

SAS® Programming III:
Advanced Techniques

Course Notes

 For Your Information ii

SAS® Programming III: Advanced Techniques Course Notes was developed by Linda Jolley and
Jane Stroupe. Additional contributions were made by Bill Brideson, George Berg, Ted Meleky,
Rich Papel, Dr. Sue Rakes, Kent Reeve, Christine Riddiough, and Roger Staum. Editing and production
support was provided by the Curriculum Development and Support Department.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS® Programming III: Advanced Techniques Course Notes

Copyright © 2005 by SAS Institute Inc., Cary, NC 27513, USA. All rights reserved. Printed in the
United States of America. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without
the prior written permission of the publisher, SAS Institute Inc.

Book code E70041, course code PROG3, prepared date 14Oct05.

 For Your Information iii

Table of Contents

Course Description .. vi

Prerequisites ...vii

Chapter 1 Introduction .. 1-1

1.1 Introduction of Course Topics..1-3

1.2 Measuring Efficiencies ..1-5

1.3 SAS Processing..1-19

1.4 Controlling Memory and I/O Resources..1-23

1.5 Solutions to Exercises ..1-37

Chapter 2 Accessing Observations.. 2-1

2.1 Introduction..2-3

2.2 Creating a Sample Data Set ...2-7

2.3 Creating and Using an Index..2-36

2.4 Solutions to Exercises ..2-71

Chapter 3 Combining Data Horizontally... 3-1

3.1 Joining Data Sets by Value ..3-3

3.2 Combining Summary and Detail Data ...3-37

3.3 Using an Index to Combine Data...3-56

3.4 Updating Data ..3-72

3.5 Combining Summary and Detail Data Using Two SET Statements (Self-Study)3-93

3.6 Solutions to Exercises ..3-106

iv For Your Information

Chapter 4 Using Lookup Tables to Match Data... 4-1

4.1 Introduction to Lookup Techniques ...4-3

4.2 Using Arrays as Lookup Tables ...4-6

4.3 Using Hash Objects as Lookup Tables...4-43

4.4 Using Formats as Lookup Tables...4-77

4.5 Transposing Data to Create a Lookup Table ...4-108

4.6 Solutions to Exercises ..4-119

Chapter 5 Combining Data Vertically ... 5-1

5.1 Appending SAS Data Sets ...5-3

5.2 Appending Raw Data Files ..5-26

5.3 Solutions to Exercises ..5-52

Chapter 6 BY-Group Processing and Sorting ... 6-1

6.1 Introduction..6-3

6.2 Eliminating Duplicates...6-5

6.3 Sorting Resources ..6-16

6.4 Choosing the Right Sort Routine (Self-Study) ..6-31

6.5 Alternatives to Sorting ...6-37

6.6 Solutions to Exercises ..6-65

Chapter 7 Controlling Data Storage Space.. 7-1

7.1 Introduction..7-3

7.2 Reducing the Length of Numeric Variables ...7-6

7.3 Compressing Data Files ...7-14

7.4 Creating a DATA Step View...7-28

 For Your Information v

7.5 Solutions to Exercises ..7-43

Chapter 8 Utilizing Best Practices to Improve Efficiency 8-1

8.1 Introduction..8-3

8.2 Executing Only Necessary Statements ..8-7

8.3 Eliminating Unnecessary Passes through the Data ..8-14

8.4 Reading and Writing Only Essential Data ...8-20

8.5 Networking Efficiency Considerations (Self-Study) ...8-34

Chapter 9 Using the Scalable Performance Data Engine (Self-Study).............. 9-1

9.1 Introduction to the Scalable Performance Data Engine ...9-3

9.2 Creating SPD Engine Tables..9-10

9.3 Using the SPD Engine Efficiently ...9-23

9.4 SPD Engine LIBNAME Statement Options List ...9-28

Chapter 10 Additional Topics (Self-Study)... 10-1

10.1 Modifying SAS Data Sets in Place ..10-3

10.2 Creating Generation Data Sets...10-29

10.3 Creating Integrity Constraints..10-50

10.4 Creating and Using Audit Trails ..10-69

10.5 Working with Perl Regular Expressions ..10-81

10.6 Solutions to Exercises ..10-97

Appendix A Index ... A-1

vi For Your Information

Course Description
This course builds on the concepts presented in the SAS Programming II: Manipulating Data with the
DATA Step course. This course focuses on reading data with direct access; combining data; sorting; using
multidimensional arrays, hash tables, and formats for table lookups; efficiently storing data; utilizing best
practices; and creating tables with the SAS Scalable Performance Data Engine.

This course is a combination of the previously offered SAS Programming III: Advanced Techniques and
Optimizing SAS Programs courses.

To learn more…

A full curriculum of general and statistical instructor-based training is available
at any of the Institute’s training facilities. Institute instructors can also provide
on-site training.

For information on other courses in the curriculum, contact the SAS Education
Division at 1-919-531-7321, or send e-mail to training@sas.com. You can also
find this information on the Web at support.sas.com/training/ as well as in the
Training Course Catalog.

For a list of other SAS books that relate to the topics covered in this
Course Notes, USA customers can contact our SAS Publishing Department at
1-800-727-3228 or send e-mail to sasbook@sas.com. Customers outside the
USA, please contact your local SAS office.

Also, see the Publications Catalog on the Web at support.sas.com/pubs for a
complete list of books and a convenient order form.

 For Your Information vii

Prerequisites
This course is not appropriate for beginning SAS software users. Before attending this course, you should
have at least nine months of SAS programming experience and should have completed the SAS
Programming II: Manipulating Data with the DATA Step course. Specifically, you should be able to do
the following:
 understand your operating system file structures and perform basic operating system tasks

 understand programming logic concepts

 understand the compilation and execution process of the DATA step

 use different kinds of input to create SAS data sets from external files

 use SAS software to access SAS data libraries

 create and use SAS date values

 read, concatenate, merge, match-merge, and interleave SAS data sets

 use the DROP=, KEEP=, and RENAME= data set options

 create multiple output data sets

 use array processing and DO loops to process data iteratively

 use SAS functions to perform data manipulation and transformations.

viii For Your Information

Chapter 1 Introduction

1.1 Introduction of Course Topics...1-3

1.2 Measuring Efficiencies...1-5

1.3 SAS Processing..1-19

1.4 Controlling Memory and I/O Resources ...1-23

1.5 Solutions to Exercises ...1-37

1-2 Chapter 1 Introduction

 1.1 Introduction of Course Topics 1-3

1.1 Introduction of Course Topics

3

General Business Scenario
International Airlines has several data files that must be
manipulated before they can be used for report production.

continued...
...

The to-do list includes the items on the following slides:

4

General Business Scenario
appending
− raw data files
− SAS data sets

Date Expenses Origin Destination

02DEC1999 58907 RDU LHR
03DEC1999 108543 RDU LHR
04DEC1999 21963 RDU LHR
05DEC1999 31517 RDU LHR
06DEC1999 105682 RDU LHR
07DEC1999 66992 RDU LHR
08DEC1999 92873 RDU LHR
09DEC1999 59560 RDU LHR
10DEC1999 41096 RDU LHR
11DEC1999 10272 RDU LHR
12DEC1999 35121 RDU LHR
13DEC1999 65836 RDU LHR
14DEC1999 73350 RDU LHR
15DEC1999 58539 RDU LHR
16DEC1999 64191 RDU LHR
17DEC1999 116839 RDU LHR
18DEC1999 82369 RDU LHR
19DEC1999 109908 RDU LHR
20DEC1999 2439 RDU LHR
21DEC1999 36700 RDU LHR

14DEC1999 73350 RDU LHR
15DEC1999 58539 RDU LHR
16DEC1999 64191 RDU LHR
17DEC1999 116839 RDU LHR
18DEC1999 82369 RDU LHR
19DEC1999 109908 RDU LHR
20DEC1999 2439 RDU LHR
21DEC1999 36700 RDU LHR

