
S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 1 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

SpagoBI Architectural Design

 Author Grazia Cazzin

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 2 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Index

VERSION ...4

DOCUMENT GOAL ...4

REFERENCES...4

1 FUNCTIONAL LEVEL ARCHITECTURE...................... ..5

2 APPLICATION LEVEL ARCHITECTURE..................... ..7

2.1 DELIVERY LAYER ..7
2.1.1 BIPortlet...8
2.1.2 BIService ..9
2.1.3 BIXCube...9
2.1.4 BIMessage..9

2.2 ANALYTICAL LAYER ..9
2.2.1 Service Components...9

2.2.1.1 BIParameter ...10
2.2.1.2 BIProfiling ...10
2.2.1.3 BIFunctionality ..11
2.2.1.4 BISearch...11
2.2.1.5 BIQbE ..11
2.2.1.6 BINotify ...11

2.2.2 Core Components...12
2.2.2.1 BIObjController ...14
2.2.2.2 BIObjLogic ..14
2.2.2.3 BIObjDAO...15
2.2.2.4 BIDriver ...15

2.2.3 BIContextController...15
2.2.4 BIObjFactory ...17

2.3 DATA AND METADATA LAYER ..18
2.3.1 Service Repository..19
2.3.2 Metadata repository...19

2.3.2.1 CWMI, MDI Hub and MDI Bridge ...20
2.3.3 Data Warehouse...20

2.3.3.1 Events Define and Alerts Configuration..20
2.3.3.2 Events Store and Alerts Registry ...20
2.3.3.3 Rule engine ..20

2.3.4 Specific Semantic Layer ...21
2.3.5 Generic Semantic Layer...21
2.3.6 ETL – Staging Area..21

2.4 ADMINISTRATION ..22

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 3 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.4.1 Scheduler..22
2.4.2 Logging / Auditing ...22
2.4.3 Workflow ..22
2.4.4 Metadata Management Interface...22

3 EXECUTIVE LEVEL ARCHITECTURE....................... ..23

3.1 INTEGRATION STRATEGY...23
3.2 FIRST TOOLS SELECTION..23

3.2.1 Application Framework: Spago...23
3.2.2 Content repository: Jackrabbit ..23
3.2.3 Search Engine: Lucene ..24
3.2.4 Report Engine: JasperReport...24
3.2.5 OLAP client/engine: Jpivot/Mondrian...24
3.2.6 Data Mining engine: Weka ..24
3.2.7 QbE support: Hibernate...24
3.2.8 ETL support: BIE...25
3.2.9 ETL support: OCTOPUS ...25
3.2.10 Administration – scheduler: Quartz...25
3.2.11 Portal environment – eXo Platform...25

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 4 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

VersionVersionVersionVersion

Version/Release n° : 0.5 Data Version/Release : August, 5 th 2005

Update description: Draft – This is the first version released in the project’s site.

Document goalDocument goalDocument goalDocument goal

This document provides the architectural design of SpagoBI platform, the description of all its
components and their responsibilities. It draws the SpagoBI development guidelines.

This document is a work-in-progress: it's likely to have further and deep reviews. The sections
“in progress” are pointed out.

ReferencesReferencesReferencesReferences

Some of the concepts of this document refer to the following documentation:

[1] BAUER, C., KING, G., Hibernate in Action, Manning Pubblications, Greenwich 2004.
[2] BERRY, M. J. A., LINOFF, G. A. Data Mining Techniques: For Marketing, Sales, and Customer

Relationship Management, Wiley Publishing, New York 20042.
[3] HALPIN, T.,. Information Modeling and Relational Databases. Form conceptual analysis

to logical design, Morgan Kauffman Publisher, San Francisco 2001.
[4] K IMBALL , R., REEVES, L., ROSS, M., THORNTHWAITE, W., The Data Warehouse Lifecycle

Toolkit: Expert Methods for Designing, Developing, and Deploying Data Warehouses,
Wiley Publishing, USA 1998.

[5] K IMBALL , R., Ross, M., The data warehouse toolkit, Wiley, New York 20002.
[6] K IMBALL , R., Merz, R., The Data Webhouse Toolkit: Building the Web-Enabled Data

Warehouse, Wiley Publishing, New York 2000.
[7] K IMBALL , R., CASERTA, J., The Data WarehouseETL Toolkit: Practical Techniques for

Extracting, Cleaning, Conforming, and Delivering Data, Wiley Publishing, New York
2004.

