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Abstract—In this paper, a new stacked-structure-based hi-
erarchical Takagi–Sugeno–Kang (TSK) fuzzy classifier called
SHFA-TSK-FC with both promising performance and high in-
terpretability is proposed to tackle with the shortcoming of the
existing hierarchical fuzzy classifiers in interpreting the outputs
and fuzzy rules of intermediate layers. In order to achieve the en-
hanced classification performance, each component unit, which is a
zero-order TSK fuzzy classifier, in SHFA-TSK-FC is organized in a
stacked way such that all the input features of the original training
samples plus the interpretable augmented features, corresponding
to the interpretable output of each previous component unit, are
fed as the input features of the current component unit. These
augmented features can essentially open the manifold structure of
the original input space such that the enhanced classification per-
formance can be expected. In designing each component unit, its
analytical solution to the consequent parts of fuzzy rules therein
is obtained quickly by using the least learning machine such that
SHFA-TSK-FC becomes scalable for large datasets. Its high inter-
pretability is guaranteed by randomly selecting the input features
and randomly choosing the fixed five Gaussian membership func-
tions for the selected input features in the premise of each fuzzy
rule. Experimental results on real-life datasets and an application
case demonstrate the enhanced or at least comparable classification
performance and high interpretability of SHFA-TSK-FC.

Index Terms—Feature augmentation, interpretability, learning
algorithm, least learning machine, stacked hierarchical structure,
TSK fuzzy classifier.
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I. INTRODUCTION

DUE to their high classification performance and high inter-
pretability, Takagi-Sugeno-Kang (TSK) fuzzy classifiers

[1]–[7], [9], [30] have been making great success in many prac-
tical applications including data-driven prediction techniques in
financial prediction, image processing and medical informat-
ics, adaptive fuzzy control techniques for uncertain nonlinear
systems [8], [10]–[12]. Various optimization approaches have
been developed for modeling TSK fuzzy classifiers. Typical
approaches include the Levenberg-Marquardt approaches [13],
neurofuzzy approaches based on gradient-decent optimization
techniques [14], genetic approaches for balancing the tradeoff
between model complexity and classification accuracy [4], [7],
[15], [30], [41]. In particular, in order to make them useful in
real-world applications, both high classification accuracy and
high interpretability are quite often desired in data driven TSK
fuzzy classifiers. To this end, we attempt to address the follow-
ing issue in this study: (1) inappropriate fuzzy partitions, which
may heavily degrade the interpretability of the premises of fuzzy
rules (i.e., if-parts) and hence can affect the classification per-
formance of TSK fuzzy classifiers, and (2) the rule-explosion
problem (i.e., curse of dimensionality), which often occurs in
the design of a TSK fuzzy classifier for a high dimensional
classification task.

In most TSK fuzzy classifiers, the number of fuzzy rules is
usually assumed to be the same as the pre-specified number of
clusters in the input samples. Thus fuzzy partitions can be deter-
mined by using various clustering methods such as the k-means
[16], [22], FCM and its variants [17], [18], Gath-Geva [19],
Gustafson-Kessel [20] and so on. However, it is not easy for us
to appropriately pre-specify the number of fuzzy rules in prac-
tical applications. Although some mechanisms such as pruning
[21] have been developed to reduce the size of fuzzy classifiers,
each fuzzy rule generated by clustering-based approaches usu-
ally have antecedent conditions on all inputs in the if-parts of
fuzzy rules. Thus the length of each fuzzy rule is usually the
same as the number of features in classification tasks. More-
over, since a fuzzy set for specifying each antecedent condition
is generated independently from other fuzzy rules without con-
sidering the overlap with other fuzzy sets, each resultant fuzzy
rule generated by clustering-based approaches does not usually
have high interpretability.
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Fig. 1. Structures of hierarchical TSK fuzzy classifiers: (a) incremental,
(b) aggregated, (c) cascaded (three stages involved).

Quite often, a fuzzy grid is taken to partition an input space
and generate fuzzy rules in the design of TSK fuzzy classifiers.
However, such a grid will result in the rule-explosion problem
[23] such that the interpretability of TSK fuzzy classifiers will
be severely degraded by the increase in the number of features.
In order to overcome this rule-explosion problem, a hierarchical
TSK fuzzy classifier was firstly proposed by Zhou et al. in
[24] where each component TSK fuzzy classifier has only a
few inputs. Since then, a lot of hierarchical fuzzy systems have
been developed [24]. In general, when these existing hierarchical
fuzzy systems are used for classification, they can be divided into
incremental, aggregated and cascaded, as shown in Fig. 1 where
a TSK fuzzy classifier TSKFC-i is taken as the ith component
unit at the ith layer.

However, in the existing hierarchical TSK fuzzy classifiers,
it is too hard to understand the output from each component
TSK fuzzy classifier, which is fed as an input into component
TSK fuzzy classifiers in the next layer. Consequently, due to the
existence of intermediate variables, it is difficult to interpret the
meaning of each fuzzy rule in component TSK fuzzy classifiers
in intermediate and output layers where outputs from the previ-
ous layers are fed as inputs into the current layer. This difficulty
becomes severe with the increase in the number of layers in
hierarchical TSK fuzzy classifiers.

In order to address the above-mentioned difficulties, we
should consider how to design a hierarchical TSK fuzzy classi-
fier such that high accuracy, comprehensible intermediate out-
puts and highly interpretable fuzzy rules can be achieved. In
what follows, by the interpretability we mean that a hierarchi-
cal fuzzy TSK classifier has all the comprehensible intermediate
outputs and all the highly interpretable fuzzy rules in its each

component TSK fuzzy classifier. We propose such a novel hier-
archical fuzzy classifier design method based on the following
ideas:

1) To partition each input feature into five fixed fuzzy sets
with Gaussian membership functions. Their centers are
fixed at [0, 0.25, 0.5, 0.75, 1]. Obviously, they may be
associated with respective linguistic explanations: very
bad, bad, medium, good, very good, even if all the widths
of these five Gaussian membership functions may be
different.

2) To select randomly less than or at most all the total input
features for each fuzzy rule in each component unit of
the proposed hierarchical classifier. This is to avoid the
curse of dimensionality since a high-dimensional input
space may be covered by a small number of short fuzzy
rules. The use of short fuzzy rules is not only for reduc-
ing the number of fuzzy rules but also for enhancing the
interpretability of each fuzzy rule (e.g., it is much eas-
ier to understand a fuzzy rule with only three antecedent
conditions than that with eight antecedent conditions).

3) To design a stacked structure by means of feature augmen-
tation for a data driven hierarchical TSK fuzzy classifier.
Thanks to the stacked generalization principle [25], the
resultant hierarchical TSK fuzzy classifier indeed has the
enhanced classification performance. In such a stacked
structure, the output of the previous component unit is
augmented to the previous input space and then this aug-
mented input space is fed as the input into the current
component unit. Obviously, from the second layer to the
last layer, the original input space is always taken as a part
of the input space, which is completely different from the
standard hierarchical models in which either the outputs
of intermediate component units or the outputs of inter-
mediate component units plus only a part of the original
input space are fed as the input into the next compo-
nent unit. Since each component unit is a zero-order TSK
fuzzy classifier (see Section II), its output has a concise
interpretation from the perspective of the certainty factor
that a sample belongs to some class. As a result, when
it is taken as an augmented feature, the premises of the
resultant fuzzy rules still keep comprehensible with the
randomly selected five fixed Gaussian membership func-
tions. In other words, such a stacked structure with feature
augmentation effectively circumvent the shortcoming that
an intermediate variable in the existing hierarchical fuzzy
classifiers is not comprehensible.

4) To employ our recent work, i.e., least learning machine
(LLM) [26]–[28], to train each component unit quickly.
By assigning random weights between the first layer and
hidden layers and searching for the analytical solution
of the ridge regression for the weights between the last
hidden layer and the output layer, LLM can achieve the
fast learning for feedforward neural networks. Because a
zero-order TSK fuzzy classifier in each component unit
of SHFA-TSK-FC can be viewed as a feedforward neural
network, it is not hard to have such an idea that each
component unit can be quickly trained by using LLM for
both small/medium-sized and even large datasets.
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Based on the above ideas, we design a stacked-structure based
TSK fuzzy classifier which can be trained in the same manner
as deep learning neural networks using the stacked generaliza-
tion principle. We call this special hierarchical fuzzy classifier
SHFA-TSK-FC (Stacked-structure-based TSK Fuzzy Classifier
with Feature Augmentation) in this study. The contributions of
our work can be summarized as the following three aspects:

1) As a new hierarchical TSK fuzzy classifier, the stacked-
structure-based TSK fuzzy classifier SHFA-TSK-FC with
promising performance and high interpretability is pro-
posed. In SHFA-TSK-FC, the outputs of the previous
component units, which are zero-order TSK fuzzy classi-
fiers, are augmented as a part of the current input space
so as to open the manifold structure existing in the orig-
inal input space in a stacked way. In addition, the fast
learning of each component unit of SHFA-TSK-FC can
be achieved for both small/medium sized and even large
datasets, by means of LLM.

