
Robust Video-Based Eye Tracking Using Recursive

Estimation of Pupil Characteristics

Terence Brouns

Radboud University, the Netherlands

t.s.n.brouns@gmail.com

Abstract

Video-based eye tracking is a valuable technique in various research fields. Numerous open-source eye tracking
algorithms have been developed in recent years, primarily designed for general application with many different
camera types. These algorithms do not, however, capitalize on the high frame rate of eye tracking cameras often
employed in psychophysical studies. We present a pupil detection method that utilizes this high-speed property
to obtain reliable predictions through recursive estimation about certain pupil characteristics in successive camera
frames. These predictions are subsequently used to carry out novel image segmentation and classification routines
to improve pupil detection performance. Based on results from hand-labelled eye images, our approach was found
to have a greater detection rate, accuracy and speed compared to other recently published open-source pupil
detection algorithms. The program’s source code, together with a graphical user interface, can be downloaded at
https://github.com/tbrouns/eyestalker.

keywords: eye tracking, video-oculography, pupil detection, open source, algorithm, psychophysics, methodology

1 Introduction

The act of measuring the movement of the eye, known as eye tracking, enjoys a broad range of applications across
various disciplines, from neuroscience and psychology to market research and industrial engineering [9]. Within
neuroscience, eye tracking can serve as a method to diagnose neurological problems such as dyslexia, schizophrenia,
Alzheimer’s disease, attention deficit hyperactivity disorder and autism [8], but can also be used as a research tool to
study the visual, auditory [33] and vestibular systems [4]. Distinct eye tracking techniques have been developed over
the years, each with their own set of advantages and disadvantages. In electro-oculography (EOG) small differences
in the electric potential on the skin, caused by the retinal polarity, are measured with surface electrodes placed
around the eye, which give an estimate of the eye position. The method is often employed in sleep studies, because
it works when the eye is closed and one can measure for long stretches at a time without user discomfort. However,
it suffers from poor accuracy and unreliability of vertical eye movement recordings [13]. Far greater resolution is
achieved with the search coil technique, which is considered the gold standard for eye tracking [31]. It uses a small
copper coil embedded in a contact lens that is placed on the eye. A voltage is induced in the coil in the presence
of an external oscillating magnetic field. The voltage amplitude gives a measure of the eye position, because it is
proportional to the orientation of the coil in the magnetic field. Like in EOG, this operational mechanism allows
eye movement recording even when the eye is closed. An obvious drawback of the search coil method is the invasive
nature of mounting and removing the lens. Furthermore, corneal irritation and erosion can occur in long recording
sessions from wearing the coil [13].

A compromise between the high accuracy of the search coil technique and the non-invasiveness of EOG can be
offered by video-based eye tracking, also known as video-oculography (VOG). In VOG, the eye is tracked using a
camera combined with computer vision algorithms. We can distinguish between two different approaches, which
differ in how close the camera is removed from the eye and therefore require different image processing techniques.
Much published work has focussed on developing eye tracking algorithms for camera systems that capture the whole
head (e.g. webcam-based). These systems are particularly useful in human-computer interaction and are noted
for their ease of use, but severely lack in accuracy, which makes them unsuitable for research purposes where eye
tracking accuracy is crucial, such as saccade analysis. In order to compete with the search coil technique in terms of
spatial resolution, the camera must be brought much closer to the eye. Generally speaking, eye movement is tracked
in these close-up images of the eye by finding the pupil position through feature detection. Detection is aided by
illumination of the eye with an infra-red (IR) light emitting diode (LED), which turns the pupil much brighter or

1

ar
X

iv
:1

70
6.

08
18

9v
1

 [
cs

.C
V

]
 2

5
Ju

n
20

17

mailto:t.s.n.brouns@gmail.com
https://github.com/tbrouns/eyestalker

darker, depending on whether the IR LED is close to or away from the camera’s optical axis [22], making the pupil
a more clearly discernible feature in the image. The use of the IR light also means that the system is functional in
the dark, which is often a requirement in experimental research.

Commercially available state-of-the-art eye trackers with the aforementioned VOG set-up are generally expensive,
upwards of $10.000. In addition to their price tag, another downside of commercial eye trackers is their use of
proprietary software, which often prevents any customization to fit the specific needs of the user. Fortunately,
a number of developers have been spurred on to produce low-cost hardware alternatives [1][3][15][16][21][26][29],
publish their own sophisticated pupil detection algorithms [17][18][19][30][38] and make open-source VOG software
publicly available [11][14][39]. Unfortunately, few implementations are suited for use in a wide variety of psy-
chophysical experiments, which require both precision and speed. As technology advances, high-speed cameras
with high-resolution sensors will become more affordable. This cutting-edge hardware should be accompanied by
the appropriate software, capable of fully capitalizing on the improved camera features.

Here, we introduce an open-source pupil detection algorithm that aims to exploit the high frequency nature of many
modern cameras (≥ 200 Hz). The method is based on the notion that the characteristics of the pupil can only
change a relatively small amount between consecutive frames when recording at a high frame rate. This allows us
to make accurate predictions about the pupil’s characteristics for the next frame, where our search will be limited
to features in the image that match these predictions. This method contrasts with many published pupil tracking
algorithms where each camera frame is effectively treated as being independent from the one that preceded it. An
advantage of algorithms that are built on this premise is their universal applicability. They work equally well with
different cameras operating at varying speeds and on random collections of eye images. However, this property
becomes irrelevant when users only utilize such algorithms in combination with high-speed cameras. The pupil
detection method that we present in this text has been specifically tailored for individuals who use these types of
powerful cameras under more ideal conditions (e.g. a controlled laboratory setting), giving them the opportunity
to take greater advantage of their hardware and environment to improve eye tracking performance.

2 Methods

The pupil detection algorithm, which is illustrated in Figure 1, works by performing a number of distinct processing
tasks in the following order:

0. Receive predicted pupil characteristics for current frame

1. Crop image to smaller search area depending on predicted size, shape and position of pupil

2. Update predicted pupil position following object recognition of the pupil through Haar-like feature detection,
after removing corneal reflection interference

3. Detect all object boundaries, i.e. edges, in area around new position estimate by identifying brightness
discontinuities with Canny edge detection

4. Select sub-set of detected edges that are at an acceptable distance from the position estimate

5. Thin Canny edges to minimum thickness using morphological operations

6. Segment edges at transition point between distinct features in the image

(a) Choose non-branching path in edges that comes closest to predicted pupil circumference

(b) Split edges at points of extremely high or low curvature

(c) Reduce length of edges if they exceed pupil circumference estimate

7. Classify edges into two classes: pupil contour edges and non-pupil contour edges

8. Fit one or more ellipses on edges categorized as pupil contour edges

9. Choose most optimal fit based on pupil characteristic predictions

10. Calculate new predictions for next frame

2

Figure 1: Example of an image being sent through the pupil detection pipeline. The 0 to 10 labels refer to the processing steps as
given in the main text. The Roman numerals indicate various explanatory images: I. Raw image input in which the pupil position
prediction is marked (teal cross). Position prediction is used to obtain the rectangular search area (blue outline). II. Resulting image
after cropping to search area. Detected position of corneal reflection (red rectangle) is accounted for during Haar-like feature detection
of pupil (green rectangle). III. Canny edge detection is performed in an area (blue rectangle in II) whose dimensions and position are
determined by combination of Haar-like feature detection and predicted pupil characteristics. Detected Canny edges are shown in red.
IV. Sub-set of Canny edges is selected (orange) based on their position. Remaining edges are discarded. V. Selected edges are segmented
if required. We then choose edge sections that belong to the pupil-iris contour (green), after classification. VI. One or more ellipses are
fitted on pupil-iris contour edges. Most optimal ellipse fit is accepted (teal), depending on predictions of pupil characteristics. Centre
of chosen ellipse (cross) serves as pupil position. VII. Ellipse fit characteristics are used to update pupil predictions for next frame.

3

The algorithm relies on various parameters to carry out these steps, some of which depend on the image size and
frame rate of the camera. The default parameter values given in the text are based on a reference eye image size
of around 400 × 200 pixels and a frame rate of 250 Hz. Using these reference values, a few parameters should be
scaled down or up for other image sizes or sampling rates. Furthermore, we will sometimes refer to a data set from
which certain information has been extracted. This data set is a collection of more than 400,000 close-up images
of the left eye of 12 different individuals, which were taken over the course of around 100 saccadic eye movements
made by each person in various directions, while they were seated in a dark room. The pictures were made by a
UI154xLE-M camera from IDS Imaging Development Systems (Obersulm, Germany), using infra-red illumination
and with the reference camera settings specified earlier.