12DEC1999 35121 RDU LHR
13DEC1999 65836 RDU LHR
14DEC1999 73350 RDU LHR
15DEC1999 58539 RDU LHR
16DEC1999 64191 RDU LHR
17DEC1999 116839 RDU LHR
18DEC1999 82369 RDU LHR
19DEC1999 109908 RDU LHR
20DEC1999 2439 RDU LHR
21DEC1999 36700 RDU LHR

...

combining
− three SAS data sets

without common BY
variables

− a summary data set
with a detail data set

− a small data set with
a large data set

Expenses Origin Destination Date

58907 RDU LHR 02DEC1999
108543 RDU LHR 03DEC1999
21963 RDU LHR 04DEC1999
31517 RDU LHR 05DEC1999
105682 RDU LHR 06DEC1999
66992 RDU LHR 07DEC1999
92873 RDU LHR 08DEC1999
59560 RDU LHR 09DEC1999
41096 RDU LHR 10DEC1999
10272 RDU LHR 11DEC1999
35121 RDU LHR 12DEC1999
65836 RDU LHR 13DEC1999
73350 RDU LHR 14DEC1999
58539 RDU LHR 15DEC1999
64191 RDU LHR 16DEC1999
116839 RDU LHR 17DEC1999
82369 RDU LHR 18DEC1999
109908 RDU LHR 19DEC1999
2439 RDU LHR 20DEC1999
36700 RDU LHR 21DEC1999

Date Class Business Economy Profit AirportCity AirportName

02DEC1999 19200 31610 79650 71553 London, England Heathrow Airport
03DEC1999 17600 25070 80181 14308 London, England Heathrow Airport
04DEC1999 17600 28340 84960 108937 London, England Heathrow Airport
05DEC1999 17600 32700 72216 90999 London, England Heathrow Airport
06DEC1999 22400 29430 74871 21019 London, England Heathrow Airport
07DEC1999 22400 29430 84960 69798 London, England Heathrow Airport
08DEC1999 20800 27250 82305 37482 London, England Heathrow Airport
09DEC1999 22400 32700 84429 79969 London, England Heathrow Airport
10DEC1999 20800 32700 67968 80372 London, England Heathrow Airport
11DEC1999 22400 29430 78588 120146 London, England Heathrow Airport
12DEC1999 17600 30520 67968 80967 London, England Heathrow Airport
13DEC1999 22400 31610 84960 73134 London, England Heathrow Airport
14DEC1999 22400 32700 74340 56090 London, England Heathrow Airport
15DEC1999 20800 29430 72747 64438 London, England Heathrow Airport
16DEC1999 20800 28340 82836 67785 London, England Heathrow Airport
17DEC1999 20800 25070 83898 12929 London, England Heathrow Airport
18DEC1999 20800 32700 72747 43878 London, England Heathrow Airport
19DEC1999 20800 27250 70092 8234 London, England Heathrow Airport
20DEC1999 17600 30520 65844 111525 London, England Heathrow Airport
21DEC1999 22400 32700 75933 94333 London, England Heathrow Airport

continued...

1-4 Chapter 1 Introduction

5

General Business Scenario
creating random samples to use for various analyses
creating indexes for quick retrieval of subsets
updating a master table with a transaction table
performing table lookups
sorting data sets
accessing current data in frequently changing files

continued...

6

General Business Scenario
Perform these tasks as efficiently as possible, and
optimize the following:

I/O
CPU
memory
data storage space

 1.2 Measuring Efficiencies 1-5

1.2 Measuring Efficiencies

8

Objectives
Identify the resources used by a SAS program.
Use SAS system options to measure computer
resources.
Interpret resource usage statistics in your operating
environment.
Benchmark resource usage.

9

Running a SAS Program
What resources are required
to run a SAS program?
The programmer must perform
the following tasks:

write the program
execute the program
maintain the program

1-6 Chapter 1 Introduction

10

Running a SAS Program
The computer must perform the following actions:

load the required SAS software components
and the program into memory
compile the program
locate data required by the program
execute the program
store output data files
store printed reports

 1.2 Measuring Efficiencies 1-7

11

What Resources Are Used?

programmer
time

networking

CPU time

I/O

memory

data storage
space

resources used

CPU measures the amount of time that the Central Processing Unit uses to perform
requested tasks such as calculations, reading and writing data, conditional and
iterative logic, and so on.

I/O provides a measurement of the read-and-write operations performed as data and
programs are moved from a storage device to memory (input) or from memory to a
storage or display device (output).

Memory is the size of the work area required to hold executable program modules, data, and
buffers.

Data storage space is the amount of space on a disk or tape required to store data.

Programmer time is the amount of time required for the programmer to write and maintain the
program. This can be decreased through well documented, logical programming
practices.

Networking is the amount of time required to transfer data across your computer network. This
can be decreased by performing as much of the subsetting and summarizing as
possible on the remote computer before transferring the data to the local computer.
The networking time is dependent on the bandwidth of your I/O controller.

1-8 Chapter 1 Introduction

12 ...

Understanding Efficiency Trade-offs
When you decrease the use
of one resource, the use of
another resource frequently
increases.

Free!

13

Understanding Efficiency Trade-offs

Space

Data Data

12

6

39

CPU Time

12

6

39

often
im

plies

 1.2 Measuring Efficiencies 1-9

14

Understanding Efficiency Trade-offs

I/O

Memory Usage

often
im

plies

15

Deciding What Is Important for Efficiency

You must decide which factors are the most important for improving resource usage at your site. To make
this decision, you must know the following:
• which resources are scarce or costly at your site
• how and when your programs will be used
• the type and volume of data your programs will process

1-10 Chapter 1 Introduction

16

hardware

operating environment

SAS
environment

system load

Understanding Efficiency at Your Site

Environmental factors that affect the efficiency of SAS programs include the following:

Hardware the amount of available memory, the number of peripheral devices attached to
the CPU, and the communications hardware in use

Operating environment resource allocation, scheduling algorithms, and I/O methods

System load the number of users or jobs sharing system resources including network
bandwidth along with the traffic.

SAS environment determined by which SAS software products are installed, how they were
installed, and which methods are available to run SAS programs at your site

In most cases, one or two resources are the most limited or most expensive for your programs. You can
usually decrease the amount of critical resources that are used if you are willing to sacrifice some
efficiency of the resources that are less critical at your site.

 1.2 Measuring Efficiencies 1-11

17

Knowing How Your Program Will Be Used
The importance of efficiency increases with the following:

the size of the program or the files being processed
the number of times the program will be executed

• Developing an efficient program requires time and thought. The first question to address is whether the

additional amount of resources saved is worth the time and effort spent to achieve the savings.
• Consider the size of the program or the files that are processed. As the programs or files increase in

size, the potential for savings increases. Therefore, devote your effort to improve the efficiency of large
programs.

• Also consider the number of times the program will run. The difference in the resources used by an
inefficient program and an efficient program that run one time or a few times is relatively small,
whereas the cumulative difference for a program that is run frequently is large.

1-12 Chapter 1 Introduction

18

Knowing Your Data

The effectiveness of any efficiency technique depends greatly on the data with which you use it. When
you know the characteristics of your data, you can select the techniques that take advantage of those
characteristics.

19

Considering Trade-Offs
In this class, each task will be performed using one or
more techniques.
You should benchmark with your own data to determine
which technique is the most efficient.

 1.2 Measuring Efficiencies 1-13

20

Deciding Which Technique Is Most Efficient
To decide which technique is
most efficient for a given task,
benchmark, or measure and
compare, the resource usage
of each technique.

21 ...

Running Benchmarks: Guidelines
To benchmark your programming techniques, do the
following:

Turn on the appropriate options to report resource
usage.
Test each technique in a separate SAS session.
Test only one technique or change at a time, with as
little additional code present as possible.

continued...

1-14 Chapter 1 Introduction

22 ...