2) The high interpretability of SHFA-TSK-FC can be as-
cribed to the following two aspects: 1) the fuzzy rules can
be understood as those with only the original input features
plus the interpretable augmented features in the premises
of fuzzy rules. Hence, the premises of all fuzzy rules in
SHFA-TSK-FC always have concise physical meanings.
2) The premise of each fuzzy rule in each component
unit is generated by randomly selecting the input features,
randomly choosing Gaussian membership functions for
the selected input features. In such a way, the rule length
of each fuzzy rule (i.e., the number of antecedent condi-
tions) and the total number of fuzzy rules are significantly
reduced.

3) The proposed hierarchical TSK fuzzy classifier SHFA-
TSK-FC is carried out on real-life datasets and an appli-
cation case. The experimental results have witnessed its
enhanced or at least comparable performance and high
interpretability.

The remaining sections of the paper are arranged as follows.
In Section II, related studies including the classical TSK fuzzy
classifier and least learning machine are briefly introduced. In
Section III, the details of SHFA-TSK-FC are stated. Extensive
experimental results are reported in Section IV. Section V con-
cludes the paper.

II. BRIEF REVIEW OF TSK FUZZY CLASSIFIER AND LEAST

LEARNING MACHINE

Because our study is based on least learning machine (LLM)
[26]–[28] and the classical TSK fuzzy classifier, we give their
brief reviews in this section.

The classical TSK fuzzy classifier is one of the most com-
monly used fuzzy classifiers. It adopts the following fuzzy rules
[35].

Rule Rk : IF x1 is Ak
1 ∧ x2 is Ak

2 ∧ · · · ∧ xd is Ak
d

THEN

fk (x) = pk
0 + pk

1 x1 + · · · + pk
dxd, k = 1, 2, . . . ,K. (1)

where Ak
i is a fuzzy subset which is subscribed by the input

variable xi for the kth rule, ∧ is a fuzzy conjunction operator
and K is the number of fuzzy rules. Each rule is premised on the
input vector x = [x1 , x2 , . . . xd ]T and maps the fuzzy sets in the
input space Ak ⊂ Rd to a varying singleton which is denoted by
fk (x). After the corresponding operations and defuzzification,
the output of the TSK fuzzy model can be expressed as

yo =
K∑

k=1

uk (x)
∑K

k ′=1 uk ′(x)
fk (x) =

K∑

k=1

ũk (x)fk (x) (2)

where uk (x) and ũk (x) denote the fuzzy membership function
and the normalized fuzzy membership function, respectively.
They can be written as

uk (x) =
d∏

i=1

uAk
i
(xi) (3)

and

ũk (x) = uk (x)/
K∑

k ′=1

uk ′
(x) (4)

As the commonly used fuzzy membership function, Gaussian
fuzzy membership function is quite often adopted, and it can be
written as

uAk
i
(xi) = exp

(
−(xi − ck

i )2

2δk
i

)
(5)

Here, ck
i and δk

i can be got by clustering techniques or other
approaches. If we adopt the fuzzy c-means clustering algorithm
FCM [17], ck

i and δk
i can be expressed as

ck
i =

N∑

j=1

ujkxji

/ N∑

j=1

ujk (6)

δk
i = h

N∑

j=1

ujk (xji − ck
i )

2
/ N∑

j=1

ujk (7)

where ujk denotes the fuzzy membership of the jth input sample
xj = (xj1 , xj2 , . . . xjd)T which belongs to the kth cluster, and
h is a scale parameter given by the user.

As fk (x), we can use two formats in the classical TSK fuzzy
classifier. When it is determined by a constant pk

0 , this kind of
TSK fuzzy classifier is called zero-order TSK fuzzy classifier
[1]. When it is determined by a linear function, this kind of TSK
fuzzy classifier is called first-order TSK fuzzy classifier [1]. It
is obvious that the output of zero-order TSK fuzzy classifier
can be written as yo =

∑K
k=1 uk (x)pk

0 . Once we determine the
premises of fuzzy rules in the TSK fuzzy classifier and let

xe = (1,xT )T (8)

x̃k = μ̃k (x)xe (9)

xg = ((x̃1)T , (x̃2)T , . . . , (x̃K )T )T (10)

pk = (pk
0 , pk

1 , . . . , pk
d )T (11)

pg = ((p1)T , (p2)T , . . . , (pK )T )T (12)
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the output of first-order TSK fuzzy classifier [2] can be written
as

y0 = pT
g xg . (13)

In this way, the problem of the classical TSK fuzzy classifier
learning can be changed into the learning of the parameters in
the corresponding linear regression model [1].

The classical TSK fuzzy classifier can be naturally applied
to binary classification tasks with the label set being {−1, +1}.
That is to say, we can easily classify the input vector x into
positive class if y > 0 or negative class otherwise. However,
when the classical TSK fuzzy classifier is applied to classifica-
tion tasks of c classes, a simple but effective way we prefer in
this study is to assign the label set as {1, 2, . . . . . . , c}, and then
identify the class which x belongs to through observing which
label the corresponding output y is nearest to.

Generally speaking, first-order TSK fuzzy classifiers have
better classification performance than zero-order TSK fuzzy
classifiers. However, first-order TSK fuzzy classifier is too
hard to give clear interpretation for (d + 1) parameters which
are associated with the consequent parts of fuzzy rules. What
is more, zero-order TSK fuzzy classifier has more concise
interpretability than first-order TSK fuzzy classifier, because
only one parameter pk

0 is involved. For a binary classification
task with the label set {+1,−1}, the value of pk

0 /max
k

(|pk
0 |)

which is a real number in [0, 1] can be viewed a certainty
factor of the kth fuzzy rule. For a c-class classification task
with the label set {1, 2, . . . , c}, let h∗ be the nearest integer
to pk

0 among {1, 2, . . . , c}. When 1 ≤ pk
0 ≤ c, the value of

2 ∗ (0.5 − |pk
0 − h∗|) which is a real number in [0, 1] can be

viewed as a certainty factor of the kth rule to support Class h∗.
When pk

0 < 1 (or c < pk
0 ), the kth fuzzy rule can be viewed as

having a strong certainty factor to support Class 1 (or Class c).
From these discussions, we can see that zero-order TSK fuzzy
classifiers have more concise interpretability than first-order
TSK fuzzy classifiers. So in this study, we prefer each com-
ponent unit of SHFA-TSK-FC being a zero-order TSK fuzzy
classifier.

Now let us introduce LLM in brief [27]. In [27],
Wang et al. proposed a fast learning algorithm (i.e., LLM)
which is for single-layer or multi-layer feedforward neural
networks [27]. Its promising performance has been exper-
imentally demonstrated in [26], and more advances about
it can be seen in [28]. For the sake of brevity, here we
shall only state LLM for a single-layer feedforward neural
network. Assume that g(x, θ1), g(x, θ2), . . . , g(x, θÑ ) de-
note activation functions of Ñ hidden nodes in the hidden
layer, θ1 , θ2 , . . . , θÑ denote kernel parameter vectors and
β1 , β2 , . . . , βÑ denote the output weights. For the training
dataset D = {(xi , ti)|xi ∈ Rd , ti ∈ R, i = 1, 2, . . . , N}, Let
X = [x1 ,x2 , . . . ,xN ]T ,T = [t1 , t2 , . . . , tN ]T , Hi = [g(xi ,
θ1), g(xi , θ2), . . . , g(xi , θÑ )], β = (β1 , β2 , ..., βÑ ).