2.1 Feature value prediction

The strength of the pupil detection algorithm is drawn from the use of predictions that are made about certain
characteristics of the pupil in each camera frame. Consequently, we need a method that is able to make these
predictions as accurately as possible, without being computationally demanding and the need to set many different
parameters. For online estimation, a recursive estimation method is preferred over batch estimation, because it
only requires the measurement from the current frame and the prediction from the previous one, which contrasts
with batch estimation where significantly more data has to be processed to make the prediction. A popular type
of recursive estimator is the Kalman filter, which has been extensively used in computer vision research [35] and
has already been applied to eye tracking in the past [2] [6] [37], although limited to whole-face eye tracking. To
my knowledge, this is the first application of recursive estimation in eye tracking using close-up images of the eye.
Based on this previous work, the Kalman filter may seem like an obvious choice for our recursive estimator as well.
However, because we are interested in estimating many different variables, the use of the Kalman filter is made
difficult due to the exponentially increased complexity of setting the measurement and process noise covariances,
which are integral to the functionality of the filter. Optimal parameter values would have to be found through
tuning [34], a process that most likely has to be repeated for each new camera set-up. Since we want our algorithm
to be easily implemented in other systems, we have opted to develop a more basic recursive estimation method,
which may lack the accuracy of the Kalman filter, but requires fewer parameters to be set. Using our recursive
estimator, we keep track of the pupil features that are listed in Table 1. After the pupil has been detected in a
particular camera frame, each one of these features is updated with the following general formula:

f̂n+1 = f̂n + α∆fn + cnpn (1)

Here, f̂n is the predicted feature value for the current frame n. This value is updated to obtain the prediction for
the next frame, f̂n+1, by adding the difference ∆fn between the measured and the predicted value (the prediction
error), plus a momentum term, pn. In every frame where we detect the pupil, we will possess a measured feature
value fn, which is used to calculate ∆fn through:

∆fn = fn − f̂n (2)

The value of ∆fn is modified by the gain factor α in equation 1, which is a constant value between 0 and 1. The
larger the gain, the more the estimation is based on the current measurement fn. The value that we choose for α

Estimated features Symbol Description
Position ŝ Position of the centre of the pupil in Cartesian coordinates

Circumference Ĉ Circumference of pupil-iris boundary

Aspect ratio ÂR Ratio between pupil major and minor axes

Width Ŵ Width of pupil bounding box

Height Ĥ Height of pupil bounding box

Angle θ̂ Pupil rotation angle

Brightness/intensity Î Grey-scale value of the inner pupil-iris boundary

Radial gradient Ĝr Radial image gradient of the pupil-iris boundary
Curvature κ̂ Signed curvature of pupil-iris boundary

Table 1: Pupil characteristics that are estimated in successive frames with the recursive estimator.

4

should depend on the feature in question. A feature such as pupil position should be updated relatively quickly,
because it can shift rapidly on short timescales, requiring a larger α. Significant changes in the pupil’s size and
shape, on the other hand, generally occur on longer timescales, allowing for a smaller gain, which helps reduce the
influence of noise. If we were to just use ∆fn to update fn then this approach would fail when the feature value
monotonically increases, because our prediction will lag behind. For this reason, a momentum term pn has been
added in equation 1, where pn is updated in every frame by:

pn+1 = pn + α(∆fn − pn) (3)

What pn tries to approximate is the prediction error ∆fn of the feature. Ideally, pn causes ∆fn to drop to zero,
resulting in accurate predictions. The rate of change of pn is also reduced by the factor α, with the same α value
being used for both the prediction error and momentum. Furthermore, pn is modified by an additional factor cn in
equation 1. This quantity gives a measure of the certainty of our prediction and plays an important role in other
parts of the algorithm as well. This factor is added to the equation to avoid erratic behaviour when little information
about the pupil is available. For example, when the pupil momentarily disappears from view because the eye is
closed, we are unsure of its position and our prediction will most likely have a large error, ∆fn � 0. So when the
pupil appears once again, pn will approximate this large error, resulting in an excessive rate of change, causing f̂n
to overshoot the actual value for the feature. To avoid this behaviour, we control the influence of momentum with
the degree of certainty cn of our prediction, which is a value between 0 (low) and 1 (high). The value for cn is
altered according to the rate of change of the feature. If the rate falls within an acceptable range, cn increases,
otherwise it decreases. This is given by:

∆cn = 1− 2

1 + ek(δn−δ
′
θ)

(4)

Where ∆cn indicates the change in certainty, which is calculated using a generalized logistic function that limits
∆cn to values between +1 and −1. The variable δn tell us how much the feature value has shifted from one frame
to the next. This quantity differs from ∆fn, because δn can be a relative change and is always positive, whereas
∆fn is always an absolute change and can be negative or positive. The constant δ′θ is an upper limit of typical δn
values and is determined empirically (see further down). If δn is below this threshold value of δ′θ, the function will
return a positive number, causing cn to increase. Alternatively, cn decreases when δn > δ′θ. The steepness k of the
curve is determined by:

k = log
1
a − 1

bδ′θ
(5)

Where we set a = 0.99 and b = 0.50, which translates to the logistic function reaching 99% of its maximum value
at δn = 1

2δ
′
θ. These parameters are set in this way, because the certainty measure should not be biased towards

ever smaller δn values, but should view all δn values that are physiologically feasible as equivalent. For example,
how certain we are about the pupil’s position during a fixation period should not automatically be greater than
our level of certainty about its position during a saccadic eye movement. Both can realistically occur so should be
treated as equal in our certainty calculation. We update the certainty cn by first computing an intermediate value:

c′n+1 = c′n + ααc∆cn with c′n =

{
1 if c′n > 1

0 if c′n < 0
(6)

Where ∆cn is modified with the product of α and a new gain factor αc. The certainty value that we use in equation
1 is calculated through another logistic function:

cn =
1

1 + e−τ(c
′
n− 1

2)
(7)

The use of the logistic function has two purposes. First, the function bounds cn in the 0 to 1 range. Second,
the function imposes some latency for changes in certainty from the limits, which is controlled by the constant τ
factor (set to 10 by default). As a consequence, multiple precise measurements are required before the certainty
starts to significantly increase from its minimum value, or multiple imprecise or non-detections before certainty
drops down from the maximum. We essentially create three different states the algorithm can attain: a focussed
state when certainty is high (c ≈ 1), an exploratory state when it is low (c ≈ 0), and a narrow transitional state

5

in between. One reason for this design is that extreme values of pn are effectively ignored when the algorithm is
still in the exploratory state. Another reason is that an all-or-nothing scheme is generally preferred for parts of the
algorithm that rely on cn to modify specific parameters. This has the effect that some functions are turned on and
off depending on the state the algorithm is in, which can boost performance.

In order to avoid having to specify a different set of parameters for each feature, we limit our features to two classes,
namely position (S) and appearance (A). The position class only has the position prediction ŝ as its member. All
other features belong to the appearance class. This particular classification is chosen due to the different timescales
these features change at, as mentioned before. The same cn and α values are shared between members of each
class. We use cS and αS for position, while cA and αA are used for appearance (with αS = 0.75 and αA = 0.40).
For the position class, δn is equal to the absolute change in position (i.e. displacement). For the appearance class,
only changes in circumference, C, and aspect ratio, AR, are considered when calculating ∆cn. The average ∆cn
value between both is used to update cA. We only consider these two features, because it can already be assumed
that a given measurement is accurate if the measured size and shape of the pupil changes little between consecutive
frames, making it redundant to check the change of other features (e.g. brightness) as well. The various δn values
are given by:

δs =
√

(xn − x̂n)2 + (yn − ŷn)2 (8)

δC =
|Cn − Ĉn|

max(Cn, Ĉn)
(9)

δAR = |ARn − ÂRn| (10)

To obtain the threshold δ′θ values for δs, δAR and δC , we look at our data set to see what kind of values we typically
obtain for these quantities. For each δ′θ type, we choose a threshold at which less than 1% of measurements have
a δn value that is larger than δ′θ. We also determine another threshold, δ′′θ , which is similar to δ′θ, but uses 0.1%
of measurements as the benchmark instead of 1%. For our camera set-up, we set the lower thresholds to δ′θ,s = 3,
δ′θ,C = 0.03, δ′θ,AR = 0.03 and the upper thresholds to δ′′θ,s = 6, δ′′θ,C = 0.12, δ′′θ,AR = 0.09. When δn > δ′′θ , we
make the assumption that the measurement is very likely to have been significantly influenced by noise effects and
is not a true physiological result. The δ′′θ parameter is used at a later point. Both δ′θ and δ′′θ need to be altered
according to the frame-rate of the camera. The thresholds can be decreased when using a faster camera and should
be increased with slower cameras.

Up until this point, we have not dealt with the issue of non-detections, i.e. frames in which the algorithm has not
been able to find the pupil. In the case of a non-detection, measures of fn and δn are not available. This stops
us from updating our feature predictions and certainty using equations 1 and 6. We deal with this problem in
our certainty calculation by giving ∆cn the minimum value of –1 when a non-detection occurs. For the feature
predictions, this issue is resolved by introducing the average feature variable f̄n. This average feature variable is
a quantity that our prediction f̂n can fall back on when no immediate information about the pupil is available.
We only calculate f̄n for features belonging to the appearance class, since an average position is not a meaningful
quantity in this context. For position, we instead rely on the detection algorithm to supply an estimation of the
position prediction ŝn during non-detections (see section 2.3). We update f̂n during a non-detection according to:

f̂n+1 = f̂n + αA∆f̂n + cA,npn (11)

∆f̂n = f̄n − f̂n (12)

The momentum term pn decays to zero by setting ∆f̂n to zero in equation 3, leaving:

pn+1 = (1− αA)pn (13)

We update f̄n in every frame in a similar fashion to f̂n, but without using the momentum term:

f̄n+1 = f̄n + αmean∆f̄n (14)

∆f̄n = f̂n − f̄n (15)

The gain factor of αmean should be much smaller than αA in order for f̄n to keep track of an overall mean of fn
(we use αmean = 0.005). During a non-detection, f̂n in equation 15 is replaced by a typical value that is initially

6

assigned to f̂n and f̄n at the start of detection. The end result is that in every frame we have a prediction f̂ for
each type of feature, together with a measure c of how certain we are about that prediction. These quantities play
a role in almost every part of the pupil detection algorithm.

