
Daniel van Flymen Follow

twitter.com/van_�ymen • blockchain enthusiast & photographer • http://dvf.nyc • south african
in nyc ✌
Oct 23 · 5 min read

Use pyenv + Pipenv for local Python
development
The missing guide for setting up a great local
development work�ow for your Python projects.

his is an opinionated way of developing with Python locally. You’ve

probably discovered that it’s a pain in the ass to manage di�erent

projects with dependencies targeting di�erent Python versions on your

local machine.

To complicate things, there are multiple ways of installing Python too:

Preinstallation by the OS �

Using a package manager like brew or apt �

T

•

•

“Python Environment” by xkcd

https://hackernoon.com/@vanflymen?source=post_header_lockup
https://hackernoon.com/@vanflymen?source=post_header_lockup
https://xkcd.com/1987/

Using the binaries from www.python.org �

Using pyenv—easy way to install and manage Python installations

�

This guide uses pyenv to manage Python installations, and Pipenv
to manage project dependencies (instead of raw pip).

•

•

. . .

Installing pyenv
Let’s install via brew :

$ brew install pyenv

If you’re not on Mac, please see pyenv’s installation instructions.

Add the following to your ~/.bash_profile , or ~/.bashrc

(depending on your shell) to automatically initialize pyenv when your

terminal loads:

eval "$(pyenv init -)"

How does pyenv work?
See all available Python versions:

$ pyenv install --list

Let’s install Python 3.6.6

$ pyenv install 3.6.6

http://www.python.org/
https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv
https://github.com/pypa/pipenv
https://github.com/pyenv/pyenv#installation

Installed Python-3.6.6 to
/Users/dvf/.pyenv/versions/3.6.6

pyenv won’t change your global interpreter unless you tell it to:

$ python --version

Python 2.7.14

$ pyenv global 3.6.6

Python 3.6.6

pyenv allows you to install di�erent versions of Python local to a

directory. Let’s create a project targeting Python 3.7.0:

$ pyenv install 3.7.0

Installed Python-3.7.0 to
/Users/dvf/.pyenv/versions/3.7.0

$ mkdir my_project && cd my_project
$ python --version

Python 3.6.6

$ pyenv local 3.7.0
$ python --version

Python 3.7.0

Now whenever you �nd yourself in my_project you’ll automatically

use the Python 3.7.0 interpreter.

� Did that make sense? If not, stop here and take some time to play

around with pyenv—it works by installing all Python interpreters in

~/.pyenv and dynamically adjusting your $PATH depending on your

current directory.

. . .

What is Pipenv and how does it work?
Pipenv is the o�cially recommended way of managing project

dependencies. Instead of having a requirements.txt �le in your

project, and managing virtualenvs, you'll now have a Pipfile in your

project that does all this stu� automatically.

Start o� by installing it via pip , it’s a rapidly evolving project so make

sure you have the latest version (2018.10.13 at the time of writing):

$ pip install -U pipenv

Using Pipenv for the �rst time

Let’s set up Pipenv in your project:

$ cd my_project
$ pipenv install

Creating a virtualenv for this project…

Pipfile: /Users/dvf/my_project/Pipfile

Using /Users/dvf/.pyenv/versions/3.7.0/bin/python3.7
(3.7.0) to create virtualenv…

You’ll �nd two new �les in your project: Pipfile and

Pipfile.lock .

If you’re installing in a pre-existing project, Pipenv will convert your old

requirements.txt into a Pipfile . How cool is that?

This is what your Pipfile should look like for a fresh project:

[[source]]
url = "https://pypi.org/simple"
verify_ssl = true
name = "pypi"

[packages]

https://pipenv.readthedocs.io/en/latest/

[dev-packages]

[requires]
python_version = "3.7"

Notice that we didn’t activate any virtual environments here,

Pipenv takes care of virtual environments for us. So, installing new

dependencies is simple:

$ pipenv install django

Installing django
...

Installing collected packages: pytz, django
Successfully installed django-2.1.2 pytz-2018.5

Adding django to Pipfile's [packages]…
Pipfile.lock (4f9dd2) out of date, updating to
(a65489)…
Locking [dev-packages] dependencies…
Locking [packages] dependencies…
Updated Pipfile.lock (4f9dd2)!