When we try to determine these activation functions and the
number of hidden nodes, LLM first randomly assigns all these
parameters in the hidden layer of this single-layer feedforward

neural network, then it realizes its fast learning for the parameter
vector β by solving the following ridge regression problem with
the given constant C.

min

(
1
2
β2 + C

N∑

i=1

ξ2
i

)
(14)

s.t. (g(xi , θ1), g(xi , θ2), . . . , g(xi , θÑ ))βT = ti + ξi, i = 1,
2, . . . , N

We can clearly see that the parameter vector β has an analyt-
ical solution β̃ which can be written as

β̃T = HT

(
HHT +

1
2C

IN ×N

)−1

T (15)

where H = [H1 ,H2 , . . . ,HN ]T ,Hi = [g(xi , θ1), g(xi , θ2),
. . . , g(xi , θÑ )] and IN ×N is an N × N identity matrix.

There are obvious differences between LLM and BP-like
learning algorithms [2]–[7]. For BP-like learning algorithms,
it is essential to training all the parameters in both the hidden
layer and output layer. However, according to [26]–[28], only
the learning of the parameters in the output layer is desired
for LLM. Due to this outstanding advantage, we use LLM to
quickly train each TSK fuzzy classifier in each component unit
of SHFA-TSK-FC, because a TSK fuzzy classifier can be viewed
as a feedforward neural network [1], [2], [5].

III. SHFA-TSK-FC: THE PROPOSED HIERARCHICAL TSK
FUZZY CLASSIFIER

In this study, by means of feature augmentation, we develop
a novel stacked-structure-based hierarchical TSK fuzzy classi-
fier to achieve the enhanced classification performance and the
high interpretability. The proposed classifier is motivated by the
following considerations:

1) As pointed out in Trawinski’s work in [30], the inter-
pretability of a TSK fuzzy classifier may be enhanced by
reducing the complexities of fuzzy rules. Although this
idea can be obviously guaranteed by selecting the most
significant input features and discarding others, it is not
trivial to decide whether each input is required or not.
What is more, it is likely that some input features are im-
portant in a certain region of an input space while they are
unimportant and even ignorable in other regions. In a dy-
namically changing environment, the importance of each
input feature may change. As a simple way of dealing
with these situations, we randomly select input features
for each component unit, which indeed results in the use of
short fuzzy rules and hence enhances the interpretability
of our SHFA-TSK-FC.

2) Unlike most hierarchical fuzzy classifiers [31]–[34] where
the outputs of intermediate component units become very
difficult to understand in the hidden and output layers, the
outputs of intermediate 5 component units in the proposed
hierarchical TSK fuzzy classifier are surely interpretable,
due to the use of zero-order TSK fuzzy classifier. In some
hierarchical models, input features are used not only in
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the premises but also in the consequents of fuzzy rules.
This may increase the complexity of learning of hierarchi-
cal fuzzy classifiers. In SHFA-TSK-FC, the interpretable
output from a component unit is taken as an augmented
feature in the premises i.e., then-parts of fuzzy rules of
other component original input space are always kept.
Thus, with the randomly selected Gaussian membership
functions, antecedent conditions of fuzzy rules are always
interpretable.

3) Recently, deep learning neural networks have demon-
strated their outstanding classification performance in
many applications. This is because their deep hierarchical
structures can capture relevant high-level abstraction and
characterize a training dataset very well in a layer-by-layer
way. According to the stacked generalization principle, as
a special kind of deep structures, stacked structure-based
hierarchical models can guarantee the enhanced classifi-
cation performance. Since the original input space plus
interpretable augmented features are always used in its
hidden layers, it is easy to understand the hidden layers in
a similar manner to the input layer using the same input
features. In addition, the stacked generalization principle
can help us avoid solving a hard and nonconvex optimiza-
tion problem which most deep learning approaches have
to solve. What is more, each component unit of SHFA-
TSK-FC can be quickly trained to give analytical solutions
for small/medium sized and even large datasets, with the
help of LLM.

A. On the Structure of SHFA-TSK-FC

The proposed hierarchical TSK fuzzy classifier SHFA-TSK-
FC is composed of component units in a stacked manner, accord-
ing to the stacked generalization principle [25]. Each compo-
nent unit is essentially a special zero-order TSK fuzzy classifier.
Therefore, before we state the entire structure of SHFA-TSK-
FC, we first introduce the structure of each component unit, as
shown in Fig. 2.

A.1. On the Structure of Each Component Unit: In each
component unit of SHFA-TSK-FC, we directly choose five parti-
tions which are denoted by Gaussian membership functions. The
centers of these Gaussian membership functions (i.e., MF_1,
MF_2, MF_3, MF_4 and MF_5) have been fixed at [0, 0.25,
0.5, 0.75, 1]. Obviously, even if their kernel widths are ran-
domly selected, they may still have their respective linguistic
explanations: very bad, bad, medium, good, very good. We do
so because we want to follow the Kuncheva’s claim [36] that if
the choice of membership functions is not consistent throughout
the implementation or the membership functions are of irregu-
lar shapes, then they are unlikely to associate with the linguistic
labels precisely and unambiguously.

In this study, we randomly select the input features and ignore
the remaining features. We do so because the interpretability of
the TSK fuzzy classifier can be enhanced by reducing the com-
plexity of the premises of fuzzy rules in this way. Hence, fuzzy
rules in each component unit can be denoted in the following
form:

Fig. 2. A zero-order TSK fuzzy.

If x1 is badwith fdm1k = 1 ∧ x2 is goodwith fdm2k = 1

∧ x3 is “don
′
t care

′′
with fdm3k = 0 ∧ x4 ismedium

with fdm4k = 1 (16)

in which “don’t care” means that the corresponding feature is
ignored. In order to achieve random selection of both Gaussian
membership functions and the input features, we first define
two matrices (i.e., matrix FDM and RGM ). Matrix FDM
is called the feature decision matrix. In FDM = [fdmjk ]d×K ,
each element represents a decision about the corresponding in-
put feature. fdmjk = 1 implies that the jth feature has been
involved and fdmjk = 0 otherwise. The second matrix is the
d × 5 × K rule generation matrix RGM . In RGM , the value
of every element is randomly assigned binary value and decides
which one of five Gaussian membership functions is adopted.
For example,RGM [2, 1, 5] = 1 indicates that the second input
feature in the 5th fuzzy rule takes the Gaussian membership
function about very bad. Based on the analysis above, the out-
put of this particular zero-order TSK fuzzy classifier can be
written as

y0 =
K∑

k=1

uk (x)βk (17)

where uk (x) =
∏d

j=1 (uk
Ai

(xj ) ⊗ fdmjk ) in which μk
Ai

(xj ) ⊗
fdmjk takes uk

Ai
(xj ) if fdmjk = 1, 1 otherwise. Obviously,

RGM can be used to determine Gaussian membership function
uk

Ai
(xj ). In most cases, FDM can be obtained from experts

by means of their specific domain knowledge. However, in the
proposed TSK fuzzy classifier, every element of FDM can be
randomly assigned 0 or 1. More importantly, these values may
not be given in advance. Such a zero-order TSK fuzzy classifier
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can be seen in Fig. 2. We can readily find that the structure of this
zero-order TSK fuzzy classifier is similar to LLM for a single-
layer feedforward neural network, since each fuzzy rule in the
proposed TSK fuzzy classifier may be equivalently expressed
as the corresponding hidden node.

A.2. On the Stacked Structure and Its Interpretability: As
explained in the above, SHFA-TSK-FC consists of component
units in a stacked way, according to the stacked generalization
principle. The stacked generalization principle [25] can assure
its enhanced generalization capability through constantly open-
ing the manifold structure of the original input space. Another
distinctive advantage exists in the fact that unlike most of deep
learning methods, solving a hard and nonconvex optimization
problem is not required. Because each component unit is a zero-
order TSK fuzzy classifier, its outputs actually contain the dis-
criminative information for both binary and multi-class data.
Therefore, as an effective means of opening the manifold struc-
ture of the original input space, SHFA-TSK-FC augments the
outputs of the previous component units into the original input
space and then present this augmented input space as the input
space into the current component unit. In this way, all the orig-
inal features with their original physical meanings are kept in
the current component unit. As explained in Section II, since
each rule of a zero-order TSK fuzzy classifier adopted in each
component unit has a interpretable output and hence the overall
output of this fuzzy classifier for a sample input is interpretable
for both binary and multi-class classification, the correspond-
ing augmented fatures become concisely interpretable. What is
more, SHFA-TSK-FC is suitable for both small/medium sized
and even large datasets, due to the use of LLM. Here, by a large
dataset, we mean the number of the samples is large and the
number of dimensions is comparatively small.

