

CS 229

机器学习

(问题及答案)

斯坦福大学

目录

(1) 作业1（Supervised Learning） 1

(2) 作业1解答（Supervised Learning） 5

(3) 作业2（Kernels, SVMs, and Theory） 15

(4) 作业2解答（Kernels, SVMs, and Theory） 19

(5) 作业3（Learning Theory and Unsupervised

Learning） 27

(6) 作业3解答（Learning Theory and Unsupervised

Learning） 31

(7) 作业4（Unsupervised Learning and Reinforcement Learning）
39

(8) 作业4解答（Unsupervised Learning and Reinforcement

Learning） 44

(9) Problem Set #1: Supervised Learning 56

(10) Problem Set #1 Answer 62

(11) Problem Set #2: Problem Set #2: Naive Bayes, SVMs, and

Theory 78

(12) Problem Set #2 Answer 85

CS229 Problem Set #1 1

CS 229, Public Course

Problem Set #1: Supervised Learning

1. Newton’s method for computing least squares

In this problem, we will prove that if we use Newton’s method solve the least squares
optimization problem, then we only need one iteration to converge to θ∗.

(a) Find the Hessian of the cost function J(θ) = 1
2

∑m

i=1(θ
T x(i) − y(i))2.

(b) Show that the first iteration of Newton’s method gives us θ⋆ = (XT X)−1XT ~y, the
solution to our least squares problem.

2. Locally-weighted logistic regression

In this problem you will implement a locally-weighted version of logistic regression, where
we weight different training examples differently according to the query point. The locally-
weighted logistic regression problem is to maximize

ℓ(θ) = −
λ

2
θT θ +

m
∑

i=1

w(i)
[

y(i) log hθ(x
(i)) + (1 − y(i)) log(1 − hθ(x

(i)))
]

.

The −λ
2 θT θ here is what is known as a regularization parameter, which will be discussed

in a future lecture, but which we include here because it is needed for Newton’s method to
perform well on this task. For the entirety of this problem you can use the value λ = 0.0001.

Using this definition, the gradient of ℓ(θ) is given by

∇θℓ(θ) = XT z − λθ

where z ∈ R
m is defined by

zi = w(i)(y(i) − hθ(x
(i)))

and the Hessian is given by
H = XT DX − λI

where D ∈ R
m×m is a diagonal matrix with

Dii = −w(i)hθ(x
(i))(1 − hθ(x

(i)))

For the sake of this problem you can just use the above formulas, but you should try to
derive these results for yourself as well.

Given a query point x, we choose compute the weights

w(i) = exp

(

−
||x − x(i)||2

2τ2

)

.

Much like the locally weighted linear regression that was discussed in class, this weighting
scheme gives more when the “nearby” points when predicting the class of a new example.

1

CS229 Problem Set #1 2

(a) Implement the Newton-Raphson algorithm for optimizing ℓ(θ) for a new query point
x, and use this to predict the class of x.

The q2/ directory contains data and code for this problem. You should implement
the y = lwlr(X train, y train, x, tau) function in the lwlr.m file. This func-
tion takes as input the training set (the X train and y train matrices, in the form
described in the class notes), a new query point x and the weight bandwitdh tau.
Given this input the function should 1) compute weights w(i) for each training exam-
ple, using the formula above, 2) maximize ℓ(θ) using Newton’s method, and finally 3)
output y = 1{hθ(x) > 0.5} as the prediction.

We provide two additional functions that might help. The [X train, y train] =

load data; function will load the matrices from files in the data/ folder. The func-
tion plot lwlr(X train, y train, tau, resolution) will plot the resulting clas-
sifier (assuming you have properly implemented lwlr.m). This function evaluates the
locally weighted logistic regression classifier over a large grid of points and plots the
resulting prediction as blue (predicting y = 0) or red (predicting y = 1). Depending
on how fast your lwlr function is, creating the plot might take some time, so we
recommend debugging your code with resolution = 50; and later increase it to at
least 200 to get a better idea of the decision boundary.

(b) Evaluate the system with a variety of different bandwidth parameters τ . In particular,
try τ = 0.01, 0.050.1, 0.51.0, 5.0. How does the classification boundary change when
varying this parameter? Can you predict what the decision boundary of ordinary
(unweighted) logistic regression would look like?

3. Multivariate least squares

So far in class, we have only considered cases where our target variable y is a scalar value.
Suppose that instead of trying to predict a single output, we have a training set with
multiple outputs for each example:

{(x(i), y(i)), i = 1, . . . ,m}, x(i) ∈ R
n, y(i) ∈ R

p.

Thus for each training example, y(i) is vector-valued, with p entries. We wish to use a linear
model to predict the outputs, as in least squares, by specifying the parameter matrix Θ in

y = ΘT x,

where Θ ∈ R
n×p.

(a) The cost function for this case is

J(Θ) =
1

2

m
∑

i=1

p
∑

j=1

(

(ΘT x(i))j − y
(i)
j

)2

.

Write J(Θ) in matrix-vector notation (i.e., without using any summations). [Hint:
Start with the m × n design matrix

X =

— (x(1))T —
— (x(2))T —

...
— (x(m))T —

2

CS229 Problem Set #1 3

and the m × p target matrix

Y =

— (y(1))T —
— (y(2))T —

...
— (y(m))T —

and then work out how to express J(Θ) in terms of these matrices.]

(b) Find the closed form solution for Θ which minimizes J(Θ). This is the equivalent to
the normal equations for the multivariate case.

(c) Suppose instead of considering the multivariate vectors y(i) all at once, we instead

compute each variable y
(i)
j separately for each j = 1, . . . , p. In this case, we have a p

individual linear models, of the form

y
(i)
j = θT

j x(i), j = 1, . . . , p.

(So here, each θj ∈ R
n). How do the parameters from these p independent least

squares problems compare to the multivariate solution?

4. Naive Bayes

In this problem, we look at maximum likelihood parameter estimation using the naive
Bayes assumption. Here, the input features xj , j = 1, . . . , n to our model are discrete,
binary-valued variables, so xj ∈ {0, 1}. We call x = [x1 x2 · · · xn]T to be the input vector.
For each training example, our output targets are a single binary-value y ∈ {0, 1}. Our
model is then parameterized by φj|y=0 = p(xj = 1|y = 0), φj|y=1 = p(xj = 1|y = 1), and
φy = p(y = 1). We model the joint distribution of (x, y) according to

p(y) = (φy)y(1 − φy)1−y

p(x|y = 0) =

n
∏

j=1

p(xj |y = 0)

=
n

∏

j=1

(φj|y=0)
xj (1 − φj|y=0)

1−xj

p(x|y = 1) =

n
∏

j=1

p(xj |y = 1)

=

n
∏

j=1

(φj|y=1)
xj (1 − φj|y=1)

1−xj

(a) Find the joint likelihood function ℓ(ϕ) = log
∏m

i=1 p(x(i), y(i);ϕ) in terms of the
model parameters given above. Here, ϕ represents the entire set of parameters
{φy, φj|y=0, φj|y=1, j = 1, . . . , n}.

(b) Show that the parameters which maximize the likelihood function are the same as

3

CS229 Problem Set #1 4

those given in the lecture notes; i.e., that

φj|y=0 =

∑m

i=1 1{x
(i)
j = 1 ∧ y(i) = 0}

∑m

i=1 1{y(i) = 0}

φj|y=1 =

∑m

i=1 1{x
(i)
j = 1 ∧ y(i) = 1}

∑m

i=1 1{y(i) = 1}

φy =

∑m

i=1 1{y(i) = 1}

m
.

(c) Consider making a prediction on some new data point x using the most likely class
estimate generated by the naive Bayes algorithm. Show that the hypothesis returned
by naive Bayes is a linear classifier—i.e., if p(y = 0|x) and p(y = 1|x) are the class
probabilities returned by naive Bayes, show that there exists some θ ∈ R

n+1 such
that

p(y = 1|x) ≥ p(y = 0|x) if and only if θT

[

1
x

]

≥ 0.

(Assume θ0 is an intercept term.)

5. Exponential family and the geometric distribution

(a) Consider the geometric distribution parameterized by φ:

p(y;φ) = (1 − φ)y−1φ, y = 1, 2, 3,

Show that the geometric distribution is in the exponential family, and give b(y), η,
T (y), and a(η).

(b) Consider performing regression using a GLM model with a geometric response vari-
able. What is the canonical response function for the family? You may use the fact
that the mean of a geometric distribution is given by 1/φ.

(c) For a training set {(x(i), y(i)); i = 1, . . . ,m}, let the log-likelihood of an example
be log p(y(i)|x(i); θ). By taking the derivative of the log-likelihood with respect to
θj , derive the stochastic gradient ascent rule for learning using a GLM model with
goemetric responses y and the canonical response function.

4

CS229 Problem Set #1 Solutions 1

CS 229, Public Course

Problem Set #1 Solutions: Supervised Learning

1. Newton’s method for computing least squares

In this problem, we will prove that if we use Newton’s method solve the least squares
optimization problem, then we only need one iteration to converge to θ∗.

(a) Find the Hessian of the cost function J(θ) = 1
2

∑m

i=1(θ
T x(i) − y(i))2.

Answer: As shown in the class notes

∂J(θ)

∂θj

=

m
∑

i=1

(θT x(i) − y(i))x
(i)
j .

So

∂2J(θ)

∂θj∂θk

=
m
∑

i=1

∂

∂θk

(θT x(i) − y(i))x
(i)
j

=

m
∑

i=1

x
(i)
j x

(i)
k = (XT X)jk

Therefore, the Hessian of J(θ) is H = XT X. This can also be derived by simply applying
rules from the lecture notes on Linear Algebra.

(b) Show that the first iteration of Newton’s method gives us θ⋆ = (XT X)−1XT ~y, the
solution to our least squares problem.

Answer: Given any θ(0), Newton’s method finds θ(1) according to

θ(1) = θ(0) − H−1∇θJ(θ(0))

= θ(0) − (XT X)−1(XT Xθ(0) − XT ~y)

= θ(0) − θ(0) + (XT X)−1XT ~y

= (XT X)−1XT ~y.

Therefore, no matter what θ(0) we pick, Newton’s method always finds θ⋆ after one
iteration.

2. Locally-weighted logistic regression

In this problem you will implement a locally-weighted version of logistic regression, where
we weight different training examples differently according to the query point. The locally-
weighted logistic regression problem is to maximize

ℓ(θ) = −
λ

2
θT θ +

m
∑

i=1

w(i)
[

y(i) log hθ(x
(i)) + (1 − y(i)) log(1 − hθ(x

(i)))
]

.

5

CS229 Problem Set #1 Solutions 2

The −λ
2 θT θ here is what is known as a regularization parameter, which will be discussed

in a future lecture, but which we include here because it is needed for Newton’s method to
perform well on this task. For the entirety of this problem you can use the value λ = 0.0001.

Using this definition, the gradient of ℓ(θ) is given by

∇θℓ(θ) = XT z − λθ

where z ∈ R
m is defined by

zi = w(i)(y(i) − hθ(x
(i)))

and the Hessian is given by
H = XT DX − λI

where D ∈ R
m×m is a diagonal matrix with

Dii = −w(i)hθ(x
(i))(1 − hθ(x

(i)))

For the sake of this problem you can just use the above formulas, but you should try to
derive these results for yourself as well.

Given a query point x, we choose compute the weights

w(i) = exp

(

−
||x − x(i)||2

2τ2

)

.

Much like the locally weighted linear regression that was discussed in class, this weighting
scheme gives more when the “nearby” points when predicting the class of a new example.

(a) Implement the Newton-Raphson algorithm for optimizing ℓ(θ) for a new query point
x, and use this to predict the class of x.

The q2/ directory contains data and code for this problem. You should implement
the y = lwlr(X train, y train, x, tau) function in the lwlr.m file. This func-
tion takes as input the training set (the X train and y train matrices, in the form
described in the class notes), a new query point x and the weight bandwitdh tau.
Given this input the function should 1) compute weights w(i) for each training exam-
ple, using the formula above, 2) maximize ℓ(θ) using Newton’s method, and finally 3)
output y = 1{hθ(x) > 0.5} as the prediction.

We provide two additional functions that might help. The [X train, y train] =

load data; function will load the matrices from files in the data/ folder. The func-
tion plot lwlr(X train, y train, tau, resolution) will plot the resulting clas-
sifier (assuming you have properly implemented lwlr.m). This function evaluates the
locally weighted logistic regression classifier over a large grid of points and plots the
resulting prediction as blue (predicting y = 0) or red (predicting y = 1). Depending
on how fast your lwlr function is, creating the plot might take some time, so we
recommend debugging your code with resolution = 50; and later increase it to at
least 200 to get a better idea of the decision boundary.

Answer: Our implementation of lwlr.m:

function y = lwlr(X_train, y_train, x, tau)

m = size(X_train,1);

n = size(X_train,2);

6

CS229 Problem Set #1 Solutions 3

theta = zeros(n,1);

% compute weights

w = exp(-sum((X_train - repmat(x’, m, 1)).^2, 2) / (2*tau));

% perform Newton’s method

g = ones(n,1);

while (norm(g) > 1e-6)

h = 1 ./ (1 + exp(-X_train * theta));

g = X_train’ * (w.*(y_train - h)) - 1e-4*theta;

H = -X_train’ * diag(w.*h.*(1-h)) * X_train - 1e-4*eye(n);

theta = theta - H \ g;

end

% return predicted y

y = double(x’*theta > 0);

(b) Evaluate the system with a variety of different bandwidth parameters τ . In particular,
try τ = 0.01, 0.050.1, 0.51.0, 5.0. How does the classification boundary change when
varying this parameter? Can you predict what the decision boundary of ordinary
(unweighted) logistic regression would look like?

Answer: These are the resulting decision boundaries, for the different values of τ .

tau = 0.01 tau = 0.05 tau = 0.1

tau = 0.5 tau = 0.5 tau = 5

For smaller τ , the classifier appears to overfit the data set, obtaining zero training error,
but outputting a sporadic looking decision boundary. As τ grows, the resulting deci-
sion boundary becomes smoother, eventually converging (in the limit as τ → ∞ to the
unweighted linear regression solution).

3. Multivariate least squares

So far in class, we have only considered cases where our target variable y is a scalar value.
Suppose that instead of trying to predict a single output, we have a training set with

7

CS229 Problem Set #1 Solutions 4

multiple outputs for each example:

{(x(i), y(i)), i = 1, . . . ,m}, x(i) ∈ R
n, y(i) ∈ R

p.

Thus for each training example, y(i) is vector-valued, with p entries. We wish to use a linear
model to predict the outputs, as in least squares, by specifying the parameter matrix Θ in

y = ΘT x,

where Θ ∈ R
n×p.

(a) The cost function for this case is

J(Θ) =
1

2

m
∑

i=1

p
∑

j=1

(

(ΘT x(i))j − y
(i)
j

)2

.

Write J(Θ) in matrix-vector notation (i.e., without using any summations). [Hint:
Start with the m × n design matrix

X =

— (x(1))T —
— (x(2))T —

...
— (x(m))T —

and the m × p target matrix

Y =

— (y(1))T —
— (y(2))T —

...
— (y(m))T —

and then work out how to express J(Θ) in terms of these matrices.]

Answer: The objective function can be expressed as

J(Θ) =
1

2
tr
(

(XΘ − Y)T (XΘ − Y)
)

.

To see this, note that

J(Θ) =
1

2
tr
(

(XΘ − Y)T (XΘ − Y)
)

=
1

2

∑

i

(

XΘ − Y)T (XΘ − Y)
)

ii

=
1

2

∑

i

∑

j

(XΘ − Y)2ij

=
1

2

m
∑

i=1

p
∑

j=1

(

(ΘT x(i))j − y
(i)
j

)2

8

CS229 Problem Set #1 Solutions 5

(b) Find the closed form solution for Θ which minimizes J(Θ). This is the equivalent to
the normal equations for the multivariate case.

Answer: First we take the gradient of J(Θ) with respect to Θ.

∇ΘJ(Θ) = ∇Θ

[

1

2
tr
(

(XΘ − Y)T (XΘ − Y)
)

]

= ∇Θ

[

1

2
tr
(

ΘT XT XΘ − ΘT XT Y − Y T XΘ − Y T T
)

]

=
1

2
∇Θ

[

tr(ΘT XT XΘ) − tr(ΘT XT Y) − tr(Y T XΘ) + tr(Y T Y)
]

=
1

2
∇Θ

[

tr(ΘT XT XΘ) − 2tr(Y T XΘ) + tr(Y T Y)
]

=
1

2

[

XT XΘ + XT XΘ − 2XT Y
]

= XT XΘ − XT Y

Setting this expression to zero we obtain

Θ = (XT X)−1XT Y.

This looks very similar to the closed form solution in the univariate case, except now Y
is a m × p matrix, so then Θ is also a matrix, of size n × p.

(c) Suppose instead of considering the multivariate vectors y(i) all at once, we instead

compute each variable y
(i)
j separately for each j = 1, . . . , p. In this case, we have a p

individual linear models, of the form

y
(i)
j = θT

j x(i), j = 1, . . . , p.

(So here, each θj ∈ R
n). How do the parameters from these p independent least

squares problems compare to the multivariate solution?

Answer: This time, we construct a set of vectors

~yj =

y
(1)
j

y
(2)
j

...

y
(m)
j

, j = 1, . . . , p.

Then our j-th linear model can be solved by the least squares solution

θj = (XT X)−1XT ~yj .

If we line up our θj , we see that we have the following equation:

[θ1 θ2 · · · θp] =
[

(XT X)−1XT ~y1 (XT X)−1XT ~y2 · · · (XT X)−1XT ~yp

]

= (XT X)−1XT [~y1 ~y2 · · · ~yp]

= (XT X)−1XT Y

= Θ.

Thus, our p individual least squares problems give the exact same solution as the multi-
variate least squares.

9

CS229 Problem Set #1 Solutions 6

4. Naive Bayes

In this problem, we look at maximum likelihood parameter estimation using the naive
Bayes assumption. Here, the input features xj , j = 1, . . . , n to our model are discrete,
binary-valued variables, so xj ∈ {0, 1}. We call x = [x1 x2 · · · xn]T to be the input vector.
For each training example, our output targets are a single binary-value y ∈ {0, 1}. Our
model is then parameterized by φj|y=0 = p(xj = 1|y = 0), φj|y=1 = p(xj = 1|y = 1), and
φy = p(y = 1). We model the joint distribution of (x, y) according to

p(y) = (φy)y(1 − φy)1−y

p(x|y = 0) =

n
∏

j=1

p(xj |y = 0)

=

n
∏

j=1

(φj|y=0)
xj (1 − φj|y=0)

1−xj

p(x|y = 1) =

n
∏

j=1

p(xj |y = 1)

=
n
∏

j=1

(φj|y=1)
xj (1 − φj|y=1)

1−xj

(a) Find the joint likelihood function ℓ(ϕ) = log
∏m

i=1 p(x(i), y(i);ϕ) in terms of the
model parameters given above. Here, ϕ represents the entire set of parameters
{φy, φj|y=0, φj|y=1, j = 1, . . . , n}.

Answer:

ℓ(ϕ) = log

m
∏

i=1

p(x(i), y(i);ϕ)

= log

m
∏

i=1

p(x(i)|y(i);ϕ)p(y(i);ϕ)

= log
m
∏

i=1

n
∏

j=1

p(x
(i)
j |y(i);ϕ)

 p(y(i);ϕ)

=
m
∑

i=1

log p(y(i);ϕ) +
n
∑

j=1

log p(x
(i)
j |y(i);ϕ)

=

m
∑

i=1

[

y(i) log φy + (1 − y(i)) log(1 − φy)

+

n
∑

j=1

(

x
(i)
j log φj|y(i) + (1 − x

(i)
j) log(1 − φj|y(i))

)

(b) Show that the parameters which maximize the likelihood function are the same as

10

CS229 Problem Set #1 Solutions 7

those given in the lecture notes; i.e., that

φj|y=0 =

∑m

i=1 1{x
(i)
j = 1 ∧ y(i) = 0}

∑m

i=1 1{y(i) = 0}

φj|y=1 =

∑m

i=1 1{x
(i)
j = 1 ∧ y(i) = 1}

∑m

i=1 1{y(i) = 1}

φy =

∑m

i=1 1{y(i) = 1}

m
.

Answer: The only terms in ℓ(ϕ) which have non-zero gradient with respect to φj|y=0

are those which include φj|y(i) . Therefore,

∇φj|y=0
ℓ(ϕ) = ∇φj|y=0

m
∑

i=1

(

x
(i)
j log φj|y(i) + (1 − x

(i)
j) log(1 − φj|y(i))

)

= ∇φj|y=0

m
∑

i=1

(

x
(i)
j log(φj|y=0)1{y

(i) = 0}

+ (1 − x
(i)
j) log(1 − φj|y=0)1{y

(i) = 0}
)

=

m
∑

i=1

(

x
(i)
j

1

φj|y=0
1{y(i) = 0} − (1 − x

(i)
j)

1

1 − φj|y=0
1{y(i) = 0}

)

.

Setting ∇φj|y=0
ℓ(ϕ) = 0 gives

0 =

m
∑

i=1

(

x
(i)
j

1

φj|y=0
1{y(i) = 0} − (1 − x

(i)
j)

1

1 − φj|y=0
1{y(i) = 0}

)

=

m
∑

i=1

(

x
(i)
j (1 − φj|y=0)1{y

(i) = 0} − (1 − x
(i)
j)φj|y=01{y

(i) = 0}
)

=

m
∑

i=1

(

(x
(i)
j − φj|y=0)1{y

(i) = 0}
)

=

m
∑

i=1

(

x
(i)
j · 1{y(i) = 0}

)

− φj|y=0

m
∑

i=1

1{y(i) = 0}

=
m
∑

i=1

(

1{x
(i)
j = 1 ∧ y(i) = 0}

)

− φj|y=0

m
∑

i=1

1{y(i) = 0}.

We then arrive at our desired result

φj|y=0 =

∑m

i=1 1{x
(i)
j = 1 ∧ y(i) = 0}

∑m

i=1 1{y(i) = 0}

The solution for φj|y=1 proceeds in the identical manner.

11

CS229 Problem Set #1 Solutions 8

To solve for φy,

∇φy
ℓ(ϕ) = ∇φy

m
∑

i=1

(

y(i) log φy + (1 − y(i)) log(1 − φy)
)

=

m
∑

i=1

(

y(i) 1

φy

− (1 − y(i))
1

1 − φy

)

Then setting ∇φy
= 0 gives us

0 =
m
∑

i=1

(

y(i) 1

φy

− (1 − y(i))
1

1 − φy

)

=

m
∑

i=1

(

y(i)(1 − φy) − (1 − y(i))φy

)

=
m
∑

i=1

y(i) −
m
∑

i=1

φy.

Therefore,

φy =

∑m

i=1 1{y(i) = 1}

m
.

(c) Consider making a prediction on some new data point x using the most likely class
estimate generated by the naive Bayes algorithm. Show that the hypothesis returned
by naive Bayes is a linear classifier—i.e., if p(y = 0|x) and p(y = 1|x) are the class
probabilities returned by naive Bayes, show that there exists some θ ∈ R

n+1 such
that

p(y = 1|x) ≥ p(y = 0|x) if and only if θT

[

1
x

]

≥ 0.

(Assume θ0 is an intercept term.)

Answer:

p(y = 1|x) ≥ p(y = 0|x)

⇐⇒
p(y = 1|x)

p(y = 0|x)
≥ 1

⇐⇒

(

∏n

j=1 p(xj |y = 1)
)

p(y = 1)
(

∏n

j=1 p(xj |y = 0)
)

p(y = 0)
≥ 1

⇐⇒

(

∏n

j=1(φj|y=0)
xj (1 − φj|y=0)

1−xj

)

φy

(

∏n

j=1(φj|y=1)xj (1 − φj|y=1)1−xj

)

(1 − φy)
≥ 1

⇐⇒

n
∑

j=1

(

xj log

(

φj|y=1

φj|y=0

)

+ (1 − xj) log

(

1 − φj|y=0

1 − φj |y = 0

))

+ log

(

φy

1 − φy

)

≥ 0

⇐⇒
n
∑

j=1

xj log

(

(φj|y=1)(1 − φj|y=0)

(φj|y=0)(1 − φj|y=1)

)

+
n
∑

j=1

log

(

1 − φj|y=1

1 − φj|y=0

)

+ log

(

φy

1 − φy

)

≥ 0

⇐⇒ θT

[

1
x

]

≥ 0,

12

CS229 Problem Set #1 Solutions 9

where

θ0 =

n
∑

j=1

log

(

1 − φj|y=1

1 − φj|y=0

)

+ log

(

φy

1 − φy

)

θj = log

(

(φj|y=1)(1 − φj|y=0)

(φj|y=0)(1 − φj|y=1)

)

, j = 1, . . . , n.