[8] MARCO, D., Building and Managing the Meta Data Repository: A Full Lifecycle Guide, Wiley
Publishing, New York 2000.

[9] RICHARDSON, W.C., AVONDOLIO, D., VITALE , J., LEN, P., SMITH , K.T., Professional
Development With Open Source Tools, Wrox, Indianapolis 2004.

[10] SILVERSTON, L., The Data Model Resource Book, Wiley Publishing, New York 2001.
[11] WITTEN, I.H., FRANK, E., Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations, Morgan Kauffman Publisher, 2000.

Information about the Spago framework are available in the Spago Project site

(http://spago-info.eng.it).

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 5 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

1111 Functional level architecture Functional level architecture Functional level architecture Functional level architecture

A Business Intelligence platform provides all the necessary tools in order to manage and deliver
documents, analysis models, control and forecast systems. Every kind of document maintains its
features, but everyone integrates itself in a common infrastructure which provides the right
application level and execution environment.

The functional SpagoBI architecture follows.

Picture 1 – Functional SpagoBI architecture

The Enterprise Application Integration is related to the integration with generic portals; they
can be specific BI portals or generic enterprise portal services. It allows SpagoBI to manage
usable Business Intelligence services.

The BI Application supports the analytical core of the platform. It manages in a similar way the
production of the results validation cycles, the parametric activation, the navigation, the
versioning and storage, although every BI object maintains its distinctive feautures. It supports a
common strategy for the parameters management, the activation and interaction modality, the
visibility and authorizations policies and rules, organization and navigation across the different
documents.

The BI Engines are the interfaces for the engines which realizes the analytical documents.

The Data sources and tools integration are related to the integration with source systems and to
the all platform’s aspects and used tools, in order to achieve data and metadata integration.

Data sources and tools integration

A
d

m
in

is
tr

at
io

n

Enterprise Application Integration

BI Engines

BI Applications

Dev
Tools

Analytics

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 6 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

The Administration provides support for the management functionalities of the whole platform,
like scheduling, workflow design, logging and auditing services, users profiling interface and so
on.

The Development tools are the specific products used for designing Business Intelligence
documents. SpagoBI hasn’t a prefixed set of development tools; the user can choose his favourite
ones.

The Analytics, as a thematic model (like CRM, HR, Budget, Sales, etc.), are out of the project
scope, as well as development tools. They will be the result of single projects which can evolve to
general models.

So, apart from Development Tools and Analytics, a layered functional architecture view is the
following:

o Delivery layer realizing Enterprise Application Integration (output integration);

o Analytical layer realizing BI Applications and BI Enginees interfaces (the platform core);

o Data and metadata layer solving all Data Source and tools integration responsibilities
(the input and integration core).

Picture 2 – SpagoBI’s layers

Data sources and tools integration

A
d

m
in

is
tr

at
io

n

Enterprise Application Integration

BI Engines

BI Applications

Dev
Tools

Analytics

Data sources and tools integration

A
d

m
in

is
tr

at
io

n

Enterprise Application Integration

BI Engines

BI Applications

Dev
Tools

Analytics

Delivery
layer

Analytical
layer

Data &
Metadata

layer

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 7 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2222 Application level architectureApplication level architectureApplication level architectureApplication level architecture

Every layer of functional architecture is composed by means of different application modules, as
shown in the detailed picture and explained in this chapter.

Picture 3 – SpagoBI application level architecture

2.12.12.12.1 DDDDELIVERY ELIVERY ELIVERY ELIVERY LLLLAYERAYERAYERAYER

The Delivery Layer main goals are both to make the Business Intelligence services usable in
different ways and to give to the external application the capability to interact with SpagoBI. It
supports different channel/protocols:

o Portlet (HTTP to portlet container), exposing Business Intelligence services managed by
SpagoBI

o Web Services (over SOAP/HTTP protocol) for Business Intelligences services invocation
from enterprise portal and applications

ETL

BI Core Components (BIObj)