Fig. 4 demonstrates the structure of SHFA-TSK-FC. Now
let us state how SHFA-TSK-FC works. As shown in Fig. 4,
the original training sample set X and its corresponding output
set T are fed as the input into the first component unit. With
the output set Y1 of the first component unit, SHFA-TSK-FC
generates the augmented input space, i.e.,[X,Y1 ,T], then feeds
it as the input into the second component unit. With the output
set Y2 of the second component unit, SHFA-TSK-FC generates
the augmented input space, i.e.,[X,Y1 ,Y2 ,T], then feeds it
as the input into the third component unit. Such a procedure is
repeated until satisfactory classification performance is achieved
or the maximum depth is reached. The above training process
can be graphically described in Fig. 3. Obviously, the depth of
SHFA-TSK-FC is equal to the sum of one and the number of
augmented features.

Now let us justify the interpretability of SHFA-TSK-FC. As
shown in Fig. 4, we can easily observe the following two facts:
(1) as stated in the above, the interpretable augmented features
representing the outputs from the previous component units are
always involved in the premises of fuzzy rules in the current
component unit of SHFA-TSK-FC, therefore all the features
in the premises of all fuzzy rules in SHFA-TSK-FC always
have concise physical meanings. (2) Since the premise of each
fuzzy rule in each component unit is generated by randomly
selecting the input features, randomly choosing the interpretable

Fig. 3. The training process of SHFA-TSK-FC.

Gaussian membership functions for the selected input features,
each premise of each fuzzy rule is interpretable. In terms of these
two facts, we can certainly claim that each component unit and
hence SHFA-TSK-FC are interpretable. In other words, once the
structure of SHFA-TSK-FC is determined after training, SHFA-
TSK-FC always becomes interpretable.

Our interpretability discussions are relative. It may be clear
that our SHFA-TSK-FC classifiers are much more interpretable
than back-box classifiers such as multi-layer neural networks
and support vector machines. However, it is also clear that our
classifiers are less interpretable than a fuzzy classifier based on
a small number of short fuzzy rules with a single consequent
class such as “If x1 is small and x9 is large then Class 1” and “If
x5 is large and x18 is medium then Class 2”. However, due to
the interpretability-accuracy tradeoff [15], such a simple fuzzy
classifier usually does not have high classification accuracy.
Our discussions on the interpretability of the proposed approach
are based on the comparison with non-hierarchical TSK fuzzy
classifiers where each fuzzy rule has all the given features in
its if-part (i.e., each fuzzy rule is very long) and hierarchical
TSK fuzzy classifiers where short fuzzy rules are hierarchically
structured (i.e., interpretation of intermediate variables is very
difficult).

B. On the Learning Algorithm of SHFA-TSK-FC

Here we first state the learning algorithm of each component
unit of SHFA-TSK-FC, i.e., algorithm 1, and then give the entire
learning algorithm of SHFA-TSK-FC, i.e., algorithm 2.

Below we give several remarks about the above learning
algorithm 1.
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Fig. 4. Structure of SHFA-TSK-FC.

Remark 1: According to LLM, here we compute the output
weight βnl of the nlth component unit using

βnl =
(

1
C

I + HT
nlHnl

)−1

HnlT (18)

instead of its alternative equivalent solution

βnl = HT
nl

(
1
C

I + HnlH
T
nl

)−1

T (19)

It is obvious that the complexity of computing matrix inver-
sion in (18) is O(K3

nl). However, the complexity of computing
the matrix inversion in (19) is O(N 3). Please note, the value
of Kdp is generally much less than the value of N in practi-
cal applications. So algorithm 1 becomes applicable to large
datasets.

Remark 2: Parameter C is only one important parameter
which can be tuned in algorithm 1. Here the value of C can
be chosen as a comparatively large value. In this study, we can
take C = 400.

Now, we can easily give the entire learning algorithm of
SHFA-TSK-FC, according to algorithm 1.

Now we give the remark about the above learning algorithm 2.
Remark 3: On the one hand, according to the stacked gener-

alization principle, the classification performance can generally
be enhanced with the increase of the depth NL of SHFA-TSK-
FC. On the other hand, we should note that the depth of SHFA-
TSK-FC is obviously dependent on the number of augmented
features. In order to open the manifold structure of the training
data and simultaneously make the training data be not distorted
too much, we should consider that the number of augmented
features must be less that the number of the original input fea-
tures. What is more, our experiments reveal that NL may be a
small integer for most ases. After considering these factors, we
take NL = 3 or 4 or 5 in our experiments.

C. On Time Complexity

Here we first observe the time complexity of training the nlth
component unit using algorithm 1. Its time complexity consists
of the time complexity of generating the rule generation matrix
RFMnl , the time complexity of generating the feature decision
matrix FDMnl , the time complexity of computing Hnl and the
time complexity of computing its LLM based output.

The time complexity of generating matrix RGMnl is
O(5(d + nl)Knl), where d is the number of features and Knl is
the number of fuzzy rules. For the time complexity of generat-
ing the feature decision matrix FDMnl , it is obviously O((d +
nl)Knl). In terms of steps 2.2, 2.3 and 2.4 in algorithm 1,

O(5N(d + nl)2Knl) will be required to compute the matrix
Hnl . Step 2.5 of algorithm 1 requires O(K3

nl + NKnl + N)
to compute βnl . Obviously, the time complexity of step 2.6 of
algorithm 1 is O(NKnl). Therefore, the time complexity of
training each component unit becomes

O(5(d + nl)Knl + (d + nl)Knl + 5N(d + nl)2Knl + K3
nl

+ NKnl + N + NKnl) ≈ O(5N(d + nl)2Knl + K3
nl)

Since the depth of SHFA-TSK-FC is NL, so with the use
of LLM, the time complexity of training SHFA-TSK-FC (i.e.,
algorithm 2) roughly is O(

∑N L
nl=1 (5N(d + nl)2Knl + K3

nl)),
which is still linearly dependent on the size N of the training
set when N is considerably large while the number Knl of
fuzzy rules in each component unit is comparatively small. In
particular, when each component unit owns the same number K
of fuzzy rules, the time complexity of algorithm 2 will become
O(
∑N L

nl=1 (5N(d + nl)2K + K3))
Let us go back to observe the time complexity of the classi-

cal zero-order and first-order TSK fuzzy classifiers in Section II.
When FCM [17] is used to determine the premises of fuzzy rules
in these two classifiers, its time complexity is O(NKd) where
K denotes the number of fuzzy rules in both TSK fuzzy classi-
fiers. Once all the premises are determined, all the consequent
parts of fuzzy rules can be estimated by solving the correspond-
ing linear regression system (i.e., (8)–(13)) with a conventional
quadratic programming solver, thereby resulting in the time
complexity of O(N ∼ N 2.3) [1]. Therefore, the entire time
complexity of both zero-order and first-order TSK classifiers
becomes O(N(Kd+1)) ∼ O(N(Kd + N 1.3)). In general, K
in the classical zero-order and first-order TSK fuzzy classifiers
is much bigger than each Knl in SHFA-TSK-FC. By comparing
their time complexities, we can find that when N is not big,
the time complexity of SHFA-TSK-FC may perhaps be higher
than the classical zero-order and first-order TSK fuzzy clas-
sifiers. When N becomes big, SHFA-TSK-FC becomes very
competitive, since both zero-order and first-order TSK fuzzy
classifiers often use a lot of fuzzy rules, thereby leading to poor
interpretability.

IV. EXPERIMENTS AND RESULTS

In this section, experimental results are presented to demon-
strate the enhanced performance of SHFA-TSK-FC. We adopt
twenty-one datasets including both small/medium and large
datasets and do comparative study between SHFA-TSK-FC,
zero-order and first-order TSK fuzzy classifiers, and two
evolutionary fuzzy classifiers in KEEL software toolbox, i.e.,
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Algorithm 1: Learning algorithm of the nl-th component
unit of SHFA-TSK-FC.
Step 1-Initialization:

(1.1) Fuzzify all input features into five Gaussian
membership functions GMF1, GMF2, GMF3,
GMF4 and GMF5, respectively, with their fixed
centers at [0, 0.25, 0.5, 0.75, 1] and their
linguistic explanations: very low, low, medium, high,
very high. Randomly generate the corresponding
five kernel widths, i.e.,σk ∈ R+ , k = 1, 2, . . . , 5.

(1.2) Initialize the feature decision matrix FDMnl , the
rule generation matrix RGMnl .