5. Exponential family and the geometric distribution

(a) Consider the geometric distribution parameterized by φ:

p(y;φ) = (1 − φ)y−1φ, y = 1, 2, 3,

Show that the geometric distribution is in the exponential family, and give b(y), η,
T (y), and a(η).

Answer:

p(y;φ) = (1 − φ)y−1φ

= exp
[

log(1 − φ)y−1 + log φ
]

= exp [(y − 1) log(1 − φ) + log φ]

= exp

[

y log(1 − φ) − log

(

1 − φ

φ

)]

Then

b(y) = 1

η = log(1 − φ)

T (y) = y

a(η) = log

(

1 − φ

φ

)

= log

(

eη

1 − eη

)

,

where the last line follows becuase η = log(1 − φ) ⇒ eη = 1 − φ ⇒ φ = 1 − eη.

(b) Consider performing regression using a GLM model with a geometric response vari-
able. What is the canonical response function for the family? You may use the fact
that the mean of a geometric distribution is given by 1/φ.

Answer:

g(η) = E[y;φ] =
1

φ
=

1

1 − eη
.

(c) For a training set {(x(i), y(i)); i = 1, . . . ,m}, let the log-likelihood of an example
be log p(y(i)|x(i); θ). By taking the derivative of the log-likelihood with respect to
θj , derive the stochastic gradient ascent rule for learning using a GLM model with
goemetric responses y and the canonical response function.

Answer: The log-likelihood of an example (x(i), y(i)) is defined as ℓ(θ) = log p(y(i)|x(i); θ).
To derive the stochastic gradient ascent rule, use the results from previous parts and the
standard GLM assumption that η = θT x.

13

CS229 Problem Set #1 Solutions 10

ℓi(θ) = log

[

exp

(

θT x(i) · y(i) − log

(

eθT x(i)

1 − eθT x(i)

))]

= log

[

exp

(

θT x(i) · y(i) − log

(

1

e−θT x(i) − 1

))]

= θT x(i) · y(i) + log
(

e−θT x(i)

− 1
)

∂

∂θj

ℓi(θ) = x
(i)
j y(i) +

e−θT x(i)

e−θT x(i) − 1
(−x

(i)
j)

= x
(i)
j y(i) −

1

1 − e−θT x(i)
x

(i)
j

=

(

y(i) −
1

1 − eθT x(i)

)

x
(i)
j .

Thus the stochastic gradient ascent update rule should be

θj := θj + α
∂ℓi(θ)

∂θj

,

which is

θj := θj + α

(

y(i) −
1

1 − eθT x(i)

)

x
(i)
j .

14

CS229 Problem Set #2 1

CS 229, Public Course

Problem Set #2: Kernels, SVMs, and Theory

1. Kernel ridge regression

In contrast to ordinary least squares which has a cost function

J(θ) =
1

2

m
∑

i=1

(θT x(i) − y(i))2,

we can also add a term that penalizes large weights in θ. In ridge regression, our least
squares cost is regularized by adding a term λ‖θ‖2, where λ > 0 is a fixed (known) constant
(regularization will be discussed at greater length in an upcoming course lecutre). The ridge
regression cost function is then

J(θ) =
1

2

m
∑

i=1

(θT x(i) − y(i))2 +
λ

2
‖θ‖2.

(a) Use the vector notation described in class to find a closed-form expreesion for the
value of θ which minimizes the ridge regression cost function.

(b) Suppose that we want to use kernels to implicitly represent our feature vectors in a
high-dimensional (possibly infinite dimensional) space. Using a feature mapping φ,
the ridge regression cost function becomes

J(θ) =
1

2

m
∑

i=1

(θT φ(x(i)) − y(i))2 +
λ

2
‖θ‖2.

Making a prediction on a new input xnew would now be done by computing θT φ(xnew).
Show how we can use the “kernel trick” to obtain a closed form for the prediction
on the new input without ever explicitly computing φ(xnew). You may assume that
the parameter vector θ can be expressed as a linear combination of the input feature
vectors; i.e., θ =

∑m

i=1 αiφ(x(i)) for some set of parameters αi.

[Hint: You may find the following identity useful:

(λI + BA)−1B = B(λI + AB)−1.

If you want, you can try to prove this as well, though this is not required for the
problem.]

2. ℓ2 norm soft margin SVMs

In class, we saw that if our data is not linearly separable, then we need to modify our
support vector machine algorithm by introducing an error margin that must be minimized.
Specifically, the formulation we have looked at is known as the ℓ1 norm soft margin SVM.
In this problem we will consider an alternative method, known as the ℓ2 norm soft margin
SVM. This new algorithm is given by the following optimization problem (notice that the
slack penalties are now squared):

minw,b,ξ
1
2‖w‖2 + C

2

∑m

i=1 ξ2
i

s.t. y(i)(wT x(i) + b) ≥ 1 − ξi, i = 1, . . . ,m
.

15

CS229 Problem Set #2 2

(a) Notice that we have dropped the ξi ≥ 0 constraint in the ℓ2 problem. Show that these
non-negativity constraints can be removed. That is, show that the optimal value of
the objective will be the same whether or not these constraints are present.

(b) What is the Lagrangian of the ℓ2 soft margin SVM optimization problem?

(c) Minimize the Lagrangian with respect to w, b, and ξ by taking the following gradients:
∇wL, ∂L

∂b
, and ∇ξL, and then setting them equal to 0. Here, ξ = [ξ1, ξ2, . . . , ξm]T .

(d) What is the dual of the ℓ2 soft margin SVM optimization problem?

3. SVM with Gaussian kernel

Consider the task of training a support vector machine using the Gaussian kernel K(x, z) =
exp(−‖x − z‖2/τ2). We will show that as long as there are no two identical points in the
training set, we can always find a value for the bandwidth parameter τ such that the SVM
achieves zero training error.

(a) Recall from class that the decision function learned by the support vector machine
can be written as

f(x) =

m
∑

i=1

αiy
(i)K(x(i), x) + b.

Assume that the training data {(x(1), y(1)), . . . , (x(m), y(m))} consists of points which
are separated by at least a distance of ǫ; that is, ||x(j) − x(i)|| ≥ ǫ for any i 6= j.
Find values for the set of parameters {α1, . . . , αm, b} and Gaussian kernel width τ
such that x(i) is correctly classified, for all i = 1, . . . ,m. [Hint: Let αi = 1 for all i
and b = 0. Now notice that for y ∈ {−1,+1} the prediction on x(i) will be correct if
|f(x(i)) − y(i)| < 1, so find a value of τ that satisfies this inequality for all i.]

(b) Suppose we run a SVM with slack variables using the parameter τ you found in part
(a). Will the resulting classifier necessarily obtain zero training error? Why or why
not? A short explanation (without proof) will suffice.

(c) Suppose we run the SMO algorithm to train an SVM with slack variables, under
the conditions stated above, using the value of τ you picked in the previous part,
and using some arbitrary value of C (which you do not know beforehand). Will this
necessarily result in a classifier that achieve zero training error? Why or why not?
Again, a short explanation is sufficient.

4. Naive Bayes and SVMs for Spam Classification

In this question you’ll look into the Naive Bayes and Support Vector Machine algorithms
for a spam classification problem. However, instead of implementing the algorithms your-
self, you’ll use a freely available machine learning library. There are many such libraries
available, with different strengths and weaknesses, but for this problem you’ll use the
WEKA machine learning package, available at http://www.cs.waikato.ac.nz/ml/weka/.
WEKA implements many standard machine learning algorithms, is written in Java, and
has both a GUI and a command line interface. It is not the best library for very large-scale
data sets, but it is very nice for playing around with many different algorithms on medium
size problems.

You can download and install WEKA by following the instructions given on the website
above. To use it from the command line, you first need to install a java runtime environ-
ment, then add the weka.jar file to your CLASSPATH environment variable. Finally, you

16

CS229 Problem Set #2 3

can call WEKA using the command:
java <classifier> -t <training file> -T <test file>

For example, to run the Naive Bayes classifier (using the multinomial event model) on our
provided spam data set by running the command:
java weka.classifiers.bayes.NaiveBayesMultinomial -t spam train 1000.arff -T spam test.arff

The spam classification dataset in the q4/ directory was provided courtesy of Christian
Shelton (cshelton@cs.ucr.edu). Each example corresponds to a particular email, and each
feature correspondes to a particular word. For privacy reasons we have removed the actual
words themselves from the data set, and instead label the features generically as f1, f2, etc.
However, the data set is from a real spam classification task, so the results demonstrate the
performance of these algorithms on a real-world problem. The q4/ directory actually con-
tains several different training files, named spam train 50.arff, spam train 100.arff,
etc (the “.arff” format is the default format by WEKA), each containing the corresponding
number of training examples. There is also a single test set spam test.arff, which is a
hold out set used for evaluating the classifier’s performance.

(a) Run the weka.classifiers.bayes.NaiveBayesMultinomial classifier on the dataset
and report the resulting error rates. Evaluate the performance of the classifier using
each of the different training files (but each time using the same test file, spam test.arff).
Plot the error rate of the classifier versus the number of training examples.

(b) Repeat the previous part, but using the weka.classifiers.functions.SMO classifier,
which implements the SMO algorithm to train an SVM. How does the performance
of the SVM compare to that of Naive Bayes?

5. Uniform convergence

In class we proved that for any finite set of hypotheses H = {h1, . . . , hk}, if we pick the

hypothesis ĥ that minimizes the training error on a set of m examples, then with probability
at least (1 − δ),

ε(ĥ) ≤
(

min
i

ε(hi)
)

+ 2

√

1

2m
log

2k

δ
,

where ε(hi) is the generalization error of hypothesis hi. Now consider a special case (often
called the realizable case) where we know, a priori, that there is some hypothesis in our
class H that achieves zero error on the distribution from which the data is drawn. Then
we could obviously just use the above bound with mini ε(hi) = 0; however, we can prove a
better bound than this.

(a) Consider a learning algorithm which, after looking at m training examples, chooses

some hypothesis ĥ ∈ H that makes zero mistakes on this training data. (By our
assumption, there is at least one such hypothesis, possibly more.) Show that with
probability 1 − δ

ε(ĥ) ≤
1

m
log

k

δ
.

Notice that since we do not have a square root here, this bound is much tighter. [Hint:
Consider the probability that a hypothesis with generalization error greater than γ
makes no mistakes on the training data. Instead of the Hoeffding bound, you might
also find the following inequality useful: (1 − γ)m ≤ e−γm.]

17

CS229 Problem Set #2 4

(b) Rewrite the above bound as a sample complexity bound, i.e., in the form: for fixed

δ and γ, for ε(ĥ) ≤ γ to hold with probability at least (1 − δ), it suffices that m ≥
f(k, γ, δ) (i.e., f(·) is some function of k, γ, and δ).

18

CS229 Problem Set #2 Solutions 1

CS 229, Public Course

Problem Set #2 Solutions: Kernels, SVMs, and
Theory

1. Kernel ridge regression

In contrast to ordinary least squares which has a cost function

J(θ) =
1

2

m
∑

i=1

(θT x(i) − y(i))2,

we can also add a term that penalizes large weights in θ. In ridge regression, our least
squares cost is regularized by adding a term λ‖θ‖2, where λ > 0 is a fixed (known) constant
(regularization will be discussed at greater length in an upcoming course lecutre). The ridge
regression cost function is then

J(θ) =
1

2

m
∑

i=1

(θT x(i) − y(i))2 +
λ

2
‖θ‖2.

(a) Use the vector notation described in class to find a closed-form expreesion for the
value of θ which minimizes the ridge regression cost function.

Answer: Using the design matrix notation, we can rewrite J(θ) as

J(θ) =
1

2
(Xθ − ~y)T (Xθ − ~y) +

λ

2
θT θ.

Then the gradient is
∇θJ(θ) = XT Xθ − XT ~y + λθ.

Setting the gradient to 0 gives us

0 = XT Xθ − XT ~y + λθ

θ = (XT X + λI)−1XT ~y.

(b) Suppose that we want to use kernels to implicitly represent our feature vectors in a
high-dimensional (possibly infinite dimensional) space. Using a feature mapping φ,
the ridge regression cost function becomes

J(θ) =
1

2

m
∑

i=1

(θT φ(x(i)) − y(i))2 +
λ

2
‖θ‖2.

Making a prediction on a new input xnew would now be done by computing θT φ(xnew).
Show how we can use the “kernel trick” to obtain a closed form for the prediction
on the new input without ever explicitly computing φ(xnew). You may assume that
the parameter vector θ can be expressed as a linear combination of the input feature
vectors; i.e., θ =

∑m

i=1 αiφ(x(i)) for some set of parameters αi.

19

CS229 Problem Set #2 Solutions 2

[Hint: You may find the following identity useful:

(λI + BA)−1B = B(λI + AB)−1.

If you want, you can try to prove this as well, though this is not required for the
problem.]

Answer: Let Φ be the design matrix associated with the feature vectors φ(x(i)). Then
from parts (a) and (b),

θ =
(

ΦT Φ + λI
)−1

ΦT ~y

= ΦT
(

ΦΦT + λI
)−1

~y

= ΦT (K + λI)−1~y.

where K is the kernel matrix for the training set (since Φi,j = φ(x(i))T φ(x(j)) = Kij .)
To predict a new value ynew, we can compute

~ynew = θT φ(xnew)

= ~yT (K + λI)−1Φφ(xnew)

=

m
∑

i=1

αiK(x(i), xnew).

where α = (K + λI)−1~y. All these terms can be efficiently computing using the kernel
function.

To prove the identity from the hint, we left-multiply by λ(I + BA) and right-multiply by
λ(I + AB) on both sides. That is,

(λI + BA)−1B = B(λI + AB)−1

B = (λI + BA)B(λI + AB)−1

B(λI + AB) = (λI + BA)B

λB + BAB = λB + BAB.

This last line clearly holds, proving the identity.

2. ℓ2 norm soft margin SVMs

In class, we saw that if our data is not linearly separable, then we need to modify our
support vector machine algorithm by introducing an error margin that must be minimized.
Specifically, the formulation we have looked at is known as the ℓ1 norm soft margin SVM.
In this problem we will consider an alternative method, known as the ℓ2 norm soft margin
SVM. This new algorithm is given by the following optimization problem (notice that the
slack penalties are now squared):

minw,b,ξ
1
2‖w‖2 + C

2

∑m

i=1 ξ2
i

s.t. y(i)(wT x(i) + b) ≥ 1 − ξi, i = 1, . . . ,m
.

(a) Notice that we have dropped the ξi ≥ 0 constraint in the ℓ2 problem. Show that these
non-negativity constraints can be removed. That is, show that the optimal value of
the objective will be the same whether or not these constraints are present.

Answer: Consider a potential solution to the above problem with some ξ < 0. Then
the constraint y(i)(wT x(i) + b) ≥ 1 − ξi would also be satisfied for ξi = 0, and the
objective function would be lower, proving that this could not be an optimal solution.

20

CS229 Problem Set #2 Solutions 3

(b) What is the Lagrangian of the ℓ2 soft margin SVM optimization problem?

Answer:

L(w, b, ξ, α) =
1

2
wT w +

C

2

m
∑

i=1

ξ2
i −

m
∑

i=1

αi[y
(i)(wT x(i) + b) − 1 + ξi],

where αi ≥ 0 for i = 1, . . . ,m.

(c) Minimize the Lagrangian with respect to w, b, and ξ by taking the following gradients:
∇wL, ∂L

∂b
, and ∇ξL, and then setting them equal to 0. Here, ξ = [ξ1, ξ2, . . . , ξm]T .

Answer: Taking the gradient with respect to w, we get

0 = ∇wL = w −

m
∑

i=1

αiy
(i)x(i),

which gives us

w =

m
∑

i=1

αiy
(i)x(i).

Taking the derivative with respect to b, we get

0 =
∂L

∂b
= −

m
∑

i=1

αiy
(i),

giving us

0 =
m
∑

i=1

αiy
(i).

Finally, taking the gradient with respect to ξ, we have

0 = ∇ξL = Cξ − α,

where α = [α1, α2, . . . , αm]T . Thus, for each i = 1, . . . ,m, we get

0 = Cξi − αi ⇒ Cξi = αi.

(d) What is the dual of the ℓ2 soft margin SVM optimization problem?

21

CS229 Problem Set #2 Solutions 4

Answer: The objective function for the dual is

W (α) = min
w,b,ξ

L(w, b, ξ, α)

=
1

2

m
∑

i=1

m
∑

j=1

(αiy
(i)x(i))T (αjy

(j)x(j)) +
1

2

m
∑

i=1

αi

ξi

ξ2
i

−

m
∑

i=1

αi

y(i)

m
∑

j=1

αjy
(j)x(j)

T

x(i) + b

− 1 + ξi

= −
1

2

m
∑

i=1

m
∑

j=1

αiαjy
(i)y(j)(x(i))T x(j) +

1

2

m
∑

i=1

αiξi

−

(

m
∑

i=1

αiy
(i)

)

b +

m
∑

i=1

αi −

m
∑

i=1

αiξi

=

m
∑

i=1

αi −
1

2

m
∑

i=1

m
∑

j=1

αiαjy
(i)y(j)(x(i))T x(j) −

1

2

m
∑

i=1

αiξi

=
m
∑

i=1

αi −
1

2

m
∑

i=1

m
∑

j=1

αiαjy
(i)y(j)(x(i))T x(j) −

1

2

m
∑

i=1

α2
i

C
.

Then the dual formulation of our problem is

maxα

∑m

i=1 αi −
1
2

∑m

i=1

∑m

j=1 αiαjy
(i)y(j)(x(i))T x(j) − 1

2

∑m

i=1
α2

i

C

s.t. αi ≥ 0, i = 1, . . . ,m
∑m

i=1 αiy
(i) = 0

.

3. SVM with Gaussian kernel

Consider the task of training a support vector machine using the Gaussian kernel K(x, z) =
exp(−‖x − z‖2/τ2). We will show that as long as there are no two identical points in the
training set, we can always find a value for the bandwidth parameter τ such that the SVM
achieves zero training error.

(a) Recall from class that the decision function learned by the support vector machine
can be written as

f(x) =
m
∑

i=1

αiy
(i)K(x(i), x) + b.

Assume that the training data {(x(1), y(1)), . . . , (x(m), y(m))} consists of points which
are separated by at least a distance of ǫ; that is, ||x(j) − x(i)|| ≥ ǫ for any i 6= j.
Find values for the set of parameters {α1, . . . , αm, b} and Gaussian kernel width τ
such that x(i) is correctly classified, for all i = 1, . . . ,m. [Hint: Let αi = 1 for all i
and b = 0. Now notice that for y ∈ {−1,+1} the prediction on x(i) will be correct if
|f(x(i)) − y(i)| < 1, so find a value of τ that satisfies this inequality for all i.]

22

CS229 Problem Set #2 Solutions 5

Answer: First we set αi = 1 for all i = 1, . . . ,m and b = 0. Then, for a training
example {x(i), y(i)}, we get

∣

∣

∣
f(x(i)) − y(i)

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

m
∑

j=1

y(j)K(x(j), x(i)) − y(i)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

m
∑

j=1

y(j) exp
(

−‖x(j) − x(i)‖2/τ2
)

− y(i)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

y(i) +
∑

j 6=i

y(j) exp
(

‖x(j) − x(i)‖2/τ2
)

− y(i)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

j 6=i

y(j) exp
(

−‖x(j) − x(i)‖2/τ2
)

∣

∣

∣

∣

∣

∣

≤
∑

j 6=i

∣

∣

∣
y(j) exp

(

−‖x(j) − x(i)‖2/τ2
)∣

∣

∣

=
∑

j 6=i

∣

∣

∣
y(j)
∣

∣

∣
· exp

(

‖x(j) − x(i)‖2/τ2
)

=
∑

j 6=i

exp
(

−‖x(j) − x(i)‖2/τ2
)

≤
∑

j 6=i

exp
(

−ǫ2/τ2
)

= (m − 1) exp
(

−ǫ2/τ2
)

.

The first inequality comes from repeated application of the triangle inequality |a + b| ≤
|a|+ |b|, and the second inequality (1) from the assumption that ||x(j) − x(i)|| ≥ ǫ for all
i 6= j. Thus we need to choose a γ such that

(m − 1) exp(−ǫ2/τ2) < 1,

or
τ <

ǫ

log(m − 1)
.

By choosing, for example, τ = ǫ/ log m we are done.

(b) Suppose we run a SVM with slack variables using the parameter τ you found in part
(a). Will the resulting classifier necessarily obtain zero training error? Why or why
not? A short explanation (without proof) will suffice.

Answer: The classifier will obtain zero training error. The SVM without slack variables
will always return zero training error if it is able to find a solution, so all that remains to
be shown is that there exists at least one feasible point.

Consider the constraint y(i)(wT x(i) + b) for some i, and let b = 0. Then

y(i)(wT x(i) + b) = y(i) · f(x(i)) > 0

since f(x(i)) and y(i) have the same sign, and shown above. Therefore, as we choose all
the αi’s large enough, y(i)(wT x(i) + b) > 1, so the optimization problem is feasible.

23

CS229 Problem Set #2 Solutions 6

(c) Suppose we run the SMO algorithm to train an SVM with slack variables, under
the conditions stated above, using the value of τ you picked in the previous part,
and using some arbitrary value of C (which you do not know beforehand). Will this
necessarily result in a classifier that achieve zero training error? Why or why not?
Again, a short explanation is sufficient.

Answer: The resulting classifier will not necessarily obtain zero training error. The C
parameter controls the relative weights of the (C

∑m

i=1 ξi) and (1
2 ||w||2) terms of the SVM

training objective. If the C parameter is sufficiently small, then the former component will
have relatively little contribution to the objective. In this case, a weight vector which has
a very small norm but does not achieve zero training error may achieve a lower objective
value than one which achieves zero training error. For example, you can consider the
extreme case where C = 0, and the objective is just the norm of w. In this case, w = 0 is
the solution to the optimization problem regardless of the choise of τ , this this may not
obtain zero training error.

4. Naive Bayes and SVMs for Spam Classification

In this question you’ll look into the Naive Bayes and Support Vector Machine algorithms
for a spam classification problem. However, instead of implementing the algorithms your-
self, you’ll use a freely available machine learning library. There are many such libraries
available, with different strengths and weaknesses, but for this problem you’ll use the
WEKA machine learning package, available at http://www.cs.waikato.ac.nz/ml/weka/.
WEKA implements many standard machine learning algorithms, is written in Java, and
has both a GUI and a command line interface. It is not the best library for very large-scale
data sets, but it is very nice for playing around with many different algorithms on medium
size problems.

You can download and install WEKA by following the instructions given on the website
above. To use it from the command line, you first need to install a java runtime environ-
ment, then add the weka.jar file to your CLASSPATH environment variable. Finally, you
can call WEKA using the command:
java <classifier> -t <training file> -T <test file>

For example, to run the Naive Bayes classifier (using the multinomial event model) on our
provided spam data set by running the command:
java weka.classifiers.bayes.NaiveBayesMultinomial -t spam train 1000.arff -T spam test.arff

The spam classification dataset in the q4/ directory was provided courtesy of Christian
Shelton (cshelton@cs.ucr.edu). Each example corresponds to a particular email, and each
feature correspondes to a particular word. For privacy reasons we have removed the actual
words themselves from the data set, and instead label the features generically as f1, f2, etc.
However, the data set is from a real spam classification task, so the results demonstrate the
performance of these algorithms on a real-world problem. The q4/ directory actually con-
tains several different training files, named spam train 50.arff, spam train 100.arff,
etc (the “.arff” format is the default format by WEKA), each containing the corresponding
number of training examples. There is also a single test set spam test.arff, which is a
hold out set used for evaluating the classifier’s performance.

(a) Run the weka.classifiers.bayes.NaiveBayesMultinomial classifier on the dataset
and report the resulting error rates. Evaluate the performance of the classifier using
each of the different training files (but each time using the same test file, spam test.arff).
Plot the error rate of the classifier versus the number of training examples.

24

CS229 Problem Set #2 Solutions 7

(b) Repeat the previous part, but using the weka.classifiers.functions.SMO classifier,
which implements the SMO algorithm to train an SVM. How does the performance
of the SVM compare to that of Naive Bayes?

Answer: Using the above command line arguments to run the classifier, we obtain
the following error rates for the two algorithms:

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

Num Training Examples

E
rr

or
 (

%
)

Support Vector Machine
Naive Bayes

For small amounts of data, Naive Bayes performs better than the Support Vector Machine.
However, as the amount of data grows, the SVM achieves a better error rate.

5. Uniform convergence

In class we proved that for any finite set of hypotheses H = {h1, . . . , hk}, if we pick the

hypothesis ĥ that minimizes the training error on a set of m examples, then with probability
at least (1 − δ),

ε(ĥ) ≤
(

min
i

ε(hi)
)

+ 2

√

1

2m
log

2k

δ
,

where ε(hi) is the generalization error of hypothesis hi. Now consider a special case (often
called the realizable case) where we know, a priori, that there is some hypothesis in our
class H that achieves zero error on the distribution from which the data is drawn. Then
we could obviously just use the above bound with mini ε(hi) = 0; however, we can prove a
better bound than this.