2.2 Search area

The first application of our predictions and certainties is in reducing the processing area for pupil detection. By
recognizing that the pupil can only translate and transform a limited amount between consecutive frames, we can
narrow our search of the pupil to an area that is much smaller than the total size of the image. Obviously, the
width WAOI and height HAOI of this area of interest (AOI) still need to be at least as large as the predicted width
Ŵ and height Ĥ of the pupil, so we set:

WAOI = ∆L+ Ŵ (16)

HAOI = ∆L+ Ĥ (17)

Here, ∆L is some additional length that is added to our prediction for the pupil size to ensure that the pupil falls
wholly in the AOI. This length is determined by how much the pupil could potentially move and resize between
two successive frames:

∆L =
Ĉδθ,C
π

+ 2δθ,s (18)

The variables δθ,s and δθ,C are derived from the threshold values δ′′θ in the following way:

δθ,s = (1− cS)(δmax,s − δ′′θ,s) + δ′′θ,s (19)

δθ,C = (1− cA)(δmax,C − δ′′θ,C) + δ′′θ,C (20)

The degree of certainty modifies the size of the AOI, with greater c values resulting in smaller processing areas, up
to a minimum value of δθ and a maximum value of δmax. These maximum values are a type of theoretical upper
limit and are given by:

δmax,s = max(Wimg − Ŵ ,Himg − Ĥ) (21)

δmax,C = max(
Cmax − Ĉ
Cmax

,
Ĉ − Cmin

Ĉ
) (22)

Where Wimg and Himg respectively are the width and height of the input image. The maximum circumference
change is calculated from the smallest possible pupil circumference (Cmin) and the largest (Cmax), which are
empirically determined for our set-up.

2.3 Approximate detection

For several parts of the algorithm, it is essential that a rough estimate of the pupil position is available. When cS
is low, we cannot completely rely on ŝ to provide this approximation, because it is most likely inaccurate. In that
case, ŝ is re-evaluated by convolving the image with a Haar-like feature detector [32]. This type of detector works
by moving a Haar-like feature over the image and calculating the difference in the sum of all pixel values between
the dark and light rectangular regions. This detection method is made computationally efficient by first calculating
the integral image, which ensures O(n) performance with respect to the number of input pixels.

An endless number of Haar-like features are available. In some other pupil detection algorithms [30] [14], the
centre-surround feature is used to obtain an approximate position of the pupil (see Figure 2), where it is assumed
that the maximum response is obtained if the dark region overlaps with the pupil. Here, on the other hand, we
opt for a vertical line feature instead, for two reasons. First, the primary feature in the image that might fool a
basic feature detector are the eye lashes, because they can sometimes be as dark as the pupil. However, they are
also quasi horizontally homogeneous in their brightness. So by looking at the contrast between the central area
and the two areas it is horizontally flanked by, we can better discriminate between pupil and eye lashes. Second,
the contrast of a vertical line feature is not as negatively affected by eye lashes when the eye is partially closed

7

Figure 2: Two different Haar-like features. The vertical line feature is used in the pupil detection algorithm. Its dimensions are
determined by pupil size predictions, Ŵ and Ĥ. Three different values define the feature response, which are the summed pixel
intensities of the left (Il), centre (Ic) and right (Ir) areas.

compared to the centre-surround feature, since eye lashes are generally located directly above or below the pupil,
which is mostly ignored by the vertical line feature when it is centred on the pupil.

As mentioned before, the Haar-like feature detection method works by just looking at the difference in total intensity
between the dark and light regions, disregarding the absolute intensity of either area. This does mean, however,
that a relatively bright feature can potentially mislead the feature detector if it happens to be flanked by an even
brighter area. For this reason, we consider both the intensity of the dark region as well as the contrast between
dark and light regions when calculating the Haar-like feature response, FH :

FH = −w1īc + w2(
īl + īr

2
− īc) (23)

We use the average pixel intensity ī to calculate the response, instead of the summed intensity, because this makes
the response invariant to the size of the fluctuating Haar-like feature area, which depends on the predicted width and
height of the pupil. Both terms are modified by a weight constant w. We want to find the optimal combination of
weights that leads to the greatest response for the pupil region and the smallest for non-pupil regions. From our data
set, we obtain ī values for the three regions at image locations that correspond with our measured pupil positions,
but also at locations directly outside the pupil region (e.g. eye lashes). We then calculate FH for both groups and
determine for which weight ratio the greatest separation between the two groups is found. This degree of separation
is quantified by the test statistic of the two-sample Kolmogorov-Smirnov test, or kstest2 in MATLAB R© (R2016a,
The MathWorks, Natick, MA, United States). Greatest separation is obtained by finding the maximum of the test
statistic with respect to the unconstrained weight values, using the MATLAB function fminsearch. This process
is performed on a random sub-set of the data. A different sub-set is used for evaluation. The optimal weight ratio
is found for:

w1

w2
= 3.3

One last confounding element that needs to be taken care of is the corneal reflection caused by the infra-red LED.
This light can significantly disturb feature detection if it reflects off the cornea in front of the pupil, because it
causes an increase in pupil brightness. We deal with this glint by first detecting it and then removing its influence
if it overlaps with the centre rectangle of the vertical line feature. Glint detection is performed by convolving the
AOI using the kernel given below in which every term is zero except in the centre and corners.

kernel =

−1 0 · · · 0 −1

0
. . . 0

... 1
...

0
. . . 0

−1 0 · · · 0 −1

8

A square kernel is used because the glint is often approximately circular. The width of this kernel, Wkernel, should
be slightly larger than the diameter of the corneal reflection in the image. If the distance between IR-LED and eye
varies little between individuals for the hardware set-up, which is generally the case, then this parameter can be set
as a global constant. The point of maximum response after convolution is then assumed to coincide with the glint
position. This method provides robust detection as long as the glint overlaps with the pupil in the image, which is
sufficient for our purposes because its position is irrelevant to us when it does not obscure the pupil.

Figure 3: Removal of glint influence from Haar-like feature. The dashed rectangle indicates the position of the corneal reflection. The
quantity I′glint is the summed intensity of the section of the glint area that overlaps with the central area of the Haar-like feature. The

intensity I′glint is subtracted from the summed intensity of the central area to obtain the corrected intensity, I′c.

Once the glint has been detected, a square with the same size as the convolution kernel is centred on the glint
position, sglint. The summed intensity of the section of this square that overlaps with the dark area of the vertical
line feature is subtracted from Ic (see also Figure 3):

I ′c = Ic − I ′glint (24)

By doing the same for the surface areas, we can calculate a new average pixel intensity of the central region after
glint removal:

īc =
I ′c

Ŵ × Ĥ −A′glint
(25)

Where A′glint is the surface area of the region that corresponds with I ′glint.

The position sH of maximum Haar-like feature response can now be used to update ŝ. However, we must be
cautious in using sH , because it is more prone to errors than ŝ when the certainty is high. Therefore, the greater
the certainty, the less the new position prediction ŝnew will be based on sH .

ŝnew = sH + cn(ŝ− sH) (26)

Lastly, since these functions can potentially operate on the entire image (depending on the size of the AOI), it
might be necessary to limit the number of iterations by down-sampling the image in order to achieve satisfactory
computational speed. This should not appreciably affect accuracy of pupil detection, since we are only interested
in an approximate position at this point. The original image resolution is immediately restored afterwards, before
proceeding with the next processing steps. Further speed enhancement can be achieved during glint detection by
only performing image convolution on pixels that have a brightness above a certain high threshold (e.g. > 200 for
8-bit grayscale).

2.4 Canny edge detection

After updating the approximate pupil position ŝ in the previous step, Canny edge detection [5] is performed in an
area with dimensions WAOI ×HAOI , centred around ŝ. The OpenCV implementation is chosen to carry out this

9

task due to its computational efficiency. A Gaussian filter is applied beforehand. The Canny edge detector identifies
and locates points of sharp changes in pixel intensity, which characterize boundaries of objects in the image [20],
and combines these points into thin line segments called edges. It transforms the AOI into a binary image, where
all pixels that belong to an edge, also known as edge points, have been given a value of 1 and all other pixels a
value of 0. Here, an individual edge is defined as any collection of 8-connected edge points.

2.5 Morphological operation

In the next part of the algorithm, a number of processing steps are performed on the detected edges, which attempt
to filter out any edge that does not belong to the pupil-iris boundary. In order to speed up and simplify some
of these processes, all edges need to be thinned to the minimum amount of pixels required to define it. During
Canny edge detection, non-maximum suppression will have already significantly sharpened the edges, but not yet
sufficiently for our intentions. So two morphological operations are applied to the image, which are illustrated in
Figure 4, that trim the edges to single pixel thickness. Any edge points erased by this operation are not entirely
discarded, but are given a special tag instead. Before fitting an ellipse on a sub-set of the detected edges (see section
2.9), these removed edge points are restored in order to obtain a more accurate fit.