A
D

M
IN

IS
T

R
A

T
IV

E
 T

O
O

LS
 /

S
C

H
E

D
U

LI
N

G

BIContextController

BIDashboardBIOlap
BIData
MiningBIReport

Specific semantic layer Native access

Service Components

BIParameter

BIProfiling

BIFunctionality

BISearch

BIQbE

Staging Area

Source Systems

DWHMETADATAService Repository

BINotify

D
el

iv
er

y
la

ye
r

A
na

ly
tic

al
 la

ye
r

D
at

a
&

 M
et

ad
at

a
la

ye
r

BIPortlet BIService BIXCube BIMessage

Generic semantic layer

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 8 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

o JMS for platform interaction by JMS messages.

These implementations are based on Spago’s adapters (AdapterPortlet, AdapterSOAP,
AdapterJMS).

SpagoBI’s services and interactions are useful only with some of the available
channels/protocols. In the next chapters the allowed channel/service and channel/interaction
combinations will be outlined.

2.1.1 BIPORTLET

All main BI services are exposed via portlet, according to the JSR 168 specification. It’s possible
to build your custom interface in a new Business Intelligence Portal, or as a part of an existing
one, by including the necessary portlets.

The first available portlets, everyone deployed in the same WebApplication, are:

o SBISettings: it offers the necessary services to manage the technological platform
configuration to a portal administrator. It provides for the engines configuration, the
functional tree management and the extraordinary maintenance of the documents
configuration and state.

o SBIDevelopmentContext: it enables the services for BI Objects configuration to be used
in a portal setting. It's responsible for setting the execution context of the BI services (ex:
the parameters definition and the use mode, the control rules, the category locations and
the documents profiling). For further information, see to the section related to the services
exposed by this portlet.

o SBIFunctionality : it offers the functional view of the documents registered in SpagoBI
platform and allows their parametric activation. It makes available the core of a BI
solution in a portal setting. This portlet works in two different ways:

 for the test users, it only filters the document in TEST state and can activate them
simulating all the expected final users' roles. If the test is successful, the document
can be released for the end-user.

 for the end-users, the portlet filters the document in RELEASE state and according
to his functional roles. In this case, you can navigate through the category tree, up
to reach the documents which realize a specific functionality. Here you can
execute it, either a Report, a OLAP, a Data Mining model or a Dashboard view.
You can either navigate through the documents or shift from a document to
another inheriting its settings.

o BIObjSearch.

In progress.

o BIQbE .

In progress.

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 9 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.1.2 BISERVICE

You can use Web Services to interact with other enterprise applications or portals.

In progress.

2.1.3 BIXCUBE

A simple transmission of the information and the results is made easier by means of XML
structures and models.

In progress.

2.1.4 BIMESSAGE

JMS messages enables the analytical process; it also highlight the critical conditions.

In progress.

2.22.22.22.2 AAAANALYTICAL LAYERNALYTICAL LAYERNALYTICAL LAYERNALYTICAL LAYER

The Analytical Layer is the platform core which coordinates all the analytical activities
supplying their supporting tools. Its main components are Report, OLAP, Data Mining,
Dashboard and Scorecards modules: each of them corresponds to a specific functionality of the
same architectural setting: this layer allows an easy learning and a modular use.

Some service components support the core effectiveness preparing the working environment
in its collateral aspects: parameters unified management, filters and domains, query by example
capabilities, engines and object profiling systems, structuring of categories for documents
classification, documents storage and search, approval and management workflow.

The controller takes the responsibility for a successful coordination of the core components
interaction and of their interaction with the service components.

2.2.1 SERVICE COMPONENTS

In the analytical layer, the service components don’t correspond to an analytical task (unlike
OLAP or Data Mining), but they support and make easier the process. They are described in the
following.

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 10 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Picture 4 – Service Components

2.2.1.1 BIParameter

BIParameter takes the responsibility to manage the input values for the analytical modules
startup and navigation; it also regulates the data visibility according to users’ roles. So,
BIParameter component enables:

o input modality definition (manual input, predefined list of values, values from lookup
tables or view, default value and so on);

o validation rules to check the inserted value;

o parameter’s behaviour definition (its presentation form and value checks modality) in
relation with user’s roles.