(a) Consider a learning algorithm which, after looking at m training examples, chooses

some hypothesis ĥ ∈ H that makes zero mistakes on this training data. (By our
assumption, there is at least one such hypothesis, possibly more.) Show that with
probability 1 − δ

ε(ĥ) ≤
1

m
log

k

δ
.

Notice that since we do not have a square root here, this bound is much tighter. [Hint:
Consider the probability that a hypothesis with generalization error greater than γ
makes no mistakes on the training data. Instead of the Hoeffding bound, you might
also find the following inequality useful: (1 − γ)m ≤ e−γm.]

Answer: Let h ∈ H be a hypothesis with true error greater than γ. Then

P (“h predicts correctly”) ≤ 1 − γ,

25

CS229 Problem Set #2 Solutions 8

so
P (“h predicts correctly m times”) ≤ (1 − γ)m ≤ e−γm.

Applying the union bound,

P (∃h ∈ H, s.t. ε(h) > γ and “h predicts correct m times”) ≤ ke−γm.

We want to make this probability equal to δ, so we set

ke−γm = δ,

which gives us

γ =
1

m
log

k

δ
.

This impiles that with probability 1 − δ,

ε(ĥ) ≤
1

m
log

k

δ
.

(b) Rewrite the above bound as a sample complexity bound, i.e., in the form: for fixed

δ and γ, for ε(ĥ) ≤ γ to hold with probability at least (1 − δ), it suffices that m ≥
f(k, γ, δ) (i.e., f(·) is some function of k, γ, and δ).

Answer: From part (a), if we take the equation,

ke−γm = δ

and solve for m, we obtain

m =
1

γ
log

k

δ
.

Therefore, for m larger than this, ε(ĥ) ≤ γ will hold with probability at least 1 − δ.

26

CS229 Problem Set #3 1

CS 229, Public Course

Problem Set #3: Learning Theory and Unsuper-
vised Learning

1. Uniform convergence and Model Selection

In this problem, we will prove a bound on the error of a simple model selection procedure.

Let there be a binary classification problem with labels y ∈ {0, 1}, and let H1 ⊆ H2 ⊆
. . . ⊆ Hk be k different finite hypothesis classes (|Hi| < ∞). Given a dataset S of m iid
training examples, we will divide it into a training set Strain consisting of the first (1−β)m
examples, and a hold-out cross validation set Scv consisting of the remaining βm examples.
Here, β ∈ (0, 1).

Let ĥi = arg minh∈Hi
ε̂Strain

(h) be the hypothesis in Hi with the lowest training error

(on Strain). Thus, ĥi would be the hypothesis returned by training (with empirical risk
minimization) using hypothesis class Hi and dataset Strain. Also let h⋆

i = arg minh∈Hi
ε(h)

be the hypothesis in Hi with the lowest generalization error.

Suppose that our algorithm first finds all the ĥi’s using empirical risk minimization then
uses the hold-out cross validation set to select a hypothesis from this the {ĥ1, . . . , ĥk} with
minimum training error. That is, the algorithm will output

ĥ = arg min
h∈{ĥ1,...,ĥk}

ε̂Scv
(h).

For this question you will prove the following bound. Let any δ > 0 be fixed. Then with
probability at least 1 − δ, we have that

ε(ĥ) ≤ min
i=1,...,k

(

ε(h∗
i) +

√

2

(1 − β)m
log

4|Hi|

δ

)

+

√

2

2βm
log

4k

δ

(a) Prove that with probability at least 1 − δ
2 , for all ĥi,

|ε(ĥi) − ε̂Scv
(ĥi)| ≤

√

1

2βm
log

4k

δ
.

(b) Use part (a) to show that with probability 1 − δ
2 ,

ε(ĥ) ≤ min
i=1,...,k

ε(ĥi) +

√

2

βm
log

4k

δ
.

(c) Let j = arg mini ε(ĥi). We know from class that for Hj , with probability 1 − δ
2

|ε(ĥj) − ε̂Strain
(h⋆

j)| ≤

√

2

(1 − β)m
log

4|Hj |

δ
, ∀hj ∈ Hj .

Use this to prove the final bound given at the beginning of this problem.

27

CS229 Problem Set #3 2

2. VC Dimension

Let the input domain of a learning problem be X = R. Give the VC dimension for each
of the following classes of hypotheses. In each case, if you claim that the VC dimension is
d, then you need to show that the hypothesis class can shatter d points, and explain why
there are no d + 1 points it can shatter.

• h(x) = 1{a < x}, with parameter a ∈ R.

• h(x) = 1{a < x < b}, with parameters a, b ∈ R.

• h(x) = 1{a sin x > 0}, with parameter a ∈ R.

• h(x) = 1{sin(x + a) > 0}, with parameter a ∈ R.

3. ℓ1 regularization for least squares

In the previous problem set, we looked at the least squares problem where the objective
function is augmented with an additional regularization term λ‖θ‖2

2. In this problem we’ll
consider a similar regularized objective but this time with a penalty on the ℓ1 norm of
the parameters λ‖θ‖1, where ‖θ‖1 is defined as

∑

i |θi|. That is, we want to minimize the
objective

J(θ) =
1

2

m
∑

i=1

(θT x(i) − y(i))2 + λ
n
∑

i=1

|θi|.

There has been a great deal of recent interest in ℓ1 regularization, which, as we will see,
has the benefit of outputting sparse solutions (i.e., many components of the resulting θ are
equal to zero).

The ℓ1 regularized least squares problem is more difficult than the unregularized or ℓ2
regularized case, because the ℓ1 term is not differentiable. However, there have been many
efficient algorithms developed for this problem that work very well in practive. One very
straightforward approach, which we have already seen in class, is the coordinate descent
method. In this problem you’ll derive and implement a coordinate descent algorithm for
ℓ1 regularized least squares, and apply it to test data.

(a) Here we’ll derive the coordinate descent update for a given θi. Given the X and
~y matrices, as defined in the class notes, as well a parameter vector θ, how can we
adjust θi so as to minimize the optimization objective? To answer this question, we’ll
rewrite the optimization objective above as

J(θ) =
1

2
‖Xθ − ~y‖2

2 + λ‖θ‖1 =
1

2
‖Xθ̄ + Xiθi − ~y‖2

2 + λ‖θ̄‖1 + λ|θi|

where Xi ∈ R
m denotes the ith column of X, and θ̄ is equal to θ except with θ̄i = 0;

all we have done in rewriting the above expression is to make the θi term explicit in
the objective. However, this still contains the |θi| term, which is non-differentiable
and therefore difficult to optimize. To get around this we make the observation that
the sign of θi must either be non-negative or non-positive. But if we knew the sign of
θi, then |θi| becomes just a linear term. That, is, we can rewrite the objective as

J(θ) =
1

2
‖Xθ̄ + Xiθi − ~y‖2

2 + λ‖θ̄‖1 + λsiθi

where si denotes the sign of θi, si ∈ {−1, 1}. In order to update θi, we can just
compute the optimal θi for both possible values of si (making sure that we restrict

28

CS229 Problem Set #3 3

the optimal θi to obey the sign restriction we used to solve for it), then look to see
which achieves the best objective value.

For each of the possible values of si, compute the resulting optimal value of θi. [Hint:
to do this, you can fix si in the above equation, then differentiate with respect to θi

to find the best value. Finally, clip θi so that it lies in the allowable range — i.e., for
si = 1, you need to clip θi such that θi ≥ 0.]

(b) Implement the above coordinate descent algorithm using the updates you found in
the previous part. We have provided a skeleton theta = l1ls(X,y,lambda) function
in the q3/ directory. To implement the coordinate descent algorithm, you should
repeatedly iterate over all the θi’s, adjusting each as you found above. You can
terminate the process when θ changes by less than 10−5 after all n of the updates.

(c) Test your implementation on the data provided in the q3/ directory. The [X, y,

theta true] = load data; function will load all the data — the data was generated
by y = X*theta true + 0.05*randn(20,1), but theta true is sparse, so that very
few of the columns of X actually contain relevant features. Run your l1ls.m imple-
mentation on this data set, ranging λ from 0.001 to 10. Comment briefly on how this
algorithm might be used for feature selection.

4. K-Means Clustering

In this problem you’ll implement the K-means clustering algorithm on a synthetic data
set. There is code and data for this problem in the q4/ directory. Run load ’X.dat’;

to load the data file for clustering. Implement the [clusters, centers] = k means(X,

k) function in this directory. As input, this function takes the m × n data matrix X and
the number of clusters k. It should output a m element vector, clusters, which indicates
which of the clusters each data point belongs to, and a k × n matrix, centers, which
contains the centroids of each cluster. Run the algorithm on the data provided, with k = 3
and k = 4. Plot the cluster assignments and centroids for each iteration of the algorithm
using the draw clusters(X, clusters, centroids) function. For each k, be sure to run
the algorithm several times using different initial centroids.

5. The Generalized EM algorithm

When attempting to run the EM algorithm, it may sometimes be difficult to perform the M
step exactly — recall that we often need to implement numerical optimization to perform
the maximization, which can be costly. Therefore, instead of finding the global maximum
of our lower bound on the log-likelihood, and alternative is to just increase this lower bound
a little bit, by taking one step of gradient ascent, for example. This is commonly known
as the Generalized EM (GEM) algorithm.

Put slightly more formally, recall that the M-step of the standard EM algorithm performs
the maximization

θ := arg max
θ

∑

i

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))
.

The GEM algorithm, in constrast, performs the following update in the M-step:

θ := θ + α∇θ

∑

i

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))

where α is a learning rate which we assume is choosen small enough such that we do not
decrease the objective function when taking this gradient step.

29

CS229 Problem Set #3 4

(a) Prove that the GEM algorithm described above converges. To do this, you should
show that the the likelihood is monotonically improving, as it does for the EM algo-
rithm — i.e., show that ℓ(θ(t+1)) ≥ ℓ(θ(t)).

(b) Instead of using the EM algorithm at all, suppose we just want to apply gradient ascent
to maximize the log-likelihood directly. In other words, we are trying to maximize
the (non-convex) function

ℓ(θ) =
∑

i

log
∑

z(i)

p(x(i), z(i); θ)

so we could simply use the update

θ := θ + α∇θ

∑

i

log
∑

z(i)

p(x(i), z(i); θ).

Show that this procedure in fact gives the same update as the GEM algorithm de-
scribed above.

30

CS229 Problem Set #3 Solutions 1

CS 229, Public Course

Problem Set #3 Solutions: Learning Theory and
Unsupervised Learning

1. Uniform convergence and Model Selection

In this problem, we will prove a bound on the error of a simple model selection procedure.

Let there be a binary classification problem with labels y ∈ {0, 1}, and let H1 ⊆ H2 ⊆
. . . ⊆ Hk be k different finite hypothesis classes (|Hi| < ∞). Given a dataset S of m iid
training examples, we will divide it into a training set Strain consisting of the first (1−β)m
examples, and a hold-out cross validation set Scv consisting of the remaining βm examples.
Here, β ∈ (0, 1).

Let ĥi = arg minh∈Hi
ε̂Strain

(h) be the hypothesis in Hi with the lowest training error

(on Strain). Thus, ĥi would be the hypothesis returned by training (with empirical risk
minimization) using hypothesis class Hi and dataset Strain. Also let h⋆

i = arg minh∈Hi
ε(h)

be the hypothesis in Hi with the lowest generalization error.

Suppose that our algorithm first finds all the ĥi’s using empirical risk minimization then
uses the hold-out cross validation set to select a hypothesis from this the {ĥ1, . . . , ĥk} with
minimum training error. That is, the algorithm will output

ĥ = arg min
h∈{ĥ1,...,ĥk}

ε̂Scv
(h).

For this question you will prove the following bound. Let any δ > 0 be fixed. Then with
probability at least 1 − δ, we have that

ε(ĥ) ≤ min
i=1,...,k

(

ε(h∗
i) +

√

2

(1 − β)m
log

4|Hi|

δ

)

+

√

2

2βm
log

4k

δ

(a) Prove that with probability at least 1 − δ
2 , for all ĥi,

|ε(ĥi) − ε̂Scv
(ĥi)| ≤

√

1

2βm
log

4k

δ
.

Answer: For each ĥi, the empirical error on the cross-validation set, ε̂(ĥi) represents

the average of βm random variables with mean ε(ĥi), so by the Hoeffding inequality for

any ĥi,
P (|ε(ĥi) − ε̂Scv

(ĥi)| ≥ γ) ≤ 2 exp(−2γ2βm).

As in the class notes, to insure that this holds for all ĥi, we need to take the union over
all k of the ĥi’s.

P (∃i, s.t.|ε(ĥi) − ε̂Scv
(ĥi)| ≥ γ) ≤ 2k exp(−2γ2βm).

31

CS229 Problem Set #3 Solutions 2

Setting this term equal to δ/2 and solving for γ yields

γ =

√

1

2βm
log

4k

δ

proving the desired bound.

(b) Use part (a) to show that with probability 1 − δ
2 ,

ε(ĥ) ≤ min
i=1,...,k

ε(ĥi) +

√

2

βm
log

4k

δ
.

Answer: Let j = arg mini ε(ĥi). Using part (a), with probability at least 1 − δ
2

ε(ĥ) ≤ ε̂Scv
(ĥ) +

√

1

2βm
log

4k

δ

= min
i

ε̂Scv
(ĥi) +

√

1

2βm
log

4k

δ

≤ ε̂Scv
(ĥj) +

√

1

2βm
log

4k

δ

≤ ε(ĥj) + 2

√

1

2βm
log

4k

δ

= min
i=1,...,k

ε(ĥi) +

√

2

βm
log

4k

δ

(c) Let j = arg mini ε(ĥi). We know from class that for Hj , with probability 1 − δ
2

|ε(ĥj) − ε̂Strain
(h⋆

j)| ≤

√

2

(1 − β)m
log

4|Hj |

δ
, ∀hj ∈ Hj .

Use this to prove the final bound given at the beginning of this problem.

Answer: The bounds in parts (a) and (c) both hold simultaneously with probability

(1 − δ
2)2 = 1 − δ + δ2

4 > 1 − δ, so with probablity greater than 1 − δ,

ε(ĥ) ≤ ε(h⋆
j) + 2

√

1

2(1 − γ)m
log

2|Hj |
δ
2

+ 2

√

1

2γm
log

2k
δ
2

which is equivalent to the bound we want to show.

2. VC Dimension

Let the input domain of a learning problem be X = R. Give the VC dimension for each
of the following classes of hypotheses. In each case, if you claim that the VC dimension is
d, then you need to show that the hypothesis class can shatter d points, and explain why
there are no d + 1 points it can shatter.

32

CS229 Problem Set #3 Solutions 3

• h(x) = 1{a < x}, with parameter a ∈ R.

Answer: VC-dimension = 1.

(a) It can shatter point {0}, by choosing a to be 2 and −2.

(b) It cannot shatter any two points {x1, x2}, x1 < x2, because the labelling x1 = 1 and
x2 = 0 cannot be realized.

• h(x) = 1{a < x < b}, with parameters a, b ∈ R.

Answer: VC-dimension = 2.

(a) It can shatter points {0, 2} by choosing (a, b) to be (3, 5), (−1, 1), (1, 3), (−1, 3).

(b) It cannot shatter any three points {x1, x2, x3}, x1 < x2 < x3, because the labelling
x1 = x3 = 1, x2 = 0 cannot be realized.

• h(x) = 1{a sin x > 0}, with parameter a ∈ R.

Answer: VC-dimension = 1. a controls the amplitude of the sine curve.

(a) It can shatter point {π
2 } by choosing a to be 1 and −1.

(b) It cannot shatter any two points {x1, x2}, since, the labellings of x1 and x2 will flip
together. If x1 = x2 = 1 for some a, then we cannot achieve x1 6= x2. If x1 6= x2

for some a, then we cannot achieve x1 = x2 = 1 (x1 = x2 = 0 can be achieved by
setting a = 0).

• h(x) = 1{sin(x + a) > 0}, with parameter a ∈ R.

Answer: VC-dimension = 2. a controls the phase of the sine curve.

(a) It can shatter points {π
4 , 3π

4 }, by choosing a to be 0, π
2 , π, and 3π

2 .

(b) It cannot shatter any three points {x1, x2, x3}. Since sine has a preiod of 2π, let’s
define x′

i = xi mod 2π. W.l.o.g., assume x′
1 < x′

2 < x′
3. If the labelling of

x1 = x2 = x3 = 1 can be realized, then the labelling of x1 = x3 = 1, x2 = 0 will
not be realizable. Notice the similarity to the second question.

3. ℓ1 regularization for least squares

In the previous problem set, we looked at the least squares problem where the objective
function is augmented with an additional regularization term λ‖θ‖2

2. In this problem we’ll
consider a similar regularized objective but this time with a penalty on the ℓ1 norm of
the parameters λ‖θ‖1, where ‖θ‖1 is defined as

∑

i |θi|. That is, we want to minimize the
objective

J(θ) =
1

2

m
∑

i=1

(θT x(i) − y(i))2 + λ
n
∑

i=1

|θi|.

There has been a great deal of recent interest in ℓ1 regularization, which, as we will see,
has the benefit of outputting sparse solutions (i.e., many components of the resulting θ are
equal to zero).

The ℓ1 regularized least squares problem is more difficult than the unregularized or ℓ2
regularized case, because the ℓ1 term is not differentiable. However, there have been many
efficient algorithms developed for this problem that work very well in practive. One very
straightforward approach, which we have already seen in class, is the coordinate descent
method. In this problem you’ll derive and implement a coordinate descent algorithm for
ℓ1 regularized least squares, and apply it to test data.

33

CS229 Problem Set #3 Solutions 4

(a) Here we’ll derive the coordinate descent update for a given θi. Given the X and
~y matrices, as defined in the class notes, as well a parameter vector θ, how can we
adjust θi so as to minimize the optimization objective? To answer this question, we’ll
rewrite the optimization objective above as

J(θ) =
1

2
‖Xθ − ~y‖2

2 + λ‖θ‖1 =
1

2
‖Xθ̄ + Xiθi − ~y‖2

2 + λ‖θ̄‖1 + λ|θi|

where Xi ∈ R
m denotes the ith column of X, and θ̄ is equal to θ except with θ̄i = 0;

all we have done in rewriting the above expression is to make the θi term explicit in
the objective. However, this still contains the |θi| term, which is non-differentiable
and therefore difficult to optimize. To get around this we make the observation that
the sign of θi must either be non-negative or non-positive. But if we knew the sign of
θi, then |θi| becomes just a linear term. That, is, we can rewrite the objective as

J(θ) =
1

2
‖Xθ̄ + Xiθi − ~y‖2

2 + λ‖θ̄‖1 + λsiθi

where si denotes the sign of θi, si ∈ {−1, 1}. In order to update θi, we can just
compute the optimal θi for both possible values of si (making sure that we restrict
the optimal θi to obey the sign restriction we used to solve for it), then look to see
which achieves the best objective value.

For each of the possible values of si, compute the resulting optimal value of θi. [Hint:
to do this, you can fix si in the above equation, then differentiate with respect to θi

to find the best value. Finally, clip θi so that it lies in the allowable range — i.e., for
si = 1, you need to clip θi such that θi ≥ 0.]

Answer: For si = 1,

J(θ) =
1

2
tr(Xθ̄ + Xiθi − ~y)T (Xθ̄ + Xiθi − ~y) + λ‖θ̄‖1 + λθi

=
1

2

(

XT
i Xiθ

2
i + 2XT

i (Xθ̄ − ~y)θi + ‖Xθ̄ − ~y‖2
2

)

+ λ‖θ̄‖1 + λθi,

so
∂J(θ)

∂θi

= XT
i Xiθ + XT

i (Xθ̄ − ~y) + λ

which means the optimal θi is given by

θi = max

{

−XT
i (Xθ̄ − ~y) − λ

XT
i Xi

, 0

}

.

Similarly, for si = −1, the optimal θi is given by

θi = min

{

−XT
i (Xθ̄ − ~y) + λ

XT
i Xi

, 0

}

.

(b) Implement the above coordinate descent algorithm using the updates you found in
the previous part. We have provided a skeleton theta = l1ls(X,y,lambda) function
in the q3/ directory. To implement the coordinate descent algorithm, you should
repeatedly iterate over all the θi’s, adjusting each as you found above. You can
terminate the process when θ changes by less than 10−5 after all n of the updates.

Answer: The following is our implementation of l1ls.m:

34

CS229 Problem Set #3 Solutions 5

function theta = l1l2(X,y,lambda)

m = size(X,1);

n = size(X,2);

theta = zeros(n,1);

old_theta = ones(n,1);

while (norm(theta - old_theta) > 1e-5)

old_theta = theta;

for i=1:n,

% compute possible values for theta

theta(i) = 0;

theta_i(1) = max((-X(:,i)’*(X*theta - y) - lambda) / (X(:,i)’*X(:,i)), 0);

theta_i(2) = min((-X(:,i)’*(X*theta - y) + lambda) / (X(:,i)’*X(:,i)), 0);

% get objective value for both possible thetas

theta(i) = theta_i(1);

obj_theta(1) = 0.5*norm(X*theta - y)^2 + lambda*norm(theta,1);

theta(i) = theta_i(2);

obj_theta(2) = 0.5*norm(X*theta - y)^2 + lambda*norm(theta,1);

% pick the theta which minimizes the objective

[min_obj, min_ind] = min(obj_theta);

theta(i) = theta_i(min_ind);

end

end

(c) Test your implementation on the data provided in the q3/ directory. The [X, y,

theta true] = load data; function will load all the data — the data was generated
by y = X*theta true + 0.05*randn(20,1), but theta true is sparse, so that very
few of the columns of X actually contain relevant features. Run your l1ls.m imple-
mentation on this data set, ranging λ from 0.001 to 10. Comment briefly on how this
algorithm might be used for feature selection.

Answer: For λ = 1, our implementation of l1 regularized least squares recovers the
exact sparsity pattern of the true parameter that generated the data. In constrast, using
any amount of l2 regularization still leads to θ’s that contain no zeros. This suggests
that the l1 regularization could be very useful as a feature selection algorithm: we could
run l1 regularized least squares to see which coefficients are non-zero, then select only
these features for use with either least-squares or possibly a completely different machine
learning algorithm.

4. K-Means Clustering

In this problem you’ll implement the K-means clustering algorithm on a synthetic data
set. There is code and data for this problem in the q4/ directory. Run load ’X.dat’;

to load the data file for clustering. Implement the [clusters, centers] = k means(X,

k) function in this directory. As input, this function takes the m × n data matrix X and
the number of clusters k. It should output a m element vector, clusters, which indicates
which of the clusters each data point belongs to, and a k × n matrix, centers, which
contains the centroids of each cluster. Run the algorithm on the data provided, with k = 3

35

CS229 Problem Set #3 Solutions 6

and k = 4. Plot the cluster assignments and centroids for each iteration of the algorithm
using the draw clusters(X, clusters, centroids) function. For each k, be sure to run
the algorithm several times using different initial centroids.

Answer: The following is our implementation of k means.m:

function [clusters, centroids] = k_means(X, k)

m = size(X,1);

n = size(X,2);

oldcentroids = zeros(k,n);

centroids = X(ceil(rand(k,1)*m),:);

while (norm(oldcentroids - centroids) > 1e-15)

oldcentroids = centroids;

% compute cluster assignments

for i=1:m,

dists = sum((repmat(X(i,:), k, 1) - centroids).^2, 2);

[min_dist, clusters(i,1)] = min(dists);

end

draw_clusters(X, clusters, centroids);

pause(0.1);

% compute cluster centroids

for i=1:k,

centroids(i,:) = mean(X(clusters == i, :));

end

end

Below we show the centroid evolution for two typical runs with k = 3. Note that the different
starting positions of the clusters lead to do different final clusterings.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

5. The Generalized EM algorithm

When attempting to run the EM algorithm, it may sometimes be difficult to perform the M
step exactly — recall that we often need to implement numerical optimization to perform
the maximization, which can be costly. Therefore, instead of finding the global maximum
of our lower bound on the log-likelihood, and alternative is to just increase this lower bound
a little bit, by taking one step of gradient ascent, for example. This is commonly known
as the Generalized EM (GEM) algorithm.

36

CS229 Problem Set #3 Solutions 7

Put slightly more formally, recall that the M-step of the standard EM algorithm performs
the maximization

θ := arg max
θ

∑

i

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))
.

The GEM algorithm, in constrast, performs the following update in the M-step:

θ := θ + α∇θ

∑

i

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))

where α is a learning rate which we assume is choosen small enough such that we do not
decrease the objective function when taking this gradient step.

(a) Prove that the GEM algorithm described above converges. To do this, you should
show that the the likelihood is monotonically improving, as it does for the EM algo-
rithm — i.e., show that ℓ(θ(t+1)) ≥ ℓ(θ(t)).