Figure 4: Edges are thinned by removing pixels from the edge if their 8-connected neighbourhood matches at least one of these two
patterns. Black and grey pixels represent the pixels that belong to an edge. The patterns can be freely rotated and mirrored. The left
pattern trims diagonally oriented edges, whereas the right pattern trims horizontally or vertically (after 90◦ rotation) oriented edges.

2.6 Edge selection

The first edge filter that is implemented is based on the fact that the pupil contour is likely to encircle or at least be
close to the pupil position prediction ŝ. So we are going to select a sub-set of edges that are located at an acceptable
distance from the pupil position estimate by sending out rays from ŝ in eight directions, taking inspiration from the
Starburst algorithm [17]. The first edge that each ray encounters along its path is accepted, as well as any other
edges that they come across after the first, provided they are within a radius:

r =
∆L

2

By allowing the ray to continue beyond r when no edge was encountered, we make the method more robust against
pupil size predictions that are too small. Furthermore, by accepting all encountered edges within a radius r, and
not just the first edge a ray runs into, we avoid detection failure when ŝ happens to be (partially) enclosed by
non-pupil edges (e.g. glint contour). Furthermore, very small edges are ignored for edge selection. This threshold is
determined by the edge window length parameter Nl, which serves multiple purposes in the algorithm (see section
2.8.2 for its value).

2.7 Edge classification

In the final step of our pupil detection algorithm, an ellipse needs to fitted on a combination of the previously
selected edges. When multiple edges are available, it might be necessary to fit more than one ellipse and then
choose the optimal one based on a few criteria described later (see section 2.9). We wish to avoid that scenario,

10

however, because even though direct least squares fitting is relatively computationally inexpensive [10] [24], it can
still be costly to fit many ellipses using this procedure in a single camera frame. Given n edges, the maximum
number of ellipses we would have to fit is equal to the total number of edge combinations:∑

1≤k≤n

(
n

k

)
= 2n − 1 (27)

Which is the sum over all possible combination sizes k chosen from n (minus the null set). This value increases
exponentially with respect to n, so it is important to keep the number of edges as small as possible. For this reason,
a classification scheme is applied that divides edges into two categories: those that are part of the pupil-iris contour
and those that are not. Edges that belong to the latter category are discarded. We base this classification on a
number of different edge features, which are listed in Table 2.

One edge feature is the length L of an edge, which is approximated by the sum of the distances between 8-connected
neighbours. If the relative arrangement of two neighbouring edge points is in one of the four cardinal directions
then the distance between them is 1, if it is in one of the four intercardinal directions then it is

√
2. This length

measure will be sufficiently accurate due to the morphological operations that have been applied, which have left
the edges with minimum thickness.

The variance of radius σr tells us about the orientation of an edge. It will be close to zero if the edge encircles ŝ at
a distance that is roughly constant, which we expect to be the case for the pupil boundary. Other edges are likely
to have different orientations, leading to larger σr values.

The gradient Gr here is different from the one encountered during glint detection. This gradient is calculated at
each edge point by looking at the direction vector between the edge point and the position estimate ŝ. The difference
in intensity between two pixels that lie along this direction on opposite sides of the edge point is the measure for
Gr at that particular position. The pixel value closer to ŝ is subtracted from the one further away, so that a larger
Gr is obtained for gradients that transition from dark to light the further we move outwards. By considering the
radial gradient, we add additional weight to edges belonging to the pupil boundary, because it marks the transition
from dark to light in the radial direction, unlike many other edges.

The intensity I is not simply given by the mean grayscale value of all edge points, but is instead calculated while
taking into account the direction the edge curves in. Only pixels that lie on the inside of the edge curve are considered
for I. Of course, for the pupil these pixels will be relatively dark, but for other edges this is not necessarily the
case. How the location of the inside of the curve is determined relates to how the curvature κ is calculated, which
is described at a later stage (see section 2.8.2).

Edge
features

Symbol Feature value, Fi Description

Length L
|L− Ĉ|

max(L, Ĉ)
Summed distance between neighbouring edge points

Radius r
|r − Ĉ/2π|

max(r, Ĉ/2π)
Mean distance from each edge point to ŝ

Variance of
radius

σr
σr

Ĉ
Variance of the distance from each edge point to ŝ

Curvature κ |κ− κ̂| Mean curvature of edge points

Radial
gradient

Gr |Gr − Ĝr| Mean gradient of edge points calculated in radial direction from ŝ

Intensity I |I − Î| Mean brightness of pixels on inside of edge curve

Table 2: Edge features that the edge classification scheme is dependent on.

11

From the available edge feature values, higher-level feature values Fi are constructed via the expressions given in
Table 2, which are made invariant to the image size. For each feature value Fi, a score is calculated through a
function that is unique to each feature. We distinguish the two classes using a linear combination of all scores Stot,
where the classification is controlled by a constant threshold value. The total score value is computed by:

Stot =

6∑
i

wigi(Fi) (28)

Where gi is a Gaussian function with a certain set of parameters unique to feature i, and wi is a weight that signifies
the importance of that particular feature in classification. The choice for a Gaussian function is made because it
can easily be scaled in accordance with the frame-rate. The standard deviation of the function is increased with
smaller frame-rates, because our predictions are likely to be less accurate, causing feature values of pupil boundary
edges to fall farther from zero.

We are interested in determining which range of feature values we typically get for pupil-iris contour edges. This
frequency of occurrence is then used to obtain the Gaussian functions needed for equation 28. The frequency data
for each feature value are extracted from one half of our data set and plotted in Figure 5. To clarify, one half of the
data (randomly selected) is used to find the Gaussian functions and weights, while the other half is set aside for
testing the classifier. This labelled data set was acquired by placing edges in one of the two classes depending on
whether they were part of the accepted ellipse fit or not. This classification works, because pupil boundary edges
are significantly more likely to be fitted by our ellipse fitting method compared to non-pupil edges. In Figure 5, the
fitted Gaussian functions are plotted in red. Each fit was constraint by setting the function’s maximum to 1 and
the position of the maximum to 0, which just leaves the standard deviation as a free parameter. The distributions
of feature values Fκ and Fσr have been limited to edges with FL ≤ 0.75, because the curvature and variance of
radius are only relevant if the edge is reasonably long. Furthermore, when calculating the scores for κ and σr their
weights are modified with FL according to:

w′ = (1− βFL)w (29)

Where β is another type of weight factor, whose value is determined alongside the other weights. We must also
consider how certain we are about our predictions when calculating the scores. Every weight is therefore multiplied
with the relevant certainty value. A summary of how each weight is calculated is given below.

w′L = cAwL

w′r = cSwr

w′σr = cS(1− βFL)wσr

w′κ = cA(1− βFL)wκ

w′Gr = cScAwGr

w′I = cAwI

We can now train the classifier by assigning a weight to each feature value. To find the most optimal set of weights
that best separates the two classes, we evaluate the degree of separation between them for a range of weight values.
As in section 2.3, greatest separation between the two distributions is obtained by finding the maximum of the test
statistic of the two-sample Kolmogorov-Smirnov test with respect to the weights. The weight configuration that
corresponds with the greatest degree of separation is given in Table 3. The classifier is tested on the data that
was not used to build the classifier. The resulting distributions are plotted in Figure 6, where the total score has
been normalized to lie within 0 and 1. The vertical line marks the threshold position, Sθ,edge, which corresponds
with 99% of pupil-iris contour edges being correctly classified (S = 0.38). We make our threshold position dynamic
with respect to the level of certainty, because we expect our score to be less accurate when the certainty becomes
smaller. The actual threshold S′θ,edge is then calculated by:

S′θ,edge = cScASθ,edge (30)

In Figure 7, we see the effect of the edge classification method on a sample image in which the eye is partially
closed. The end result is that the pupil-iris contour edges are successfully extracted from the collection of Canny
edges in the image, with the corresponding ellipse fit providing an accurate measure of the pupil position.

12

Figure 5: For each of the six feature values given in Table 2, a histogram (blue bars) is plotted with the fraction of edges that are
pupil edges in each bin. So, each bin gives the estimated probability that an edge with that particular feature value belongs to the
pupil edge. The smaller the feature value, the more likely it is that the corresponding edge belongs to the pupil-iris contour. Gaussian
functions have been fitted on the data (red curves), which convert the feature value to a score.

Weight
factor

Weight
value

wL 0.7

wr 0.9

wσr 1.2

wκ 1.4

wGr 0.7

wI 1.4

β 0.9

Table 3: Optimal weight factors for maximum separation between the two edge distribution types.

13

Figure 6: Score histogram of edges classified as either belonging to the pupil-iris contour (blue) or some other feature (red). Shown
is the greatest separation between the two classes that was obtained with the weights given in Table 3. The vertical line denotes the
threshold score for which 99% of pupil edges are correctly classified.

Figure 7: Edge classification example. Red edges have not been chosen by the edge selection method. Orange edges were chosen,
but were filtered out due to edge classification. Green edges have been categorized as pupil-iris contour edges by our classifier and an
ellipse is subsequently fitted on them (white outline, right image). Centre of ellipse is marked by the white cross. Teal cross indicates
predicted pupil position.