BIParameter is an independent component; it can interact with any analytical one’s (report,
OLAP, Data Mining, Dashboard and scorecard - see at the corresponding section for details -)

2.2.1.2 BIProfiling

BIProfiling is responsible for the analytical documents registration. Every analytical module can
be realized with different tools and it can use different engines to run. For example, you can have
some reports running on JasperReport (FOSS product) together with others reports working on
CrystalReport (proprietary product).

So, the BIProfiling component enables:

o engines registration with standardized information set, useful for its execution;

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 11 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

o analytical document registration. For every document (that is already developed) some
standardized information are kept, including the specific engine to use and the parameter
input to receive.

BIProfiling depends on BIParameter component for the parameters’ interface.

2.2.1.3 BIFunctionality

BIFunctionality takes the responsibility to define and to manage the Business Intelligence
services realized on the SpagoBI platform.

In a enterprise portal, the services offered are clear: for example, a banking portal will have
functionalities such as 'transfer management', ‘accounting operations list’, 'trading'. Moreover
they can be organized in other sub-functionalities.

Otherwise, usually in a Business Intelligence portal the functionalities aren’t so defined. You can
define services such as ‘Sales analysis’, ‘Budget’, ‘Marketing models’, ‘Simulation area’. Each of
them collects many detailed documents like 'sale trend forecast for product industry', ‘annual
sales reporting’, ’sales deviation from plan’ and so on.

BIFunctionality manages the structuring of a functional tree providing for:

o the tree creation and maintenance;

o the production of a generic analytical documents’ keeping, under the tree lowest level (of
every type, also Data Mining models too);

o the visibility and autority regulation on the users roles base;

o the maintenance of the historical versions for the relevant documents;

o the approval and certification procedure for the documents’ production, in cooperation
with the workflow supplied by the administration tools (looks later for additional
information).

BIFunctionality depends from the BIProfiling component for analytical documents’ interface.

2.2.1.4 BISearch

BISearch is a documental search engine component.

In progress.

2.2.1.5 BIQbE

BIQbE is a component for inquiring of data in a semantic form. It offers a visual mode for data
inquiring. It enables the saving of a template structure for subsequent reports development, or the
results’ exporting for external elaborations (ex: cvs, XML).

In progress.

2.2.1.6 BINotify

BINotify is an alerting and events notification component.

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 12 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

In progress.

2.2.2 CORE COMPONENTS

The SpagoBI platform’s heart and its analytical center are the modules directly faced to the
datawarehouse inquiring and to its stored information analysing.

Reporting, OLAP Analysis, Data Mining, Dashboards and Scorecards are the BI core
components of SpagoBI. They have an interface layer and a common architecture; they manage
their own application level context in a specific way.

In more details:

o Reports realize the structured information views; they have a greater diffusion level
according to a static structure (.pdf, .xls, .csv, .html, etc). SpagoBI enables the navigation
capability between different reports, inheriting the settings.

o The multidimensional structures for the OLAP analysis add a higher degree of freedom
and variability. The analysis axis and the observation measures are structured. This
enables the obtaining of data examination at various detail levels and from various
perspectives, by means of drill-down, drill-across, slice and dice operations.

o Data Mining algorithms and processes (Neural Networks, Decision Trees, etc.) will
enable the data analysis, with the aim to find out the hidden information. SpagoBI
supports Data Mining models’ implementations and their results’ analysis trough the
other Business Intelligence objects.

o In the Management Performance context, SpagoBI provides many widgets for the
dashboards structuring and the parametric evaluation of performance scores.

The architecture aims don’t concern the analytical objects development’s instruments. You can
draw a report using a tool for JasperReport or by means of the CrystalReport designer. SpagoBI
doesn’t provide the specific tool but it’s able to manage their different configuration and
execution phase.

The common architecture for all the core components (generically called BIObj in the sequel) is
the following:

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 13 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Picture 5 – Core Components interaction

According to the classes, the picture is:

Picture 6 – Core Component classes

Controller

Logic

Driver 1 Engine 1

Dao

Driver 2

Driver 3

Engine 2

Engine 3

BIContextController

Data & Metadata Layer

Report
Olap

Data Mining
Dash & Score

Alternative drivers/engines

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 14 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

An abstract definition of the components generalizes the common behaviours and the interactions
with the other architectural layers; then, the different implementations specialize their own work
logics.

