While the 
rules have been hand-tuned for high precision, the recall—the number of pages for 
which the classifi er is able to assign non-empty geo labels—is limited. Improvement 
in recall requires the use of signifi cantly more features from a page than is used by 
our current classifi er. But manually developing accurate rule sets over these larger 
feature sets is extremely laborious. We’re now in the process of developing a scalable 
mining algorithm  to automatically “induce” additional classifi cation rules over these 
new features, given the high-quality rule set already available today. The use of a 
platform like Hadoop is critical to scale our mining algorithms to millions of pages, 
each with several hundred features.

12.4.4 Conclusions

We described the architecture of ES2—a scalable enterprise search system developed 
at IBM using open source components, such as Nutch, Hadoop, Lucene, and Jaql. 
We also outlined the changes we needed to make to Nutch for the purposes of crawl-
ing the enterprise. We mapped the local and global analysis algorithms from [5] on 
to Hadoop. In implementing a complex workfl ow involving crawling, local analysis, 
global analysis, and indexing, we found JSON to be a convenient data format and 
Jaql to be an extremely powerful tool. In summary, we believe that Hadoop, Nutch, 
Lucene, and Jaql constitute a powerful set of tools with which sophisticated, scalable 
systems like ES2 can be built.  
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Figure 12.13 Acronym mining has 
a speed-up linear in cluster size.

13  Note that the meta headers are intended for consumption by browsers and crawlers and not visible when 
the page is rendered.
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appendix 
HDFS fi le commands

This appendix lists the HDFS commands for managing fi les. They’re in the form of

hadoop fs -cmd <args>

where cmd is the specifi c fi le command and <args> is a variable number of argu-
ments.

You can see the command usage in the following convention. Parameters inside 
brackets ([]) are optional and ellipsis (. . .) means the optional parameter can be 
repeated. FILE is for fi lenames whereas PATH can be either fi lenames or directory 
names. SRC and DST are path names but they function specifi cally as source and 
destination, respectively. LOCALSRC and LOCALDST are further required to be 
on the local fi lesystem. 

Command Usage and description

cat hadoop fs –cat FILE [FILE ...]

Displays the fi les’ content. For reading compressed fi les, you should use 
the text command instead.

chgrp hadoop fs –chgrp [-R] GROUP PATH [PATH ...]

Changes the group association for fi les and directories. The -R option 
applies the change recursively. The user must be the fi les’ owner or a 
superuser. See section 8.3 for more background information on the HDFS 
fi le permission system.
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Command Usage and description

chmod hadoop fs –chmod [-R] MODE[,MODE ...] PATH [PATH ...]

Changes the permissions of fi les and directories. Similar to its Unix equivalent, 
MODE can be a 3-digit octal mode, or {augo}+/-{rwxX}. The -R option 
applies the change recursively. The user must be the fi les’ owner or a 
superuser. See section 8.3 for more background information on the HDFS fi le 
permission system.

chown hadoop fs –chown [-R] [OWNER][:[GROUP]] PATH [PATH 
...]

Changes the ownership of fi les and directories. The -R option applies the 
change recursively. The user must be a superuser. See section 8.3 for more 
background information on the HDFS fi le permission system.

copyFromLocal hadoop fs –copyFromLocal LOCALSRC [LOCALSRC ...] DST

Identical to put (copy fi les from the local fi le system).

copyToLocal hadoop fs –copyToLocal [-ignorecrc] [-crc] SRC [SRC 
...] LOCALDST

Identical to get (copy fi les to the local fi le system).

count hadoop fs –count [-q] PATH [PATH ...]

Displays the number of subdirectories, number of fi les, number of bytes used, 
and name for all fi les/directories identifi ed by PATH. The -q option displays 
quota information.

cp hadoop fs –cp SRC [SRC ...] DST

Copies fi les from source to destination. If multiple source fi les are specifi ed, 
destination has to be a directory.

du hadoop fs –du PATH [PATH ...]

Displays fi le sizes. If PATH is a directory, the size of each fi le in the directory 
is reported. Filenames are stated with the full URI protocol prefi x. Note that 
although du stands for disk usage, it should not be taken literally, as disk 
usage depends on block size and replica factors.

dus hadoop fs –dus PATH [PATH ...]