14

2.8 Edge segmentation

Owing to our classifier, we are now able to distinguish between edges that make up the pupil outline and edges
that do not. However, this leaves one important class of edges not dealt with, namely those that only partially
belong to the pupil boundary. Before fitting an ellipse on these types of edges, we have to split them first at the
transition point between pupil edge and some other feature (e.g. eyelid), otherwise the accuracy of the ellipse fit
will be adversely affected. For this purpose, four novel edge segmentation techniques have been developed, which
are applied before edge classification is carried out.

2.8.1 Path segmentation

The first edge segmentation scheme is implemented based on the self-evident fact that the pupil is a non-intersecting
closed shape. In other words, its perimeter is wholly described by a single non-branching path. So, if an edge consists
of multiple branches, it definitely cannot exclusively be part of the pupil outline. Such edges are segmented by
finding the non-branching path in the edge whose length comes closest to the circumference prediction Ĉ and
separating it from the rest of the edge. To find this path, we will represent the edge as an undirected graph,
which refers to the mathematical structure consisting of a collection of vertices (or nodes) joined by edges with no
orientation [23, Chapter 6]. To avoid confusion between the term edge here and how it was used before, we will
use the term arc, which is generally only used for directed graphs, to refer to connections between vertices in the
network. The edge is converted to a graph through the following rules and definitions:

1. A branch vertex is any edge point that has three or more 8-neighbours
2. A terminal vertex is any edge point that has exactly one 8-neighbour
3. An arc is a collection of edge points that connects two vertices
4. Vertices that are 8-neighbours are combined into a single vertex

After creating the graph, we use a recursive implementation of depth-first search to find every possible simple path,
which is any path that does not traverse the same arc or vertex more than once, and then select the most optimal
one. We locate all paths starting from the terminal vertices first and keep track of the vertices we already started
with so we do not end with them. This prevents acyclic path repetitions, because for our purposes a specific path
between two vertices is the same in the reverse direction.

A caveat should be added. The task of finding all possible simple paths in an undirected graph is NP-hard, since
the more basic longest path problem is already NP-hard [7]. However, we are dealing with relatively tiny networks
here with usually only a few connections, which allows for this problem to be quickly solved.

Figure 8: (Left) Pixel representation of a sample Canny edge, where each pixel has been given its own unique label. (Right) Graph
representation of the same edge. The pixels contained by the vertices (boxes) and the arcs (lines) are given in set notation. Black pixels
or vertices indicate the desired path.

In Figure 8, a sample edge is depicted along with its graph representation. The structure of this graph is an
exaggerated version of what one typically encounters. The total number of possible simple paths in this graph
is equal to 139, which is still a manageable quantity, even when having to process multiple edges. However, this

15

number can be brought down further, while also dealing with noise. We remove arcs from the edge if they contain
fewer edge points than the edge window length Nl when they are attached to a terminal vertex, are a self-loop or
when they connect two vertices that are already connected by an arc, in which case the shortest of the two arcs is
kept. As an example, when these filters are applied to the edge in Figure 8, all grey edge pixels are removed.

Generally, several paths will be detected, one of which has to be accepted. Our decision is made based on a few
criteria. Cyclic paths always take precedence over acyclic paths, since the ideal pupil outline is cyclic. However, if
the pupil boundary is described by a cycle then it has to be wholly represented by that cycle, so the length L of
such a cyclic path has to match the expected circumference of the pupil boundary, where the acceptable range is
given by:

Cmin ≤ Ĉ(1− δθ,C) ≤ L ≤ Ĉ(1 + δθ,C) ≤ Cmax

The lower limit of this criterion must not apply for acyclic paths, because multiple acyclic paths can make up the
pupil boundary. We could enforce the upper limit, though, since the length of an acyclic path should not be greater
than Cmax either, but this is rejected in favour of a different solution (see section 2.8.3). Finally, any arcs that were
not filtered out, but also not included in the final accepted path are not discarded. Instead, new graphs are made
using these remaining edges and the process is repeated.

2.8.2 Curvature segmentation

Another property of the pupil-iris contour is its smooth curvature. Abrupt changes in curvature along its path are
most likely caused by obstructions of the pupil periphery by the eyelid, eye lashes or corneal reflection from the
IR-LED. Zhu et al. [38] developed an algorithm that exploits the curvature characteristic of the pupil boundary in
order to separate it from these types of artefacts. The location of an occlusion or breakpoint in the pupil boundary
is determined by checking if the curvature κ at a certain point on the perimeter is above an upper threshold (κmax)
or below a lower threshold (κmin). The pupil boundary is then segmented according to a number of heuristics that
use the distances between detected breakpoints to detect different types of occlusions.

Inspired by this approach, we have developed our own segmentation algorithm based on edge curvature. The method
that Zhu et al. used to calculate the curvature is repeated here, but with a few slight alterations. One change is
made in the way direction coding is performed, because we are interested in calculating the curvature of Canny
edges and not the boundary of a ‘blob’ of pixels that is generated after application of a brightness threshold. The
method works by scanning the 8-connected environment of each edge point and assigning a vector label to the edge
point depending on the relative position of its neighbour. For example, starting from the central edge point Pi in
Figure 9, we scan its 8-neighbours and locate Pi+1 in the south-east direction, which corresponds with a vector of
(
√
.5,
√
.5) or a cardinal direction label of SE. We then do the same for Pi+1 and so forth, until every edge point

has been given a label.

Figure 9: Example of curvature calculation procedure. Each pixel in the edge is given a (cardinal) direction label, which corresponds
with one of the vectors displayed on the right. Curvature is calculated at pixel Pi by finding the angle between the vector tangents of
the two windows on either side of it.

After obtaining all direction labels, the curvature κ at each edge point is calculated. Theoretically, the (signed)
curvature at a specific point on a curve is defined [25] as the rate of change of the tangential angle φ with respect to

16

the arc length s. This exact definition of κ is approximated by placing two windows on either side of the edge point
we are calculating κ for and finding the mean unit vector for each window, where the size of a window is equal to
the edge window length Nl. The difference in tangential angles ∆φ between the two mean vectors, divided by Nl,
is then the signed curvature at that point:

κ =
dφ

ds
≈ ∆φ

Nl

When determining the curvature for Pi in Figure 9, we calculate the first vector tangent ~T1 for edge points running
from Pi−5 to Pi−1 (i.e. Nl = 5 in this example) and the second ~T2 for points from Pi+1 to Pi+5. The angle difference
∆φ is then given by:

∆φ = atan2(T2,y, T2,x)− atan2(T1,y, T1,x) with ∆φ =

{
∆φ− 2π if ∆φ > π

∆φ+ 2π if ∆φ < −π

For edges belonging to the pupil boundary, we expect that each edge point has the same curvature sign, since the
boundary is elliptical. However, whether the majority sign is negative or positive depends on the scanning direction,
which we do not control here. In order to properly set a lower curvature threshold it is crucial that each edge has
the same majority curvature sign. For this reason, we count the number of positive and negative curvatures in the
edge. If there are more negative curvatures than positive ones, all signs are inverted.

We also determine the vector difference ∆~T1 between ~T1 and ~T2:

∆~T1 = ~T2 − ~T1

The vector ∆~T1 points towards the centre of curvature. This direction is used when calculating the edge intensity
in edge classification.

Now that we have a measure of the curvature for every edge point, we can use it to segment edges at the intersection
between distinct features in the image. To do this, we do not use any of the heuristics developed by Zhu et al.
Instead, our curvature segmentation algorithm works on the basis of only one simple rule: an edge is segmented at
every breakpoint. This makes it far less specific and requires fewer parameters. The only parameters we need to
specify are the values for κmin and κmax. Like Zhu et al., we could set these to a constant value for a given pupil,
with κmin = −κmax. However, this seems like a poor decision for two reasons. First of all, this heavily overestimates
the expected lower curvature limit. Since the pupil contour is elliptical, the signed curvature should theoretically
not become negative, as mentioned before. This means that κmin should be much closer to zero. Second of all, the
expected values for κ are very dependent on where the eye is looking. This is because the range of κ is not only
determined by the size of the pupil, but also on its shape. The circumference C of the pupil is inversely proportional
to the mean of κ. The aspect ratio AR, on the other hand, is inversely proportional to the size of the range of κ.
When the eye is looking straight ahead, the pupil can be reasonably approximated by a circle (i.e. AR = 1), which
means that κ will be constant around the perimeter, so its range is minimal. However, when the eye is looking up,
the pupil shape is more eccentric, so AR will be smaller. This causes the curvature at the antipodal points of the
semi-minor axis to decrease and the curvature at the semi-major axis antipodes to increase, broadening the range
of κ.