Step 2-Training:
(2.1) Compute the values of Gaussian membership

functions for each feature xij :

u(k, xij ) = exp(−(xij − ak )2/2σ2
k ), (20)

where i = 1, 2, . . . , N, j = 1, 2, . . . , d, kernel
widths σk ∈ R+ak ∈ {0, 0.25, 0.5, 0.75, 1},
k = 1, 2, . . . , 5.

(2.2) Compute the following value of each feature in a
fuzzy rule, in term of the rule generation matrix
RGMnl , by

vjl(xij ) =
{

1 −∏5
k=1 (1 − RGMnl(j, k, l)u(k, xij )), fdmjl = 0

1 fdmjl = 1
(21)

where i = 1, 2, . . . . . . , N, j = 1, 2, . . . . . . , d,
k = 1, 2, . . . . . . , 5, l = 1, 2, . . . . . . ,Knl .

(2.3) Compute the following value of the if-part of a
fuzzy rule

wil =
d∏

j=1

vjl(xij ) (22)

where wil ∈ Rd∗Kn l , i = 1, 2, . . . . . . , N,
l = 1, 2, . . . . . . ,Knl

(2.4) Construct the rule layer output matrix Hnl

Hnl =

⎡

⎢⎣
w11 · · · w1Kn l

...
. . .

...
wN 1 · · · wN Kn l

⎤

⎥⎦

N ×Kn l

(23)

(2.5) Compute the output weight vector βnl of the nlth
component unit, by using the least learning machine
LLM

βnl =
(

1
C

I + HT
nlHnl

)−1

HnlT (24)

where C is the given regularization parameter and I
is an Knl × Knl identity matrix.

(2.6) Compute the whole output matrix Ynl

Ynl = Hnlβnl (25)

Algorithm 2: Learning algorithm of SHFA-TSK-FC.
Step 1-Initialization:

Input the training set X = [x1 ,x2 , . . . ,xN ]T , the
corresponding class label set T = [t1 , t2 , . . . , tN ]T ,
where xn ∈ Rd , tn ∈ {+1,−1} for a binary
classification task, otherwise tn ∈ {1, 2, . . . .., c} for a
multi-class classification task, in which n = 1,2,
. . . ..,N, and c (>2) is the number of classes, the
number of fuzzy rules in each component unit is
assumed to be K and the number of component units
in SHFA-TSK-FC is assumed to be NL.

Step 2-Training:
(2.1) Train the first component unit with the training set

X and the corresponding output set T and then
form the whole output matrix Y1 , by running
algorithm 1 with nl = 1

(2.2) For nl = 2 to NL do
(2.2.1) Generate the augmented input space

Xnl = [X,Y1 ,Y2 , . . . ,Ynl − 1 ] (26)

and present it as the input to the nlth component
unit

(2.2.2) Run algorithm 1 for the nlth component unit
and obtain the corresponding output Ynl

(2.2.3) If (‖Ynl − Ynl − 1‖2
2≤ ε), then terminate the

training process (i.e., exit loop and go to step 2.4)
where ε is an arbitrarily small positive constant
(ε = 1.0 E − 4 in our experiments)

(2.2.4) Else set nl = nl + 1.
(2.3) end for
(2.4) Output the structure of SHFA-TSK-FC with its

fuzzy rules and parameters in every component unit.

FURIA & C4.5. KEEL (Knowledge Extraction based on Evo-
lutionary Learning) is a free software (GPLv3) Java suite which
empowers the user to assess the behavior of evolutionary learn-
ing and soft computing based techniques for different kind
of data mining problems: regression, classification, cluster-
ing, pattern mining and so on. KEEL software toolbox can be
downloaded from http:www.keel.es/download.php The adopted
datasets are ten binary-class UCI datasets in Table I [38] and ten
multi-class UCI datasets [38] in Table VI and one large dataset,
i.e., the Airline dataset [43]. For the sake of the space of the
paper, more details about them are omitted and can be readily
seen from their respective webpages [38]. The Airline dataset
consists of flight arrival and departure details for all commercial
flights with the USA, from October 1987 to April 2008 [43].
This is a large dataset. There are nearly 120 million records
in total, and takes up 1.6 gigabytes of space compressed and
12 gigabytes [43]. We have taken four years data from the year
1990 to 1993. In our experiments, all the datasets are normal-
ized. We take seventy-five percent of the samples of each dataset
for training and the remaining part of each dataset for testing.
We use both classification accuracy and training/testing time as
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TABLE I
ON ELEVEN BINARY-CLASS DATASETS

Datasets No. of training No. of testing No. of No. of
samples samples features classes

Balloons (BAL) 57 19 5 2
Liver (LIV) 259 86 6 2
Climate-Model-
Simulation-
Crashes
(CLI)

405 135 21 2

Wdbc (WDB) 427 142 15 2
Blood-transfusion
(BLO)

561 187 5 2

Diabetes (DIA) 576 192 8 2
Seismic-bumps
(SEI)

1938 646 19 2

Mushroom (MUS) 3047 1015 22 2
Magic04 (MAG) 14265 4755 11 2
Adult (ADU) 36631 12210 15 2
Airline (AIR) 300000 100000 29 2

the performance indices to evaluate the performance of all the
comparison methods, in which the classification accuracy is de-
fined as the ratio of the number of samples correctly classified
to the total number of samples. All experiments are carried out
on a computer with E5-2609 v2 2.5 GHZ CPU (2 processors)
with 64 GB memory.

A. On Binary-Class Datasets

To observe the performance of SHFA-TSK-FC, ten UCI
binary-class datasets and the Airline dataset [43] are adopted, as
listed in Table I. As we know well, although various classifiers
have been developed, for example, BP neural networks and sup-
port vector machines, we prefer the commonly used zero-order
and first-order TSK fuzzy classifiers [1], [2] as the comparison
methods, since both classification accuracy and interpretability
can be simultaneously observed from them while other classi-
fiers such as SVM and BP neural networks behave like black
boxes. Below we state their respective parameter settings of
these three classifiers. Because both FCM [39] and SVM [39]
are involved in both zero-order and first-order TSK fuzzy classi-
fiers, the regularization parameter in SVM is set by grid search
from 0.01 to 100 with the interval being 0.1 and the number of
clusters in FCM is assumed to be equivalent to the number of
fuzzy rules and the value of the scale parameter r can be set by
grid search from 0.01 to 100 with the interval being 0.1. For clas-
sifiers FURIA and C4.5, all the parameters take their respective
default values in KEEL software toolbox. In SHFA-TSK-FC,
the number of fuzzy rules in each component unit ranges from 2
to 4 with the interval being 1 for the Balloons dataset; from 1 to
5 with the interval being 1 for the Liver dataset; from 3 to 5 with
the interval being 1 for the Climate-Model-Simulation-Crashes
dataset; from 3 to 10 with the interval being 1 for the Wdbc
dataset; from 2 to 8 with the interval being 1 for the Blood-
transfusion dataset; from 3 to 5 with the interval being 1 for the
Diabetes dataset; from 10 to 40 with the interval being 5 for the
Seismic-bumps dataset; from 2 to 20 with the interval being 1
for the Mushroom dataset; from 5 to 30 with the interval being 5

for the Magic04 dataset, from 10 to 250 with the interval being
10 for the Adult dataset and from 150 to 400 with the interval
being 50 for the Airline dataset.

Due to the use of random selection for both input features and
fuzzy membership functions, we may have multiple choices for
the structure of SHFA-TSK-FC on a dataset. In order to demon-
strate the behavior of SHFA-TSK-FC fairly, here we organize
its experimental results from three aspects:

1) the structures of SHFA-TSK-FC under the best training
accuracies on these eleven datasets. This is to demonstrate
the interpretability of SHFA-TSK-FC.

2) the average number of fuzzy rules, average training/testing
classification accuracy and average training/testing time
for 10 trials on each dataset. This is to demonstrate the
average performance of SHFA-TSK-FC.

3) the performance change of SHFA-TSK-FC with the in-
crease of the number of augmented features. This is to
demonstrate how the change of the stacked structures has
impact on the performance of SHFA-TSK-FC.

First, SHFA-TSK-FC obtains the corresponding best train-
ing accuracies for these eleven datasets, i.e., 98.94%, 92.57%,
99.17%, 80.55%, 78.70%, 79.77%, 94.40%, 96.97%, 90.41%,
82.05% and 62.41%. The corresponding structure of SHFA-
TSK-FC are 3-2, 5-4-3-1-1, 5-4-3, 8-7-3, 4-3-2, 5-4-3, 40-35-
30-25-10, 8-5-3-2, 30-25-20-5, 150-120-80-10 and 400-300-
200, respectively for these eleven datasets. Please note, here we
denote the structure of SHFA-TSK-FC by the number of fuzzy
rules in the first component unit-the number of fuzzy rules in
the second component unit- . . . -the number of fuzzy rules in the
last component unit. For example, 3-2 means that SHFA-TSK-
FC consists of two component units, and 3 and 2 fuzzy rules are
taken respectively in the first and second component units.