A BIObj can work in three different ways:

o by totally delegating the execution and the management of the interaction to the specify
engine (DELEGATED mode);

o by keeping the control logic of the execution and by driving the engine interaction
(SUPERVISED mode);

o by directly implementing the analytical logic, without using outside engines
(PROPRIETARY mode).

According to the chosen working mode, the component’s classes have a different weight and are
composed by different tasks.

2.2.2.1 BIObjController

The BIObjController is the abstract definition of a delegated structure which maintains the
control on a specific analytical area related to the general context. Cooperating with the
BIContextController (look after for its description), this object turns the generic parameters into
specific ones that are suitable for their managed analytical area. It also returns some additional
data or new settings to the BIContextController.

Independently from the BIObj execution mode, the BIObjController takes the following
responsibility:

o it gives a unique interface to the BIContextController (i.e. Façade pattern);

o it manages a specific interface toward the BiObjLogic;

o it manages the BIObj’s state according to the approval and certification workflow;

o it translates the general setting received from the BIContextController into specific ones
that are understandable from the specific component.

Furthermore, in the SUPERVISED and PROPRIETARY execution way, it must:

o supervise the specific logic of the analytical components;

o manage the user interaction in its analytical area;

o register and give back the new settings to the BIContextController when final user
changes it.

BIObjController depends on BIContextController component for the general context interface (in
a bi-directional relationship) and from BIObjLogic class for the analytical logic execution.

2.2.2.2 BIObjLogic

The BIObjLogic class realizes the specific logics of an analytical area. It works in a different way
according to the BIObj behaviour mode:

o in DELEGATED mode, it only turns the BIObjController request to the specific driver;

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 15 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

o in SUPERVISED mode, it interacts with the specific engine through its driver, in order to
realize the analytical functions of its competence;

o in PROPRIETARY mode, it directly implements the analytical functions of its competence,
without the drivers support.

BIObjLogic depends on BIDriver for the general engine’s interface and on BIDao for generic
Data Layer interface.

2.2.2.3 BIObjDAO

The BIObjDao class takes the responsibility to interact with the data layer. It has a relevant role
only in the proprietary mode of BI component execution, because:

o in DELEGATED and SUPERVISED mode, the specific engine directly manages the data layer
access through the specific semantic layer;

o in PROPRIETARY mode, it access the data warehouse using the rdbms analytical features
directly (if there are) or through the generic semantic layer.

BIObjDao interfaces the chosen rdbms by means of the generic semantic layer.

2.2.2.4 BIDriver

The BIDriver class takes the responsibility for the engine’s interfacing, providing the translation
of the general analytical method into a specific engine invocation. It works like this:

o it translates the parameters’ values in a QueryString format;

o it extents the QueryString with the specific engines’ parameters;

o it creates the engine execution context;

o it invokes the engine.

BIDriver depends on the particular engine which it works with.

2.2.3 BICONTEXTCONTROLLER

The BIContextController acts as a focal point for the coordinating operations across the whole
platform. It manages the parameters exchange between the objects ensuring the values’ heredity
during the user driven navigation.

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 16 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Picture 7 – BIContextController interaction

The BIContextController component enables:

o the interaction management between Service Components and BIObjs;

o the interaction management between Administrative Components and BIObjs;

o the navigation management through the different BIObjs;

o the caching of frequently used data;

o the management of a pool of BIObj instances, in order to improve the performances and
the memory allocation strategies;

o keeping a limit to the BIObjs instances number, in order to regulate the workload;

o managing the objects instances and their time life according to their scope and level;

o interacting with the session at the right level;

o the factory implementation for the BIObjs instance;

o the parameters’ inheritance in documents navigation;

o the management of a policy for the BIObjs releases.

Engine 2

Engine 3

Engine 1

Controller

Logic

Driver 1

Dao

Driver 2

Driver 3

BIContextController

Data & Metadata Layer

A
D

M
IN

IS
T

R
A

T
IV

E
 T

O
O

LS
 /

S
C

H
E

D
U

LI
N

G

BI Core
Component

BIPortlet BIService BIXCube BIMessage

Service Components

BIParameter

BIProfiling

BIFunctionality

BISearch

BIQbE

BINotify

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 17 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

The BIContextController depends on the BIParameter, BIProfiling, BIObjController components
for their relative interface.