Answer: We use the same logic as for the standard EM algorithm. Specifically, just
as for EM, we have for the GEM algorithm that

ℓ(θ(t+1)) ≥
∑

i

∑

z(i)

Q
(t)
i (z(i)) log

p(x(i), z(i); θ(t+1))

Q
(t)
i (z(i))

≥
∑

i

∑

z(i)

Q
(t)
i (z(i)) log

p(x(i), z(i); θ(t))

Q
(t)
i (z(i))

= ℓ(θ(t))

where as in EM the first line holds due to Jensen’s equality, and the last line holds because
we choose the Q distribution to make this hold with equality. The only difference between
EM and GEM is the logic as to why the second line holds: for EM it held because θ(t+1)

was chosen to maximize this quantity, but for GEM it holds by our assumption that we
take a gradient step small enough so as not to decrease the objective function.

(b) Instead of using the EM algorithm at all, suppose we just want to apply gradient ascent
to maximize the log-likelihood directly. In other words, we are trying to maximize
the (non-convex) function

ℓ(θ) =
∑

i

log
∑

z(i)

p(x(i), z(i); θ)

so we could simply use the update

θ := θ + α∇θ

∑

i

log
∑

z(i)

p(x(i), z(i); θ).

Show that this procedure in fact gives the same update as the GEM algorithm de-
scribed above.

Answer: Differentiating the log likelihood directly we get

∂

∂θj

∑

i

log
∑

z(i)

p(x(i), z(i); θ) =
∑

i

1
∑

z(i) p(x(i), z(i); θ)

∑

z(i)

∂

∂θj

p(x(i), z(i); θ)

=
∑

i

∑

z(i)

1

p(x(i); θ)
·

∂

∂θj

p(x(i), z(i); θ).

37

CS229 Problem Set #3 Solutions 8

For the GEM algorithm,

∂

∂θj

∑

i

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))
=

∑

i

∑

z(i)

Qi(z
(i))

p(x(i), z(i); θ)
·

∂

∂θj

p(x(i), z(i); θ).

But the E-step of the GEM algorithm chooses

Qi(z
(i)) = p(z(i)|x(i); θ) =

p(x(i), z(i); θ)

p(x(i); θ)
,

so

∑

i

∑

z(i)

Qi(z
(i))

p(x(i), z(i); θ)
·

∂

∂θj

p(x(i), z(i); θ) =
∑

i

∑

z(i)

1

p(x(i); θ)
·

∂

∂θj

p(x(i), z(i); θ)

which is the same as the derivative of the log likelihood.

38

CS229 Problem Set #4 1

CS 229, Public Course

Problem Set #4: Unsupervised Learning and Re-
inforcement Learning

1. EM for supervised learning

In class we applied EM to the unsupervised learning setting. In particular, we represented
p(x) by marginalizing over a latent random variable

p(x) =
∑

z

p(x, z) =
∑

z

p(x|z)p(z).

However, EM can also be applied to the supervised learning setting, and in this problem we
discuss a “mixture of linear regressors” model; this is an instance of what is often call the
Hierarchical Mixture of Experts model. We want to represent p(y|x), x ∈ R

n and y ∈ R,
and we do so by again introducing a discrete latent random variable

p(y|x) =
∑

z

p(y, z|x) =
∑

z

p(y|x, z)p(z|x).

For simplicity we’ll assume that z is binary valued, that p(y|x, z) is a Gaussian density,
and that p(z|x) is given by a logistic regression model. More formally

p(z|x;φ) = g(φT x)z(1 − g(φT x))1−z

p(y|x, z = i; θi) =
1

√
2πσ

exp

(

−(y − θT
i x)2

2σ2

)

i = 1, 2

where σ is a known parameter and φ, θ0, θ1 ∈ R
n are parameters of the model (here we

use the subscript on θ to denote two different parameter vectors, not to index a particular
entry in these vectors).

Intuitively, the process behind model can be thought of as follows. Given a data point x,
we first determine whether the data point belongs to one of two hidden classes z = 0 or
z = 1, using a logistic regression model. We then determine y as a linear function of x
(different linear functions for different values of z) plus Gaussian noise, as in the standard
linear regression model. For example, the following data set could be well-represented by
the model, but not by standard linear regression.

39

CS229 Problem Set #4 2

(a) Suppose x, y, and z are all observed, so that we obtain a training set
{(x(1), y(1), z(1)), . . . , (x(m), y(m), z(m))}. Write the log-likelihood of the parameters,
and derive the maximum likelihood estimates for φ, θ0, and θ1. Note that because
p(z|x) is a logistic regression model, there will not exist a closed form estimate of φ.
In this case, derive the gradient and the Hessian of the likelihood with respect to φ;
in practice, these quantities can be used to numerically compute the ML esimtate.

(b) Now suppose z is a latent (unobserved) random variable. Write the log-likelihood of
the parameters, and derive an EM algorithm to maximize the log-likelihood. Clearly
specify the E-step and M-step (again, the M-step will require a numerical solution,
so find the appropriate gradients and Hessians).

2. Factor Analysis and PCA

In this problem we look at the relationship between two unsupervised learning algorithms
we discussed in class: Factor Analysis and Principle Component Analysis.

Consider the following joint distribution over (x, z) where z ∈ R
k is a latent random

variable

z ∼ N (0, I)

x|z ∼ N (Uz, σ2I).

where U ∈ R
n×k is a model parameters and σ2 is assumed to be a known constant. This

model is often called Probabilistic PCA. Note that this is nearly identical to the factor
analysis model except we assume that the variance of x|z is a known scaled identity matrix
rather than the diagonal parameter matrix, Φ, and we do not add an additional µ term to
the mean (though this last difference is just for simplicity of presentation). However, as
we will see, it turns out that as σ2 → 0, this model is equivalent to PCA.

For simplicity, you can assume for the remainder of the problem that k = 1, i.e., that U is
a column vector in R

n.

(a) Use the rules for manipulating Gaussian distributions to determine the joint distri-
bution over (x, z) and the conditional distribution of z|x. [Hint: for later parts of
this problem, it will help significantly if you simplify your soluting for the conditional
distribution using the identity we first mentioned in problem set #1: (λI+BA)−1B =
B(λI + AB)−1.]

(b) Using these distributions, derive an EM algorithm for the model. Clearly state the
E-step and the M-step of the algorithm.

(c) As σ2 → 0, show that if the EM algorithm convergences to a parameter vector U⋆

(and such convergence is guarenteed by the argument presented in class), then U⋆

must be an eigenvector of the sample covariance matrix Σ = 1
m

∑m

i=1 x(i)x(i)T
— i.e.,

U⋆ must satisfy
λU⋆ = ΣU⋆.

[Hint: When σ2 → 0, Σz|x → 0, so the E step only needs to compute the means
µz|x and not the variances. Let w ∈ R

m be a vector containing all these means,
wi = µz(i)|x(i) , and show that the E step and M step can be expressed as

w =
XU

UT U
, U =

XT w

wT w

40

CS229 Problem Set #4 3

respectively. Finally, show that if U doesn’t change after this update, it must satisfy
the eigenvector equation shown above.]

3. PCA and ICA for Natural Images

In this problem we’ll apply Principal Component Analysis and Independent Component
Analysis to images patches collected from “natural” image scenes (pictures of leaves, grass,
etc). This is one of the classical applications of the ICA algorithm, and sparked a great
deal of interest in the algorithm; it was observed that the bases recovered by ICA closely
resemble image filters present in the first layer of the visual cortex.

The q3/ directory contains the data and several useful pieces of code for this problem. The
raw images are stored in the images/ subdirectory, though you will not need to work with
these directly, since we provide code for loading and normalizing the images.

Calling the function [X ica, X pca] = load images; will load the images, break them
into 16x16 images patches, and place all these patches into the columns of the matri-
ces X ica and X pca. We create two different data sets for PCA and ICA because the
algorithms require slightly different methods of preprocessing the data.1

For this problem you’ll implement the ica.m and pca.m functions, using the PCA and
ICA algorithms described in the class notes. While the PCA implementation should be
straightforward, getting a good implementation of ICA can be a bit trickier. Here is some
general advice to getting a good implementation on this data set:

• Picking a good learning rate is important. In our experiments we used α = 0.0005 on
this data set.

• Batch gradient descent doesn’t work well for ICA (this has to do with the fact that
ICA objective function is not concave), but the pure stochastic gradient described in
the notes can be slow (There are about 20,000 16x16 images patches in the data set,
so one pass over the data using the stochastic gradient rule described in the notes
requires inverting the 256x256 W matrix 20,000 times). Instead, a good compromise
is to use a hybrid stochastic/batch gradient descent where we calculate the gradient
with respect to several examples at a time (100 worked well for us), and use this to
update W . Our implementation makes 10 total passes over the entire data set.

• It is a good idea to randomize the order of the examples presented to stochastic
gradient descent before each pass over the data.

• Vectorize your Matlab code as much as possible. For general examples of how to do
this, look at the Matlab review session.

For reference, computing the ICA W matrix for the entire set of image patches takes about
5 minutes on a 1.6 Ghz laptop using our implementation.

After you’ve learned the U matrix for PCA (the columns of U should contain the principal
components of the data) and the W matrix of ICA, you can plot the basis functions using
the plot ica bases(W); and plot pca bases(U); functions we have provide. Comment
briefly on the difference between the two sets of basis functions.

1Recall that the first step of performing PCA is to subtract the mean and normalize the variance of the features.

For the image data we’re using, the preprocessing step for the ICA algorithm is slightly different, though the

precise mechanism and justification is not imporant for the sake of this problem. Those who are curious about

the details should read Bell and Sejnowki’s paper “The ’Independent Components’ of Natural Scenes are Edge

Filters,” which provided the basis for the implementation we use in this problem.

41

CS229 Problem Set #4 4

4. Convergence of Policy Iteration

In this problem we show that the Policy Iteration algorithm, described in the lecture notes,
is guarenteed to find the optimal policy for an MDP. First, define Bπ to be the Bellman
operator for policy π, defined as follows: if V ′ = B(V), then

V ′(s) = R(s) + γ
∑

s′∈S

Psπ(s)(s
′)V (s′).

(a) Prove that if V1(s) ≤ V2(s) for all s ∈ S, then B(V1)(s) ≤ B(V2)(s) for all s ∈ S.

(b) Prove that for any V ,

‖Bπ(V) − V π‖∞ ≤ γ‖V − V π‖∞

where ‖V ‖∞ = maxs∈S |V (s)|. Intuitively, this means that applying the Bellman
operator Bπ to any value function V , brings that value function “closer” to the value
function for π, V π. This also means that applying Bπ repeatedly (an infinite number
of times)

Bπ(Bπ(. . . Bπ(V) . . .))

will result in the value function V π (a little bit more is needed to make this completely
formal, but we won’t worry about that here).

[Hint: Use the fact that for any α, x ∈ R
n, if

∑

i αi = 1 and αi ≥ 0, then
∑

i αixi ≤
maxi xi.]

(c) Now suppose that we have some policy π, and use Policy Iteration to choose a new
policy π′ according to

π′(s) = arg max
a∈A

∑

s′∈S

Psa(s′)V π(s′).

Show that this policy will never perform worse that the previous one — i.e., show
that for all s ∈ S, V π(s) ≤ V π′

(s).

[Hint: First show that V π(s) ≤ Bπ′

(V π)(s), then use the proceeding excercises to
show that Bπ′

(V π)(s) ≤ V π′

(s).]

(d) Use the proceeding exercises to show that policy iteration will eventually converge
(i.e., produce a policy π′ = π). Furthermore, show that it must converge to the
optimal policy π⋆. For the later part, you may use the property that if some value
function satisfies

V (s) = R(s) + γ max
a∈A

∑

s′ ∈ SPsa(s′)V (s′)

then V = V ⋆.

5. Reinforcement Learning: The Mountain Car

In this problem you will implement the Q-Learning reinforcement learning algorithm de-
scribed in class on a standard control domain known as the Mountain Car.2 The Mountain
Car domain simulates a car trying to drive up a hill, as shown in the figure below.

2The dynamics of this domain were taken from Sutton and Barto, 1998.

42

CS229 Problem Set #4 5

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

All states except those at the top of the hill have a constant reward R(s) = −1, while the
goal state at the hilltop has reward R(s) = 0; thus an optimal agent will try to get to the
top of the hill as fast as possible (when the car reaches the top of the hill, the episode is
over, and the car is reset to its initial position). However, when starting at the bottom
of the hill, the car does not have enough power to reach the top by driving forward, so
it must first accerlaterate accelerate backwards, building up enough momentum to reach
the top of the hill. This strategy of moving away from the goal in order to reach the goal
makes the problem difficult for many classical control algorithms.

As discussed in class, Q-learning maintains a table of Q-values, Q(s, a), for each state and
action. These Q-values are useful because, in order to select an action in state s, we only
need to check to see which Q-value is greatest. That is, in state s we take the action

arg max
a∈A

Q(s, a).

The Q-learning algorithm adjusts its estimates of the Q-values as follows. If an agent is in
state s, takes action a, then ends up in state s′, Q-learning will update Q(s, a) by

Q(s, a) = (1 − α)Q(s, a) + γ(R(s′) + γ max
a′∈A

Q(s′, a′).

At each time, your implementation of Q-learning can execute the greedy policy π(s) =
arg maxa∈A Q(s, a)

Implement the [q, steps per episode] = qlearning(episodes) function in the q5/

directory. As input, the function takes the total number of episodes (each episode starts
with the car at the bottom of the hill, and lasts until the car reaches the top), and outputs
a matrix of the Q-values and a vector indicating how many steps it took before the car was
able to reach the top of the hill. You should use the [x, s, absorb] = mountain car(x,

actions(a)) function to simulate one control cycle for the task — the x variable describes
the true (continuous) state of the system, whereas the s variable describes the discrete
index of the state, which you’ll use to build the Q values.

Plot a graph showing the average number of steps before the car reaches the top of the
hill versus the episode number (there is quite a bit of variation in this quantity, so you will
probably want to average these over a large number of episodes, as this will give you a
better idea of how the number of steps before reaching the hilltop is decreasing). You can
also visualize your resulting controller by calling the draw mountain car(q) function.

43

CS229 Problem Set #4 Solutions 1

CS 229, Public Course

Problem Set #4 Solutions: Unsupervised Learn-
ing and Reinforcement Learning

1. EM for supervised learning

In class we applied EM to the unsupervised learning setting. In particular, we represented
p(x) by marginalizing over a latent random variable

p(x) =
∑

z

p(x, z) =
∑

z

p(x|z)p(z).

However, EM can also be applied to the supervised learning setting, and in this problem we
discuss a “mixture of linear regressors” model; this is an instance of what is often call the
Hierarchical Mixture of Experts model. We want to represent p(y|x), x ∈ R

n and y ∈ R,
and we do so by again introducing a discrete latent random variable

p(y|x) =
∑

z

p(y, z|x) =
∑

z

p(y|x, z)p(z|x).

For simplicity we’ll assume that z is binary valued, that p(y|x, z) is a Gaussian density,
and that p(z|x) is given by a logistic regression model. More formally

p(z|x;φ) = g(φT x)z(1 − g(φT x))1−z

p(y|x, z = i; θi) =
1

√
2πσ

exp

(

−(y − θT
i x)2

2σ2

)

i = 1, 2

where σ is a known parameter and φ, θ0, θ1 ∈ R
n are parameters of the model (here we

use the subscript on θ to denote two different parameter vectors, not to index a particular
entry in these vectors).

Intuitively, the process behind model can be thought of as follows. Given a data point x,
we first determine whether the data point belongs to one of two hidden classes z = 0 or
z = 1, using a logistic regression model. We then determine y as a linear function of x
(different linear functions for different values of z) plus Gaussian noise, as in the standard
linear regression model. For example, the following data set could be well-represented by
the model, but not by standard linear regression.

44

CS229 Problem Set #4 Solutions 2

(a) Suppose x, y, and z are all observed, so that we obtain a training set
{(x(1), y(1), z(1)), . . . , (x(m), y(m), z(m))}. Write the log-likelihood of the parameters,
and derive the maximum likelihood estimates for φ, θ0, and θ1. Note that because
p(z|x) is a logistic regression model, there will not exist a closed form estimate of φ.
In this case, derive the gradient and the Hessian of the likelihood with respect to φ;
in practice, these quantities can be used to numerically compute the ML esimtate.

Answer: The log-likelihood is given by

ℓ(φ, θ0, θ1) = log

m
∏

i=1

p(y(i)|x(i), z(i); θ0, θ1)p(z(i)|x(i);φ)

=
∑

i:z(i)=0

log

(

(1 − g(φT x))
1

√
2πσ

exp

(

−(y(i) − θT
0 x(i))2

2σ2

))

+
∑

i:z(i)=1

log

(

(g(φT x)
1

√
2πσ

exp

(

−(y(i) − θT
1 x(i))2

2σ2

))

Differentiating with respect to θ1 and setting it to 0,

0
set
= ∇θ0

ℓ(φ, θ0, θ1)

= ∇θ

∑

i:z(i)=0

−(y(i) − θT
0 x(i))2

But this is just a least-squares problem on a subset of the data. In particular, if we let X0

and ~y0 be the design matrices formed by considering only those examples with z(i) = 0,
then using the same logic as for the derivation of the least squares solution we get the
maximum likelihood estimate of θ0,

θ0 = (XT
0 X0)

−1XT
0 ~y0.

The derivation for θ1 proceeds in the identical manner.

Differentiating with respect to φ, and ignoring terms that do not depend on φ

∇φℓ(φ, θ0, θ1) = ∇φ

∑

i : z(i) = 0 log(1 − g(φT x)) +
∑

i : z(i) = 1 log g(φT x)

= ∇φ

m
∑

i=1

(1 − z(i)) log(1 − g(φT x)) + z(i) log g(φT x)

This is just the standard logistic regression objective function, for which we already know
the gradient and Hessian

∇φℓ(φ, θ0, θ1) = XT (~z − ~h), ~hi = g(φT x(i)),

H = XT DX, Dii = g(φT x(i))(1 − g(φT x(i))).

(b) Now suppose z is a latent (unobserved) random variable. Write the log-likelihood of
the parameters, and derive an EM algorithm to maximize the log-likelihood. Clearly
specify the E-step and M-step (again, the M-step will require a numerical solution,
so find the appropriate gradients and Hessians).

45

CS229 Problem Set #4 Solutions 3

Answer: The log likelihood is now:

ℓ(φ, θ0, θ1) = log

m
∏

i=1

∑

z(i)

p(y(i)|x(i), z(i); θ1, θ2)p(z(i)|x(i);φ)

=
m
∑

i=1

log

(

(1 − g(φT x(i)))1−z(i) 1
√

2πσ
exp

(

−(y(i) − θT
0 x(i))2

2σ2

)

+ g(φT x(i))z(i) 1
√

2πσ
exp

(

−(y(i) − θT
1 x(i))2

2σ2

))

In the E-step of the EM algorithm we compute

Qi(z
(i)) = p(z(i)|x(i), y(i);φ, θ0, θ1) =

p(y(i)|x(i), z(i); θ0, θ1)p(z(i)|x(i);φ)
∑

z p(y(i)|x(i), z; θ0, θ1)p(z|x(i);φ)

Every propability in this term can be computed using the probability densities defined in
the problem, so the E-step is tractable.

For the M-step, we first define w
(i)
j = p(z(i) = j|x(i), y(i);φ, θ0, θ1) for j = 0, 1 as

computed in the E-step (of course we only need to compute one of these terms in the

real E-step, since w
(i)
0 = 1 − w

(i)
1 , but we define both to simplify the expressions).

Differentiating our lower bound on the likelihood with respect to θ0, removing terms that
don’t depend on θ0, and setting the expression equal to zero, we get

0
set
= ∇θ0

m
∑

i=1

∑

j=0,1

w
(i)
j log

p(y(i)|x(i), z(i) = j; θj)p(z(i) = j|x(i);φ)

w
(i)
j

= ∇θ0

m
∑

i=1

w
(i)
0 log p(y(i)|x(i), z(i) = j; θj)

= ∇θ0

m
∑

i=1

−w
(i)
0 (y(i) − θT

0 x(i))2

This is just a weighted least-squares problem, which has solution

θ0 = (XT
0 WX0)

−1XT
0 W~y0, W = diag(w

(1)
0 , . . . , w

(m)
0 .

The derivation for θ1 proceeds similarly.

Finally, as before, we can’t compute the M-step update for φ in closed form, so we instead
find the gradient and Hessian. However, to do this we note that

∇φ

m
∑

i=1

∑

j=0,1

w
(i)
j log

p(y(i)|x(i), z(i) = j; θj)p(z(i) = j|x(i);φ)

w
(i)
j

=

∇φ

m
∑

i=1

∑

j=0,1

w
(i)
j log p(z(i) = j|x(i);φ) =

m
∑

i=1

(

w
(i)
0 log g(φT x) + (1 − w

(i)
0) log(1 − g(φT x(i)))

)

This term is the same as the objective for logistic regression task, but with the w(i)

quantity replacing y(i). Therefore, the gradient and Hessian are given by

46

CS229 Problem Set #4 Solutions 4

∇φ

m
∑

i=1

∑

j=0,1

w
(i)
j log p(z(i) = j|x(i);φ) = XT (~w − ~h), ~hi = g(φT x(i)),

H = XT DX, Dii = g(φT x(i))(1 − g(φT x(i))).

2. Factor Analysis and PCA

In this problem we look at the relationship between two unsupervised learning algorithms
we discussed in class: Factor Analysis and Principle Component Analysis.

Consider the following joint distribution over (x, z) where z ∈ R
k is a latent random

variable

z ∼ N (0, I)

x|z ∼ N (Uz, σ2I).

where U ∈ R
n×k is a model parameters and σ2 is assumed to be a known constant. This

model is often called Probabilistic PCA. Note that this is nearly identical to the factor
analysis model except we assume that the variance of x|z is a known scaled identity matrix
rather than the diagonal parameter matrix, Φ, and we do not add an additional µ term to
the mean (though this last difference is just for simplicity of presentation). However, as
we will see, it turns out that as σ2 → 0, this model is equivalent to PCA.

For simplicity, you can assume for the remainder of the problem that k = 1, i.e., that U is
a column vector in R

n.

(a) Use the rules for manipulating Gaussian distributions to determine the joint distri-
bution over (x, z) and the conditional distribution of z|x. [Hint: for later parts of
this problem, it will help significantly if you simplify your soluting for the conditional
distribution using the identity we first mentioned in problem set #1: (λI+BA)−1B =
B(λI + AB)−1.]

Answer: To compute the joint distribution, we compute the means and covariances
of x and z. First, E[z] = 0 and

E[x] = E[Uz + ǫ] = UE[z] + E[ǫ] = 0, (where ǫ ∼ N (0, σ2I)).

Since both x and z have zero mean

Σzz = E[zzT] = I (= 1, since z is a scalar when k = 1)

Σzx = E[(Uz + ǫ)zT] = UE[zzT] + E[ǫzT] = U

Σxx = E[(Uz + ǫ)(Uz + ǫ)T] = E[UzzT UT + ǫzT UT + UzǫT + ǫǫT]

= UE[zzT]UT + E[ǫǫT] = UUT + σ2I

Therefore,
[

z
x

]

∼ N

([

0
0

]

,

[

1 UT

U UUT + σ2I

])

.

Using the rules for conditional Gaussian distributions, z|x is also Gaussian with mean and
covariance

µz|x = UT (UUT + σ2I)−1x =
UT x

UT U + σ2

Σz|x = 1 − UT (UUT + σ2I)−1U = 1 −
UT U

UT U + σ2

47

CS229 Problem Set #4 Solutions 5

where in both cases the last equality comes from the identity in the hint.

(b) Using these distributions, derive an EM algorithm for the model. Clearly state the
E-step and the M-step of the algorithm.

Answer: Even though z(i) is a scalar value, in this problem we continue to use the

notation z(i)T

, etc, to make the similarities to the Factor anlysis case obvious.

For the E-step, we compute the distribution Qi(z
(i)) = p(z(i)|x(i);U) by computing

µz(i)|x(i) and Σz(i)|x(i) using the above formulas.

For the M-step, we need to maximize

m
∑

i=1

∫

z(i)

Qi(z
(i)) log

p(x(i), |z(i);U)p(z(i))

Qi(z(i))

=

m
∑

i=1

Ez(i)∼Qi

[

log p(x(i)|z(i);U) + log p(z(i)) − log Qi(z
(i))
]

.