To ensure that κmin and κmax depend on the size and shape of the pupil, these parameters are turned into dynamic
thresholds that are automatically updated according to our predicted values Ĉ and ÂR. The thresholds are based
on the lower and upper limit of the κ range we would expect to get for an ellipse with a circumference and aspect
ratio equal to Ĉ and ÂR. To find the relation between the range of κ with respect to C and AR, we measured
the minimum and maximum κ values of 3600 artificial pupils, which are solid black ellipses on a white background.
These ellipses varied in circumference between 30 and 380 pixels, and in aspect ratio between 0.15 and 1.00.
Furthermore, to investigate how the edge curvature depends on the curvature window size, the κ range of each
ellipse was evaluated multiple times in each frame for different Nl values between 5 and 11. After obtaining all κmin
and κmax data points, neural networks are trained to fit functions that take C and AR as their input and give κmin
or κmax as their output. This task is performed by the MATLAB routine fitnet using Levenberg-Marquardt with
5 hidden nodes. The functions are only fitted on the largest κmax values or on the smallest κmin values that were
measured in a specific circumference and aspect ratio bin. This is to ensure that we get the true curvature limit
for the C and AR pair. A sample fit for κmax is displayed on the left side of Figure 10. The dependence of κmin
and κmax on Nl is shown on the right side of Figure 10. We can observe that the κ range narrows with increase in

17

Figure 10: (Left) Neural network fit of maximum edge curvature as a function of pupil circumference and aspect ratio for an edge
window length of 5. The function is represented by the mesh surface, which is fitted on the red data points, indicating local maxima.
(Right) Dependence of minimum and maximum edge curvature on circumference, aspect ratio and edge window length, Nl. Bottom
three surfaces are for κmin and top three for κmax.

Nl. This is because the greater the window size, the less refined our measurement is. We lose information about
local curvature maxima or minima, causing them to be somewhat averaged out, which leads to a smaller κ range.
In this sense, we want to have the smallest possible value for Nl, but larger Nl values make our κ measurement
more robust against noise. The default value for Nl is set to 7, which was found to give good results for our set-up.
However, it can be desirable to turn Nl into a dynamic parameter that is reduced when Ĉ becomes smaller, because
the smaller the pupil is, the more its contour edge will be affected by tiny interferences, which may go unnoticed
when Nl is set too high.

The threshold values obtained here are curvature limits for ideal ellipses. In practice, these thresholds need to be
offset (up and down) by a few degrees to account for inaccuracies in our predictions and for natural deviation of
the pupil from the ellipse shape. The final thresholds are therefore determined by:

κmax = h(Ĉ(1− δθ,C), ÂR− δθ,AR) + offset (31)

κmin = h(Ĉ(1− δθ,C), ÂR− δθ,AR)− offset (32)

Where h(C,AR) is the fitted function. The variable δθ,AR is calculated in a similar way to δθ,C (see equation 20):

δθ,AR = (1− cAR)(1.0− δ′′θ,AR) + δ′′θ,AR (33)

Figure 11 shows the effect of curvature edge segmentation on a sample image in which the eye is partially closed.
The pupil-iris outline is detected by Canny edge detection as one continuous edge that is also part of the upper
eyelid. Through curvature segmentation we are able to split the edge up into two sections corresponding to the
distinct features, after which the pupil edge can be successfully identified with edge classification.

18

Figure 11: Curvature segmentation example. (Left) Yellow edge is part of pupil boundary as well as eyelid. (Centre) Edge is
segmented at transition point between both features, resulting in new pupil edge section (green). (Right) Ellipse (white outline) is fitted
on segmented pupil edge. Centre of ellipse is marked by the white cross. Teal cross indicates predicted pupil position.

2.8.3 Length segmentation

If the pupil circumference prediction in a given frame is accurate, then no edge that entirely resides on the pupil
boundary should be longer than this prediction. When the edge length L is greater than Ĉ, we segment the edge so
that one of the two parts has a length that is approximately equal to Ĉ. The question, however, is where to make
the separation. We make this decision by temporarily dividing the edge into three sections, which is graphically
shown in Figure 12. The edge is cut in such a way that the length of the edge body (II) plus the length of either
of the two edge tails (I or III) is equal to Ĉ, where Ĉ = 2πr̂ in the figure.

Figure 12: Length segmentation procedure. See main text for further details.

We now investigate which of the two edge tails resembles the body the most with respect to its features. The closest
match is re-attached to the central section, while the other one is left segmented. The level of similarity is quantified
using the score functions we developed for edge classification, but instead of using the difference between an edge
feature value and the corresponding predicted value to calculate the score, we will work with the difference between
feature values of the tail compared to the body. The expressions for calculating Fi and w′i are given in Table 4.
The length weight is set to zero, since FL is equal for both edge tails. We only use FL to modify the weights of
σr and κ. The certainty terms cA are set to 1 in the weight expressions, because we are not using any predicted
values to calculate Fi, so their accuracy is irrelevant here. However, the accuracy of r, σr and Gr does depend on
cS , hence it remains. The scores for each tail are calculated using equation 28, and the edge tail with the highest
score is reconnected to the edge body. In Figure 12, we expect edge I to have the highest score, since its r, κ and
σr are very close to edge II, so edge III is left severed.

19

Edge
features

Feature value, Fi Weight, w′i

Length
|L1 − Ĉ|

max(L1, Ĉ)
0

Radius
|r1 − r2|

max(r1, r2)
cSwr

Variance of
radius

|σr,1 − σr,2|
Ĉ

cS(1− βFL)wσr

Curvature |κ1 − κ2| (1− βFL)wκ

Radial
gradient

|Gr,1 −Gr,2| cSwGr

Intensity |I1 − I2| wI

Table 4: Edge features that are taken into account for length segmentation. Included are the expressions for the corresponding feature
value and weight factor.

2.9 Ellipse fitting

Having segmented and classified the edges obtained with Canny edge detection, we can now fit an ellipse on one or
more of them, using one of several possible methods. Search- and voting-based schemes, such as Hough transform
and Random Sample Consensus (RANSAC), are often implemented in pupil detection algorithms because they are
robust to outliers, however they are also computationally expensive [11][27][30]. Since we have performed numerous
segmentation routines to remove any potential outliers, we instead choose the faster, but more sensitive, direct least
squares fitting method [10]. Owing to its computational efficiency, we are able to fit an ellipse multiple times in
the same frame and then choose the most optimal one. However, recall equation 27. We cannot have a large set
of remaining edges, otherwise the number of possible edge combinations to fit an ellipse on will be overwhelming.
So we choose up to a fixed number of available edges classified as lying on the pupil-iris contour, favouring edges
with a higher score. The maximum number that we choose is set to 4 by default, which translates to 15 possible
combinations.

Fitting that many ellipses in one frame is still too demanding, but we are going to reduce their numbers further
by requiring that the expanse of each edge combination must reasonably correspond with our width and height
predictions of the pupil. This also means that we require that a significant portion of the pupil-iris contour is visible
in the image and has been detected before fitting an ellipse, because the fit will be gravely inaccurate otherwise.
We calculate the range of the edge combination by finding the minimum and maximum x and y-positions in the
collection of edge points and set the following criterion:

0.3(Ŵ −∆l) ≤ xmax − xmin ≤ Ŵ + ∆l

0.3(Ĥ −∆l) ≤ ymax − ymin ≤ Ĥ + ∆l

Where:

∆l =
Ĉδθ,C
π

(34)

These thresholds ensure that cases where the vast majority of the pupil is obscured by the eyelid are ignored. A
limit is also imposed on how many ellipses we are allowed to fit in one frame, which is fixed at 6 by default. If there
are more possible fits available, then we choose the edge combinations with a combined length that is closest to Ĉ.

We fit an ellipse on each edge combination that remains. The properties of every ellipse are subsequently calculated
from the general equation of the ellipse using rotation transformation [38]. This includes the position, semi-major

20

and minor axes, rotation angle and bounding box dimensions. The circumference is computed by Ramanujan’s
second approximation [28]. Immediately after obtaining these characteristics, each ellipse passes through a series
of filters that will judge the size, shape and quality of the fit. The circumference of the ellipse has to fall within
the Cmin and Cmax limits and its aspect ratio should be larger than ARmin. These bounds have been empirically
determined from our data set (Cmin = 60, Cmax = 290 and ARmin = 0.4). Furthermore, we observe that the limit
of C is dependent on AR, which is expected because the larger an ellipse is on the surface of a sphere, the greater
its polar angle needs to be to have an equally low aspect ratio when projected on the 2D plane as a smaller ellipse.
A linear function is created that acts as a circumference threshold, which is given by:

C ′max = k(AR− 1) + Cmax (35)

Where k is assigned a value of 154. The circumference of the fit has to be less than the circumference limit calculated
by this function. Besides looking at the absolute values of the size and shape of the pupil, we also inspect how much
these features deviate from the predictions, which is quantified by δC and δAR calculated through equations 9 and
10. We establish the criterion that δC and δAR are not allowed to respectively exceed δθ,C and δθ,AR (see equations
20 and 33), otherwise the fit is rejected. Another filter examines the number of points that the ellipse was fitted
on with respect to the fit’s circumference. We cannot accept a large ellipse fit on a tiny set of edge points even
when these points are adequately spread out. Such a fit is most likely erroneous and influenced by noisy edges. We
therefore enforce the following threshold for the edge length:

L ≥ 0.3Ĉ(1− δθ,Ĉ)

The last filter works on the basis of the error between the fit and fitted points. For ellipse fits on the pupil-iris edge,
we expect a small fit error for all fitted edge points, since we are able to adequately approximate the pupil shape
by an ellipse [36]. So a large fit error for a particular edge point would indicate that the ellipse is not at all or not
entirely fitted on the pupil boundary. The accuracy of the pupil fit can already significantly diminish if the edge
combination contains just a few outliers, because of the high sensitivity of direct least squares compared to other,
slower, ellipse fitting methods [12]. For this reason, only ellipse fits where all edge points in the set have a small
fit error should be accepted. On the other hand, we do not want to reject a fit because of just one outlier. As a
compromise, we instead consider the fit errors of the 0.05C largest outliers of the set. If their average fit error is
above a given threshold, the ellipse fit is rejected.