For the BIObjs factory implementation, the component schema follows.

Picture 8 – BIObj factory component schema

2.2.4 BIOBJFACTORY

A BIObj characterizes itself according to the document type it represents (report, OLAP, data
mining model, dashboard and scorecard widget) and to the execution way it supports (delegated,
supervised or proprietary mode).

Moreover, each different BIObj is implemented as a statefull and/or stateless component, in order
to guarantee the user’s functionalities as much as the platform performances.

Then, when the BIObjFactory has to allocate a BIObj which works in a stateless mode, it works
like this:

o it takes a generic instance of the right BIObj from a pool;

o it sets a specific data retrieve from the BIContextController;

o it returns the BIObjController ’s handle to the BIContextController.

On the other way, when the BIObjFactory has to allocate a BIObj which works in a statefull
mode, it works like this:

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 18 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

o it instances the right BIObj type (report, OLAP, data mining model, dashboard and
scorecard widget)

o it instances the BIObj type according to its running mode (delegated, supervised or
proprietary)

o it returns the BIObjController ’s handle to the BIContextController.

In general, a stateless BIObj needs to interact with the BIContextController a lot, in order to
register all its state changes, and to success in recovering them at a later time.

On the contrary, a statefull BIObj keeps its settings and the BIContextController is only be able to
recover its right handle.

2.32.32.32.3 DDDDATA AND ATA AND ATA AND ATA AND MMMMETADATA ETADATA ETADATA ETADATA LLLLAYERAYERAYERAYER

The Data and Metadata Layer locates itself at the data warehouse level. The data warehouse
design is out of the SpagoBI scope because a DWH necessary refers to a specific customer's
world; so SpagoBI refers only to the metadata level.

SpagoBI provides a meta-description for its technical aspects, for the business meanings of
the data and for the processing information.

The metadata exchange is implemented according to the CWMI standard and with an hub for
the external metadata collected by a bridge.

For the event-driven strategy, also not having specific data in the DWH, SpagoBI provides a
formal description of event to be monitored and alerts to notify.

Some service repositories support specific tools or platform aspects such as the document
management, the private repositories and so on.

The interaction with the core business components works in a native way or through a
semantic interface layer, which can be generic (for example with Hibernate interface) or specific,
because many tools already have their own semantic layer.

The relation with the source systems is organized by an ETL module, that provides some
features for data extraction, transformation and loading. A Data flows acceptance area, where
many formal checks are applied, is implemented too.

You can see in the following picture how these aspects get one’s act together:

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 19 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Picture 9 – Data & Metadata Layer

2.3.1 SERVICE REPOSITORY

The service repository contains private data structures which support some particular tools
usage. The first one is the CMS repository, until it will migrate as an integrated metadata
structure.

2.3.2 METADATA REPOSITORY

Metadata are data about data; so, the metadata repository contains information related to:

o the technical characteristics of the data stored in the data warehouse, like their formats’
description, the formal validations’ rules, the mapping with the source systems and so on;

o the data business meanings, in the term of semantic validation rules and description, usage
preconditions, derivation and aggregation methods and so on;

DWHEvent
store

MDI HUB

MDI Bridge

Alerts
registry

Even
define

Alert
config

Tecnical
MD

Business
MD

CWMI

Rule Engine

Process
MD

ETL Staging Area

DWHMETADATA

Service Repository

Source Systems

BI Core Components (BIObj)

BIDashboardBIOlap
BIData
MiningBIReport

Service Components

BIParameter

BIProfiling

BIFunctionality

BISearch

BIQbE

BINotify

Specific semantic layer Native accessGeneric semantic layer

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 20 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

o the data process describing all the actions carried out on the information, starting from the
rough data value up to its semantic meaning building.

2.3.2.1 CWMI, MDI Hub and MDI Bridge

SpagoBI adopts the CWMI standard (Common Warehouse Metadata Interchange) for the
metadata exchange with others platforms and products.

The Metadata Integration Hub (MDI Hub) is the first collection point of the metadata coming
from other platforms and products that are able to interact via the CWMI standard.