Running Benchmarks: Guidelines
Run your tests and use the conditions that your final
program will use (for example, batch execution, large
data sets, and so on).
Turn off the options that report resource usage after
testing is finished, because they consume resources.
Run each program several times and base your
conclusions on averages, not on an individual
execution, if you are benchmarking elapsed time.
Average resource usage data only if the results are in
the same ballpark. Do not average very diverse
resource usages because that data might lead you to
tune your program to run less efficiently.

 1.2 Measuring Efficiencies 1-15

23

Tracking Resource Usage

STATS

STIMER

FULLSTIMER

MEMRPTSAS
options

There are four SAS system options that you can use to track and report on resource utilization:

STIMER tracks the CPU time used to perform a task (DATA or PROC step). CPU time can be
divided into System CPU time and User CPU time.

MEMRPT tracks memory used while performing a task.

FULLSTIMER tracks usage of additional resources. This option is ignored unless STIMER or
MEMRPT is in effect. It can also be specified by the alias FULLSTATS.

STATS writes information tracked by the above options to the SAS log.

 The availability and usage of these options are specific to the operating environment.

Syntax (default listed first):

OPTIONS NOFULLSTIMER | FULLSTIMER;

OPTIONS STIMER | NOSTIMER;

OPTIONS STATS | NOSTATS;

OPTIONS MEMRPT | NOMEMRPT;

1-16 Chapter 1 Introduction

24

Tracking Resources with SAS Options
 z/OS Windows UNIX

STIMER I B D B D

MEMRPT B D N/A N/A

FULLSTIMER B B B

STATS B D N/A N/A

I Invocation option only

B Can be set at invocation or by using an OPTIONS statement

N/A Not available (The functionality is part of the STIMER option under UNIX and Windows.)

D Default

 Use the OPTIONS procedure with the HOST option to determine the default settings of these
options at your site.

proc options host;
run;

You can find more information on operating environment dependencies in the SAS documentation for
your operating environment.

 1.2 Measuring Efficiencies 1-17

25

Tracking SAS/ACCESS Resources (Self-Study)
In addition to the traditional four SAS system options for
tracking resource usage, the SASTRACE= system option
is a powerful tool to use when you want to see the
commands that are sent to your database management
system (DBMS) by the SAS/ACCESS engine.
SASTRACE= output is DBMS-specific.
General form of the SASTRACE= system option:

OPTIONS SASTRACE = ',,,d ' | ',,t, ' | ',,t,s ';OPTIONS SASTRACE = ',,,d ' | ',,t, ' | ',,t,s ';

Notice the use of the commas as placeholders.

Selected values for SASTRACE= are shown below:

',,,d' specifies that all SQL statements sent to the DBMS are sent to the log.
',,t,' specifies that all threading information is sent to the log.

',,t,s' specifies that all threading information and a summary of timing information for calls made to the
DBMS are sent to the log.

The following details can help you manage SASTRACE= output in your DBMS:
• When using SASTRACE= on PC platforms, you must also specify the following option:

sastraceloc = stdout | saslog

• In order to turn SAS tracing off, you can specify the following option:
options sastrace=off;

• Log output is much easier to read if you specify nostsuffix.

1-18 Chapter 1 Introduction

26

Tracking SAS/ACCESS Resources (Self-Study)
7 options ls = 64 sastrace = ',,,d' sastraceloc = saslog

nostsuffix;

9 proc print data = oralib.flightdelays;
10 where destination = 'CPH';
11 title 'Flights to Copenhagen';
12 run;

ORACLE_2: Prepared:
SELECT "DESTINATION", "FLIGHTNUMBER", "FLIGHTDATE", "ORIGIN",
"DELAYCATEGORY", "DESTINATIONTYPE", "DAYOFWEEK", "DELAY" FROM
educ.FLIGHTDELAYS WHERE ("DESTINATION" = 'CPH')

ORACLE_3: Executed:
SELECT statement ORACLE_2

NOTE: There were 27 observations read from the data set
ORALIB.FLIGHTDELAYS.
WHERE destination='CPH';

NOTE: PROCEDURE PRINT used (Total process time):
real time 0.58 seconds
cpu time 0.07 seconds

c01s2d1

The following code was used to generate this output:
/* Using a WHERE statement to subset an Oracle table. */

libname oralib oracle user = edu001 pw = xxxxxx
 path = dbmssrv schema = educ;

/* Use SASTRACE= and SASTRACELOC= to write the */
/* generated Oracle SQL statements to the log. */
options ls = 64 sastrace = ',,,d' sastraceloc = saslog
 nostsuffix;

/* Subset for Copenhagen destination */
proc print data = oralib.flightdelays;
 where destination = 'CPH';
 title 'Flights to Copenhagen';
run;

 1.3 SAS Processing 1-19

1.3 SAS Processing

28

Objectives
Investigate the concept of a data set page and
how it relates to the structure of SAS data sets.
Review how SAS reads and writes data.

29

SAS Data Set Pages
A SAS data set page has the following attributes:

is the unit of data transfer between the operating
system buffers and SAS buffers in memory
includes the number of bytes used by the descriptor
portion, the data values, and the overhead
is fixed in size when the data set is created, either to a
default value or to a value specified by the
programmer

1-20 Chapter 1 Introduction

30

Using PROC CONTENTS to Report Page Size

Partial Output

proc contents data = ia.sales;
run;

c01s3d1

Engine/Host Dependent Information

Data Set Page Size 16384
Number of Data Set Pages 3396
First Data Page 1
Max Obs per Page 97
Obs in First Data Page 76
Index File Page Size 4096
Number of Index File Pages 2552
Number of Data Set Repairs 0
File Name sales.sas7bdat
Release Created 9.0101M3
Host Created XP_PRO

The total number of bytes occupied by ia.sales can be calculated as shown below:

(16,384 * 3,396) + (4,096 * 2,552) = 66,093,056 bytes

 The data set ia.sales used for demonstrations and exercises contains fewer observations than
the data set ia.sales used for the course notes.

 1.3 SAS Processing 1-21

33 ...

Reading External Files

Buffers
Input
Raw
Data

memory

I/O
measured

here

Caches

Data might be
cached in
storage devices.
On UNIX and
Windows, data
might also be
cached by the
file system.

37 ...

Reading External Files

PDV

Input Buffer

I/O
measured

here

Output
SAS
Data

ID Flight Route Dest

Input
Raw
Data

I/O
measured

here

Buffers

Buffers

memory
Data is converted

from external
format to

SAS format.

Caches

• The Input Buffer contains one record of raw data.
• The PDV contains one observation of SAS data.

1-22 Chapter 1 Introduction

38 ...

Reading SAS Data Sets

Input
SAS
Data

Buffers

memory

I/O
measured

here

Caches

Data might be
cached in
storage devices.
On UNIX and
Windows, data
might also be
cached by the
file system.

41 ...

Reading SAS Data Sets

PDV
ID Flight Route Dest

I/O
measured

here

Output
SAS
Data

Input
SAS
Data

I/O
measured

here

Buffers

Buffers

memory

No data
conversion

is necessary.

Caches

 1.4 Controlling Memory and I/O Resources 1-23

1.4 Controlling Memory and I/O Resources

43

Objectives
Change the page size of a SAS data set.
Use system and data set options to control memory
usage.
Use the SASFILE statement when you read small
SAS data sets.
Use the Scatter/Gather I/O feature in the Windows
operating environment.

1-24 Chapter 1 Introduction

44

Controlling Page Size and Memory Usage
You can use the BUFSIZE= system option or data set
option to control the page size of an output SAS data
set.
You can use the BUFNO= system option or data set
option to control the number of SAS buffers open
simultaneously in memory.

BUFSIZE= n | nK | nM | nG | nT | hexX | MIN | MAXBUFSIZE= n | nK | nM | nG | nT | hexX | MIN | MAX

BUFNO= nBUFNO= n

Increasing the BUFSIZE= option is useful for SAS data sets that are read sequentially (top to bottom).
Using small BUFSIZE= and larger BUFNO= options is useful for SAS data sets that are read randomly.
Random access to SAS data is discussed in Chapter 2.