We also investigate how the absolute fit errors change with respect to the circumference of the ellipse fit by analyzing
the fit errors of around 44,000 ellipse fits. Only fits that the pupil detection algorithm has classified as acceptable
pupil fits are considered here. We observe that ε is directly proportional to C with larger errors being measured at
larger circumferences. Since we do not want to adapt our fit error threshold according to C, we remove this linear
relationship by using the relative fit error εrel instead, which is given by:

εrel =
εabs − α

C

Where α (y-intercept) is a constant found by linear regression (α = −0.56). The dependence of ε on C disappears
when using the relative error. This allows us to set a constant error threshold, which is assigned a value of 0.6.

In many cases, only one ellipse fit remains at this stage which we then consider to represent the pupil. However,
it also frequently occurs that there are still a few ellipse fits left to choose from. The final choice is made through
a similar strategy employed during edge classification. Each ellipse is assigned a score based on a number of its
features, after which the ellipse with the highest score is selected as the pupil representation. The relevant features
are listed in Table 5. Once again, the feature values are made invariant to the image size. The labelled data set
was acquired by marking accepted fits as pupil fits and any other ones as non-pupil fits.

Following the same steps as with edge classification, we split our data set into two halves and determine the Gaussian
functions and weights from one half, and test the classifier with the other half. The frequency data is plotted in
Figure 13, together with the corresponding Gaussians. The weights are modified by the degree of certainty as
indicated in Table 5. An additional factor is added to the rotation angle’s weight, because the significance of θ
should decrease the more circular the pupil becomes.

Once more the two-sample Kolmogorov-Smirnov test is used to obtain the greatest degree of separation between the
two classes. The optimal weights are given in Table 6. The distributions of the two classes are plotted in Figure 14.
We choose the ellipse fit with the highest score as the pupil representation, but also any fit that has a score within
a certain distance ∆Sθ,fit from the highest score. This parameter ∆Sθ,fit is given a value of 0.10. The average
characteristics of all accepted fits then corresponds with our final pupil measurement for the current frame.

21

Fit features Symbol Feature value, Fi Weight factor Description

Circumference C
|C − Ĉ|

max(C, Ĉ)
cA

Circumference of ellipse fit in
pixels

Aspect ratio AR |AR− ÂR| cA Aspect ratio of ellipse fit

Edge length L
|L− L̂|

max(L, L̂)
cA

Combined length of fitted edges
in pixels

Fit error ε ε -
Relative error between the ellipse
fit and the edge points

Rotation angle θ |θ − θ̂| cA(1− ρ(AR))
Rotation angle of ellipse fit in ra-
dians

Table 5: Ellipse fit features that the fit classification scheme is based on.

Weight
factor

Weight
value

wC 0.4

wAR 0.6

wL 1.6

wε 0.9

wθ 1.5

ρ 0.7

Table 6: Optimal weight factors for maximum separation between the two fit distribution types.

22

Figure 13: For each of the six feature values given in Table 5, a histogram (blue bars) is plotted with the fraction of ellipse fits that
are pupil fits in each bin, similarly to Figure 5. Gaussian functions have been fitted on the data (red curves), which convert the feature
value to a score.

23

Figure 14: Score histogram of ellipse fits classified as either entirely belonging to the pupil (blue) or not (red). Shown is the greatest
separation between the two classes that was obtained with the weights given in Table 6. The vertical line denotes the score for which
99% of pupil fits are correctly classified.

24

3 Evaluation

The performance of the presented pupil detection algorithm, which is given the name EyeStalker, is assessed by
determining its effectiveness of locating the pupil centre in images where the position of the pupil has been manually
determined. This performance is then compared with two other open-source eye tracking algorithms, PupilLabs [14]
and ExCuSe [11] (latest versions as of February 2017). A number of different hand-labelled data sets are available
[30] [14], but these are either random collections of eye images or have been recorded with low frame-rate cameras
(around 25 Hz). It is a prerequisite for EyeStalker that the algorithm is applied on high frequency image data that
is ordered in sequence. For this reason, a new hand-labelled dataset is created that consists of 5000 images of the
pupil during 49 saccadic eye movements from 12 different individuals (between 3 to 5 saccades per person), which
is a sub-set of the data set referred to in Methods. Especially challenging trials were selected, including images
where the pupil is notably obstructed by the eyelid or glint, as well as images of highly eccentric or tiny pupils.

A tool to manually detect the pupil was developed in MATLAB. The program works by fitting an ellipse by hand
on the pupil boundary. The centre of the ellipse then corresponds with the centre of the pupil. The ellipse is
translated, rotated and reshaped using keyboard controls until a good fit is achieved. The image is resized to fit
the entire monitor screen, allowing for more precise measurements. The precision of this method is determined
by manually detecting the pupil in 12 images 12 times and calculating the variation in the measurement. Each of
these images shows the pupil of a different person and was hand-picked for their higher detection difficulty. The
144 detections are done in a random order and the shape, angle and position of the ellipse is reset each time a
new image is displayed on screen. From this analysis, a standard deviation of 0.6◦ is found for manual detection.
This labelling tool together with the raw eye images and hand-labelled pupil coordinates are publicly available for
download.1

The hand-labelled data set only features frames that are part of a saccadic eye movement plus a short fixation
period before and after. On average, this comes down to around 100 frames per trial. However, when applying the
three algorithms on the data, we include a longer preceding fixation period, adding between 20 to 200 additional
frames to the start of the trial, which are not included in our analysis. These extra prior detections are required
for EyeStalker to already acquire an adequately accurate measure of f̄n before the actual measurement begins. In
normal circumstances, more accurate information will always be available, because a test subject will have been
wearing the eye tracking device for a relatively long time before the start of a recording.

As a constraint, all trials are processed in a single run, which means that parameters are kept to their default values
and not altered between individuals. In the EyeStalker and PupilLabs algorithms, the parameters for Canny edge
detection are set equal to one another to achieve a fairer comparison (ExCuSe uses an automatized method to set
these parameters). The performance of each algorithm is evaluated by calculating the detection rate and error for
different error thresholds. The results are shown in Figure 15. It is clear that EyeStalker not only achieves a greater
detection rate for all error thresholds compared to the other two approaches, but also a smaller detection error.
The much lower detection rate of ExCuSe can possibly be attributed to the fact that the algorithm is specifically
tailored for eye tracking in real-life scenarios and thus functions relatively poorly in controlled environments. The
performance of PupilLabs comes closer to that of EyeStalker, but requires considerably more processing time, which
can be inferred from Figure 16. The figure shows detection durations for every frame, which were processed using
a C++ implementation of each algorithm combined in a single application on a triple-core 3.3 GHz CPU running
Linux. EyeStalker is significantly faster than both of the other two algorithms. PupilLabs is surprisingly slow, but
the timing agrees with their reported processing pipeline latency of 45 ms [14], although it is also possible that our
implementation or hardware was suboptimal, since their commercially available hardware reportedly has a latency
of 5.7 ms.2 The average computational time of EyeStalker is 2.1 ms, but this duration can potentially double during
periods of low certainty. The vast majority of processing time is spent on approximate detection (section 2.3) and
Canny edge detection (section 2.4).

1https://drive.google.com/open?id=0Bw57olSwQ4EbUWV5ajNKeG93NEk
2https://pupil-labs.com/

25

https://drive.google.com/open?id=0Bw57olSwQ4EbUWV5ajNKeG93NEk
https://pupil-labs.com/

Figure 15: Performance of our pupil detection algorithm (EyeStalker) on 5000 test images compared to two other open-source
algorithms, PupilLabs and ExCuSe. The detection rate and error are evaluated as a function of the allowable error threshold. EyeStalker
not only achieves a significantly higher detection rate, but is also able to achieve this with an overall greater accuracy.

Figure 16: Histograms of the processing time for each of the 5000 test images are plotted for the three algorithms. Our pupil detection
algorithm (EyeStalker) achieves an average computation time of 2.1 ms per frame.

26

4 Discussion

A novel eye tracking algorithm has been presented that is designed for use with high-speed cameras, relying on
estimations of pupil characteristics to carry out sophisticated feature-based pupil detection techniques that are
both fast and robust. Based on ground truth hand-labelled data, the method was found to surpass other recently
published open-source algorithms in terms of detection rate, accuracy and speed. To further verify the efficiency of
the algorithm, it should be tested with multiple camera set-ups using different combinations of operational speed
and image quality. It is expected that performance will increase with higher frame rate cameras since the pupil
feature predictions will become more accurate.