Installing dependencies from Pipfile.lock (4f9dd2)…

� ▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉ 2/2 — 00:00:01

To activate this project's virtualenv, run pipenv
shell.
Alternatively, run a command inside the virtualenv
with pipenv run.

If you inspect your Pipfile you’ll notice it now contains django =

"*" as a dependency.

If we wanted to install dev dependencies for use during development,

for example YAPF, you’d add --dev to the install step:

$ pipenv install --dev yapf

What is Pip�le.lock?

https://github.com/google/yapf

Pipfile.lock is super important because it does two things:

Provides good security by keeping a hash of each package

installed.

Pins the versions of all dependencies and sub-dependencies,

giving you replicable environments.

Let’s see what it currently looks like:

{
 "_meta": {
 "hash": {
 "sha256": "627ef89...64f9dd2"
 },
 "pipfile-spec": 6,
 "requires": {
 "python_version": "3.7"
 },
 "sources": [
 {
 "name": "pypi",
 "url": "https://pypi.org/simple",
 "verify_ssl": true
 }
]
 },
 "default": {
 "django": {
 "hashes": [
 "sha256:acdcc1...ab5bb3",
 "sha256:efbcad...d16b45"
],
 "index": "pypi",
 "version": "==2.1.2"
 },
 "pytz": {
 "hashes": [
 "sha256:a061aa...669053",
 "sha256:ffb9ef...2bf277"
],
 "version": "==2018.5"
 }
 },
 "develop": {}
}

Notice that the versions of each dependency are pinned. Without a very

good reason, you would always want this �le committed to your source

control.

1.

2.

https://pypi.org/simple

Custom Indexes

Until Pipenv it was di�cult to use private Python repositories, for

example if you’d like to host private Python libraries within your

organization. Now all you need to do is de�ne them as an additional

sources in the Pipfile :

[[source]]
url = "https://pypi.org/simple"
verify_ssl = true
name = "pypi"

[[source]]
url = "https://www.example.com"
verify_ssl = true
name = "some-repo-name"

[packages]
django = "*"
my-private-app = {version="*", index="some-repo-name"}

[dev-packages]

[requires]
python_version = "3.7"

Notice that we told my-private-app to use the private repo. If

omitted, Pipenv will cycle through indexes until it �nds the package.

� Pipenv will also consume any environment variables in values,

which is useful if you have sensitive credentials you don’t want sitting

in source control (this was my contribution </humblebrag>)

Deploying

When deploying it’s important that your deploy fails if there’s a

mismatch between installed dependencies and the Pipfile.lock . So

you should append --deploy to your install step which does just that:

$ pipenv install --deploy

You could also check which dependencies are mismatched:

$ pipenv check

And see which sub-dependencies are installed by packages:

$ pipenv graph --reverse

pip==18.1
pytz==2018.5
 - Django==2.1.2 [requires: pytz]
setuptools==40.4.3
wheel==0.32.2
yapf==0.24.0

Once-o� commands, scripts and activating venvs

If you’re actively developing a project, it’s helpful to activate the virtual

environment:

$ pipenv shell

Launching subshell in virtual environment…
(my_project) ➜ my_project

Or, if you’d like to execute a command inside the venv:

$ pipenv run python manage.py runserver

You can also add scripts to Pipfile similar to npm package.json :

[[source]]
url = "https://pypi.org/simple"
verify_ssl = true
name = "pypi"

[packages]
django = "*"

[dev-packages]
yapf = "*"

https://pypi.org/simple

[scripts]
server = "python manage.py runserver"

[requires]
python_version = "3.7"

Now you can execute the script:

$ pipenv run server

We’ve just touched the tip of the iceberg. If you’ve like to learn more

about Pipenv, I encourage you to read the great documentation.

. . .

I hope this was helpful to you. And I’d love to hear any

thoughts or suggestions you have in the comments!

https://pipenv.readthedocs.io/
https://bit.ly/2O1yNyY