Reference Information

BUFSIZE=n| nK | nM | nG | nT |hexX | MIN | MAX

n | nK | nM | nG | nT
specifies the page size in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576 (megabytes);
1,073,741,824 (gigabytes); or 1,099,511,627,776 (terabytes). For example, a value of 8 specifies 8
bytes, and a value of 3m specifies 3,145,728 bytes.
The default is 0, which causes SAS to use the minimum optimal page size for the operating
environment.

hexX
specifies the page size as a hexadecimal value. You must specify the value beginning with a number
(0-9), followed by an X. For example, the value 2dx sets the page size to 45 bytes.

MIN
sets the page size to the smallest possible number in your operating environment, down to the
smallest four-byte, signed integer, which is -231-1, or approximately -2 billion bytes.
CAUTION: This setting might cause unexpected results and should be avoided.

Use BUFSIZE=0 in order to reset the buffer page size to the default value in your operating environment.

MAX
sets the page size to the maximum possible number in your operating environment, up to the largest
four-byte, signed integer, which is 231-1, or approximately 2 billion bytes.

Administrator
高亮

Administrator
高亮

 1.4 Controlling Memory and I/O Resources 1-25

Windows:
n | nK | nM | nG

specifies the buffer page size in multiples of 1; 1,024 (kilobytes); 1,048,576 (megabytes), and
1,073,741,824 (gigabytes), respectively. You can specify decimal values for the number of
kilobytes, megabytes, or gigabytes. For example, a value of 8 specifies 8 bytes, a value of .782k
specifies 801 bytes, and a value of 3m specifies 3,145,728 bytes.

hexX
specifies the buffer page size as a hexadecimal value. You must specify the value beginning with a
number (0-9), followed by an X. For example, the value 2dx sets the buffer page size to 45 bytes.

MIN
sets the buffer page size to -2,147,483,648 and requires SAS to use a default value. Under
Windows, the default value is 0. The minimum number is -2,147,483,648.

MAX
sets the buffer page size to 2,147,483,647 bytes.

UNIX:

n | nK | nM | nG

specifies the buffer page size in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576 (megabytes); or
1,073,741,824 (gigabytes). You can specify decimal values for the number of kilobytes, megabytes,
or gigabytes. For example, a value of 8 specifies 8 bytes, a value of .782k specifies 801 bytes, and a
value of 3m specifies 3,145,728 bytes.

hexX

specifies the buffer page size as a hexadecimal value. You must specify the value beginning with a
number (0-9), followed by hex digits (0-9, A-F), and then followed by an X. For example, 2dx sets
the buffer page size to 45 bytes.

MIN

sets the buffer page size to 0. When the buffer size is 0, the BASE engine calculates a buffer size to
optimize CPU and I/O use. This size is the smallest multiple of 8K that can hold 80 observations but
is not larger than 64K.

MAX

sets the buffer page size to 2,147,483,647.

1-26 Chapter 1 Introduction

Reference Information

z/OS:

BUFSIZE=0 | n | nK

0

specifies that SAS choose the optimal page size of the data set based on the characteristics of the
library and the type of data set.

n | nK

specifies the permanent buffer size (page size) in bytes or kilobytes, respectively. For libraries other
than HFS, the value specified will be rounded up to the block size (BLKSIZE) of the library data
set, because a block is the smallest unit of a data set that may be transferred in a single I/O
operation.

Windows and Unix:

BUFNO= MIN | MAX | n| nK | nM | nG | nT | hex

Windows:

n | nK | nM | nG

specifies the number of buffers in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576 (megabytes);
or 1,073,741,824 (gigabytes). You can specify decimal values for the number of kilobytes,
megabytes, or gigabytes. For example, a value of 8 specifies 8 buffers, a value of .782k specifies
801 buffers, and a value of 3m specifies 3,145,728 buffers.

For values greater than 1G, use the nM option or specify MAX.

hexX

specifies the number of buffers as a hexadecimal value. You must specify the value beginning with
a number (0-9), followed by an X. For example, the value 2dx specifies 45 buffers.

MIN

sets the number of buffers to 0, and requires SAS to use the default value of 1.

MAX

sets the number of buffers to 2,147,483,647.

 1.4 Controlling Memory and I/O Resources 1-27

UNIX:

n | nK | nM | nG

specifies the number of buffers in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576 (megabytes);
or 1,073,741,824 (gigabytes). You can specify decimal values for the number of kilobytes,
megabytes, or gigabytes. For example, a value of 8 specifies 8 buffers, a value of .782k specifies
801 buffers, and a value of 3m specifies 3,145,728 buffers.

hexX

specifies the number of buffers as a hexadecimal value. You must specify the value beginning with
a number (0-9), followed by hex digits (0-9, A-F), and then followed by an X. For example, 2dx
specifies 45 buffers.

MIN

sets the number of buffers to 0, and requires SAS to use the default value of 1.

MAX

sets the number of buffers to 2,147,483,647.

 For more information, consult SAS OnlineDoc 9.1.3. Expand Base SAS, and select SAS
Language Reference: Dictionary and Operating Environment Specific Information.

1-28 Chapter 1 Introduction

45 ...

Controlling Page Size and Memory Usage
The product of BUFNO= and BUFSIZE= determines how
much data can be transferred in a read operation.

Increasing either BUFSIZE= or BUFNO=
increases the amount of data that can be
transferred in a read operation.

12,28826144

Bytes
transferred
in one I/O

BUFNOBUFSIZE

46

Controlling Page Size
In order to select a default page size, SAS software uses
an algorithm based on observation length, engine, and
operating environment.
You can use the BUFSIZE= system or data set option
to override the default page size.
BUFSIZE= specifies not only the page size (in bytes),
but also the size of each buffer used to read or write the
SAS data set.

data ia.times(bufsize = 30720);
infile rtetimes;
input @1 RouteID $7.

@8 Origin $3.
@11 Dest $3.
@14 Distance 8.
@24 Depart time5.
@32 Arrival time5.;

run;
c01s4d1

 1.4 Controlling Memory and I/O Resources 1-29

47

Controlling Page Size

...

one
operation Buffer

SAS buffers

Page
of

data

Operating
system buffers

6144 bytes 6144 bytes

48

Controlling Page Size

Copy
of

data

Page
of

data

Operating
system buffers

6144 bytes

SAS buffers

6144 bytes

1-30 Chapter 1 Introduction

49

Controlling Page Size
After it is specified, page size is a permanent attribute of
the data set, and is used whenever the data set is
processed.
Choosing a page size that is larger than the default can
reduce execution time by reducing the number of times
that SAS must read from or write to the operating system
buffers.
The reduction in I/O comes at the cost of increased
memory consumption.

50

Controlling Memory Usage

Page 2
Page 1

Page 3

databufno = 3

current SAS session

 1.4 Controlling Memory and I/O Resources 1-31

51

Controlling Memory Usage
The buffer number is not a permanent attribute of the data
set and is valid only for the current step or SAS session.
As more buffers are available, more pages can be
transferred in a single move operation.
The reduction in number of moves comes at the cost of
increased memory consumption.

data _null_;
set ia.times(bufno = 2);

run;

c01s4d2

52

SASFILE Global Statement
The SASFILE statement requests that a SAS data set
be opened and loaded into SAS memory in its entirety
instead of a few pages at a time.
After it is read, data is held in memory for subsequent
DATA and PROC steps to process.
A second SASFILE statement closes the file and frees
the SAS buffers.

The SASFILE statement can reduce execution time by taking advantage of large amounts of memory. The
SASFILE statement became available in SAS Release 8.1.