Taking the gradient with respect to U equal to zero, dropping terms that don’t depend
on U , and omitting the subscript on the expectation, this becomes

∇U

m
∑

i=1

E
[

log p(x(i)|z(i);U)
]

= ∇U

m
∑

i=1

E

[

−
1

2σ2
(x(i) − Uz(i))T (x(i) − Uz(i))

]

= −
1

2σ2

m
∑

i=1

∇UE
[

trz(i)T

UT Uz(i) − 2trz(i)T

UT x(i)
]

= −
1

2σ2

m
∑

i=1

E
[

Uz(i)z(i)T

− x(i)z(i)T
]

=
1

2σ2

m
∑

i=1

[

−UE[z(i)z(i)T

] + x(i)E[z(i)T

]
]

using the same reasoning as in the Factor Analysis class notes. Setting this derivative to
zero gives

U =

(

m
∑

i=1

x(i)E[z(i)T

]

)(

m
∑

i=1

E[z(i)z(i)T

]

)−1

=

(

m
∑

i=1

x(i)µT
z(i|x(i)

)(

m
∑

i=1

Σz(i)|x(i) + µz(i|x(i)µT
z(i|x(i)

)−1

All these terms were calcuated in the E step, so this is our final M step update.

(c) As σ2 → 0, show that if the EM algorithm convergences to a parameter vector U⋆

(and such convergence is guarenteed by the argument presented in class), then U⋆

must be an eigenvector of the sample covariance matrix Σ = 1
m

∑m

i=1 x(i)x(i)T
— i.e.,

U⋆ must satisfy
λU⋆ = ΣU⋆.

[Hint: When σ2 → 0, Σz|x → 0, so the E step only needs to compute the means
µz|x and not the variances. Let w ∈ R

m be a vector containing all these means,

48

CS229 Problem Set #4 Solutions 6

wi = µz(i)|x(i) , and show that the E step and M step can be expressed as

w =
XU

UT U
, U =

XT w

wT w

respectively. Finally, show that if U doesn’t change after this update, it must satisfy
the eigenvector equation shown above.]

Answer: For the E step, when σ2 → 0, µz(i)|x(i) = UT x(i)

UT U
, so using w as defined in the

hint we have

w =
XU

UT U
as desired.

As mentioned in the hint, when σ2 → 0, Σz(i)|x(i) = 0, so

U =

(

m
∑

i=1

x(i)µT
z(i|x(i)

)(

m
∑

i=1

Σz(i)|x(i) + µz(i|x(i)µT
z(i|x(i)

)−1

=

(

m
∑

i=1

x(i)wi

)

(

m
∑

i=1

wiwi)
−1 =

XT w

wT w

For U to remain unchanged after an update requires that

U =
XT XU

UT U

UT XT

UT U
XU
UT U

= XT XU
UT U

UT XT XU
= XT XU

1

λ

proving the desired equation.

3. PCA and ICA for Natural Images

In this problem we’ll apply Principal Component Analysis and Independent Component
Analysis to images patches collected from “natural” image scenes (pictures of leaves, grass,
etc). This is one of the classical applications of the ICA algorithm, and sparked a great
deal of interest in the algorithm; it was observed that the bases recovered by ICA closely
resemble image filters present in the first layer of the visual cortex.

The q3/ directory contains the data and several useful pieces of code for this problem. The
raw images are stored in the images/ subdirectory, though you will not need to work with
these directly, since we provide code for loading and normalizing the images.

Calling the function [X ica, X pca] = load images; will load the images, break them
into 16x16 images patches, and place all these patches into the columns of the matri-
ces X ica and X pca. We create two different data sets for PCA and ICA because the
algorithms require slightly different methods of preprocessing the data.1

For this problem you’ll implement the ica.m and pca.m functions, using the PCA and
ICA algorithms described in the class notes. While the PCA implementation should be
straightforward, getting a good implementation of ICA can be a bit trickier. Here is some
general advice to getting a good implementation on this data set:

1Recall that the first step of performing PCA is to subtract the mean and normalize the variance of the features.

For the image data we’re using, the preprocessing step for the ICA algorithm is slightly different, though the

precise mechanism and justification is not imporant for the sake of this problem. Those who are curious about

the details should read Bell and Sejnowki’s paper “The ’Independent Components’ of Natural Scenes are Edge

Filters,” which provided the basis for the implementation we use in this problem.

49

CS229 Problem Set #4 Solutions 7

• Picking a good learning rate is important. In our experiments we used α = 0.0005 on
this data set.

• Batch gradient descent doesn’t work well for ICA (this has to do with the fact that
ICA objective function is not concave), but the pure stochastic gradient described in
the notes can be slow (There are about 20,000 16x16 images patches in the data set,
so one pass over the data using the stochastic gradient rule described in the notes
requires inverting the 256x256 W matrix 20,000 times). Instead, a good compromise
is to use a hybrid stochastic/batch gradient descent where we calculate the gradient
with respect to several examples at a time (100 worked well for us), and use this to
update W . Our implementation makes 10 total passes over the entire data set.

• It is a good idea to randomize the order of the examples presented to stochastic
gradient descent before each pass over the data.

• Vectorize your Matlab code as much as possible. For general examples of how to do
this, look at the Matlab review session.

For reference, computing the ICA W matrix for the entire set of image patches takes about
5 minutes on a 1.6 Ghz laptop using our implementation.

After you’ve learned the U matrix for PCA (the columns of U should contain the principal
components of the data) and the W matrix of ICA, you can plot the basis functions using
the plot ica bases(W); and plot pca bases(U); functions we have provide. Comment
briefly on the difference between the two sets of basis functions.

Answer: The following are our implementations of pca.m and ica.m:

function U = pca(X)

[U,S,V] = svd(X*X’);

function W = ica(X)

[n,m] = size(X);

chunk = 100;

alpha = 0.0005;

W = eye(n);

for iter=1:10,

disp([num2str(iter)]);

X = X(:,randperm(m));

for i=1:floor(m/chunk),

Xc = X(:,(i-1)*chunk+1:i*chunk);

dW = (1 - 2./(1+exp(-W*Xc)))*Xc’ + chunk*inv(W’);

W = W + alpha*dW;

end

end

PCA produces the following bases:

50

CS229 Problem Set #4 Solutions 8

while ICA produces the following bases

The PCA bases capture global features of the images, while the ICA bases capture more local
features.

4. Convergence of Policy Iteration

In this problem we show that the Policy Iteration algorithm, described in the lecture notes,
is guarenteed to find the optimal policy for an MDP. First, define Bπ to be the Bellman
operator for policy π, defined as follows: if V ′ = B(V), then

V ′(s) = R(s) + γ
∑

s′∈S

Psπ(s)(s
′)V (s′).

51

CS229 Problem Set #4 Solutions 9

(a) Prove that if V1(s) ≤ V2(s) for all s ∈ S, then B(V1)(s) ≤ B(V2)(s) for all s ∈ S.

Answer:

B(V1)(s) = R(s) + γ
∑

s′∈S

Psπ(s)(s
′)V1(s

′)

≤ R(s) + γ
∑

s′∈S

Psπ(s)(s
′)V2(s

′) = B(V2)(s)

where the inequality holds because Psπ(s)(s
′) ≥ 0.

(b) Prove that for any V ,

‖Bπ(V) − V π‖∞ ≤ γ‖V − V π‖∞

where ‖V ‖∞ = maxs∈S |V (s)|. Intuitively, this means that applying the Bellman
operator Bπ to any value function V , brings that value function “closer” to the value
function for π, V π. This also means that applying Bπ repeatedly (an infinite number
of times)

Bπ(Bπ(. . . Bπ(V) . . .))

will result in the value function V π (a little bit more is needed to make this completely
formal, but we won’t worry about that here).

[Hint: Use the fact that for any α, x ∈ R
n, if

∑

i αi = 1 and αi ≥ 0, then
∑

i αixi ≤
maxi xi.] Answer:

‖Bπ(V) − V π‖∞ = max
s′∈S

∣

∣

∣

∣

∣

R(s) + γ
∑

s′∈S

Psπ(s)(s
′)V (s′) − R(s) − γ

∑

s′∈S

Psπ(s)(s
′)V π(s′)

∣

∣

∣

∣

∣

= γ max
s′∈∫

∣

∣

∣

∣

∣

∑

s′∈S

Psπ(s)(s
′) (V (s′) − V π(s′))

∣

∣

∣

∣

∣

≤ γ‖V − V π‖∞

where the inequality follows from the hint above.

(c) Now suppose that we have some policy π, and use Policy Iteration to choose a new
policy π′ according to

π′(s) = arg max
a∈A

∑

s′∈S

Psa(s′)V π(s′).

Show that this policy will never perform worse that the previous one — i.e., show
that for all s ∈ S, V π(s) ≤ V π′

(s).

[Hint: First show that V π(s) ≤ Bπ′

(V π)(s), then use the proceeding excercises to
show that Bπ′

(V π)(s) ≤ V π′

(s).]

Answer:

V π(s) = R(s) + γ
∑

s′∈S

Psπ(s)(s
′)V π(s′)

≤ R(s) + γ max
a∈A

∑

s′∈S

Psa(s′)V π(s′)

= R(s) + γ
∑

s′∈S

Psπ′(s)(s
′)V π(s′) = Bπ′

(V π)(s)

52

CS229 Problem Set #4 Solutions 10

Applying part (a),

V π(s) ≤ Bπ′

(V π)(s) ⇒ Bπ′

(V π)(s) ≤ Bπ′

(Bπ′

(V π))(s)

Continually applying this property, and applying part (b), we obtain

V π(s) ≤ Bπ′

(V π)(s) ≤ Bπ′

(Bπ′

(V π))(s) ≤ . . . ≤ Bπ′

(Bπ′

(. . . Bπ′

(V π) . . .))(s) = V π′

(s).

(d) Use the proceeding exercises to show that policy iteration will eventually converge
(i.e., produce a policy π′ = π). Furthermore, show that it must converge to the
optimal policy π⋆. For the later part, you may use the property that if some value
function satisfies

V (s) = R(s) + γ max
a∈A

∑

s′ ∈ SPsa(s′)V (s′)

then V = V ⋆.

Answer: We know that policy iteration must converge because there are only a finite
number of possible policies (if there are |S| states, each with |A| actions, then that leads
to a |S||A| total possible policies). Since the policies are monotonically improving, as we
showed in part (c), at some point we must stop generating new policies, so the algorithm
must produce π′ = π. Using the assumptions stated in the question, it is easy to show
convergence to the optimal policy. If π′ = π, then using the same logic as in part (c)

V π(s) = V π′

(s) = R(s) + γ max
a∈A

∑

s′∈∫

Psa(s′)V π(s),

So V = V ⋆, and therefore π = π⋆.

5. Reinforcement Learning: The Mountain Car

In this problem you will implement the Q-Learning reinforcement learning algorithm de-
scribed in class on a standard control domain known as the Mountain Car.2 The Mountain
Car domain simulates a car trying to drive up a hill, as shown in the figure below.

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

2The dynamics of this domain were taken from Sutton and Barto, 1998.

53

CS229 Problem Set #4 Solutions 11

All states except those at the top of the hill have a constant reward R(s) = −1, while the
goal state at the hilltop has reward R(s) = 0; thus an optimal agent will try to get to the
top of the hill as fast as possible (when the car reaches the top of the hill, the episode is
over, and the car is reset to its initial position). However, when starting at the bottom
of the hill, the car does not have enough power to reach the top by driving forward, so
it must first accerlaterate accelerate backwards, building up enough momentum to reach
the top of the hill. This strategy of moving away from the goal in order to reach the goal
makes the problem difficult for many classical control algorithms.

As discussed in class, Q-learning maintains a table of Q-values, Q(s, a), for each state and
action. These Q-values are useful because, in order to select an action in state s, we only
need to check to see which Q-value is greatest. That is, in state s we take the action

arg max
a∈A

Q(s, a).

The Q-learning algorithm adjusts its estimates of the Q-values as follows. If an agent is in
state s, takes action a, then ends up in state s′, Q-learning will update Q(s, a) by

Q(s, a) = (1 − α)Q(s, a) + γ(R(s′) + γ max
a′∈A

Q(s′, a′).

At each time, your implementation of Q-learning can execute the greedy policy π(s) =
arg maxa∈A Q(s, a)

Implement the [q, steps per episode] = qlearning(episodes) function in the q5/

directory. As input, the function takes the total number of episodes (each episode starts
with the car at the bottom of the hill, and lasts until the car reaches the top), and outputs
a matrix of the Q-values and a vector indicating how many steps it took before the car was
able to reach the top of the hill. You should use the [x, s, absorb] = mountain car(x,

actions(a)) function to simulate one control cycle for the task — the x variable describes
the true (continuous) state of the system, whereas the s variable describes the discrete
index of the state, which you’ll use to build the Q values.

Plot a graph showing the average number of steps before the car reaches the top of the
hill versus the episode number (there is quite a bit of variation in this quantity, so you will
probably want to average these over a large number of episodes, as this will give you a
better idea of how the number of steps before reaching the hilltop is decreasing). You can
also visualize your resulting controller by calling the draw mountain car(q) function.

Answer: The following is our implementation of qlearning.m:

function [q, steps_per_episode] = qlearning(episodes)

% set up parameters and initialize q values

alpha = 0.05;

gamma = 0.99;

num_states = 100;

num_actions = 2;

actions = [-1, 1];

q = zeros(num_states, num_actions);

for i=1:episodes,

54

CS229 Problem Set #4 Solutions 12

[x, s, absorb] = mountain_car([0.0 -pi/6], 0);

[maxq, a] = max(q(s,:));

if (q(s,1) == q(s,2)) a = ceil(rand*num_actions); end;

steps = 0;

while (~absorb)

% execute the best action or a random action

[x, sn, absorb] = mountain_car(x, actions(a));

reward = -double(absorb == 0);

% find the best action for the next state and update q value

[maxq, an] = max(q(sn,:));

if (q(sn,1) == q(sn,2)) an = ceil(rand*num_actions); end

q(s,a) = (1 - alpha)*q(s,a) + alpha*(reward + gamma*maxq);

a = an;

s = sn;

steps = steps + 1;

end

steps_per_episode(i) = steps;

end

Within 10000 episodes, the algorithm converges to a policy that usually gets the car up the hill
in around 52-53 steps. The following plot shows the number of steps per episode (averaged
over 500 episodes) versus the number of episodes. We generated the plot using the following
code:

for i=1:10,

[q, ep_steps] = qlearning(10000);

all_ep_steps(i,:) = ep_steps;

end

plot(mean(reshape(mean(all_ep_steps), 500, 20)));

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
50

100

150

200

250

A
ve

ra
ge

 S
te

ps
 p

er
 E

pi
so

de

Episode Number

55

CS229 Problem Set #1 1

CS 229, Autumn 2013
Problem Set #1: Supervised Learning

Due in class (9:00am) on Wednesday, October 16.

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at https://piazza.com/stanford/fall2013/cs229. (3) If
you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4)
For problems that require programming, please include in your submission a printout of your
code (with comments) and any figures that you are asked to plot. (5) If you are an on-campus
(non-SCPD) student, please print, fill out, and include a copy of the cover sheet (enclosed as the
final page of this document), and include the cover sheet as the first page of your submission.

SCPD students: Please submit your assignments at https://www.stanford.edu/class/

cs229/cgi-bin/submit.php as a single PDF file under 20MB in size. If you have trouble sub-
mitting online, you can also email your submission to cs229-qa@cs.stanford.edu. However,
we strongly recommend using the website submission method as it will provide confirmation of
submission, and also allow us to track and return your graded homework to you more easily.

If you are scanning your document by cellphone, please check the Piazza forum for recommended
cellphone scanning apps and best practices.

1. [25 points] Logistic regression

(a) [10 points] Consider the log-likelihood function for logistic regression:

ℓ(θ) =

m
∑

i=1

y(i) log h(x(i)) + (1 − y(i)) log(1 − h(x(i)))

Find the Hessian H of this function, and show that for any vector z, it holds true
that

zT Hz ≤ 0.

[Hint: You might want to start by showing the fact that
∑

i

∑

j zixixjzj = (xT z)2 ≥
0.]

Remark: This is one of the standard ways of showing that the matrix H is negative
semi-definite, written “H ≤ 0.” This implies that ℓ is concave, and has no local
maxima other than the global one.1 If you have some other way of showing H ≤ 0,
you’re also welcome to use your method instead of the one above.

(b) [10 points] On the Leland system, the files /afs/ir/class/cs229/ps/ps1/q1x.dat

and /afs/ir/class/cs229/ps/ps1/q1y.dat contain the inputs (x(i) ∈ R
2) and out-

puts (y(i) ∈ {0, 1}) respectively for a binary classification problem, with one training
example per row. Implement2 Newton’s method for optimizing ℓ(θ), and apply it to
fit a logistic regression model to the data. Initialize Newton’s method with θ = ~0 (the
vector of all zeros). What are the coefficients θ resulting from your fit? (Remember
to include the intercept term.)

1If you haven’t seen this result before, please feel encouraged to ask us about it during office hours.
2Write your own version, and do not call a built-in library function.

56

CS229 Problem Set #1 2

(c) [5 points] Plot the training data (your axes should be x1 and x2, corresponding to
the two coordinates of the inputs, and you should use a different symbol for each
point plotted to indicate whether that example had label 1 or 0). Also plot on the
same figure the decision boundary fit by logistic regression. (I.e., this should be
a straight line showing the boundary separating the region where h(x) > 0.5 from
where h(x) ≤ 0.5.)

2. [27 points] Locally weighted linear regression

Consider a linear regression problem in which we want to “weight” different training ex-
amples differently. Specifically, suppose we want to minimize

J(θ) =
1

2

m
∑

i=1

w(i)
(

θT x(i) − y(i)
)2

.

In class, we worked out what happens for the case where all the weights (the w(i)’s) are
the same. In this problem, we will generalize some of those ideas to the weighted setting,
and also implement the locally weighted linear regression algorithm.

(a) [2 points] Show that J(θ) can also be written

J(θ) = (Xθ − ~y)T W (Xθ − ~y)

for an appropriate diagonal matrix W , and where X and ~y are as defined in class.
State clearly what W is.

(b) [7 points] If all the w(i)’s equal 1, then we saw in class that the normal equation is

XT Xθ = XT ~y,

and that the value of θ that minimizes J(θ) is given by (XT X)−1XT ~y. By finding
the derivative ∇θJ(θ) and setting that to zero, generalize the normal equation to this
weighted setting, and give the new value of θ that minimizes J(θ) in closed form as a
function of X, W and ~y.

(c) [6 points] Suppose we have a training set {(x(i), y(i)); i = 1 . . . ,m} of m independent
examples, but in which the y(i)’s were observed with differing variances. Specifically,
suppose that

p(y(i)|x(i); θ) =
1

√
2πσ(i)

exp

(

−
(y(i) − θT x(i))2

2(σ(i))2

)

I.e., y(i) has mean θT x(i) and variance (σ(i))2 (where the σ(i)’s are fixed, known,
constants). Show that finding the maximum likelihood estimate of θ reduces to solving
a weighted linear regression problem. State clearly what the w(i)’s are in terms of the
σ(i)’s.

(d) [12 points] On the Leland computer system, the files /afs/ir/class/cs229/ps/ps1/q2x.dat
and /afs/ir/class/cs229/ps/ps1/q2y.dat contain the inputs (x(i)) and outputs
(y(i)) for a regression problem, with one training example per row.

i. [2 points] Implement (unweighted) linear regression (y = θT x) on this dataset
(using the normal equations), and plot on the same figure the data and the
straight line resulting from your fit. (Remember to include the intercept term.)

57

CS229 Problem Set #1 3

ii. [7 points] Implement locally weighted linear regression on this dataset (using the
weighted normal equations you derived in part (b)), and plot on the same figure
the data and the curve resulting from your fit. When evaluating h(·) at a query
point x, use weights

w(i) = exp

(

−
(x − x(i))2

2τ2

)

,

with a bandwidth parameter τ = 0.8. (Again, remember to include the intercept
term.)

iii. [3 points] Repeat (ii) four times, with τ = 0.1, 0.3, 2 and 10. Comment briefly

on what happens to the fit when τ is too small or too large.

3. [18 points] Poisson regression and the exponential family

(a) [5 points] Consider the Poisson distribution parameterized by λ:

p(y;λ) =
e−λλy

y!
.

Show that the Poisson distribution is in the exponential family, and clearly state what
are b(y), η, T (y), and a(η).

(b) [3 points] Consider performing regression using a GLM model with a Poisson response
variable. What is the canonical response function for the family? (You may use the
fact that a Poisson random variable with parameter λ has mean λ.)

(c) [10 points] For a training set {(x(i), y(i)); i = 1, . . . ,m}, let the log-likelihood of an
example be log p(y(i)|x(i); θ). By taking the derivative of the log-likelihood with re-
spect to θj , derive the stochastic gradient ascent rule for learning using a GLM model
with Poisson responses y and the canonical response function.

(d) [5 extra credit points] Consider using GLM with a response variable from any
member of the exponential family in which T (y) = y, and the canonical response
function for the family. Show that stochastic gradient ascent on the log-likelihood
log p(~y|X, θ) results in the update rule θi := θi − α(h(x) − y)xi.

4. [15 points] Gaussian discriminant analysis

Suppose we are given a dataset {(x(i), y(i)); i = 1, . . . ,m} consisting of m independent
examples, where x(i) ∈ R

n are n-dimensional vectors, and y(i) ∈ {0, 1}. We will model the
joint distribution of (x, y) according to:

p(y) = φy(1 − φ)1−y

p(x|y = 0) =
1

(2π)n/2|Σ|1/2
exp

(

−
1

2
(x − µ0)

T Σ−1(x − µ0)

)

p(x|y = 1) =
1

(2π)n/2|Σ|1/2
exp

(

−
1

2
(x − µ1)

T Σ−1(x − µ1)

)

Here, the parameters of our model are φ, Σ, µ0 and µ1. (Note that while there’re two
different mean vectors µ0 and µ1, there’s only one covariance matrix Σ.)

58

CS229 Problem Set #1 4

(a) [5 points] Suppose we have already fit φ, Σ, µ0 and µ1, and now want to make a
prediction at some new query point x. Show that the posterior distribution of the
label at x takes the form of a logistic function, and can be written

p(y = 1|x;φ,Σ, µ0, µ1) =
1

1 + exp(−θT x)
,

where θ is some appropriate function of φ,Σ, µ0, µ1. (Note: To get your answer into
the form above, for this part of the problem only, you may have to redefine the x(i)’s

to be n + 1-dimensional vectors by adding the extra coordinate x
(i)
0 = 1, like we did

in class.)

(b) [10 points] For this part of the problem only, you may assume n (the dimension of x)
is 1, so that Σ = [σ2] is just a real number, and likewise the determinant of Σ is given
by |Σ| = σ2. Given the dataset, we claim that the maximum likelihood estimates of
the parameters are given by

φ =
1

m

m
∑

i=1

1{y(i) = 1}

µ0 =

∑m

i=1 1{y(i) = 0}x(i)

∑m

i=1 1{y(i) = 0}

µ1 =

∑m

i=1 1{y(i) = 1}x(i)

∑m

i=1 1{y(i) = 1}

Σ =
1

m

m
∑

i=1

(x(i) − µy(i))(x(i) − µy(i))T

The log-likelihood of the data is

ℓ(φ, µ0, µ1,Σ) = log

m
∏

i=1

p(x(i), y(i);φ, µ0, µ1,Σ)

= log

m
∏

i=1

p(x(i)|y(i);µ0, µ1,Σ)p(y(i);φ).

By maximizing ℓ with respect to the four parameters, prove that the maximum like-
lihood estimates of φ, µ0, µ1, and Σ are indeed as given in the formulas above. (You
may assume that there is at least one positive and one negative example, so that the
denominators in the definitions of µ0 and µ1 above are non-zero.)

(c) [5 extra credit points] Without assuming that n = 1, show that the maximum
likelihood estimates of φ, µ0, µ1, and Σ are as given in the formulas in part (b). [Note:
If you’re fairly sure that you have the answer to this part right, you don’t have to do
part (b), since that’s just a special case.]

5. [12 points] Linear invariance of optimization algorithms

Consider using an iterative optimization algorithm (such as Newton’s method, or gradient
descent) to minimize some continuously differentiable function f(x). Suppose we initialize
the algorithm at x(0) = ~0. When the algorithm is run, it will produce a value of x ∈ R

n

for each iteration: x(1), x(2),

59

CS229 Problem Set #1 5

Now, let some non-singular square matrix A ∈ R
n×n be given, and define a new function

g(z) = f(Az). Consider using the same iterative optimization algorithm to optimize g
(with initialization z(0) = ~0). If the values z(1), z(2), . . . produced by this method necessarily
satisfy z(i) = A−1x(i) for all i, we say this optimization algorithm is invariant to linear

reparameterizations.

(a) [9 points] Show that Newton’s method (applied to find the minimum of a function)
is invariant to linear reparameterizations. Note that since z(0) = ~0 = A−1x(0), it is
sufficient to show that if Newton’s method applied to f(x) updates x(i) to x(i+1), then
Newton’s method applied to g(z) will update z(i) = A−1x(i) to z(i+1) = A−1x(i+1).3

(b) [3 points] Is gradient descent invariant to linear reparameterizations? Justify your
answer.

Reminder: Please include in your submission a printout of your code and figures for the
programming questions.

3Note that for this problem, you must explicitly prove any matrix calculus identities that you wish to use that

are not given in the lecture notes.