Next, let us observe the average performance of SHFA-TSK-
FC on these eleven datasets. With the same number of the
component units for each dataset, we run SHFA-TSK-FC ten
times by slightly changing the number of fuzzy rules at each
component unit ten times, then present the experimental results
about average number of fuzzy rules, average training/testing
classification accuracy and average training time and the test-
ing time (in seconds) in standard deviation, which are denoted
by “mean(standard deviation)” in the corresponding Tables II
and III in which — means that the corresponding classifiers
do not work any more or run extremely slowly (more than 4
hours) in our experimental surrounding, or that the correspond-
ing classifiers (i.e., FURIA and C4.5) run in Java rather than
MATLAB, for 10 trials for each classifier on each dataset. We
notice that SHFA-TSK-FC performs better than both zero-order
and first-order TSK fuzzy classifiers and achieves the best av-
erage training accuracies of 98.25%, 98.83%, 78.38%, 79.51%
and 96.88%, and the best average testing accuracies of 68.42%,
97.18%, 71.59%, 74.48% and 95.62%, respectively, for five
datasets from Table II. FURIA is the best for only one dataset
in the sense of both training accuracy and testing accuracy, and
C4.5 demonstrates its superiority over SHFA-TSK-FC only on
the datasets SEI and ADU. According to Table II, we find that the
number of rules determined from the leaves generated by C4.5
is significantly more than those of other classifiers in most cases.
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TABLE II
AVERAGE NUMBER OF FUZZY RULES AND/OR AVERAGE CLASSIFICATION ACCURACIES (%) OF FIVE CLASSIFIERS ON ELEVEN DATASETS

TABLE III
AVERAGE TRAINING TIME AND TESTING TIME OF FIVE CLASSIFIERS ON ELEVEN DATASETS

Datasets zero-order TSK fuzzy classifier first-order TSK fuzzy classifier FURIA C4.5 SHFA-TSK-FC

Training Testing Training Testing Training Testing Training Testing Training Testing

BAL 0.05 (0.01) 0 0.06 (0.01) 0 — — — — 0.06 (0.01) 0.01
CLI 1.09 (0.09) 0.02 6.56 (0.57) 0.08 — — — — 2.13 (0.62) 0.06
WDB 0.70 (0.06) 0.11 0.64 (0.03) 0.11 — — — — 1.97 (0.23) 0.15
BLO 0.45 (0.02) 0.03 0.98 (0.08) 0.06 — — — — 0.98 (0.05) 0.04
LIV 2.44 (0.09) 0.10 5.52 (0.27) 0.03 — — — — 0.63 (0.08) 0.01
DIA 4.53 (0.33) 0.12 24.83 (0.36) 0.04 — — — — 1.76 (0.86) 0.11
SEI 13.54 (0.23) 0.02 14.64 (0.17) 0.12 — — — — 12.90 (0.78) 1.45
MUS 31.01 (5.42) 0.25 42.69 (1.81) 0.48 — — — — 70.87 (2.57) 1.87
MAG 83.07 (1.18) 2.14 5.35e+03 (29.98) 46.98 — — — — 287.07 (33.63) 58.93
ADU 276.57 (13.64) 8.11 1.54e+04 (74.25) 74.23 — — — — 1.73e+03 (33.68) 252.55
AIR — — — — — — — — 1.39e+04 (57.85) 2.10e+03
Mean 41.35 (2.11) 1.09 2084.59 (10.69) 12.21 — — — — 210.84 (9.67) 31.52

On the other hand, SHFA-TSK-FC indeed wins zero-order and
first-order TSK fuzzy classifiers on five datasets in the sense of
both average training and testing accuracy. Moreover, SHFA-
TSK-FC is better than zero-order and first-order TSK fuzzy
classifiers in the sense of the average testing accuracy in most
cases, which implies SHFA-TSK-FC has promising generaliza-
tion performance and more concise interpretability by means of
its fuzzy rules. By means of its simple structure of SHFA-TSK-
FC, we also find that SHFA-TSK-FC runs faster than or at most
comparably to first-order TSK fuzzy classifier but slower than
zero-order TSK fuzzy classifier in most cases, as illustrated in
Table III.

Now, let us observe the performance change of SHFA-TSK-
FC with the increase of the number of augmented features.
Table IV lists the corresponding average training and testing
accuracy for 10 trials for each dataset. As pointed out in the
third remark of Section III-B, our extensive experiments reveal
that SHFA-TSK-FC can achieve satisfactory performance in
most cases through feature augmentation with a range from
to 2 to 4 (hence the depth of SHFA-TSK-FC is from 3 to 5).
In particular, within this range, if the number of the original
features in a dataset is comparatively large and the classification

accuracy of SHFA-TSK-FC with current augmented features is
still quite close to the classification accuracy of the comparison
classifiers (i.e., zero-order and first-order TSK fuzzy classifiers),
we will report more experimental results of SHFA-TSK-FC with
more than current augmented features.

For example, there are 5 features in the Blood-transfusion
dataset. With one augmented feature, SHFA-TSK-FC obtains
the training accuracy being 78.79%. Since 78.79% is close to
80.11% obtained by first-order TSK fuzzy classifier and is larger
than 78.25% obtained by zero-order TSK fuzzy classifier, the
second augmented feature may be considered to further observe
SHFA-TSK-FC. SHFA-TSK-FC accordingly obtains the train-
ing accuracy being 80.23%.

Since 80.23% is bigger than 78.79%, we continue to ob-
serve SHFA-TSK-FC with the third augmented feature and then
obtain the training accuracy being 80.25% which implies that
SHFA-TSK-FC with three augmented features does not have an
obvious increase in the training accuracy and that SHFA-TSK-
FC at this time achieves obvious superiority over zero-order and
first-order TSK fuzzy classifiers. Another example deals with
the Mushroom dataset in which 22 features are involved. With
the first augmented feature, SHFA-TSK-FC obtains the training
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TABLE IV
AVERAGE TRAINING ACCURACIES AND TESTING ACCURACIES (%) OF SHFA-TSK-FC WITH DIFFERENT AUGMENTED FEATURES ON ELEVEN DATASETS

TABLE V
AVERAGE TRAINING TIME AND TESTING TIME OF SHFA-TSK-FC WITH DIFFERENT AUGMENTED FEATURES ON ELEVEN DATASETS

accuracy which is very close to those obtained by first-order TSK
fuzzy classifier but are better than those obtained by zero-order
TSK fuzzy system. Therefore, we continue to observe SHFA-
TSK-FC with the second augmented feature, and it obtains the
training accuracy and testing accuracy which are much better
than those obtained by zero-order and first-order TSK fuzzy
classifiers. However, when SHFA-TSK-FC works with the third
and fourth features, the obtained training and testing accuracies
actually keep stable. In such cases, we do not go ahead to run
SHFA-TSK-FC with more augmented features, and hence we
do not report the corresponding experimental results.