1-32 Chapter 1 Introduction

53

SASFILE Global Statement
General form of the SASFILE statement:

SASFILE <libref.>member-name
<(password-data-set-option(s))>
OPEN | LOAD | CLOSE;

SASFILE <libref.>member-name
<(password-data-set-option(s))>
OPEN | LOAD | CLOSE;

OPEN opens the file and allocates the buffers, but defers reading the data into memory until a
procedure or a statement that references the file is executed.

LOAD opens the file, allocates the buffers, and reads the data into memory.

CLOSE frees the buffers and closes the file.

54

Buffer Allocation
When the SASFILE statement executes, SAS allocates
the number of buffers based on the number of pages of
the SAS data set and index file.
If the file in memory increases in size during processing
by editing or appending data, the number of buffers also
increases.

 1.4 Controlling Memory and I/O Resources 1-33

55

Using the SASFILE Statement
Create reports using the PRINT, TABULATE, MEANS,
and FREQUENCY procedures against a single
SAS data set.

„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
‚ ‚ Employee Salary ‚
‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚ ‚ Mean ‚ Median ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Job Code ‚ ‚ ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚
‚FLTAT1 ‚ 29594.12‚ 29000.00‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚FLTAT2 ‚ 30691.63‚ 31000.00‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

The MEANS Procedure

Analysis Variable : Salary Employee Salary

Job N
Code Obs N Mean Std Dev Minimum Maximum
ƒƒ
FLTAT1 170 170 29594.12 7982.60 16000.00 45000.00

FLTAT2 227 227 30691.63 8848.88 16000.00 45000.00
ƒƒ

Job
LastName FirstName Code Location Country

FORT THERESA L. FLTAT2 CARY USA
FISHER ALEC FLTAT2 CARY USA
WILLIAMS ARLENE M. FLTAT1 CARY USA
GOODYEAR GEORGIA FLTAT1 CARY USA
CHASE JR. MARJORIE J. FLTAT1 CARY USA

The FREQ Procedure

Job Code

Job Cumulative Cumulative
Code Frequency Percent Frequency Percent
ƒƒƒ
FLTAT1 170 42.82 170 42.8
FLTAT2 227 57.18 397 100.00

Cumulative Cumulative
Gender Frequency Percent Frequency Percent
ƒƒƒ
F 211 53.15 211 53.15
M 186 46.85 397 100.00

56

sasfile ia.fltaten load;
proc print data = ia.fltaten;

var LastName FirstName JobCode
Country Location;

sum Salary;
run;
proc tabulate data = ia.fltaten;

class Gender;
var Salary;
table Gender, Salary*(mean median);

run;
proc means data = ia.fltaten;

var Salary;
class Gender;
output out = summary sum =;

run;
proc freq data = ia.fltaten;

tables JobCode Gender;
run;
sasfile ia.fltaten close;

Using the SASFILE Statement

c01s4d3

ia.fltaten is
read into memory
only once instead
of four times. This
results in one-
fourth as many I/O
operations,
increased memory
usage, and
probably reduced
elapsed time.

The SASFILE statement is good for small SAS data sets.

1-34 Chapter 1 Introduction

57

Using the SGIO System Option in Windows
(Self-Study)
The SGIO system option performs the following functions:

activates the Scatter-Read/Gather-Write I/O feature
improves I/O performance for SAS I/O files when the
PC has a large amount of RAM

General form of the SGIO system option:

NOSGIO | SGIO; NOSGIO | SGIO;

NOSGIO | SGIO is an invocation option.

The default value is NOSGIO.
• With SAS I/O files (data sets, catalogs, indexes, utility files, and so on), normal sequential reads and

writes go through the Windows File Cache.
• The Windows File Cache provides a great benefit in most cases, but for large SAS I/O files, Scatter-

Read or Gather-Write usually improves performance.

 Scatter-Read/Gather-Write is available in Windows 2000 and Windows XP.

For Windows NT users, you must install Service Pack 4.

 1.4 Controlling Memory and I/O Resources 1-35

58

Using the SGIO System Option in Windows
(Self-Study)
When SGIO is active, SAS does the following:

uses the number of buffers that are specified by the
BUFNO= system option to transfer data between disk
and RAM
bypasses intermediate buffer transfers when reading
or writing data
reads ahead the number of pages specified by the
BUFNO= system option and places the data in
memory before it is needed

When the data is needed, it is already in memory and is,
in effect, a direct memory access.

Try different values of the BUFNO system option
to tune each SAS job or DATA step.

The Scatter-Read/Gather-Write feature is active only for SAS I/O files that have the following attributes:
• contain a 4K-multiple pagesize (for example, 4096 or 8192) on 32-bit systems
• contain a 8K-multiple pagesize (for example, 8192 or 16384) on 64-bit systems

If an I/O file does not meet these criteria, SGIO is inactive for that file even though the SGIO option is
specified.

To learn more, visit this page: http://support.sas.com/techsup/technote/ts710.html.

1-36 Chapter 1 Introduction

Exercises

1. Recording Resource Statistics

a. Open the program, c01ex1Start, and add the appropriate OPTIONS statement to report the
following statistics. Record your results.

1) CPU

2) I/O

3) Memory

b. Turn off the option after you record the statistics.

2. Using the SASFILE Statement

Open the program, c01ex2Start, and add the appropriate statement(s) to open and load the entire data
set ia.UK_fltat into memory. At the end of the program, close the data set.

 1.5 Solutions to Exercises 1-37

1.5 Solutions to Exercises

1. Recording Resource Statistics

a. Open the program, c01ex1Start, and add the appropriate OPTIONS statement to report the
following statistics. Record your results.

 Each student's results will vary depending on the individual PC.

1) CPU

2) I/O

3) Memory

options fullstimer;

filename rawdata 'saledata.dat';

data sales(keep = FlightID Num1st
 NumBus NumEcon NumPassTotal);
 infile rawdata;
 input FlightID $7. RouteID $7.
 Origin $3. Dest $3.
 DestType $13. FltDate date9.
 Cap1st 8. CapBus 8.
 CapEcon 8. CapPassTotal 8.
 CapCargo 8. Num1st 8.
 NumBus 8. NumEcon 8.
 NumPassTotal 8. Rev1st 8.
 RevBus 8. RevEcon 8.
 CargoRev 8. RevTotal 8.
 CargoWeight 8.;
run;

options nofullstimer;

b. Turn off the option after you record the statistics.

1-38 Chapter 1 Introduction

2. Using the SASFILE Statement

Open the program, c01ex2Start, and add the appropriate statement(s) to open and load the entire data
set ia.UK_fltat into memory. At the end of the program, close the data set.

sasfile ia.uk_fltat load;

proc print data = ia.uk_fltat;
run;

proc means data = ia.uk_fltat;
 var Salary;
run;

proc freq data = ia.uk_fltat;
 tables JobCode Gender;
run;

proc tabulate data = ia.uk_fltat;
 class Gender JobCode;
 var Salary;
 tables JobCode,Gender*Salary*(Mean Median);
run;

sasfile ia.uk_fltat close;

Chapter 2 Accessing Observations

2.1 Introduction...2-3

2.2 Creating a Sample Data Set ...2-7

2.3 Creating and Using an Index ...2-36

2.4 Solutions to Exercises ...2-71

2-2 Chapter 2 Accessing Observations

 2.1 Introduction 2-3

2.1 Introduction

3

Objectives
Review sequential processing.
Investigate methods for direct access.

4 ...

Reading SAS Data Sets (Default)

memory

SAS
Data
Set

2-4 Chapter 2 Accessing Observations

6 ...

Reading SAS Data Sets (Default)

memory

PDV
ID Flight Route Dest

Buffers
Output

SAS
Data

SAS
Data
Set

7 ...

Reading SAS Data Sets (Default)

memory

PDV
ID Flight Route Dest

Buffers
Output

SAS
Data

SAS
Data
Set

 2.1 Introduction 2-5

8 ...

Reading SAS Data Sets (Default)

memory

PDV
ID Flight Route Dest

Buffers
Output

SAS
Data

SAS
Data
Set

9 ...