60

CS229: Machine Learning

Problem Set #:

Please print out, fill in and include this cover sheet as the first page of your submission. We
strongly recommend that you use this cover sheet, which will help us to get your graded
homework back to you more quickly, as well as help us with tracking submissions.

Please mark the submission time clearly below. It is an honor code violation to write down the
wrong time.

If you are submitting this homework late: Each student will have a total of seven free late
(calendar) days to use for homeworks, project proposals and project milestones. Once these late
days are exhausted, any assignments turned in late will be penalized 20% per late day. However,
no assignment will be accepted more than four days after its due date, and late days cannot be
used for the final project writeup. Each 24 hours or part thereof that a homework is late uses up
one full late day.

On-campus (non-SCPD) students: Please either hand in the assignment at the beginning of
class on Wednesday or leave it in the submission cabinet on the 1st floor of the Gates building,
near/outside Gates 188 and 182.

Name:
SUNet ID:
Submission date: and time:
Collaborators:

I understand and acknowledge CS229's Honor Code Policy (available online at
http://cs229.stanford.edu/info.html)

Signature:

(For CS229 staff only)

Question Score

1

2

3

4

5

6

Late Days

Total

61

CS229 Problem Set #1 1

CS 229, Autumn 2013
Problem Set #1 Solutions: Supervised Learning

Due in class (9:00am) on Wednesday, October 16.

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at https://piazza.com/stanford/fall2013/cs229. (3) If
you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4)
For problems that require programming, please include in your submission a printout of your
code (with comments) and any figures that you are asked to plot. (5) If you are an on-campus
(non-SCPD) student, please print, fill out, and include a copy of the cover sheet (enclosed as the
final page of this document), and include the cover sheet as the first page of your submission.

SCPD students: Please submit your assignments at https://www.stanford.edu/class/

cs229/cgi-bin/submit.php as a single PDF file under 20MB in size. If you have trouble sub-
mitting online, you can also email your submission to cs229-qa@cs.stanford.edu. However,
we strongly recommend using the website submission method as it will provide confirmation of
submission, and also allow us to track and return your graded homework to you more easily.

If you are scanning your document by cellphone, please check the Piazza forum for recommended
cellphone scanning apps and best practices.

1. [25 points] Logistic regression

(a) [10 points] Consider the log-likelihood function for logistic regression:

ℓ(θ) =

m
∑

i=1

y(i) log h(x(i)) + (1 − y(i)) log(1 − h(x(i)))

Find the Hessian H of this function, and show that for any vector z, it holds true
that

zT Hz ≤ 0.

[Hint: You might want to start by showing the fact that
∑

i

∑

j zixixjzj = (xT z)2 ≥
0.]

Remark: This is one of the standard ways of showing that the matrix H is negative
semi-definite, written “H ≤ 0.” This implies that ℓ is concave, and has no local
maxima other than the global one.1 If you have some other way of showing H ≤ 0,
you’re also welcome to use your method instead of the one above.

Answer: (Note we do things in a slightly shorter way here; this solution does not use
the hint.) Recall that we have g′(z) = g(z)(1 − g(z)), and thus for h(x) = g(θT x), we

have ∂h(x)
∂θk

= h(x)(1 − h(x))xk. This latter fact is very useful to make the following
derivations.

Remember we have shown in class:

∂l(θ)

∂θk

=

m
∑

i=1

(y(i) − h(x(i)))x
(i)
k (1)

1If you haven’t seen this result before, please feel encouraged to ask us about it during office hours.

62

CS229 Problem Set #1 2

Hkl =
∂2l(θ)

∂θk∂θl

(2)

=

m
∑

i=1

−
∂h(x(i))

∂θl

x
(i)
k (3)

=

m
∑

i=1

−h(x(i))(1 − h(x(i)))x
(i)
l x

(i)
k (4)

(5)

So we have for the hessian matrix H (using that for X = xxT if and only ifXij = xixj):

H = −
m
∑

i=1

h(x(i))(1 − h(x(i)))x(i)x(i)T (6)

(7)

And to prove H is negative semidefinite, we show zT Hz ≤ 0 for all z.

zT Hz = −zT

(

m
∑

i=1

h(x(i))(1 − h(x(i)))x(i)x(i)T

)

z (8)

= −
m
∑

i=1

h(x(i))(1 − h(x(i)))zT x(i)x(i)T z (9)

= −

m
∑

i=1

h(x(i))(1 − h(x(i)))(zT x(i))2 (10)

≤ 0 (11)

with the last inequality holding, since 0 ≤ h(x(i)) ≤ 1, which implies h(x(i))(1−h(x(i))) ≥
0, and (zT x(i))2) ≥ 0.

(b) [10 points] On the Leland system, the files /afs/ir/class/cs229/ps/ps1/q1x.dat

and /afs/ir/class/cs229/ps/ps1/q1y.dat contain the inputs (x(i) ∈ R
2) and out-

puts (y(i) ∈ {0, 1}) respectively for a binary classification problem, with one training
example per row. Implement2 Newton’s method for optimizing ℓ(θ), and apply it to
fit a logistic regression model to the data. Initialize Newton’s method with θ = ~0 (the
vector of all zeros). What are the coefficients θ resulting from your fit? (Remember
to include the intercept term.)

Answer: θ = (−2.6205, 0.7604, 1.1719) with the first entry corresponding to the
intercept term.

%%%%%%% hw1q1.m %%%%%%%

load(’q1x.dat’);

load(’q1y.dat’);

q1x = [ones(size(q1x,1),1) q1x];

[theta, ll] = log_regression(q1x,q1y);

m=size(q1x,1);

2Write your own version, and do not call a built-in library function.

63

CS229 Problem Set #1 3

figure; hold on;

for i=1:m

if(q1y(i)==0)

plot(q1x(i,2),q1x(i,3),’rx’);

else

plot(q1x(i,2),q1x(i,3),’go’);

end

end

x = min(q1x(:,2)):.01:max(q1x(:,2));

y = -theta(1)/theta(3)-theta(2)/theta(3)*x;

plot(x,y);

xlabel(’x1’);

ylabel(’x2’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% log_regression.m %%%%%%%

function [theta,ll] = log_regression(X,Y)

% rows of X are training samples

% rows of Y are corresponding 0/1 values

% newton raphson: theta = theta - inv(H)* grad;

% with H = hessian, grad = gradient

m = size(X,1);

n = size(X,2);

theta = zeros(n,1);

max_iters = 50;

for i=1:max_iters

grad = zeros(n,1);

ll(i)=0;

H = zeros(n,n);

for j=1:m

hxj = sigmoid(X(j,:)*theta);

grad = grad + X(j,:)’*(Y(j) - hxj);

H = H - hxj*(1-hxj)*X(j,:)’*X(j,:);

ll(i) = ll(i) + Y(j)*log(hxj) + (1-Y(j))*log(1-hxj);

end

theta = theta - inv(H)*grad;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% sigmoid.m %%%%%%%%%%%%%%

64

CS229 Problem Set #1 4

function a = sigmoid(x)

a = 1./(1+exp(-x));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

(c) [5 points] Plot the training data (your axes should be x1 and x2, corresponding to
the two coordinates of the inputs, and you should use a different symbol for each
point plotted to indicate whether that example had label 1 or 0). Also plot on the
same figure the decision boundary fit by logistic regression. (I.e., this should be
a straight line showing the boundary separating the region where h(x) > 0.5 from
where h(x) ≤ 0.5.)

Answer:

0 1 2 3 4 5 6 7 8
−5

−4

−3

−2

−1

0

1

2

3

4

2. [27 points] Locally weighted linear regression

Consider a linear regression problem in which we want to “weight” different training ex-
amples differently. Specifically, suppose we want to minimize

J(θ) =
1

2

m
∑

i=1

w(i)
(

θT x(i) − y(i)
)2

.

In class, we worked out what happens for the case where all the weights (the w(i)’s) are
the same. In this problem, we will generalize some of those ideas to the weighted setting,
and also implement the locally weighted linear regression algorithm.

(a) [2 points] Show that J(θ) can also be written

J(θ) = (Xθ − ~y)T W (Xθ − ~y)

65

CS229 Problem Set #1 5

for an appropriate diagonal matrix W , and where X and ~y are as defined in class.
State clearly what W is.

Answer: Let Wii = 1
2w(i),Wij = 0 for i 6= j, let ~z = Xθ − ~y, i.e. zi = θT x(i) − y(i).

Then we have:

(Xθ − ~y)T W (Xθ − ~y) = ~zT W~z (12)

=
1

2

m
∑

i=1

w(i)z2
i (13)

=
1

2

m
∑

i=1

w(i)(θT x(i) − y(i))2 (14)

= J(θ) (15)

(b) [7 points] If all the w(i)’s equal 1, then we saw in class that the normal equation is

XT Xθ = XT ~y,

and that the value of θ that minimizes J(θ) is given by (XT X)−1XT ~y. By finding
the derivative ∇θJ(θ) and setting that to zero, generalize the normal equation to this
weighted setting, and give the new value of θ that minimizes J(θ) in closed form as a
function of X, W and ~y.

Answer:

∇θJ(θ) = ∇θ(θ
T XT WXθ + ~yT W~y − 2~yT WXθ) = 2(XT WXθ − XT W~y), (16)

so we have ∇θJ(θ) = 0 if and only if

XT WXθ = XT W~y (17)

These are the normal equations, from which we can get a closed form formula for θ.

θ = (XT WX)−1XT W~y (18)

(c) [6 points] Suppose we have a training set {(x(i), y(i)); i = 1 . . . ,m} of m independent
examples, but in which the y(i)’s were observed with differing variances. Specifically,
suppose that

p(y(i)|x(i); θ) =
1

√
2πσ(i)

exp

(

−
(y(i) − θT x(i))2

2(σ(i))2

)

I.e., y(i) has mean θT x(i) and variance (σ(i))2 (where the σ(i)’s are fixed, known,
constants). Show that finding the maximum likelihood estimate of θ reduces to solving
a weighted linear regression problem. State clearly what the w(i)’s are in terms of the
σ(i)’s.

66

CS229 Problem Set #1 6

Answer:

arg max
θ

m
∏

i=1

p(y(i)|x(i); θ) = arg max
θ

m
∑

i=1

log p(y(i)|x(i); θ) (19)

= arg max
θ

m
∑

i=1

(

log
1

√
2πσ(i)

−
(y(i) − θT x(i))2

2(σ(i))2

)

(20)

= arg max
θ

−

m
∑

i=1

(y(i) − θT x(i))2

2(σ(i))2
(21)

= arg min
θ

1

2

m
∑

i=1

1

(σ(i))2
(y(i) − θT x(i))2 (22)

= arg min
θ

1

2

m
∑

i=1

w(i)(y(i) − θT x(i))2 (23)

where in the last step, we substituted: w(i) = 1
(σ(i))2

to get the linear regression form.

(d) [12 points] On the Leland computer system, the files /afs/ir/class/cs229/ps/ps1/q2x.dat
and /afs/ir/class/cs229/ps/ps1/q2y.dat contain the inputs (x(i)) and outputs
(y(i)) for a regression problem, with one training example per row.

i. [2 points] Implement (unweighted) linear regression (y = θT x) on this dataset
(using the normal equations), and plot on the same figure the data and the
straight line resulting from your fit. (Remember to include the intercept term.)

ii. [7 points] Implement locally weighted linear regression on this dataset (using the
weighted normal equations you derived in part (b)), and plot on the same figure
the data and the curve resulting from your fit. When evaluating h(·) at a query
point x, use weights

w(i) = exp

(

−
(x − x(i))2

2τ2

)

,

with a bandwidth parameter τ = 0.8. (Again, remember to include the intercept
term.)

iii. [3 points] Repeat (ii) four times, with τ = 0.1, 0.3, 2 and 10. Comment briefly

on what happens to the fit when τ is too small or too large.

Answer: Below is the code for all 3 parts of question 2d:

%%%%%%% hw1q2d %%%%%%%%

load(’q2x.dat’);

load(’q2y.dat’);

x = [ones(size(q2x,1),1) q2x];

y = q2y;

%% linear regression

theta = pinv(x’*x)*x’*y;

figure;

67

CS229 Problem Set #1 7

hold on;

plot(x(:,2),y,’.b’);

regr_line_x = min(x(:,2)):.1:max(x(:,2));

regr_line_y = theta(2)*regr_line_x + theta(1);

plot(regr_line_x,regr_line_y,’b’);

%% locally weighted linear regression

taus = [.1 .3 .8 2 10];

colors = [’r’ ’g’ ’m’ ’y’ ’k’];

m = size(q2x,1);

for i=1:size(taus,2)

tau=taus(i);

for k=1:size(regr_line_x,2)

W = zeros(m,m);

for l=1:m

W(l,l)=exp(-(regr_line_x(k)-x(l,2))^2/(2*tau^2));

end

theta = pinv(x’*W*x)*x’*W*y;

regr_line_y(k) = theta(2)*regr_line_x(k) + theta(1);

end

plot(regr_line_x,regr_line_y,colors(i));

end

legend(’trainingdata’,’linear’,’tau=.1’,’tau=.3’,...

’tau=.8’,’tau=2’,’tau=10’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

68

CS229 Problem Set #1 8

−6 −4 −2 0 2 4 6 8 10 12
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

trainingdata
linear
tau=.1
tau=.3
tau=.8
tau=2
tau=10

(Plotted in color where available.)

For small bandwidth parameter τ , the fitting is dominated by the closest by training
samples. The smaller the bandwidth, the less training samples that are actually taken
into account when doing the regression, and the regression results thus become very
susceptible to noise in those few training samples. For larger τ , we have enough training
samples to reliably fit straight lines, unfortunately a straight line is not the right model
for these data, so we also get a bad fit for large bandwidths.

3. [18 points] Poisson regression and the exponential family

(a) [5 points] Consider the Poisson distribution parameterized by λ:

p(y;λ) =
e−λλy

y!
.

Show that the Poisson distribution is in the exponential family, and clearly state what
are b(y), η, T (y), and a(η).

Answer: Rewrite the distribution function as:

p(y;λ) =
e−λey log λ

y!

=
1

y!
exp(y log λ − λ)

69

CS229 Problem Set #1 9

Comparing with the standard form for the exponential family:

b(y) =
1

y!

η = log λ

T (y) = y

a(η) = eη

(b) [3 points] Consider performing regression using a GLM model with a Poisson response
variable. What is the canonical response function for the family? (You may use the
fact that a Poisson random variable with parameter λ has mean λ.)

Answer: The canonical response function for the GLM model will be:

g(η) = E[y; η]

= λ

= eη

(c) [10 points] For a training set {(x(i), y(i)); i = 1, . . . ,m}, let the log-likelihood of an
example be log p(y(i)|x(i); θ). By taking the derivative of the log-likelihood with re-
spect to θj , derive the stochastic gradient ascent rule for learning using a GLM model
with Poisson responses y and the canonical response function.

Answer: The log-likelihood of an example (x(i), y(i)) is defined as ℓ(θ) = log p(y(i)|x(i); θ).
To derive the stochastic gradient ascent rule, use the results in part (a) and the standard
GLM assumption that η = θT x.

∂ℓ(θ)

∂θj

=
∂ log p(y(i)|x(i); θ)

∂θj

=
∂ log

(

1
y(i)!

exp(ηT y(i) − eη)
)

∂θj

=
∂ log

(

exp((θT x(i))T y(i) − eθT x(i)

)
)

∂θj

+
∂ log

(

1
y(i)!

)

∂θj

=
∂
(

(θT x(i))T y(i) − eθT x(i)
)

∂θj

=
∂
(

(
∑

k θkx
(i)
k)y(i) − e

P

k
θkx

(i)
k

)

∂θj

= x
(i)
j y(i) − e

P

k
θkx

(i)
k x

(i)
j

= (y(i) − eθT x(i)

)x
(i)
j

Thus the stochastic gradient ascent update rule should be:

θj := θj + α
∂ℓ(θ)

∂θj

70

CS229 Problem Set #1 10

which reduces here to:
θj := θj + α(y(i) − eθT x)x

(i)
j

(d) [5 extra credit points] Consider using GLM with a response variable from any
member of the exponential family in which T (y) = y, and the canonical response
function for the family. Show that stochastic gradient ascent on the log-likelihood
log p(~y|X, θ) results in the update rule θi := θi − α(h(x) − y)xi.

Answer: As in the previous part, consider the derivative of the likelihood of a training
example (x, y) with respect to the parameter θj :

∂ℓ(θ)

∂θj

=
∂ log p(y|x; θ)

∂θj

=
∂ log

(

b(y) exp(ηT y − a(η))
)

∂θj

=
∂
(

ηT y − a(η))
)

∂θj

= xjy −
∂a(η)

∂η
xj

=

(

y −
∂a(η)

∂η

)

xj

Thus, it only remains to show that ∂a(η)
∂η

= h(x) = E[y|x; θ]. To prove this consider the

fact that p(y|x; θ) is a probability distribution and must thus sum to 1.

∫

y

p(y|x; θ)dy = 1

∫

y

b(y) exp(ηT y − a(η))dy = 1

∫

y

b(y) exp(ηT y)dy = exp(a(η))

Differentiating both sides with respect to η:

∫

y

b(y)y exp(ηT y)dy = exp(a(η))
∂a(η)

∂η

∂a(η)

∂η
=

∫

y

b(y)y exp(ηT y − a(η))dy

=

∫

y

yp(y|x; θ)dy

= E[y|x; θ]

where the last step follows from the definition of the (conditional) expectation of a random

variable. Substituting this into the expression for ∂ℓ(θ)
∂θj

gives the required gradient ascent

update rule.

71

CS229 Problem Set #1 11

4. [15 points] Gaussian discriminant analysis

Suppose we are given a dataset {(x(i), y(i)); i = 1, . . . ,m} consisting of m independent
examples, where x(i) ∈ R

n are n-dimensional vectors, and y(i) ∈ {0, 1}. We will model the
joint distribution of (x, y) according to:

p(y) = φy(1 − φ)1−y

p(x|y = 0) =
1

(2π)n/2|Σ|1/2
exp

(

−
1

2
(x − µ0)

T Σ−1(x − µ0)

)

p(x|y = 1) =
1

(2π)n/2|Σ|1/2
exp

(

−
1

2
(x − µ1)

T Σ−1(x − µ1)

)

Here, the parameters of our model are φ, Σ, µ0 and µ1. (Note that while there’re two
different mean vectors µ0 and µ1, there’s only one covariance matrix Σ.)

(a) [5 points] Suppose we have already fit φ, Σ, µ0 and µ1, and now want to make a
prediction at some new query point x. Show that the posterior distribution of the
label at x takes the form of a logistic function, and can be written

p(y = 1|x;φ,Σ, µ0, µ1) =
1

1 + exp(−θT x)
,

where θ is some appropriate function of φ,Σ, µ0, µ1. (Note: To get your answer into
the form above, for this part of the problem only, you may have to redefine the x(i)’s

to be n + 1-dimensional vectors by adding the extra coordinate x
(i)
0 = 1, like we did

in class.)

Answer: Since the given formulae are conditioned on y, use Bayes rule to get:

p(y = 1|x;φ,Σ, µ0, µ1) =
p(x|y = 1;φ,Σ, µ0, µ1)p(y = 1;φ,Σ, µ0, µ1)

p(x;φ,Σ, µ0, µ1)

=
p(x|y = 1; . . .)p(y = 1; . . .)

p(x|y = 1; . . .)p(y = 1; . . .) + p(x|y = 0; . . .)p(y = 0; . . .)

=
exp

(

− 1
2 (x − µ1)

T Σ−1(x − µ1)
)

φ

exp
(

− 1
2 (x − µ1)T Σ−1(x − µ1)

)

φ + exp
(

− 1
2 (x − µ0)T Σ−1(x − µ0)

)

(1 − φ)

=
1

1 + 1−φ
φ

exp
(

− 1
2 (x − µ0)T Σ−1(x − µ0) + 1

2 (x − µ1)T Σ−1(x − µ1)
)

=
1

1 + exp
(

log(1−φ
φ

) − 1
2 (x − µ0)T Σ−1(x − µ0) + 1

2 (x − µ1)T Σ−1(x − µ1)
)

=
1

1 + exp
(

− 1
2

(

−2µT
0 Σ−1x + µT

0 Σ−1µ0 + 2µT
1 Σ−1x − µT

1 Σ−1µ1

)

+ log(1−φ
φ

)
)

where we have simplified the denominator in the penultimate step by expansion, i.e.,

−
1

2
(x − µ0)

T Σ−1(x − µ0) +
1

2
(x − µ1)

T Σ−1(x − µ1)

= −
1

2

(

xT Σ−1x − µT
0 Σ−1x − xT Σ−1µ0 + µT

0 Σ−1µ0 − xT Σ−1x + µT
1 Σ−1x + xT Σ−1µ1 − µT

1 Σ−1µ1

)

= −
1

2

(

µT
0 Σ−1x − (xT Σ−1µ0)

T + µT
0 Σ−1µ0 + µT

1 Σ−1x + (xT Σ−1µ1)
T − µT

1 Σ−1µ1

)

72

CS229 Problem Set #1 12

Recall that the question was to find θ for exp(−θT x), after adding a constant intercept
term x0 = 1, we have θ equal to:

[

1
2 (µT

0 Σ−1µ0 − µT
1 Σ−1µ1) − log(1−φ

φ
)

Σ−1µ1 − Σ−1µ0

]

(b) [10 points] For this part of the problem only, you may assume n (the dimension of x)
is 1, so that Σ = [σ2] is just a real number, and likewise the determinant of Σ is given
by |Σ| = σ2. Given the dataset, we claim that the maximum likelihood estimates of
the parameters are given by

φ =
1

m

m
∑

i=1

1{y(i) = 1}

µ0 =

∑m

i=1 1{y(i) = 0}x(i)

∑m

i=1 1{y(i) = 0}

µ1 =

∑m

i=1 1{y(i) = 1}x(i)

∑m

i=1 1{y(i) = 1}

Σ =
1

m

m
∑

i=1

(x(i) − µy(i))(x(i) − µy(i))T

The log-likelihood of the data is

ℓ(φ, µ0, µ1,Σ) = log

m
∏

i=1

p(x(i), y(i);φ, µ0, µ1,Σ)

= log

m
∏

i=1

p(x(i)|y(i);µ0, µ1,Σ)p(y(i);φ).

By maximizing ℓ with respect to the four parameters, prove that the maximum like-
lihood estimates of φ, µ0, µ1, and Σ are indeed as given in the formulas above. (You
may assume that there is at least one positive and one negative example, so that the
denominators in the definitions of µ0 and µ1 above are non-zero.)

Answer: The derivation follows from the more general one for the next part.

(c) [5 extra credit points] Without assuming that n = 1, show that the maximum
likelihood estimates of φ, µ0, µ1, and Σ are as given in the formulas in part (b). [Note:
If you’re fairly sure that you have the answer to this part right, you don’t have to do
part (b), since that’s just a special case.]

Answer: First, derive the expression for the log-likelihood of the training data:

ℓ(φ, µ0, µ1,Σ) = log
m
∏

i=1

p(x(i)|y(i);µ0, µ1,Σ)p(y(i);φ)

=

m
∑

i=1

log p(x(i)|y(i);µ0, µ1,Σ) +

m
∑

i=1

log p(y(i);φ)

≃
m
∑

i=1

[1

2
log

1

|Σ|
−

1

2
(x(i) − µy(i))T Σ−1(x(i) − µy(i)) + y(i) log φ + (1 − y(i)) log(1 − φ)

]

73

CS229 Problem Set #1 13

where constant terms indepedent of the parameters have been ignored in the last expres-
sion.

Now, the likelihood is maximized by setting the derivative (or gradient) with respect to
each of the parameters to zero.

∂ℓ

∂φ
=

m
∑

i=1

[y(i)

φ
−

1 − y(i)

1 − φ

]

=

∑m

i=1 1{y(i) = 1}

φ
−

m −
∑m

i=1 1{y(i) = 1}

1 − φ

Setting this equal to zero and solving for φ gives the maximum likelihood estimate.

For µ0, take the gradient of the log-likelihood, and then use the same kinds of tricks as
were used to analytically solve the linear regression problem.

∇µ0
ℓ = −

1

2

∑

i:y(i)=0

∇µ0
(x(i) − µ0)

T Σ−1(x(i) − µ0)

= −
1

2

∑

i:y(i)=0

∇µ0

[

µT
0 Σ−1µ0 − x(i)T

Σ−1µ0 − µT
0 Σ−1x(i)

]

= −
1

2

∑

i:y(i)=0

∇µ0
tr
[

µT
0 Σ−1µ0 − x(i)T

Σ−1µ0 − µT
0 Σ−1x(i)

]

= −
1

2

∑

i:y(i)=0

[

2Σ−1µ0 − 2Σ−1x(i)
]

The last step uses matrix calculus identities (specifically, those given in page 8 of the
lecture notes), and also the fact that Σ (and thus Σ−1) is symmetric.