Similar to du, but for a directory, dus reports the sum of fi le sizes in 
aggregate rather than individually.

expunge hadoop fs –expunge

Empties the trash. If the trash feature is enabled, when a fi le is deleted, it 
is fi rst moved into the temporary .Trash/ folder. The fi le will be permanently 
deleted from the .Trash/ folder only after a user-confi gurable delay. The 
expunge command forcefully deletes all fi les from the .Trash/ folder. Note 
that as long as a fi le is in the .Trash/ folder, it can be restored by moving it 
back to its original location.
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get hadoop fs –get [-ignorecrc] [-crc] SRC [SRC ...] 
LOCALDST

Copies fi les to the local fi lesystem. If multiple source fi les are specifi ed, local 
destination has to be a directory. If LOCALDST is -, the fi les are copied to 
stdout.

HDFS computes a checksum for each block of each fi le. The checksums for 
a fi le are stored separately in a hidden fi le. When a fi le is read from HDFS, 
the checksums in that hidden fi le are used to verify the fi le’s integrity. For the 
get command, the -crc option will copy that hidden checksum fi le. The 
-ignorecrc option will skip the checksum checking when copying.

getmerge hadoop fs –getmerge SRC [SRC ...] LOCALDST [addnl]

Retrieves all fi les identifi ed by SRC, merges them, and writes the single 
merged fi le to LOCALDST in the local fi lesystem. The option addnl will add a 
newline character to the end of each fi le.

help hadoop fs –help [CMD]

Displays usage information for the command CMD. If CMD is omitted, it 
displays usage information for all commands.

ls hadoop fs –ls PATH [PATH ...]

Lists fi les and directories. Each entry shows name, permissions, owner, group, 
size, and modifi cation date. File entries also show their replication factor.

lsr hadoop fs –lsr PATH [PATH ...]

Recursive version of ls.

mkdir hadoop fs –mkdir PATH [PATH ...]

Creates directories. Any missing parent directories are also created (like Unix 
mkdir –p).

moveFromLocal hadoop fs –moveFromLocal LOCALSRC [LOCALSRC ...] DST

Similar to put, except the local source is deleted after it’s been successfully 
copied to HDFS.

moveToLocal hadoop fs –moveToLocal [-crc] SRC [SRC ...] LOCALDST

Displays a “not implemented yet” message.

mv hadoop fs –mv SRC [SRC ...] DST

Moves fi les from source(s) to destination. If multiple source fi les are specifi ed, 
destination has to be a directory. Moving across fi lesystems is not permitted.

put hadoop fs –put LOCALSRC [LOCALSRC ...] DST

Copies fi les or directories from local system to destination fi lesystem. If 
LOCALSRC is set to -, input is set to stdin and DST must be a fi le.

rm hadoop fs –rm PATH [PATH ...]

Deletes fi les and empty directories.

rmr hadoop fs –rmr PATH [PATH ...]

Recursive version of rm.
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setrep hadoop fs –setrep [-R] [-w] REP PATH [PATH ...]

Sets the target replication factor to REP for given fi les. The -R option will 
recursively apply the target replication factor to fi les in directories identifi ed by 
PATH. The replication factor will take some time to get to the target. The -w 
option will wait for the replication factor to match the target.

stat hadoop fs –stat [FORMAT] PATH [PATH ...]

Displays “statistical” information on fi les. The FORMAT string is printed exactly 
but with the following format specifi ers replaced.

%b  Size of fi le in blocks

%F  The string “directory” or “regular fi le” depending on fi le type

%n  Filename

%o  Block size

%r  Replication

%y  UTC date in yyyy-MM-dd HH:mm:ss format

%Y  Milliseconds since January 1, 1970 UTC

tail hadoop fs –tail [-f] FILE

Displays the last one kilobyte of FILE.

test hadoop fs –test –[ezd] PATH

Performs one of the following type checks on PATH:

-e  PATH existence. Returns 0 if PATH exists.

-z  Empty fi le. Returns 0 if fi le length is 0. 

-d  Returns 0 if PATH is a directory. 

text hadoop fs –text FILE [FILE ...]

Displays the textual content of fi les. Identical to cat if fi les are text fi les. Files 
in known compressed format (gzip and Hadoop’s binary sequence fi le format) 
are uncompressed fi rst.

touchz hadoop fs –touchz FILE [FILE ...]

Creates fi les of length 0. Fails if fi les already exist and have nonzero length. 
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