Reading SAS Data Sets (Default)

memory

PDV
ID Flight Route Dest

Buffers
Output

SAS
Data

Sequential processing continues
until the pointer

reaches the end of file.

SAS
Data
Set

2-6 Chapter 2 Accessing Observations

10

Using Direct Access Methods
To change the default sequentially processing, you can
use direct access methods.

creating a subset of
data with a WHERE
clause

creating a sample of
data from a SAS data
set

Possible use:

Locates an observation
by variable value(s)

Indexing

Locates an observation
by observation number

POINT= SET
statement option

How does it work?Method:

 2.2 Creating a Sample Data Set 2-7

2.2 Creating a Sample Data Set

12

Objectives
Create a systematic sample that contains five
observations.
Create a systematic sample that contains an unknown
number of observations.
Create a random sample with replacement.
Create a random sample without replacement.

13

Cap Num
Flight Pass Num Num Pass
ID RouteID Origin Dest DestType FltDate Cap1st CapBus CapEcon Total CapCargo Num1st Bus Econ Total

IA10700 0000107 WLG AKL International 01JAN2005 12 . 138 150 36900 11 . 126 137
IA10701 0000107 WLG AKL International 01JAN2005 12 . 138 150 36900 12 . 136 148
IA10702 0000107 WLG AKL International 01JAN2005 12 . 138 150 36900 10 . 112 122
IA10703 0000107 WLG AKL International 01JAN2005 12 . 138 150 36900 12 . 113 125
IA10704 0000107 WLG AKL International 01JAN2005 12 . 138 150 36900 10 . 118 128
IA10705 0000107 WLG AKL International 01JAN2005 12 . 138 150 36900 11 . 117 128
IA10700 0000107 WLG AKL International 02JAN2005 12 . 138 150 36900 10 . 131 141
IA10701 0000107 WLG AKL International 02JAN2005 12 . 138 150 36900 11 . 113 124
IA10702 0000107 WLG AKL International 02JAN2005 12 . 138 150 36900 10 . 134 144
IA10703 0000107 WLG AKL International 02JAN2005 12 . 138 150 36900 11 . 114 125
IA10704 0000107 WLG AKL International 02JAN2005 12 . 138 150 36900 11 . 128 139
IA10705 0000107 WLG AKL International 02JAN2005 12 . 138 150 36900 12 . 131 143
IA10700 0000107 WLG AKL International 03JAN2005 12 . 138 150 36900 10 . 124 134
IA10701 0000107 WLG AKL International 03JAN2005 12 . 138 150 36900 12 . 135 147
IA10702 0000107 WLG AKL International 03JAN2005 12 . 138 150 36900 12 . 127 139

International Airlines (IA) is concerned with the accuracy
of the data in ia.sales that contains revenue figures
for 2004 and 2005. The size of the data set makes
auditing all of the data difficult. IA first wants to audit a
small sample to determine if a full audit is necessary.

Selecting Observations

...

Partial Output

 The data set ia.sales used for demonstrations and exercises contains fewer observations than
the data set ia.sales used for the course notes.

2-8 Chapter 2 Accessing Observations

14

Select a five-observation subset by reading every
hundredth observation from observation number 100
to observation number 500.

c02s2d1

Creating a Systematic Sample

data work.subset;
do PickIt = 100 to 500 by 100; X

set ia.sales
point = PickIt; Y

output; Z
end;
stop; [

run;

 The DO loop assigns a value to the variable PickIt.

 PickIt is used by the POINT= option to select an observation from the SAS data set.

 The OUTPUT statement writes the PDV values to the SAS data set.

 The STOP statement stops the DATA step from continuing to execute after the five observations are
selected. Without a STOP statement, the DATA step continues in an infinite loop

 2.2 Creating a Sample Data Set 2-9

15

Using the POINT= Option
To create a sample, use the POINT= option in the
SET statement.
General form of the POINT= option:

The point-variable has the following attributes:
names a temporary numeric variable that contains the
observation number of the observation to read
must be given a value before the execution of the
SET statement
must be a variable (for example, X) and not a constant
value (for example, 12)

SET data-set-name POINT = point-variable;SET data-set-name POINT = point-variable;

...

The POINT= option value should be an integer greater than zero and less than or equal to the number of
observations in the SAS data set. If the value is not integral, the SET statement effectively applies the
FLOOR function to the value.

17

Using the STOP Statement
The POINT= option has the following features:

uses direct-access read mode
does not detect the end-of-file

To prevent the DATA step from looping continuously, use
the STOP statement.
General form of the STOP statement:

STOP;STOP;

2-10 Chapter 2 Accessing Observations

c02s2d1
data work.subset;
 do PickIt = 100 to 500 by 100;
 set ia.sales
 point = PickIt;
 output;
 end;
 stop;
run;

The PROC PRINT output of work.subset is shown below.
Creating a Systematic Sample of 5 Observations

 Flight
Obs ID RouteID Origin Dest DestType FltDate Cap1st CapBus

 1 IA09200 0000092 CCU DEL International 01JAN2004 12 .
 2 IA02501 0000025 RDU IND Domestic 01JAN2004 12 .
 3 IA01101 0000011 RDU ORD Domestic 01JAN2004 12 .
 4 IA04203 0000042 PWM RDU Domestic 01JAN2004 12 .
 5 IA04901 0000049 LHR BRU International 02JAN2004 14 .

 Cap Num
 Pass Num Num Pass
Obs CapEcon Total CapCargo Num1st Bus Econ Total Rev1st RevBus

 1 138 150 36900 10 . 110 120 $3,360.00 .
 2 138 150 36900 12 . 134 146 $2,472.00 .
 3 138 150 36900 11 . 126 137 $2,915.00 .
 4 138 150 36900 10 . 116 126 $2,890.00 .
 5 125 139 39700 12 . 124 136 $1,020.00 .

 Cargo
Obs RevEcon CargoRev RevTotal Weight

 1 $12,210.00 $6,708.00 $22,278 12900
 2 $9,112.00 $2,464.00 $14,048 7700
 3 $11,088.00 $3,895.00 $17,898 9500
 4 $11,136.00 $5,148.00 $19,174 11700
 5 $3,472.00 $1,625.00 $6,117 12500

 The data set ia.sales used for demonstrations and exercises contains fewer observations than
the data set ia.sales used for the course notes.

 2.2 Creating a Sample Data Set 2-11

18

You must select a subset by reading every hundredth
observation from observation number 100 to the end
of the SAS data set.

data work.subset;
do PickIt = 100 to TotObs by 100; Y

set ia.sales point = PickIt
nobs = TotObs; X

output;
end;
stop;

run;

Using the Number of Observations

c02s2d2

 The NOBS= option creates a temporary variable that contains the total number of observations in the
input data files. During compilation, SAS reads the descriptor portion of the data file and assigns the
value of the NOBS= variable.

 The total includes deleted observations. Rebuild the data set to remove deleted observations.

 You can refer to the NOBS= variable in executable statements that appear before the SET statement.

2-12 Chapter 2 Accessing Observations

19

You can use the NOBS= option in the SET statement
to determine how many observations there are in a
SAS data set.
General form of the SET statement:

The NOBS= option creates a temporary variable whose
value has the following characteristics:

is the number of observations in the input data set(s)
assigned during compilation
retained
should not be modified during execution

SET SAS-data-set NOBS = variable;SET SAS-data-set NOBS = variable;

Using the Number of Observations

20

Compilation data work.subset;
do PickIt = 100 to TotObs by 100;

set ia.sales point = PickIt
nobs = TotObs;

output;
end;
stop;

run;

c02s2d2
...

PickIt
D

 2.2 Creating a Sample Data Set 2-13

21

data work.subset;
do PickIt = 100 to TotObs by 100;

set ia.sales point = PickIt
nobs = TotObs;

output;
end;
stop;

run;

Compilation

...

PickIt TotObs
D D

22

data work.subset;
do PickIt = 100 to TotObs by 100;

set ia.sales point = PickIt
nobs = TotObs;

output;
end;
stop;

run;

Compilation

329264

PickIt TotObs

...