Setting this gradient to zero gives the maximum likelihood estimate for µ0. The derivation
for µ1 is similar to the one above.

For Σ, we find the gradient with respect to S = Σ−1 rather than Σ just to simplify the
derivation (note that |S| = 1

|Σ|). You should convince yourself that the maximum likeli-

hood estimate Sm found in this way would correspond to the actual maximum likelihood
estimate Σm as S−1

m = Σm.

∇Sℓ =
m
∑

i=1

∇S

[1

2
log |S| −

1

2
(x(i) − µy(i))T

︸ ︷︷ ︸

bT
i

S (x(i) − µy(i))
︸ ︷︷ ︸

bi

]

=
m
∑

i=1

[1

2|S|
∇S |S| −

1

2
∇SbT

i Sbi

]

But, we have the following identities:

∇S |S| = |S|(S−1)T

∇SbT
i Sbi = ∇Str

(

bT
i Sbi

)

= ∇Str
(

Sbib
T
i

)

= bib
T
i

74

CS229 Problem Set #1 14

In the above, we again used matrix calculus identities, and also the commutatitivity of
the trace operator for square matrices. Putting these into the original equation, we get:

∇Sℓ =
m
∑

i=1

[1

2
S−1 −

1

2
bib

T
i

]

=
1

2

m
∑

i=1

[

Σ − bib
T
i

]

Setting this to zero gives the required maximum likelihood estimate for Σ.

5. [12 points] Linear invariance of optimization algorithms

Consider using an iterative optimization algorithm (such as Newton’s method, or gradient
descent) to minimize some continuously differentiable function f(x). Suppose we initialize
the algorithm at x(0) = ~0. When the algorithm is run, it will produce a value of x ∈ R

n

for each iteration: x(1), x(2),

Now, let some non-singular square matrix A ∈ R
n×n be given, and define a new function

g(z) = f(Az). Consider using the same iterative optimization algorithm to optimize g
(with initialization z(0) = ~0). If the values z(1), z(2), . . . produced by this method necessarily
satisfy z(i) = A−1x(i) for all i, we say this optimization algorithm is invariant to linear

reparameterizations.

(a) [9 points] Show that Newton’s method (applied to find the minimum of a function)
is invariant to linear reparameterizations. Note that since z(0) = ~0 = A−1x(0), it is
sufficient to show that if Newton’s method applied to f(x) updates x(i) to x(i+1), then
Newton’s method applied to g(z) will update z(i) = A−1x(i) to z(i+1) = A−1x(i+1).3

Answer: Let g(z) = f(Az). We need to find ∇zg(z) and its Hessian ∇2
zg(z).

By the chain rule:

∂g(z)

∂zi

=
n
∑

k=1

∂f(Az)

∂(Az)k

∂(Az)k

∂zi

(24)

=
n
∑

k=1

∂f(Az)

∂(Az)k

Aki (25)

=

n
∑

k=1

∂f(Az)

∂xk

Aki (26)

Notice that the above is the same as :

∂g(z)

∂zi

= A⊤
•i∇xf(Az) (27)

where A•i is the i’th column of A. Then,

∇zg(z) = A⊤∇xf(Az) (28)

3Note that for this problem, you must explicitly prove any matrix calculus identities that you wish to use that

are not given in the lecture notes.

75

CS229 Problem Set #1 15

where ∇xf(Az) is ∇xf(·) evaluated at Az.

Now we want to find the Hessian ∇2
zg(z).

∂2g(z)

∂zi∂zj

=
∂

∂zj

n
∑

k=1

∂f(Az)

∂(Az)k

Aki (29)

=
∑

l

∑

k

∂2f(Az)

∂xl∂xk

AkiAlj (30)

If we let Hf (y) denote the Hessian of f(·) evaluated at some point y, and let Hg(y) be
the Hessian of g(·) evaluated at some point y, we have from the previous equation that:

Hg(z) = A⊤Hf (Az)A (31)

We can now put this together and find the update rule for Newton’s method on the
function f(Ax):

z(i+1) = z(i) − Hg(z
(i))−1∇zg(z(i)) (32)

= z(i) − (A⊤Hf (Az(i))A)−1A⊤∇xf(Az(i)) (33)

= z(i) − A−1Hf (Az(i))−1(A⊤)−1A⊤∇xf(Az(i)) (34)

= z(i) − A−1Hf (Az(i))−1∇xf(Az(i)) (35)

Now we have the update rule for z(i+1), we just need to verify that z(i+1) = A−1x(i+1)

or equivalently that Az(i+1) = x(i+1). From Eqn. (??) we have

Az(i+1) = A
(

z(i) − A−1Hf (Az(i))−1∇xf(Az(i))
)

(36)

= Az(i) − Hf (Az(i))−1∇xf(Az(i)) (37)

= x(i) − Hf (x(i))−1∇xf(x(i)) (38)

= x(i+1), (39)

where we used in order: Eqn. (??); rewriting terms; the inductive assumption x(i) =
Az(i); the update rule x(i+1) = x(i) − Hf (x(i))−1∇xf(x(i)).

(b) [3 points] Is gradient descent invariant to linear reparameterizations? Justify your
answer.

Answer:

No. Using the notation from above, gradient descent on g(z) results in the following
update rule:

z(i+1) = z(i) − αA⊤∇xf(Az(i)). (40)

The update rule for x(i+1) is given by

x(i+1) = x(i) − α∇xf(x(i)). (41)

76

CS229 Problem Set #1 16

The invariance holds if and only if x(i+1) = Az(i+1) given x(i) = Az(i). However we have

Az(i+1) = Az(i) − αAA⊤∇xf(Az(i)) (42)

= x(i) − αAA⊤∇xf(x(i)). (43)

The two expressions in Eqn. (??) and Eqn. (??) are not necessarily equal (AAT = I
requires that A be an orthogonal matrix), and thus gradient descent is not invariant to
linear reparameterizations.

Reminder: Please include in your submission a printout of your code and figures for the
programming questions.

77

CS229 Problem Set #2 1

CS 229, Autumn 2013

Problem Set #2: Naive Bayes, SVMs, and Theory

Due in class (9:00am) on Wednesday, October 30.

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at https://piazza.com/stanford/fall2013/cs229. (3) If
you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4)
For problems that require programming, please include in your submission a printout of your
code (with comments) and any figures that you are asked to plot. (5) If you are an on-campus
(non-SCPD) student, please print, fill out, and include a copy of the cover sheet (enclosed as the
final page of this document), and include the cover sheet as the first page of your submission.

SCPD students: Please submit your assignments at https://www.stanford.edu/class/

cs229/cgi-bin/submit.php as a single PDF file under 20MB in size. If you have trouble sub-
mitting online, you can also email your submission to cs229-qa@cs.stanford.edu. However,
we strongly recommend using the website submission method as it will provide confirmation of
submission, and also allow us to track and return your graded homework to you more easily.

If you are scanning your document by cellphone, please check the Piazza forum for recommended
cellphone scanning apps and best practices.

1. [15 points] Constructing kernels

In class, we saw that by choosing a kernel K(x, z) = �(x)T�(z), we can implicitly map
data to a high dimensional space, and have the SVM algorithm work in that space. One
way to generate kernels is to explicitly define the mapping � to a higher dimensional space,
and then work out the corresponding K.

However in this question we are interested in direct construction of kernels. I.e., suppose
we have a function K(x, z) that we think gives an appropriate similarity measure for our
learning problem, and we are considering plugging K into the SVM as the kernel function.
However for K(x, z) to be a valid kernel, it must correspond to an inner product in some
higher dimensional space resulting from some feature mapping �. Mercer’s theorem tells
us that K(x, z) is a (Mercer) kernel if and only if for any finite set {x(1), . . . , x(m)}, the
matrix K is symmetric and positive semidefinite, where the square matrix K 2 Rm⇥m is
given by Kij = K(x(i), x(j)).

Now here comes the question: Let K1, K2 be kernels over Rn⇥Rn, let a 2 R+ be a positive
real number, let f : Rn 7! R be a real-valued function, let � : Rn ! Rd be a function
mapping from Rn to Rd, let K3 be a kernel over Rd ⇥ Rd, and let p(x) a polynomial over
x with positive coe�cients.

For each of the functions K below, state whether it is necessarily a kernel. If you think it
is, prove it; if you think it isn’t, give a counter-example.

(a) K(x, z) = K1(x, z) +K2(x, z)

(b) K(x, z) = K1(x, z)�K2(x, z)

(c) K(x, z) = aK1(x, z)

78

CS229 Problem Set #2 2

(d) K(x, z) = �aK1(x, z)

(e) K(x, z) = K1(x, z)K2(x, z)

(f) K(x, z) = f(x)f(z)

(g) K(x, z) = K3(�(x),�(z))

(h) K(x, z) = p(K1(x, z))

[Hint: For part (e), the answer is that the K there is indeed a kernel. You still have to
prove it, though. (This one may be harder than the rest.) This result may also be useful
for another part of the problem.]

2. [15 points] Kernelizing the Perceptron

Let there be a binary classification problem with y 2 {0, 1}. The perceptron uses hypothe-
ses of the form h✓(x) = g(✓Tx), where g(z) = 1{z � 0}. In this problem we will consider
a stochastic gradient descent-like implementation of the perceptron algorithm where each
update to the parameters ✓ is made using only one training example. However, unlike
stochastic gradient descent, the perceptron algorithm will only make one pass through the
entire training set. The update rule for this version of the perceptron algorithm is given
by

✓(i+1) := ✓(i) + ↵[y(i+1) � h✓(i)(x(i+1))]x(i+1)

where ✓(i) is the value of the parameters after the algorithm has seen the first i training
examples. Prior to seeing any training examples, ✓(0) is initialized to ~0.

Let K be a Mercer kernel corresponding to some very high-dimensional feature mapping �.
Suppose � is so high-dimensional (say, 1-dimensional) that it’s infeasible to ever represent
�(x) explicitly. Describe how you would apply the “kernel trick” to the perceptron to make
it work in the high-dimensional feature space �, but without ever explicitly computing �(x).
[Note: You don’t have to worry about the intercept term. If you like, think of � as having
the property that �0(x) = 1 so that this is taken care of.] Your description should specify

(a) How you will (implicitly) represent the high-dimensional parameter vector ✓(i), in-
cluding how the initial value ✓(0) = ~0 is represented (note that ✓(i) is now a vector
whose dimension is the same as the feature vectors �(x));

(b) How you will e�ciently make a prediction on a new input x(i+1). I.e., how you will

compute h✓(i)(x(i+1)) = g(✓(i)
T
�(x(i+1))), using your representation of ✓(i); and

(c) How you will modify the update rule given above to perform an update to ✓ on a
new training example (x(i+1), y(i+1)); i.e., using the update rule corresponding to the
feature mapping �:

✓(i+1) := ✓(i) + ↵[y(i+1) � h✓(i)(�(x(i+1)))]�(x(i+1))

[Note: If you prefer, you are also welcome to do this problem using the convention of labels
y 2{� 1, 1}, and g(z) = sign(z) = 1 if z � 0, �1 otherwise.]

3. [30 points] Spam classification

In this problem, we will use the naive Bayes algorithm and an SVM to build a spam
classifier.

In recent years, spam on electronic newsgroups has been an increasing problem. Here, we’ll
build a classifier to distinguish between “real” newsgroup messages, and spam messages.

79

CS229 Problem Set #2 3

For this experiment, we obtained a set of spam emails, and a set of genuine newsgroup
messages.1 Using only the subject line and body of each message, we’ll learn to distinguish
between the spam and non-spam.

All the files for the problem are in /afs/ir/class/cs229/ps/ps2/. Note: Please do not
circulate this data outside this class. In order to get the text emails into a form usable
by naive Bayes, we’ve already done some preprocessing on the messages. You can look at
two sample spam emails in the files spam sample original*, and their preprocessed forms
in the files spam sample preprocessed*. The first line in the preprocessed format is just
the label and is not part of the message. The preprocessing ensures that only the message
body and subject remain in the dataset; email addresses (EMAILADDR), web addresses
(HTTPADDR), currency (DOLLAR) and numbers (NUMBER) were also replaced by the
special tokens to allow them to be considered properly in the classification process. (In
this problem, we’ll going to call the features “tokens” rather than “words,” since some of
the features will correspond to special values like EMAILADDR. You don’t have to worry
about the distinction.) The files news sample original and news sample preprocessed

also give an example of a non-spam mail.

The work to extract feature vectors out of the documents has also been done for you, so you
can just load in the design matrices (called document-word matrices in text classification)
containing all the data. In a document-word matrix, the ith row represents the ith docu-
ment/email, and the jth column represents the jth distinct token. Thus, the (i, j)-entry of
this matrix represents the number of occurrences of the jth token in the ith document.

For this problem, we’ve chosen as our set of tokens considered (that is, as our vocabulary)
only the medium frequency tokens. The intuition is that tokens that occur too often or
too rarely do not have much classification value. (Examples tokens that occur very often
are words like “the,” “and,” and “of,” which occur in so many emails and are su�ciently
content-free that they aren’t worth modeling.) Also, words were stemmed using a standard
stemming algorithm; basically, this means that “price,” “prices” and “priced” have all been
replaced with “price,” so that they can be treated as the same word. For a list of the tokens
used, see the file TOKENS LIST.

Since the document-word matrix is extremely sparse (has lots of zero entries), we have
stored it in our own e�cient format to save space. You don’t have to worry about this
format.2 The file readMatrix.m provides the readMatrix function that reads in the
document-word matrix and the correct class labels for the various documents. Code in
nb train.m and nb test.m shows how readMatrix should be called. The documentation
at the top of these two files will tell you all you need to know about the setup.

(a) Implement a naive Bayes classifier for spam classification, using the multinomial event
model and Laplace smoothing.

You should use the code outline provided in nb train.m to train your parameters,
and then use these parameters to classify the test set data by filling in the code in
nb test.m. You may assume that any parameters computed in nb train.m are in
memory when nb test.m is executed, and do not need to be recomputed (i.e., that
nb test.m is executed immediately after nb train.m) 3.

1Thanks to Christian Shelton for providing the spam email. The non-spam messages are from the 20 news-
groups data at http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.html .

2Unless you’re not using Matlab/Octave, in which case feel free to ask us about it.
3Matlab note: If a .m file doesn’t begin with a function declaration, the file is a script. Variables in a script

are put into the global namespace, unlike with functions.

80

CS229 Problem Set #2 4

Train your parameters using the document-word matrix in MATRIX.TRAIN, and then
report the test set error on MATRIX.TEST.

Remark. If you implement naive Bayes the straightforward way, you’ll find that
the computed p(x|y) = Q

i p(xi|y) often equals zero. This is because p(x|y), which is
the product of many numbers less than one, is a very small number. The standard
computer representation of real numbers cannot handle numbers that are too small,
and instead rounds them o↵ to zero. (This is called “underflow.”) You’ll have to find
a way to compute naive Bayes’ predicted class labels without explicitly representing
very small numbers such as p(x|y). [Hint: Think about using logarithms.]

(b) Intuitively, some tokens may be particularly indicative of an email being in a particular
class. We can try to get an informal sense of how indicative token i is for the SPAM
class by looking at:

log
p(xj = i|y = 1)

p(xj = i|y = 0)
= log

✓
P (token i|email is SPAM)

P (token i|email is NOTSPAM)

◆
.

Using the parameters fit in part (a), find the 5 tokens that are most indicative of
the SPAM class (i.e., have the highest positive value on the measure above). The
numbered list of tokens in the file TOKENS LIST should be useful for identifying the
words/tokens.

(c) Repeat part (a), but with training sets of size ranging from 50, 100, 200, . . . , up
to 1400, by using the files MATRIX.TRAIN.*. Plot the test error each time (use
MATRIX.TEST as the test data) to obtain a learning curve (test set error vs. training
set size). You may need to change the call to readMatrix in nb train.m to read the
correct file each time. Which training-set size gives the best test set error?

(d) Train an SVM on this dataset using the LIBLINEAR SVM library, available for down-
load from http://www.csie.ntu.edu.tw/˜cjlin/liblinear/. This implements an SVM
using a linear kernel. Like the Naive Bayes implementation, an outline for your code
is provided in svm train.m and svm test.m.

See ps2/README.txt for instructions for downloading and installing LIBLINEAR.
Similar to part (c), train an SVM with training set sizes 50, 100, 200, . . . , 1400,
by using the file MATRIX.TRAIN.50 and so on. Plot the test error each time, using
MATRIX.TEST as the test data. Use the LIBLINEAR default options when training
and testing. You don’t need to try di↵erent parameter values.

Running LIBLINEAR in Matlab on Windows or Octave can be buggy, depending on
which version of Windows you run. We recommend that you use Matlab on the corn
machines (e.g., ssh to corn.stanford.edu). However, there are command line programs
you can run (without using MATLAB) which are located in liblinear-1.7/windows

for Windows and liblinear-1.7/ for Linux/Unix. If you do it this way, please
include the commands that you run from the command line in your solution.

(e) How do naive Bayes and Support Vector Machines compare (in terms of generalization
error) as a function of the training set size?

4. [20 points] Properties of VC dimension

In this problem, we investigate a few properties of the Vapnik-Chervonenkis dimension,
mostly relating to how VC(H) increases as the set H increases. For each part of this
problem, you should state whether the given statement is true, and justify your answer
with either a formal proof or a counter-example.

81

CS229 Problem Set #2 5

(a) Let two hypothesis classes H1 and H2 satisfy H1 ✓ H2. Prove or disprove: VC(H1)
VC(H2).

(b) Let H1 = H2 [{h1, . . . , hk}. (I.e., H1 is the union of H2 and some set of k additional
hypotheses.) Prove or disprove: VC(H1) VC(H2) + k. [Hint: You might want to
start by considering the case of k = 1.]

(c) Let H1 = H2 [H3. Prove or disprove: VC(H1) VC(H2) + VC(H3).

5. [20 points] Training and testing on di↵erent distributions

In the discussion in class about learning theory, a key assumption was that we trained
and tested our learning algorithms on the same distribution D. In this problem, we’ll
investigate one special case of training and testing on di↵erent distributions. Specifically,
we will consider what happens when the training labels are noisy, but the test labels are
not.

Consider a binary classification problem with labels y 2 {0, 1}, and let D be a distribution
over (x, y), that we’ll think of as the original, “clean” or “uncorrupted” distribution. Define
D⌧ to be a “corrupted” distribution over (x, y) which is the same as D, except that the
labels y have some probability 0 ⌧ < 0.5 of being flipped. Thus, to sample from D⌧ ,
we would first sample (x, y) from D, and then with probability ⌧ (independently of the
observed x and y) replace y with 1� y. Note that D0 = D.

The distribution D⌧ models a setting in which an unreliable human (or other source)
is labeling your training data for you, and on each example he/she has a probability ⌧
of mislabeling it. Even though our training data is corrupted, we are still interested in
evaluating our hypotheses with respect to the original, uncorrupted distribution D.

We define the generalization error with respect to D⌧ to be

"⌧ (h) = P(x,y)⇠D⌧
[h(x) 6= y].

Note that "0(h) is the generalization error with respect to the “clean” distribution; it is
with respect to "0 that we wish to evaluate our hypotheses.

(a) For any hypothesis h, the quantity "0(h) can be calculated as a function of "⌧ (h) and
⌧ . Write down a formula for "0(h) in terms of "⌧ (h) and ⌧ , and justify your answer.

(b) Let |H| be finite, and suppose our training set S = {(x(i), y(i)); i = 1, . . . ,m} is
obtained by drawing m examples IID from the corrupted distribution D⌧ . Suppose
we pick h 2 H using empirical risk minimization: ĥ = argminh2H "̂S(h). Also, let
h⇤ = argminh2H "0(h).

Let any �, �> 0 be given. Prove that for

"0(ĥ) "0(h
⇤) + 2�

to hold with probability 1� �, it su�ces that

m � 1

2(1� 2⌧)2�2
log

2|H|
�

.

Remark. This result suggests that, roughly, m examples that have been corrupted at
noise level ⌧ are worth about as much as (1� 2⌧)2m uncorrupted training examples.
This is a useful rule-of-thumb to know if you ever need to decide whether/how much to

82

CS229 Problem Set #2 6

pay for a more reliable source of training data. (If you’ve taken a class in information
theory, you may also have heard that (1�H(⌧))m is a good estimate of the information
in the m corrupted examples, where H(⌧) = �(⌧ log2 ⌧ + (1 � ⌧) log2(1 � ⌧)) is the
“binary entropy” function. And indeed, the functions (1�2⌧)2 and 1�H(⌧) are quite
close to each other.)

(c) Comment briefly on what happens as ⌧ approaches 0.5.

83

CS229: Machine Learning

Problem Set #:

Please print out, fill in and include this cover sheet as the first page of your submission. We
strongly recommend that you use this cover sheet, which will help us to get your graded
homework back to you more quickly, as well as help us with tracking submissions.

Please mark the submission time clearly below. It is an honor code violation to write down the
wrong time.

If you are submitting this homework late: Each student will have a total of seven free late
(calendar) days to use for homeworks, project proposals and project milestones. Once these late
days are exhausted, any assignments turned in late will be penalized 20% per late day. However,
no assignment will be accepted more than four days after its due date, and late days cannot be
used for the final project writeup. Each 24 hours or part thereof that a homework is late uses up
one full late day.

On-campus (non-SCPD) students: Please either hand in the assignment at the beginning of
class on Wednesday or leave it in the submission cabinet on the 1st floor of the Gates building,
near/outside Gates 188 and 182.

Name:
SUNet ID: @stanford.edu
Submission date: and time:
Collaborators:

I understand and acknowledge CS229's Honor Code Policy (available online at
http://cs229.stanford.edu/info.html)

Signature:

(For CS229 staff only)

Question Score

1

2

3

4

5

6

Late Days

Total

84

CS229 Problem Set #2 Solutions 1

CS 229, Autumn 2013
Problem Set #2 Solutions: Naive Bayes, SVMs,
and Theory

Due in class (9:00am) on Wednesday, October 30.

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at https://piazza.com/stanford/fall2013/cs229. (3) If
you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4)
For problems that require programming, please include in your submission a printout of your
code (with comments) and any figures that you are asked to plot. (5) If you are an on-campus
(non-SCPD) student, please print, fill out, and include a copy of the cover sheet (enclosed as the
final page of this document), and include the cover sheet as the first page of your submission.

SCPD students: Please submit your assignments at https://www.stanford.edu/class/

cs229/cgi-bin/submit.php as a single PDF file under 20MB in size. If you have trouble sub-
mitting online, you can also email your submission to cs229-qa@cs.stanford.edu. However,
we strongly recommend using the website submission method as it will provide confirmation of
submission, and also allow us to track and return your graded homework to you more easily.

If you are scanning your document by cellphone, please check the Piazza forum for recommended
cellphone scanning apps and best practices.

1. [15 points] Constructing kernels

In class, we saw that by choosing a kernel K(x, z) = φ(x)Tφ(z), we can implicitly map
data to a high dimensional space, and have the SVM algorithm work in that space. One
way to generate kernels is to explicitly define the mapping φ to a higher dimensional space,
and then work out the corresponding K.

However in this question we are interested in direct construction of kernels. I.e., suppose
we have a function K(x, z) that we think gives an appropriate similarity measure for our
learning problem, and we are considering plugging K into the SVM as the kernel function.
However for K(x, z) to be a valid kernel, it must correspond to an inner product in some
higher dimensional space resulting from some feature mapping φ. Mercer’s theorem tells
us that K(x, z) is a (Mercer) kernel if and only if for any finite set {x(1), . . . , x(m)}, the
matrix K is symmetric and positive semidefinite, where the square matrix K ∈ R

m×m is
given by Kij = K(x(i), x(j)).

Now here comes the question: Let K1, K2 be kernels over R
n×R

n, let a ∈ R
+ be a positive

real number, let f : R
n 7→ R be a real-valued function, let φ : R

n → R
d be a function

mapping from R
n to R

d, let K3 be a kernel over R
d × R

d, and let p(x) a polynomial over
x with positive coefficients.

For each of the functions K below, state whether it is necessarily a kernel. If you think it
is, prove it; if you think it isn’t, give a counter-example.

(a) K(x, z) = K1(x, z) +K2(x, z)

(b) K(x, z) = K1(x, z) −K2(x, z)

85

CS229 Problem Set #2 Solutions 2

(c) K(x, z) = aK1(x, z)

(d) K(x, z) = −aK1(x, z)

(e) K(x, z) = K1(x, z)K2(x, z)

(f) K(x, z) = f(x)f(z)

(g) K(x, z) = K3(φ(x), φ(z))

(h) K(x, z) = p(K1(x, z))

[Hint: For part (e), the answer is that the K there is indeed a kernel. You still have to
prove it, though. (This one may be harder than the rest.) This result may also be useful
for another part of the problem.]