According to Table V, we can find that SHFA-TSK-FC actu-
ally runs faster than first-order TSK fuzzy classifier but slower
than zero-order TSK fuzzy classifier. In general, the training
time and the testing time of SHFA-TSK-FC increase constantly
with the increase of the number of augmented features. Please
note, these experimental results and the concise interpretability
of fuzzy rules in SHFA-TSK-FC show that SHFA-TSK-FC is
a good choice for these binary-class datasets. However, since
the number of augmented features actually has an impact on
the classification accuracy, how to determine an appropriate

TABLE VI
ON TEN MULTI-CLASS DATASETS

Datasets No. of training
samples

No. of testing
samples

No. of
features

No. of
classes

Iris (IRI) 113 37 4 3
Wine (WIN) 134 44 13 3
Page-blocks
(PAG)

4105 1368 11 5

Winequality
(WIQ)

3674 1224 12 7

Balance-scale
(BAS)

469 156 5 3

Abalone (ABA) 3133 1044 9 3
Contraceptive-
Method-Choice
(CON)

1105 368 10 3

Vehicle (VEH) 635 211 19 4
Yeast (YEA) 1113 371 9 10
Car-Evaluation
(CAR)

1296 432 7 4

number of augmented features for SHFA-TSK-FC on each
dataset is still an interesting future research topic.
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TABLE VII
AVERAGE NUMBER OF FUZZY RULES AND/OR AVERAGE CLASSIFICATION ACCURACIES (%) OF FIVE CLASSIFIERS ON TEN MULTI-CLASS DATASETS

TABLE VIII
AVERAGE TRAINING TIME AND TESTING TIME OF FIVE CLASSIFIERS ON TEN MULTI-CLASS DATASETS

Datasets zero-order TSK fuzzy classifier first-order TSK fuzzy classifier FURIA C4.5 SHFA-TSK-FC

Training Testing Training Testing Training Testing Training Testing Training Testing

IRI 0.10 (0.01) 0.04 0.14 (0.03) 0.03 — — — — 0.40 (0.01) 0
WIN 2.49 (0.41) 0.01 2.90 (0.05) 0.12 — — — — 0.73 (0.06) 0.01
PAG 22.53 (0.50) 0.09 50.41 (0.76) 0.24 — — — — 53.98 (1.90) 8.26
WIQ 24.39 (0.84) 0.29 270.17 (1.15) 2.95 — — — — 45.98 (1.42) 6.69
BAS 0.16 (0) 0.03 0.14 (0) 0 — — — — 0.56 (0.02) 0.06
ABA 5.27 (0.58) 0.57 36.13 (0.60) 4.56 — — — — 26.92 (1.45) 4.14
CON 2.84 (0.57) 0.06 8.20 (0.28) 0.5 — — — — 3.33 (0.04) 0.34
VEH 1.47 (0.02) 0.03 41.41 (13.51) 0.17 — — — — 7.07 (0.85) 0.17
YEA 2.41 (0.50) 0.07 8.70 (0.35) 0.45 — — — — 7.11 (0.31) 0.39
CAR 0.38 (0.01) 0.06 2.23 (0.36) 0.26 — — — — 2.09 (0.35) 0.25
Mean 6.20 (0.34) 0.13 42.04 (1.71) 0.93 — — — — 14.82 (0.64) 2.03

B. On Multi-Class Datasets

Table VI lists ten UCI multi-class datasets to further evalu-
ate the classification performance of SHFA-TSK-FC. The same
experimental organization and the same parameter settings for
zero-order and first-order TSK fuzzy classifiers are adopted as
in Section IV-A.

In SHFA-TSK-FC, the number of fuzzy rules ranges from 1 to
10 with the interval being 1 for the Iris dataset; from 1 to 15 with
the interval being 1 for the Wine dataset; from 2 to 30 with the in-
terval being 5 for the Page-blocks dataset; from 10 to 25 with the
interval being 1 for the Winequality dataset; from 5 to 30 with the
interval being 1 for the Balance-scale dataset; from 10 to 20 with
the interval being 1 for the Abalone dataset; from 1 to 10 with the
interval being 1 for the Contraceptive-Method-Choice dataset;
from 5 to 10 with the interval being 1 for the Vehicle dataset; from
5 to 15 with the interval being 1 for the Yeast dataset and from
8 to 15 with the interval being 1 for the Car-Evaluation dataset.

Likewise in the last subsection, in order to demonstrate the
interpretability of SHFA-TSK-FC on these datasets, here we
also report the corresponding structures of SHFA-TSK-FC, i.e.,
3-1, 3-2-1, 15-10-2, 20-15-10, 30-20, 20-15-10, 10-7-1, 10-9-
8-7, 15-10-5 and 15-10-8, respectively, under the obtained best
accuracies, i.e., 98.40%, 87.55%, 91.50%, 53.57%, 95.60%,

56.90%, 60.27%, 71.44%, 69.51% and 96.91%, for these ten
datasets.

The average experimental results obtained by the five com-
parison classifiers are summarized in Tables VII–X. With a
careful inspection for these tables, we can readily find that the
same claim as in the above subsection still holds for these ten
multi-class datasets.

C. Non-Parametric Statistical Analysis

Milton Friedman [42] developed a non-parametric statisti-
cal test, i.e., the Friedman ranking test which is used to detect
differences across multiple tests. Here we apply Friedman rank-
ing test for multiple comparisons about all the datasets listed
in Tables I and VI. The value α = 0.05 is used as the level of
confidence in this test. Friedman ranking test is used to assess
whether some differences exist or not in these multiple compar-
isons about all the datasets. Fig. 5 shows the ranking results of
these five classifiers on both binary and multiple classification
tasks in terms of the Friedman test.

Fig. 5 demonstrates the ranking results of the five classifiers
with p-value being less than 1.0E-4. Obviously, significant dif-
ferences indeed exist in all the classifiers, and C4.5 keeps the best
ranking while SHFA-TSK-FC keeps the second ranking among
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TABLE IX
AVERAGE TRAINING ACCURACIES AND TESTING ACCURACIES (%) OF SHFA-TSK-FC WITH DIFFERENT AUGMENTED FEATURES ON TEN MULTI-CLASS DATASETS

Datasets The first The second The third The fourth The fifth
Datasets augmented feature augmented feature augmented feature augmented feature augmented feature

Training Testing Training Testing Training Testing Training Testing Training Testing

IRI 97.35 (0.78) 94.59 (1.28) 98.23 (0.62) 97.30 (1.35) — — — — — —
WIN 82.84 (2.19) 79.55 (1.56) 85.07 (1.82) 81.82 (1.46) 87.31 (2.23) 84.09 (2.27) — — — —
PAG 90.60 (0.39) 91.52 (1.01) 90.91 (0.52) 88.16 (1.55) 91.25 (0.33) 91.30 (1.88) — — — —
WIQ 52.86 (0.49) 46.73 (1.71) 52.72 (0.62) 50.41 (1.87) 53.21 (0.25) 50.41 (2.12) — — — —
BAS 94.46 (1.51) 93.59 (2.54) 95.52 (1.40) 91.67 (2.25) — — — — — —
ABA 55.47 (0.66) 47.51 (3.50) 56.43 (0.69) 53.54 (3.39) 56.81 (0.69) 56.32 (4.50) — — — —
CON 60.00 (1.61) 54.89 (1.08) 56.74 (1.46) 56.52 (0.99) 60.00 (1.88) 57.07 (1.13) — — — —
VEH 71.18 (0.55) 58.29 (2.30) 71.18 (0.71) 59.72 (2.22) 71.50 (0.38) 65.88 (3.92) 71.34 (0.23) 73.46 (6.03) — —
YEA 66.22 (2.56) 60.38 (1.75) 67.83 (1.96) 61.19 (2.39) 69.00 (2.61) 61.46 (2.38) — — — —
CAR 93.28 (2.19) 91.90 (1.84) 96.45 (2.24) 94.68 (1.96) — — — — — —

TABLE X
AVERAGE TRAINING TIME AND TESTING TIME OF SHFA-TSK-FC WITH DIFFERENT AUGMENTED FEATURES ON TEN MULTI-CLASS DATASETS

The first augmented The second augmented The third augmented The fourth augmented The fifth augmented
Datasets feature feature feature feature feature

Training Testing Training Testing Training Testing Training Testing Training Testing

IRI 97.35 (0.59) 94.59 98.23 (0.62) 97.30 — — — — — —
WIN 0.06 (0) 0 0.06 (0) 0 0.06 (0) 0 — — — —
PAG 50.19 (1.19) 8.17 52.27 (1.82) 8.42 53.98 (1.90) 8.26 — — — —
WIQ 43.31 (1.28) 6.62 43.82 (1.49) 6.63 45.98 (1.42) 6.69 — — — —
BAL 0.47 (0.02) 0.06 0.56 (0.02) 0.06 — — — — — —
ABA 21.03 (1.14) 2.70 25.38 (1.20) 4.15 26.93 (1.45) 4.14 — — — —
CON 3.29 (0.01) 0.25 3.37 (0.01) 0.27 3.33 (0.04) 0.34 — — — —
VEH 5.30 (0.60) 0.03 5.05 (0.20) 0.03 6.13 (0.55) 0.03 7.06 (0.85) 0.05 — —
YEA 6.67 (0.27) 0.44 6.94 (0.43) 0.48 7.11 (0.31) 0.39 — — — —
CAR 2.00 (0.10) 0.17 2.09 (0.35) 0.25 — — — — — —

Fig. 5. Rankings of these five classifiers.