A bridge (the MDI Bridge) allows SpagoBI to communicate with other CWM-compliant
systems.

In progress.

2.3.3 DATA WAREHOUSE

The data warehouse design is out of the SpagoBI scope; however some structures can be
realized in order to guide the event-driven behaviour of the platform. In this case the metadata
interaction gains a strong importance.

2.3.3.1 Events Define and Alerts Configuration

At the metadata level you can provide a formal definition about the events to be monitored
and about the alerts’ strategy to notify them.

In progress.

2.3.3.2 Events Store and Alerts Registry

At the data warehouse level you can find the implementation of the structures on which both
the real events are stored and the notification requests are written, according to their formal
description’s set up on the metadata level.

Setting up an operating strategy without a specific data warehouse is possible.

In progress.

2.3.3.3 Rule engine

When a specific data warehouse is available, the rule engine is able to fill Event Store and
Alerts Registry tables according to the metadata level set-up rules (Event Define and Alerts
Configuration tables).

In progress.

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 21 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.3.4 SPECIFIC SEMANTIC LAYER

The Specific Semantic Layer includes every private way of access to the data, that are often
implemented in the specific products.

In progress.

2.3.5 GENERIC SEMANTIC LAYER

The Generic Semantic Layer makes the data layer independent from the data representation,
in a standardized way.

In progress.

2.3.6 ETL – STAGING AREA

An ETL module organizes the relation with the source systems; it provides some features for
data extraction, transformation and loading.

In progress.

The first level is an acceptance area for the data flows, structured as follows:

Metadati

Rejects
Store

Rejects
Store

Data
Store

Data
Store

Rejected
data

Rejected
data

Valid
data

Valid
data

File System

Validation
Engine

Metadati

File System
LISTNER

Rules
Repository

FTP
LISTNER

HTTP
LISTNER

…
LISTNER

…
LISTNER

Web Service
LISTNER

Listner
config

Listner
config

Listner
config

Listner
config

Listner
config

Listner
config

Valid
data

Rejected
data

E
T
L

Data
Store

Rejects
Store

S
ta

g
in

g
lo

ad
er

Data capture – sincronization -validation Staging Area

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 22 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Picture 10 – Acceptance data flows area

Many listeners check the possible channels and when a flow comes on, the following
operations are carried out:

o the formal controls are executed on the whole flow, in terms of a set up on the metadata;

o the flow is synchronized with the expetected ones;

o the formal controls are executed on all the data in the flow, in terms of a set up on the
metadata;

o the right data are separated from the wrong ones, producing the discards flow;

o the right and wrong data are provided in input to the ETL process, that sets up the
management strategies for both of them.

2.42.42.42.4 AAAADMINISTRATIONDMINISTRATIONDMINISTRATIONDMINISTRATION

Administration users are supported by many tools for the whole platform configuration and
control, which are described below.

2.4.1 SCHEDULER

The scheduler is the administration component for the back-ground activation of the relevant
processes. It interacts with the BIObjs and the BIParameters through the BIContextController,
enabling the deferred production of the documents. In general, it allows the planning of any
platform management process.

In progress.

2.4.2 LOGGING / AUDITING

In progress.

2.4.3 WORKFLOW

In progress.

2.4.4 METADATA MANAGEMENT INTERFACE

In progress.

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 23 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

3333 Executive level architectureExecutive level architectureExecutive level architectureExecutive level architecture

This chapter outline the platform integration strategy and a first selection of the tools used by
SpagoBI is provided.

3.13.13.13.1 IIIINTEGRATION STRATEGYNTEGRATION STRATEGYNTEGRATION STRATEGYNTEGRATION STRATEGY

SpagoBI can integrate different FOSS tools using them for the services’ realization and
execution.

The relation modes will support:

o Simple use. SpagoBI uses a CMS solution according to the JSR 170 specification; it
allows any substitution with another JSR 170 solution with no modification.

o Integration. SpagoBI integrates the reports developed for JasperReport engine, but it
keeps its platform core clearly separate from the objects which realizes the integration
(i.e. BIDriver). In this way, for every additional engine there is a specific driver which is
developed and managed as a SpagoBI plug-in.

The same methods can be extended integrating proprietary products too (i.e. CrystalReport).