Answer: All 8 cases of proposed kernels K are trivially symmetric because K1,K2,K3 are
symmetric; and because the product of 2 real numbers is commutative (for (1f)). Thanks to
Mercer’s theorem, it is sufficient to prove the corresponding properties for positive semidefinite
matrices. To differentiate between matrix and kernel function, we’ll use Gi to denote a kernel
matrix (Gram matrix) corresponding to a kernel function Ki.

(a) Kernel. The sum of 2 positive semidefinite matrices is a positive semidefinite matrix:
∀z zTG1z ≥ 0, zTG2z ≥ 0 since K1,K2 are kernels. This implies ∀z zTGz = zTG1z +
zTG2z ≥ 0.

(b) Not a kernel. Counterexample: let K2 = 2K1 (we are using (1c) here to claim K2 is a
kernel). Then we have ∀z zTGz = zT (G1 − 2G1)z = −zTG1z ≤ 0.

(c) Kernel. ∀z zTG1z ≥ 0, which implies ∀z azTG1z ≥ 0.

(d) Not a kernel. Counterexample: a = 1. Then we have ∀z − zTG1z ≤ 0.

(e) Kernel. K1 is a kernel, thus ∃φ(1) K1(x, z) = φ(1)(x)Tφ(1)(z) =
∑

i φ
(1)
i (x)φ

(1)
i (z).

Similarly, K2 is a kernel, thus ∃φ(2) K2(x, z) = φ(2)(x)Tφ(2)(z) =
∑

j φ
(2)
j (x)φ

(2)
j (z).

K(x, z) = K1(x, z)K2(x, z) (1)

=
∑

i

φ
(1)
i (x)φ

(1)
i (z)

∑

i

φ
(2)
i (x)φ

(2)
i (z) (2)

=
∑

i

∑

j

φ
(1)
i (x)φ

(1)
i (z)φ

(2)
j (x)φ

(2)
j (z) (3)

=
∑

i

∑

j

(φ
(1)
i (x)φ

(2)
j (x))(φ

(1)
i (z)φ

(2)
j (z)) (4)

=
∑

(i,j)

ψi,j(x)ψi,j(z) (5)

Where the last equality holds because that’s how we define ψ. We see K can be written
in the form K(x, z) = ψ(x)Tψ(z) so it is a kernel.

(f) Kernel. Just let ψ(x) = f(x), and since f(x) is a scalar, we have K(x, z) = φ(x)Tφ(z)
and we are done.

(g) Kernel. Since K3 is a kernel, the matrix G3 obtained for any finite set {x(1), . . . , x(m)} is
positive semidefinite, and so it is also positive semidefinite for the sets {φ(x(1)), . . . , φ(x(m))}.

(h) Kernel. By combining (1a) sum, (1c) scalar product, (1e) powers, (1f) constant term, we
see that any polynomial of a kernel K1 will again be a kernel.

86

CS229 Problem Set #2 Solutions 3

2. [15 points] Kernelizing the Perceptron

Let there be a binary classification problem with y ∈ {0, 1}. The perceptron uses hypothe-
ses of the form hθ(x) = g(θTx), where g(z) = 1{z ≥ 0}. In this problem we will consider
a stochastic gradient descent-like implementation of the perceptron algorithm where each
update to the parameters θ is made using only one training example. However, unlike
stochastic gradient descent, the perceptron algorithm will only make one pass through the
entire training set. The update rule for this version of the perceptron algorithm is given
by

θ(i+1) := θ(i) + α[y(i+1) − hθ(i)(x(i+1))]x(i+1)

where θ(i) is the value of the parameters after the algorithm has seen the first i training
examples. Prior to seeing any training examples, θ(0) is initialized to ~0.

Let K be a Mercer kernel corresponding to some very high-dimensional feature mapping φ.
Suppose φ is so high-dimensional (say, ∞-dimensional) that it’s infeasible to ever represent
φ(x) explicitly. Describe how you would apply the “kernel trick” to the perceptron to make
it work in the high-dimensional feature space φ, but without ever explicitly computing φ(x).
[Note: You don’t have to worry about the intercept term. If you like, think of φ as having
the property that φ0(x) = 1 so that this is taken care of.] Your description should specify

(a) How you will (implicitly) represent the high-dimensional parameter vector θ(i), in-
cluding how the initial value θ(0) = ~0 is represented (note that θ(i) is now a vector
whose dimension is the same as the feature vectors φ(x));

(b) How you will efficiently make a prediction on a new input x(i+1). I.e., how you will

compute hθ(i)(x(i+1)) = g(θ(i)
T
φ(x(i+1))), using your representation of θ(i); and

(c) How you will modify the update rule given above to perform an update to θ on a
new training example (x(i+1), y(i+1)); i.e., using the update rule corresponding to the
feature mapping φ:

θ(i+1) := θ(i) + α[y(i+1) − hθ(i)(φ(x(i+1)))]φ(x(i+1))

[Note: If you prefer, you are also welcome to do this problem using the convention of labels
y ∈ {−1, 1}, and g(z) = sign(z) = 1 if z ≥ 0, −1 otherwise.]

Answer:

In the high-dimensional space we update θ as follows:

θ := θ + α(y(i) − hθ(φ(x(i))))φ(x(i))

So (assuming we initialize θ(0) = ~0) θ will always be a linear combination of the φ(x(i)), i.e.,

∃βl such that θ(i) =
∑i

l=1 βlφ(x(l)) after having incorporated i training points. Thus θ(i) can
be compactly represented by the coefficients βl of this linear combination, i.e., i real numbers
after having incorporated i training points x(i). The initial value θ(0) simply corresponds to
the case where the summation has no terms (i.e., an empty list of coefficients βl).

We do not work explicitly in the high-dimensional space, but use the fact that g(θ(i)
T
φ(x(i+1))) =

g(
∑i

l=1 βl ·φ(x(l))Tφ(xi+1)) = g(
∑i

l=1 βlK(x(l), x(i+1))), which can be computed efficiently.

We can efficiently update θ. We just need to compute βi = α(y(i) − g(θ(i−1)T
φ(x(i))))

at iteration i. This can be computed efficiently, if we compute θ(i−1)T
φ(x(i)) efficiently as

described above.

87

CS229 Problem Set #2 Solutions 4

In an alternative approach, one can observe that, unless a sample φ(x(i)) is misclassified,
y(i)−hθ(i)(φ(x(i))) will be zero; otherwise, it will be ±1 (or ±2, if the convention y, h ∈ {−1, 1}
is taken). The vector θ, then, can be represented as the sum

∑

{i:y(i) 6=h
θ(i) (φ(x(i)))} α(2y(i) −

1)φ(x(i)) under the y, h ∈ {0, 1} convention, and containing (2y(i)) under the other convention.
This can then be expressed as θ(i) =

∑

i∈Misclassified
βiφ(x(i)) to be in more obvious congruence

with the above. The efficient representation can now be said to be a list which stores only
those indices that were misclassified, as the βis can be recomputed from the y(i)s and α on
demand. The derivation for (b) is then only cosmetically different, and in (c) the update rule
is to add (i+ 1) to the list if φ(x(i+1)) is misclassified.

3. [30 points] Spam classification

In this problem, we will use the naive Bayes algorithm and an SVM to build a spam
classifier.

In recent years, spam on electronic newsgroups has been an increasing problem. Here, we’ll
build a classifier to distinguish between “real” newsgroup messages, and spam messages.
For this experiment, we obtained a set of spam emails, and a set of genuine newsgroup
messages.1 Using only the subject line and body of each message, we’ll learn to distinguish
between the spam and non-spam.

All the files for the problem are in /afs/ir/class/cs229/ps/ps2/. Note: Please do not

circulate this data outside this class. In order to get the text emails into a form usable
by naive Bayes, we’ve already done some preprocessing on the messages. You can look at
two sample spam emails in the files spam sample original*, and their preprocessed forms
in the files spam sample preprocessed*. The first line in the preprocessed format is just
the label and is not part of the message. The preprocessing ensures that only the message
body and subject remain in the dataset; email addresses (EMAILADDR), web addresses
(HTTPADDR), currency (DOLLAR) and numbers (NUMBER) were also replaced by the
special tokens to allow them to be considered properly in the classification process. (In
this problem, we’ll going to call the features “tokens” rather than “words,” since some of
the features will correspond to special values like EMAILADDR. You don’t have to worry
about the distinction.) The files news sample original and news sample preprocessed

also give an example of a non-spam mail.

The work to extract feature vectors out of the documents has also been done for you, so you
can just load in the design matrices (called document-word matrices in text classification)
containing all the data. In a document-word matrix, the ith row represents the ith docu-
ment/email, and the jth column represents the jth distinct token. Thus, the (i, j)-entry of
this matrix represents the number of occurrences of the jth token in the ith document.

For this problem, we’ve chosen as our set of tokens considered (that is, as our vocabulary)
only the medium frequency tokens. The intuition is that tokens that occur too often or
too rarely do not have much classification value. (Examples tokens that occur very often
are words like “the,” “and,” and “of,” which occur in so many emails and are sufficiently
content-free that they aren’t worth modeling.) Also, words were stemmed using a standard
stemming algorithm; basically, this means that “price,” “prices” and “priced” have all been
replaced with “price,” so that they can be treated as the same word. For a list of the tokens
used, see the file TOKENS LIST.

1Thanks to Christian Shelton for providing the spam email. The non-spam messages are from the 20 news-

groups data at http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.html .

88

CS229 Problem Set #2 Solutions 5

Since the document-word matrix is extremely sparse (has lots of zero entries), we have
stored it in our own efficient format to save space. You don’t have to worry about this
format.2 The file readMatrix.m provides the readMatrix function that reads in the
document-word matrix and the correct class labels for the various documents. Code in
nb train.m and nb test.m shows how readMatrix should be called. The documentation
at the top of these two files will tell you all you need to know about the setup.

(a) Implement a naive Bayes classifier for spam classification, using the multinomial event
model and Laplace smoothing.

You should use the code outline provided in nb train.m to train your parameters,
and then use these parameters to classify the test set data by filling in the code in
nb test.m. You may assume that any parameters computed in nb train.m are in
memory when nb test.m is executed, and do not need to be recomputed (i.e., that
nb test.m is executed immediately after nb train.m) 3.

Train your parameters using the document-word matrix in MATRIX.TRAIN, and then
report the test set error on MATRIX.TEST.

Remark. If you implement naive Bayes the straightforward way, you’ll find that
the computed p(x|y) =

∏

i p(xi|y) often equals zero. This is because p(x|y), which is
the product of many numbers less than one, is a very small number. The standard
computer representation of real numbers cannot handle numbers that are too small,
and instead rounds them off to zero. (This is called “underflow.”) You’ll have to find
a way to compute naive Bayes’ predicted class labels without explicitly representing
very small numbers such as p(x|y). [Hint: Think about using logarithms.]

(b) Intuitively, some tokens may be particularly indicative of an email being in a particular
class. We can try to get an informal sense of how indicative token i is for the SPAM
class by looking at:

log
p(xj = i|y = 1)

p(xj = i|y = 0)
= log

(

P (token i|email is SPAM)

P (token i|email is NOTSPAM)

)

.

Using the parameters fit in part (a), find the 5 tokens that are most indicative of
the SPAM class (i.e., have the highest positive value on the measure above). The
numbered list of tokens in the file TOKENS LIST should be useful for identifying the
words/tokens.

(c) Repeat part (a), but with training sets of size ranging from 50, 100, 200, . . . , up
to 1400, by using the files MATRIX.TRAIN.*. Plot the test error each time (use
MATRIX.TEST as the test data) to obtain a learning curve (test set error vs. training
set size). You may need to change the call to readMatrix in nb train.m to read the
correct file each time. Which training-set size gives the best test set error?

(d) Train an SVM on this dataset using the LIBLINEAR SVM library, available for down-
load from http://www.csie.ntu.edu.tw/˜cjlin/liblinear/. This implements an SVM
using a linear kernel. Like the Naive Bayes implementation, an outline for your code
is provided in svm train.m and svm test.m.

See ps2/README.txt for instructions for downloading and installing LIBLINEAR.
Similar to part (c), train an SVM with training set sizes 50, 100, 200, . . . , 1400,

2Unless you’re not using Matlab/Octave, in which case feel free to ask us about it.
3Matlab note: If a .m file doesn’t begin with a function declaration, the file is a script. Variables in a script

are put into the global namespace, unlike with functions.

89

CS229 Problem Set #2 Solutions 6

by using the file MATRIX.TRAIN.50 and so on. Plot the test error each time, using
MATRIX.TEST as the test data. Use the LIBLINEAR default options when training
and testing. You don’t need to try different parameter values.

Running LIBLINEAR in Matlab on Windows or Octave can be buggy, depending on
which version of Windows you run. We recommend that you use Matlab on the corn
machines (e.g., ssh to corn.stanford.edu). However, there are command line programs
you can run (without using MATLAB) which are located in liblinear-1.7/windows

for Windows and liblinear-1.7/ for Linux/Unix. If you do it this way, please
include the commands that you run from the command line in your solution.

(e) How do naive Bayes and Support Vector Machines compare (in terms of generalization
error) as a function of the training set size?

Answer:

(a) The test error when training on the full training set was 1.63%. If you got a different error
(or if you got the words website and lowest for part b), you most probably implemented
the wrong Naive Bayes model.

(b) The five most indicative words for the spam class were: httpaddr, spam, unsubscrib,
ebai and valet.

(c) The test set error for different training set set sizes was:

i. Training set size 50: Test set error = 3.87%

ii. Training set size 100: Test set error = 2.62%

iii. Training set size 200: Test set error = 2.62%

iv. Training set size 400: Test set error = 1.87%

v. Training set size 800: Test set error = 1.75%

vi. Training set size 1400: Test set error = 1.63%

vii. Full training set: Test set error = 1.63%

(d) The test set error from the SVM for different training set sizes was:

i. Training set size 50: Test set error = 5.25%

ii. Training set size 100: Test set error = 3.12%

iii. Training set size 200: Test set error = 1.25%

iv. Training set size 400: Test set error = 1.50%

v. Training set size 800: Test set error = 1.25%

vi. Training set size 1400: Test set error = 1.00%

vii. Full training set: Test set error = 0.63%

(e) The deduction that can be drawn is that Naive Bayes learns quickly with less data, but has
higher asymptotic error. On the other hand, the SVM classifier has relatively higher error
on very small training sets, but is asymptotically much better than Naive Bayes. Note
that this is consistent with the observation discussed in class that generative learning
algorithms (such as Naive Bayes) have smaller sample complexity than discriminative
algorithms (such as SVMs), but may also have higher asymptotic error.

The Matlab code for the problem:

90

CS229 Problem Set #2 Solutions 7

%%

% nb_train.m

%%

[spmatrix, tokenlist, trainCategory] = readMatrix(’MATRIX.TRAIN’);

trainMatrix = full(spmatrix);

numTrainDocs = size(trainMatrix, 1);

numTokens = size(trainMatrix, 2);

% ...

% YOUR CODE HERE

V = size(trainMatrix, 2);

neg = trainMatrix(find(trainCategory == 0), :);

pos = trainMatrix(find(trainCategory == 1), :);

neg_words = sum(sum(neg));

pos_words = sum(sum(pos));

neg_log_prior = log(size(neg,1) / numTrainDocs);

pos_log_prior = log(size(pos,1) / numTrainDocs);

for k=1:V,

neg_log_phi(k) = log((sum(neg(:,k)) + 1) / (neg_words + V));

pos_log_phi(k) = log((sum(pos(:,k)) + 1) / (pos_words + V));

end

%%

% nb_test.m

%%

[spmatrix, tokenlist, category] = readMatrix(’MATRIX.TEST’);

testMatrix = full(spmatrix);

numTestDocs = size(testMatrix, 1);

numTokens = size(testMatrix, 2);

% ...

output = zeros(numTestDocs, 1);

%---------------

% YOUR CODE HERE

for k=1:numTestDocs,

[i,j,v] = find(testMatrix(k,:));

neg_posterior = sum(v .* neg_log_phi(j)) + neg_log_prior;

91

CS229 Problem Set #2 Solutions 8

pos_posterior = sum(v .* pos_log_phi(j)) + pos_log_prior;

if (neg_posterior > pos_posterior)

output(k) = 0;

else

output(k) = 1;

end

end

%---------------

% Compute the error on the test set

error=0;

for i=1:numTestDocs

if (category(i) ~= output(i))

error=error+1;

end

end

%Print out the classification error on the test set

error/numTestDocs

%%

% svm_train.m

%%

% YOUR CODE HERE

svm_category = 2.*trainCategory - 1;

model = train(svm_category’, sparseTrainMatrix)

%%

% svm_test.m

%%

% YOUR CODE HERE

svm_category = 2.*testCategory - 1;

[output, a] = predict(svm_category’, sparseTestMatrix, model);

output = 0.5.*(output + 1);

4. [20 points] Properties of VC dimension

In this problem, we investigate a few properties of the Vapnik-Chervonenkis dimension,
mostly relating to how VC(H) increases as the set H increases. For each part of this
problem, you should state whether the given statement is true, and justify your answer
with either a formal proof or a counter-example.

(a) Let two hypothesis classes H1 and H2 satisfy H1 ⊆ H2. Prove or disprove: VC(H1) ≤
VC(H2).

92

CS229 Problem Set #2 Solutions 9

(b) Let H1 = H2 ∪{h1, . . . , hk}. (I.e., H1 is the union of H2 and some set of k additional
hypotheses.) Prove or disprove: VC(H1) ≤ VC(H2) + k. [Hint: You might want to
start by considering the case of k = 1.]

(c) Let H1 = H2 ∪H3. Prove or disprove: VC(H1) ≤ VC(H2) + VC(H3).

Answer:

(a) True. Suppose that V C(H1) = d. Then there exists a set of d points that is shattered by
H1 (i.e., for each possible labeling of the d points, there exists a hypothesis h ∈ H1 which
realizes that labeling). Now, since H2 contains all hypotheses in H1, then H2 shatters
the same set, and thus we have V C(H2) ≥ d = V C(H1).

(b) True. If we can prove the result for k = 1, then the result stated in the problem set follows
immediately by applying the same logic inductively, one hypothesis at a time. So, let us
prove that if H1 = H2 ∪{h}, then V C(H1) ≤ V C(H2)+1. Suppose that V C(H1) = d,
and let S1 be a set of d points that is shattered by H1. Now, pick an arbitrary x ∈ S1.
Since H1 shatters S1, there must be some h̄ ∈ H1 such that h and h̄ agree on labelings for
all points in S1 except x. This means that H ′ := H1 \ {h} achieves all possible labelings
on S′ := S1 \ {x} (i.e. H ′ shatters S′), so V C(H ′) ≥ |S′| = d − 1. But H ′ ⊆ H2, so
from part (a), V C(H ′) ≤ V C(H2). It follows that V C(H2) ≥ d − 1, or equivalently,
V C(H1) ≤ V C(H2) + 1, as desired.

For this problem, there were a number of possible correct proof methods; generally, to get
full credit, you needed to argue formally that there exists no set of (V C(H2) + 2) points
shattered by H1, or equivalently, that there always exists a set of (V C(H1) − 1) points
shattered by H2. Here are a couple of the more common errors:

• Some submitted solutions stated that adding a single hypothesis to H2 increases the
VC dimension by at most one, since the new hypothesis can only realize a single
labeling. While this statement is vaguely true, it is neither sufficiently precise, nor is
its correctness immediately obvious.

• Some solutions made arguments relating to the cardinality of the sets H1 and H2.
However, generally when we speak about VC dimension, the sets H1 and H2 often
have infinite cardinality (e.g., the set of all linear classifiers in R

2).

(c) False. Counterexample: let H1 = {h1},H2 = {h2}, and ∀x, h1(x) = 0, h2(x) = 1.
Then we have V C(H1) = V C(H2) = 0, but V C(H1 ∪H2) = 1.

5. [20 points] Training and testing on different distributions

In the discussion in class about learning theory, a key assumption was that we trained
and tested our learning algorithms on the same distribution D. In this problem, we’ll
investigate one special case of training and testing on different distributions. Specifically,
we will consider what happens when the training labels are noisy, but the test labels are
not.

Consider a binary classification problem with labels y ∈ {0, 1}, and let D be a distribution
over (x, y), that we’ll think of as the original, “clean” or “uncorrupted” distribution. Define
Dτ to be a “corrupted” distribution over (x, y) which is the same as D, except that the
labels y have some probability 0 ≤ τ < 0.5 of being flipped. Thus, to sample from Dτ ,
we would first sample (x, y) from D, and then with probability τ (independently of the
observed x and y) replace y with 1 − y. Note that D0 = D.

93

CS229 Problem Set #2 Solutions 10

The distribution Dτ models a setting in which an unreliable human (or other source)
is labeling your training data for you, and on each example he/she has a probability τ
of mislabeling it. Even though our training data is corrupted, we are still interested in
evaluating our hypotheses with respect to the original, uncorrupted distribution D.

We define the generalization error with respect to Dτ to be

ετ (h) = P(x,y)∼Dτ
[h(x) 6= y].

Note that ε0(h) is the generalization error with respect to the “clean” distribution; it is
with respect to ε0 that we wish to evaluate our hypotheses.

(a) For any hypothesis h, the quantity ε0(h) can be calculated as a function of ετ (h) and
τ . Write down a formula for ε0(h) in terms of ετ (h) and τ , and justify your answer.

(b) Let |H| be finite, and suppose our training set S = {(x(i), y(i)); i = 1, . . . ,m} is
obtained by drawing m examples IID from the corrupted distribution Dτ . Suppose
we pick h ∈ H using empirical risk minimization: ĥ = arg minh∈H ε̂S(h). Also, let
h∗ = arg minh∈H ε0(h).

Let any δ, γ > 0 be given. Prove that for

ε0(ĥ) ≤ ε0(h
∗) + 2γ

to hold with probability 1 − δ, it suffices that

m ≥
1

2(1 − 2τ)2γ2
log

2|H|

δ
.

Remark. This result suggests that, roughly, m examples that have been corrupted at
noise level τ are worth about as much as (1− 2τ)2m uncorrupted training examples.
This is a useful rule-of-thumb to know if you ever need to decide whether/how much to
pay for a more reliable source of training data. (If you’ve taken a class in information
theory, you may also have heard that (1−H(τ))m is a good estimate of the information
in the m corrupted examples, where H(τ) = −(τ log2 τ + (1 − τ) log2(1 − τ)) is the
“binary entropy” function. And indeed, the functions (1−2τ)2 and 1−H(τ) are quite
close to each other.)

(c) Comment briefly on what happens as τ approaches 0.5.

Answer:

(a) We compute ετ as a function of ε0 and then invert the obtained expression. An error
occurs on the corrupted distribution, if and only if, an error occurred for the original
distribution and the point that was not corrupted, or no error occurred for the original
distribution but the point was corrupted. So we have

ετ = ε0(1 − τ) + (1 − ε0)τ

Solving for ε0 gives

ε0 =
ετ − τ

1 − 2τ

94

CS229 Problem Set #2 Solutions 11

(b) We will need to apply the following (in the right order):

∀h ∈ H, |ετ (h) − ε̂τ (h)| ≤ γ̄ w.p.(1 − δ), δ = 2K exp(−2γ̄2m) (6)

ετ = (1 − 2τ)ε+ τ, ε0 =
ετ − τ

1 − 2τ
(7)

∀h ∈ H, ε̂τ (ĥ) ≤ ε̂τ (h), in particular for h∗ (8)

Here is the derivation:

ε0(ĥ) =
ετ (ĥ) − τ

1 − 2τ
(9)

≤
ε̂τ (ĥ) + γ̄ − τ

1 − 2τ
w.p.(1 − δ) (10)

≤
ε̂τ (h∗) + γ̄ − τ

1 − 2τ
w.p.(1 − δ) (11)

≤
ετ (h∗) + 2γ̄ − τ

1 − 2τ
w.p.(1 − δ) (12)

=
(1 − 2τ)ε0(h

∗) + τ + 2γ̄ − τ

1 − 2τ
w.p.(1 − δ) (13)

= ε0(h
∗) +

2γ̄

1 − 2τ
w.p.(1 − δ) (14)

= ε0(h
∗) + 2γ w.p.(1 − δ) (15)

Where we used in the following order: (7)(6)(8)(6)(7), and the last 2 steps are algebraic
simplifications, and defining γ as a function of γ̄. Now we can fill out γ̄ = γ(1− 2τ) into
δ of (6), solve for m and we are done.

Note: one could shorten the above derivation and go straight from (9) to (12) by using
that result from class.

(c) The closer τ is to 0.5, the more samples are needed to get the same generalization error
bound. For τ approaching 0.5, the training data becomes more and more random; having
no information at all about the underlying distribution for τ = 0.5.

95

	作业封面目录.pdf
	所有问题及答案
	组合 2
	作业1
	作业1解答
	作业2
	作业2解答
	作业3
	作业3解答
	作业4
	作业4解答

	组合 1.pdf
	problem set 1 superised learn
	problem set 1 answer
	problem set 2 bayes svm theory
	problem set 2 answer