these classifiers. Since C4.5 is based on decision tree rather than
fuzzy systems, SHFA-TSK-FC actually keeps the first among
the remaining four fuzzy classifiers. Next, in order to assess
whether some differences exist or not between SHFA-TSK-FC
and the other classifiers except C4.5 on all the datasets, we re-
conduct the Friedman ranking test for all the classifiers except
C4.5 and then conduct the corresponding Holm post-hoc test.
The results of Holm post-hoc test results are listed in Table XI
where Holm post-hoc test rejects the hypothesis of equivalence
for four classifiers with p < α/i. It seems that SHFA-TSK-FC is
not better than both the first-order TSK fuzzy classifier and FU-
RIA in this test. However, let us keep in mind that SHFA-TSK-
FC has the second ranking among all the classifiers. Therefore,
SHFA-TSK-FC is comparable to three fuzzy classifiers in the

TABLE XI
HOLM POST-HOC TEST RESULTS FOR SHFA-TSK-FC VS. ZERO-ORDER AND

FIRST-ORDER TSK FUZZY CLASSIFIERS AND FURIA WITH α = 0.05

i Classifiers z p Holm Hypothesis

3 zero-order TSK fuzzy classifier 5.3889 0 0.0167 Rejected
2 first-order TSK fuzzy classifier 1.8371 0.0661 0.025 Not Rejected
1 FURIA 0.6124 0.5403 0.05 Not Rejected

sense of accuracy. After considering comprehensible immediate
outputs and interpretable fuzzy rules in SHFA-TSK-FC, we be-
lieve that these results actually indicate that SHFA-TSK-FC has
a good trade-off between high accuracy, comprehensible inter-
mediate outputs and interpretable fuzzy rules, therefore it is a
favorable choice when a hierarchical fuzzy TSK classifier is
desired in practical applications.

D. On Real-World Case: Electricity Pricing Dataset

This experiment on a real-world Electricity Pricing dataset
[40] is arranged here for illustrating both classification perfor-
mance and interpretability. It consists of 45312 instances which
were collected at regular 30-min intervals during 135 weeks. Al-
though there are nine features in the original dataset, here we use
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TABLE XII
THE NUMBER OF FUZZY RULES UNDER BEST ACCURACIES (%) OF FIVE CLASSIFIERS ON THE Electricity Pricing DATASET

Zero-order TSK First-order TSK
fuzzy classifier fuzzy classifier FURIA C4.5 SHFA-TSK-FC

Rules Training Testing Rules Training Testing Rules Training Testing Leaves Training Testing Rules Training Testing

150 69.43 67.61 120 72.88 71.54 7 73.28 73.12 76 76.88 74.47 87 73.59 71.92

TABLE XIII
THE TRAINING TIME AND TESTING TIME OF THREE CLASSIFIERS ON THE Electricity Pricing DATASET

Zero-order TSK fuzzy classifier First-order TSK fuzzy classifier FURIA C4.5 SHFA-TSK-FC

Training Testing Training Testing Training Testing Training Testing Training Testing

182.70 35.88 8.2469e+03 14.41 — — — — 535.11 95.67

TABLE XIV
RULE DESCRIPTIONS

IF THEN output y (class label)

feature_1 feature_2 feature_3 feature_4 feature_5 feature_Y1 feature_Y2 is

Rule 1 very low high medium Don’t care low low very high 0.6832(+1)
Rule 2 low high very high very low Don’t care medium very low −0.3631(−1)
Rule 3 medium high very low Don’t care medium very high low 0.7662(+1)
Rule 4 Don’t care low high very high very low medium very low −0.8951(−1)
Rule 5 very low Don’t care high medium low low very high −0.9753(−1)
Rule 6 medium low very low Don’t care low very high high 0.3763(+1)
Rule 7 Don’t care very high high low medium low very low 0.9269(+1)
Rule 8 very high low high very high Don’t care very low medium −0.9928(−1)

five features, called feature_1, feature_2, feature_3, feature_4
and feature_5 in this experiment, according to [40].The first two
features date the record in day of week (1–7) and half-hour pe-
riod (1–48). The current demands which consist of demand in
New South Wales and demand in Victoria are measured in last
three features. The classification label is a binary value which
indicates that the price of electricity will go up (denoted as +1)
or down (denoted as −1). Because the values of one or two fea-
tures in the first 17760 instances downloaded are incomplete,
we process experimental data on the later 27552 instances (i.e.,
82 weeks from the 54th batch to the 135th batch). Thus the
performance of the proposed hierarchical TSK fuzzy classifier
SHFA-TSK-FC is evaluated on the later 27552 instances in the
Electricity Pricing dataset. For comparison, here we adopt the
same experimental organization and the same parameter settings
for zero-order TSK and first-order TSK fuzzy classifiers as in
the above subsection. In order to design the proposed classifier
SHFA-TSK-FC on the Electricity Pricing dataset, we determine
an appropriate number of fuzzy rules ranging from 50 to 270
in this experiment. Because the interpretability of SHFA-TSK-
FC deals with both its corresponding structure and fuzzy rules
of SHFA-TSK-FC, here we illustrate its interpretability by re-
porting the obtained SHFA-TSK-FC for the best accuracy on

this dataset. In terms of our experiment, the final structure of
SHFA-TSK-FC for the best accuracy on this dataset is 73.59%,
and the corresponding structure of SHFA-TSK-FC is 150-30-5,
respectively for the Electricity Pricing datasets. The experimen-
tal results about accuracy, running time obtained by the three
comparison classifiers are summarized in Tables XII and XIII
in which “—” means that the corresponding classifiers (i.e.,
FURIA and C4.5) run in Java instead of MATLAB such that
we do not compare the running time between them and SHFA-
TSK-FC. From Table XII, it is noticeable that SHFA-TSK-FC
indeed outperforms both zero-order and first-order TSK fuzzy
classifiers, achieving the best training accuracy of 73.59% for
the Electricity Pricing dataset. In terms of the training time
listed in Table XIII, we can see that due to its simpler struc-
ture, SHFA-TSK-FC always runs more quickly than first-order
TSK fuzzy classifier but more slowly than zero-order TSK fuzzy
classifier. What is more, as for easy visible observation for the
interpretability of fuzzy rules, we pick up eight rules among
all the fuzzy rules obtained by SHFA-TSK-FC and then sum-
marize them in Table XIV in which “Don’t care” means that
the corresponding feature is not selected in the corresponding
fuzzy rule. As an example, we can easily express Rule 1 in
Table XIV as
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IF feature 1 is very low

AND feature 2 is high

AND feature 3 isDon′t care

AND feature 4 is low

AND feature 5

AND feature Y l is low

AND feature Y l is low

THEN y = 0.6832(+1)

where feature_Y1 and feature_Y2 are two augmented features
which express the outputs of the first and second component
units of SHFA-TSK-FC, respectively. Obviously, such fuzzy
rules have high interpretability.

V. CONCLUSION

By using the stacked generalization principle, the least
learning machine and feature augmentation trick, a new stacked-
structure-based hierarchical TSK fuzzy classifier called SHFA-
TSK-FC has been developed in this study. SHFA-TSK-FC con-
sists of zero-order TSK fuzzy classifiers as component units.
Unlike in the existing hierarchical fuzzy classifiers, each com-
ponent unit in SHFA-TSK-FC is organized in a stacked way
such that the current component unit is fed with all the input
features of the original training samples plus the interpretable
augmented features, which correspond to the interpretable out-
put of each previous component unit and can indeed open the
manifold structure of the original input space such that the en-
hanced classification performance may be expected. With the
help of the least learning machine, each component unit can have
a fast analytical solution to the consequent parts of fuzzy rules,
which indeed results in the very scalability of SHFA-TSK-FC.
Each component unit and hence SHFA-TSK-FC achieves high
interpretability by randomly selecting the input features and ran-
domly choosing the fixed five Gaussian membership functions
for the selected input features in the premise of each fuzzy rule.
Our extensive experimental results on real-life datasets and an
application case have indicated the power of SHFA-TSK-FC in
the sense of both the enhanced or at least comparable classifi-
cation performance and high interpretability.

There exists a large room worthy to be studied in the future.
For example, an interesting topic may be to explore other feasi-
ble stacked structures for hierarchical fuzzy classifiers. What is
more, for concrete and practical application scenarios, how to
appropriately set several the parameters (i.e., α, C, the number
of fuzzy rules in each component unit and the depth of SHFA-
TSK-FC) is still an open topic, which is our on-going work.
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