3.23.23.23.2 FFFF IRST TOOLS SELECTIONIRST TOOLS SELECTIONIRST TOOLS SELECTIONIRST TOOLS SELECTION

The following is a list of Free Open Source Software solution used by SpagoBI.

3.2.1 APPLICATION FRAMEWORK: SPAGO

Spago is a J2EE framework that enables the development of multichannel applications and
integration services. It allows the development of web applications, the integration of existing
infrastructures and the publishing of the services on different channels.

For further information, refer to :

o http://spago-info.eng.it

3.2.2 CONTENT REPOSITORY: JACKRABBIT

JackRabbit is a content repository API based on JSR-170.

For further information, refer to :

o http://incubator.apache.org/projects/jackrabbit.html

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 24 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

3.2.3 SEARCH ENGINE: LUCENE

Lucene is a Java text search engine library.

For further information, refer to :

o http://lucene.apache.org/

3.2.4 REPORT ENGINE: JASPERREPORT

JasperReports is an open source Java reporting tool that allows the delivery of rich contents onto
the screen, to the printer or into PDF, HTML, XLS, CSV and XML files.

For further information, refer to :

o http://jasperreports.sourceforge.net/

3.2.5 OLAP CLIENT/ENGINE: JPIVOT/MONDRIAN

JPivot is a JSP custom tag library that renders an OLAP table and chart. By means of it, users can
perform typical OLAP navigations like drill down, slice and dice. It uses Mondrian and XMLA
as its OLAP engines.

Mondrian is an OLAP server written in Java. It enables you to interactively analyze very large
datasets stored in SQL databases without writing SQL code.

For further information, refer to :

o http://jpivot.sourceforge.net/

o http://mondrian.sourceforge.net/

3.2.6 DATA MINING ENGINE: WEKA

Weka is a collection of machine learning algorithms for data mining tasks.

For further information, refer to :

o http://www.cs.waikato.ac.nz/~ml/weka/

3.2.7 QBE SUPPORT: HIBERNATE

Hibernate is an object/relational persistence and query service for Java.

For further information, refer to :

o http://www.hibernate.org/

S p a g o B I A r c h i t e c t u r a l D e s i g n

SpagoBI Architectural Design ver 0.5 August, 5th 2005 – pag. 25 of 25

Engineering Ingegneria Informatica S.p.A., 2005. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

3.2.8 ETL SUPPORT: BIE

The Business Integration Engine (BIE) is designed to help organizations to exchange data created
in different applications in order to streamline the processes and to improve efficiency.

For further information, refer to :

o http://www.brunswickwdi.com/bie

3.2.9 ETL SUPPORT: OCTOPUS

Octopus is an ETL tool (Extraction, Transformation, Loading) connecting to JDBC data sources
and performing XML-defined transformations.

For further information, refer to :

o http://forge.objectweb.org/projects/octopus/

3.2.10 ADMINISTRATION – SCHEDULER: QUARTZ

Quartz is a job scheduler for executing jobs whose tasks are defined as standard Java components
or EJBs.

For further information, refer to :

o http://www.opensymphony.com/quartz/

3.2.11 PORTAL ENVIRONMENT – EXO PLATFORM

eXo Platform is an application suite providing the more common services for building web based
information portals. It implements the JSR 168 portlet API specification.

eXo Platform is not a SpagoBI’s component, but it is the first portal environment that has been
verified by SpagoBI Platform. Furthermore, SpagoBI implements the interface for the recovery of
the users’ roles stored in eXo portal settings.

More information about eXo Platform are available starting from :

o http://exoplatform.objectweb.org

	1 功能层架构
	2 应用层架构
	2.1 分发层
	2.2 分析层
	2.2.1 服务组件
	2.2.2 核心组件
	2.2.3 BI内容控制器
	2.2.4 BI对象工厂

	2.3 数据与元数据层
	2.3.1 服务仓库
	2.3.2 元数据仓库
	2.3.3 数据仓库
	2.3.4 特殊语义层
	2.3.5 基本语义层
	2.3.6 ETL

	2.4 管理员
	2.4.1 调度
	2.4.2 登录/审计
	2.4.3 工作流
	2.4.4 元数据管理接口

	3 执行层架构
	3.1 集成策略
	3.2 开源工具