OriginRouteIDFlightID . . .

Rev1st RevBus RevTotal CargoWtRevEcon CargoRev

D D

 The data set ia.sales used for demonstrations and exercises contains fewer observations than
the data set ia.sales used for the course notes.

2-14 Chapter 2 Accessing Observations

24

Execution data work.subset;
do PickIt = 100 to TotObs by 100;

set ia.sales point = PickIt
nobs = TotObs;

output;
end;
stop;

run;

...

PickIt TotObs OriginRouteIDFlightID . . .

Rev1st RevBus RevTotal CargoWtRevEcon CargoRev

329264100 IA10703 0000107 WLG

1524.00 4956.00. 2180.00 8660.00 10900.00

D D

25

Execution data work.subset;
do PickIt = 100 to TotObs by 100;

set ia.sales point = PickIt
nobs = TotObs;

output;
end;
stop;

run; Explicit Output

...

PickIt TotObs OriginRouteIDFlightID . . .

Rev1st RevBus RevTotal CargoWtRevEcon CargoRev

329264 IA10703 0000107 WLG

1524.00 4956.00. 2180.00 8660.00 10900.00

100

D D

 2.2 Creating a Sample Data Set 2-15

26

Execution data work.subset;
do PickIt = 100 to TotObs by 100;

set ia.sales point = PickIt
nobs = TotObs;

output;
end;
stop;

run;
PickIt =

200

...

PickIt TotObs OriginRouteIDFlightID . . .

Rev1st RevBus RevTotal CargoWtRevEcon CargoRev

329264 IA10703 0000107 WLG

1524.00 4956.00 2180.00 8660.00 10900.00

200

.

D D

28

data work.subset;
do PickIt = 100 to TotObs by 100;

set ia.sales point = PickIt
nobs = TotObs;

output;
end;
stop;

run; Explicit Output

Execution

...

PickIt TotObs OriginRouteIDFlightID . . .

Rev1st RevBus RevTotal CargoWtRevEcon CargoRev

329264

.

IA10701 0000107 WLG

1270.00 5796.00 1460.00 8526.00 7300.00

200

D D

2-16 Chapter 2 Accessing Observations

30

data work.subset;
do PickIt = 100 to TotObs by 100;

set ia.sales point = PickIt
nobs = TotObs;

output;
end;
stop;

run;

PickIt >
TotObs

Execution

...

PickIt TotObs OriginRouteIDFlightID . . .

Rev1st RevBus RevTotal CargoWtRevEcon CargoRev

329264

.

IA10801 0000108 AKL

1524.00 4998.00 2140.00 8662.00 10700.00

329300

D D

31

Execution data work.subset;
do PickIt = 100 to TotObs by 100;

set ia.sales point = PickIt
nobs = TotObs;

output;
end;
stop;

run;

...

PickIt TotObs OriginRouteIDFlightID . . .

Rev1st RevBus RevTotal CargoWtRevEcon CargoRev

329264

.

IA10801 0000108 AKL

1524.00 4998.00 2140.00 8662.00 10700.00

329300

D D

 2.2 Creating a Sample Data Set 2-17

32

Execution data work.subset;
do PickIt = 100 to TotObs by 100;

set ia.sales point = PickIt
nobs = TotObs;

output;
end;
stop;

run;

Execution
STOPS

c02s2d2

PickIt TotObs OriginRouteIDFlightID . . .

Rev1st RevBus RevTotal CargoWtRevEcon CargoRev

329264

.

IA10801 0000108 AKL

1524.00 4998.00 2140.00 8662.00 10700.00

329300

D D

2-18 Chapter 2 Accessing Observations

Partial PROC PRINT Output of work.subset
A Systematic Sample of Fares

 Flight
 Obs ID RouteID Origin Dest DestType FltDate Cap1st CapBus

 1 IA09200 0000092 CCU DEL International 01JAN2004 12 .
 2 IA02501 0000025 RDU IND Domestic 01JAN2004 12 .
 3 IA01101 0000011 RDU ORD Domestic 01JAN2004 12 .
 4 IA04203 0000042 PWM RDU Domestic 01JAN2004 12 .
 5 IA04901 0000049 LHR BRU International 02JAN2004 14 .
 6 IA06405 0000064 FBU FRA International 02JAN2004 14 .
 7 IA05203 0000052 GVA LHR International 02JAN2004 14 .
 8 IA02000 0000020 BOS RDU Domestic 02JAN2004 12 .
 9 IA10802 0000108 AKL WLG International 02JAN2004 12 .
 10 IA08900 0000089 JRS DEL International 03JAN2004 14 30
 11 IA01305 0000013 RDU IAD Domestic 03JAN2004 12 .
 12 IA03705 0000037 RDU MSY Domestic 03JAN2004 12 .

 Cap Num
 Pass Num Num Pass
 Obs CapEcon Total CapCargo Num1st Bus Econ Total Rev1st

 1 138 150 36900 10 . 110 120 $3,360.00
 2 138 150 36900 12 . 134 146 $2,472.00
 3 138 150 36900 11 . 126 137 $2,915.00
 4 138 150 36900 10 . 116 126 $2,890.00
 5 125 139 39700 12 . 124 136 $1,020.00
 6 125 139 39700 14 . 101 115 $3,976.00
 7 125 139 39700 12 . 109 121 $2,280.00
 8 138 150 36900 11 . 120 131 $2,772.00
 9 138 150 36900 11 . 108 119 $1,397.00
 10 163 207 82400 12 26 145 183 $12,372.00
 11 138 150 36900 12 . 130 142 $1,140.00
 12 138 150 36900 11 . 122 133 $3,520.00

 Cargo
 Obs RevBus RevEcon CargoRev RevTotal Weight

 1 . $12,210.00 $6,708.00 $22,278 12900
 2 . $9,112.00 $2,464.00 $14,048 7700
 3 . $11,088.00 $3,895.00 $17,898 9500
 4 . $11,136.00 $5,148.00 $19,174 11700
 5 . $3,472.00 $1,625.00 $6,117 12500
 6 . $9,494.00 $7,181.00 $20,651 16700
 7 . $6,867.00 $4,495.00 $13,642 15500
 8 . $9,960.00 $4,173.00 $16,905 10700
 9 . $4,536.00 $2,620.00 $8,553 13100
 10 $18,278.00 $49,590.00 $72,364.00 $152,604 45800
 11 . $4,160.00 $1,275.00 $6,575 8500
 12 . $12,932.00 $5,047.00 $21,499 10300

 The data set ia.sales used for demonstrations and exercises contains fewer observations than
the data set ia.sales used for the course notes.

 2.2 Creating a Sample Data Set 2-19

33

There are several random number functions to generate
random numbers from various distributions.
General form of the RANUNI function:

RANUNI(seed)RANUNI(seed)

Creating a Random Sample

The UNIFORM function is an alias for the RANUNI function.

The seed is an initial starting point that the RANUNI function uses to generate streams of random
numbers.

The seed must be an integer with a value less than 231-1 (2,147,483,647).

 A 0 argument for the RANUNI function uses the system clock time, resulting in a different stream
of random numbers each time that the program is run.

2-20 Chapter 2 Accessing Observations

34

The RANUNI function returns a rational number between
0 and 1 (non-inclusive) generated from a uniform
distribution.

CEIL(ranuni(seed) * 5)

0 1

Using the RANUNI Function

Examples:

.01253689

.95196500

...

Random number

35

CEIL(ranuni(seed) * 5)

5

If you want a number between 0 and 5 (non-inclusive),
use the following:

0

Using the RANUNI Function

Examples:

.01253689 0.06268445

.95196500 4.75982500

...