Additional enhancements can be made to the algorithm itself. The implemented recursive estimation method
is sufficiently accurate, but using a more established design (e.g. Kalman filter) will most likely lead to better
predictions, though requiring more effort to set-up. This could significantly improve pupil detection, since the
predictions are used in many different parts of the algorithm. One processing step that does not use any predictions,
however, is Canny edge detection, but the estimated pupil location can be utilized to tune the method to specifically
detect the pupil-iris edge. In its current state, Canny edge detection does not make any distinctions between edges
based on their orientation or gradient direction. It can be made more discerning by calculating the radial gradient
outwards from the predicted pupil position, which puts more weight on the pupil contour and less on edges that
are not oriented in the tangential direction (e.g. eye lashes). Furthermore, by using the signed gradient, we only
consider edge points that are darker closer to the origin point and lighter on the other side, which holds true for the
pupil perimeter. An additional improvement can be made in the approximate detection of the pupil position. Even
though Haar-like feature detection is made significantly more computationally efficient with the calculation of the
integral image compared to more naive methods, it is still quite demanding relative to other processing steps. Since
we only require an approximate pupil location, an alternative approach is to train a convolution neural network on
the eye image data, which would subsequently be able to rapidly supply a rough position estimate in each frame.

References

[1] W W Abbott and A A Faisal. Ultra-low-cost 3d gaze estimation: an intuitive high information throughput
compliment to direct brain–machine interfaces. Journal of Neural Engineering, 9(4):046016, 2012.

[2] Wael Abd-Almageed, M Sami Fadali, and George Bebis. A non-intrusive kalman filter-based tracker for pursuit
eye movement. In American Control Conference, 2002. Proceedings of the 2002, volume 2, pages 1443–1447.
IEEE, 2002.

[3] A. I. Adiba, N. Tanaka, and J. Miyake. An adjustable gaze tracking system and its application for automatic
discrimination of interest objects. IEEE/ASME Transactions on Mechatronics, 21(2):973–979, April 2016.

[4] Robert S Allison, Moshe Eizenman, and Bob SK Cheung. Combined head and eye tracking system for dynamic
testing of the vestibular system. IEEE Transactions on Biomedical Engineering, 43(11):1073–1082, 1996.

[5] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-8(6):679–698, Nov 1986.

[6] Jian-nan Chi, Li-hua Xie, Peng-yun Zhang, Yi-fang Lu, and Guo-sheng Zhang. Hybrid particle and kalman
filtering for pupil tracking in active ir illumination gaze tracking system. Mathematical Problems in Engineering,
2014, 2014.

[7] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition, 2001. p. 978.

[8] J. Doležal and V. Fabian. 41. application of eye tracking in neuroscience. Clinical Neurophysiology, 126(3):e44
–, 2015.

[9] Andrew T Duchowski. A breadth-first survey of eye-tracking applications. Behavior Research Methods, Instru-
ments, & Computers, 34(4):455–470, 2002.

[10] Andrew Fitzgibbon, Maurizio Pilu, and Robert B. Fisher. Direct least square fitting of ellipses. IEEE Trans.
Pattern Anal. Mach. Intell., 21(5):476–480, May 1999.

27

[11] Wolfgang Fuhl, Thomas Kübler, Katrin Sippel, Wolfgang Rosenstiel, and Enkelejda Kasneci. ExCuSe: Robust
Pupil Detection in Real-World Scenarios, pages 39–51. Springer International Publishing, Cham, 2015.

[12] Radim Halir and Jan Flusser. Numerically stable direct least squares fitting of ellipses, 1998.

[13] W. Heide, E. Koenig, P. Trillenberg, D. Kömpf, and D. S. Zee. Electrooculography: technical standards
and applications. the international federation of clinical neurophysiology. Electroencephalography and clinical
neurophysiology. Supplement, 52:223–240, 1999.

[14] Moritz Kassner, William Patera, and Andreas Bulling. Pupil: An open source platform for pervasive eye
tracking and mobile gaze-based interaction. In Adjunct Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, UbiComp ’14 Adjunct, pages 1151–1160, New York, NY,
USA, 2014. ACM.

[15] Elizabeth S Kim, Adam Naples, Giuliana Vaccarino Gearty, Quan Wang, Seth Wallace, Carla Wall, Michael
Perlmutter, Jennifer Kowitt, Linda Friedlaender, Brian Reichow, et al. Development of an untethered, mo-
bile, low-cost head-mounted eye tracker. In Proceedings of the Symposium on Eye Tracking Research and
Applications, pages 247–250. ACM, 2014.

[16] Dongheng Li, Jason Babcock, and Derrick J Parkhurst. openeyes: a low-cost head-mounted eye-tracking
solution. In Proceedings of the 2006 symposium on Eye tracking research & applications, pages 95–100. ACM,
2006.

[17] Dongheng Li, D. Winfield, and D. J. Parkhurst. Starburst: A hybrid algorithm for video-based eye track-
ing combining feature-based and model-based approaches. In 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05) - Workshops, pages 79–79, June 2005.

[18] Lin Lin, Lin Pan, LiFang Wei, and Lun Yu. A robust and accurate detection of pupil images. In Biomedical
Engineering and Informatics (BMEI), 2010 3rd International Conference on, volume 1, pages 70–74. IEEE,
2010.

[19] Xindian Long, Ozan K Tonguz, and Alex Kiderman. A high speed eye tracking system with robust pupil
center estimation algorithm. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual
International Conference of the IEEE, pages 3331–3334. IEEE, 2007.

[20] Raman Maini and Himanshu Aggarwal. Study and comparison of various image edge detection techniques.
International journal of image processing (IJIP), 3(1):1–11, 2009.

[21] Rados law Mantiuk, Micha l Kowalik, Adam Nowosielski, and Bartosz Bazyluk. Do-it-yourself eye tracker: Low-
cost pupil-based eye tracker for computer graphics applications. In International Conference on Multimedia
Modeling, pages 115–125. Springer, 2012.

[22] Carlos Hitoshi Morimoto, Dave Koons, Arnon Amir, and Myron Flickner. Pupil detection and tracking using
multiple light sources. Image and vision computing, 18(4):331–335, 2000.

[23] Mark Newman. Networks: An Introduction. Oxford University Press, Inc., New York, NY, USA, 2010.

[24] Viorica Pătrăucean. Detection and identification of elliptical structure arrangements in images: Theory and
algorithms. PhD thesis, INPT, 2012.

[25] Nicholas M Patrikalakis and Takashi Maekawa. Shape interrogation for computer aided design and manufac-
turing. Springer Science & Business Media, 2009. p. 40.

[26] I Ketut Gede Darma Putra, Agung Cahyawan, and Yandi Perdana. Low-cost based eye tracking and eye gaze
estimation. TELKOMNIKA (Telecommunication Computing Electronics and Control), 9(2):377–386, 2013.

[27] Rahul Raguram, Jan-Michael Frahm, and Marc Pollefeys. A comparative analysis of ransac techniques leading
to adaptive real-time random sample consensus. Computer Vision–ECCV 2008, pages 500–513, 2008.

[28] Srinivasa Ramanujan. Modular equations and approximations to π. Quarterly Journal of Mathematics, 45:180,
350–372, 1914.

[29] Nicolas Schneider, Peter Bex, Erhardt Barth, and Michael Dorr. An open-source low-cost eye-tracking system
for portable real-time and offline tracking. In Proceedings of the 1st Conference on Novel gaze-controlled
applications, page 8. ACM, 2011.

28

[30] Lech Świrski, Andreas Bulling, and Neil A. Dodgson. Robust real-time pupil tracking in highly off-axis images.
In Proceedings of ETRA, March 2012.

[31] JN Van der Geest and MA Frens. Recording eye movements with video-oculography and scleral search coils:
a direct comparison of two methods. Journal of neuroscience methods, 114(2):185–195, 2002.

[32] Paul Viola and Michael Jones. Robust real-time object detection. In International Journal of Computer Vision,
2001.

[33] Alexander C Volck, Roman D Laske, Ralph Litschel, Rudolf Probst, and Abel-Jan Tasman. Sound localization
measured by eye-tracking. International journal of audiology, 54(12):976–983, 2015.

[34] Greg Welch and Gary Bishop. An introduction to the kalman filter, 1995.

[35] Christopher Richard Wren, Ali Azarbayejani, Trevor Darrell, and Alex Paul Pentland. Pfinder: Real-time
tracking of the human body. IEEE Transactions on pattern analysis and machine intelligence, 19(7):780–785,
1997.

[36] Harry J Wyatt. The form of the human pupil. Vision Research, 35(14):2021–2036, 1995.

[37] Jiashu Zhang and Zutao Zhang. Application of a strong tracking finite-difference extended kalman filter to eye
tracking. In International Conference on Intelligent Computing, pages 1170–1179. Springer, 2006.

[38] Danjie Zhu, Steven T. Moore, and Theodore Raphan. Robust pupil center detection using a curvature algo-
rithm. Computer Methods and Programs in Biomedicine, 59(3):145 – 157, 1999.

[39] Jan Zimmermann, Yuriria Vazquez, Paul W. Glimcher, Bijan Pesaran, and Kenway Louie. Oculomatic: High
speed, reliable, and accurate open-source eye tracking for humans and non-human primates. Journal of Neu-
roscience Methods, 270:138 – 146, 2016.

29

	1 Introduction
	2 Methods
	2.1 Feature value prediction
	2.2 Search area
	2.3 Approximate detection
	2.4 Canny edge detection
	2.5 Morphological operation
	2.6 Edge selection
	2.7 Edge classification
	2.8 Edge segmentation
	2.8.1 Path segmentation
	2.8.2 Curvature segmentation
	2.8.3 Length segmentation

	2.9 Ellipse fitting

	3 Evaluation
	4 Discussion