* 5Random number

 2.2 Creating a Sample Data Set 2-21

36

CEIL(ranuni(0) * 5)
5

If you want an integer between 1 and 5 (inclusive), use
the following:

CEIL(ranuni(seed) * 5)
51 2 3 4

Using the RANUNI and CEIL Functions

Examples:

.01253689 0.06268445 1

.95196500 4.75982500 5

* 5Random number CEIL()

The CEIL function returns the smallest integer that is greater than or equal to the argument.

2-22 Chapter 2 Accessing Observations

Creating a Random Sample

c02s2d3

Create a random sample with replacement. A sample with replacement can contain duplicate
observations because an observation can be selected more than one time.

data work.subset (drop = i SampSize);
 SampSize = 10;
 do i = 1 to SampSize;
 PickIt = ceil(ranuni(0)*TotObs);
 set ia.sales point = PickIt nobs = TotObs;
 output;
 end;
 stop;
run;

proc print data = work.subset;
 title 'A Random Sample with Replacement';
run;

Output
A Random Sample with Replacement

 Flight
Obs ID RouteID Origin Dest DestType FltDate Cap1st CapBus

 1 IA04604 0000046 GLA LHR International 04APR2005 14 .
 2 IA06302 0000063 FRA FBU International 29NOV2005 14 .
 3 IA01003 0000010 LAX RDU Domestic 28JUL2004 16 .
 4 IA01502 0000015 RDU SEA Domestic 26APR2005 16 .
 5 IA09000 0000090 DEL JRS International 05DEC2005 14 30
 6 IA02003 0000020 BOS RDU Domestic 09JAN2004 12 .
 7 IA03000 0000030 HNL SFO Domestic 28MAY2005 14 30
 8 IA01302 0000013 RDU IAD Domestic 20FEB2004 12 .
 9 IA01602 0000016 SEA RDU Domestic 06MAY2005 16 .
 10 IA06802 0000068 PRG LHR International 21FEB2004 14 .

 Cap Num
 Pass Num Num Pass
Obs CapEcon Total CapCargo Num1st Bus Econ Total Rev1st

 1 125 139 39700 13 . 106 119 $1,846.00
 2 125 139 39700 14 . 95 109 $3,976.00
 3 251 267 77400 16 . 227 243 $14,816.00
 4 251 267 77400 15 . 208 223 $14,610.00
 5 163 207 82400 13 24 150 187 $13,403.00
 6 138 150 36900 10 . 111 121 $2,520.00
 7 163 207 82400 13 27 132 172 $12,844.00
 8 138 150 36900 11 . 129 140 $1,045.00
 9 251 267 77400 13 . 241 254 $12,662.00
 10 125 139 39700 12 . 124 136 $3,192.00

(Continued on the next page.)

 2.2 Creating a Sample Data Set 2-23

 Cargo
Obs RevBus RevEcon CargoRev RevTotal Weight

 1 . $4,982.00 $3,498.00 $10,326 15900
 2 . $8,930.00 $7,697.00 $20,603 17900
 3 . $69,689.00 $40,896.00 $125,401 28800
 4 . $67,184.00 $48,872.00 $130,666 32800
 5 $16,872.00 $51,300.00 $71,100.00 $152,675 45000
 6 . $9,213.00 $4,953.00 $16,686 12700
 7 $18,171.00 $43,296.00 $72,960.00 $147,271 48000
 8 . $4,128.00 $1,335.00 $6,508 8900
 9 . $77,843.00 $39,634.00 $130,139 26600
 10 . $10,912.00 $5,125.00 $19,229 12500

 The data set ia.sales used for demonstrations and exercises contains fewer observations than
the data set ia.sales used for the course notes.

2-24 Chapter 2 Accessing Observations

c02s2d4 (Self-Study)

Create a random sample without replacement. A sample without replacement cannot contain duplicate
observations because after an observation is output to work.subset, programmatically it cannot be
selected again.

 The following program can be used as a template. Replace the following:
• work.subset with the name of your resulting SAS data set
• ia.sales with the name of the data set from which to sample
• the 10 in the SampSize = 10 statement with the number of observations to read

data work.subset(drop = ObsLeft SampSize);
 SampSize = 10;
 ObsLeft = TotObs;

 do while(SampSize > 0 and ObsLeft > 0);
 PickIt + 1;
 if ranuni(0) < SampSize/ObsLeft then
 do;
 set ia.sales point = PickIt
 nobs = TotObs;
 output;
 SampSize = SampSize - 1;
 end;
 ObsLeft = ObsLeft - 1;
 end;
 stop;
run;

proc print data = work.subset;
 title 'A Random Sample without Replacement';
run;

 SampSize is the number of observations wanted in the sample.

 ObsLeft is the number of observations still needed to be selected. The start value is equal to
TotObs, the total number of observations in the data set being sampled.

 PickIt is the number of the observation to be read in the sample data set. Because it is used in a
SUM statement, its starting value is 0.

 The data set ia.sales used for demonstrations and exercises contains fewer observations than
the data set ia.sales used for the course notes.

 2.2 Creating a Sample Data Set 2-25

In each iteration of the DO loop, the following occurs:

1. PickIt is incremented by 1.

2. The IF expression ranuni(0) < Sampsize/ObsLeft is evaluated:

a. If true, these actions occur:

1) The observation PickIt is selected in the sample.

2) SampSize is decreased by 1.

b. If false, the observation PickIt is skipped.

3. ObsLeft is decreased by 1.

The process ends when SampSize is 0; no additional observations are needed.

Take note of the following:
• Each observation is considered for selection.
• An observation number is considered only once.
• The data set is read-only when an observation number is selected.

 This is an adaptation of a sampling routine that has been used by statisticians for many years.
• The sample size is fixed.
• An observation can be selected only once.
• Each observation has an equal probability of being selected.
• The selection probability for an observation is independent of the selection of another

observation.

2-26 Chapter 2 Accessing Observations

Output
A Random Sample without Replacement

 Flight
Obs ID RouteID Origin Dest DestType FltDate Cap1st CapBus

 1 IA02000 0000020 BOS RDU Domestic 08JAN2004 12 .
 2 IA06502 0000065 FRA ARN International 08FEB2004 14 .
 3 IA11201 0000112 SFO HND International 23JUN2004 19 35
 4 IA01804 0000018 SFO SEA Domestic 15JUL2004 12 .
 5 IA04605 0000046 GLA LHR International 08SEP2004 14 .
 6 IA01803 0000018 SFO SEA Domestic 09SEP2004 12 .
 7 IA02203 0000022 DFW RDU Domestic 18JAN2005 12 .
 8 IA05205 0000052 GVA LHR International 23MAR2005 14 .
 9 IA03904 0000039 RDU MCI Domestic 23JUN2005 12 .
 10 IA04200 0000042 PWM RDU Domestic 10DEC2005 12 .

 Cap Num
 Pass Num Num Pass
Obs CapEcon Total CapCargo Num1st Bus Econ Total Rev1st

 1 138 150 36900 11 . 133 144 $2,772.00
 2 125 139 39700 11 . 100 111 $3,377.00
 3 201 255 105500 17 32 193 242 $36,091.00
 4 138 150 36900 12 . 134 146 $3,360.00
 5 125 139 39700 11 . 97 108 $1,562.00
 6 138 150 36900 10 . 113 123 $2,800.00
 7 138 150 36900 10 . 137 147 $4,350.00
 8 125 139 39700 14 . 106 120 $2,660.00
 9 138 150 36900 11 . 125 136 $4,092.00
 10 138 150 36900 12 . 116 128 $3,468.00

 Cargo
Obs RevBus RevEcon CargoRev RevTotal Weight

 1 . $11,039.00 $3,159.00 $16,970 8100
 2 . $10,200.00 $8,225.00 $21,802 17500
 3 $46,304.00 $136,065.00 $186,146.00 $404,606 57100
 4 . $12,462.00 $3,311.00 $19,133 7700
 5 . $4,559.00 $3,982.00 $10,103 18100
 6 . $10,509.00 $5,289.00 $18,598 12300
 7 . $19,728.00 $5,025.00 $29,103 7500
 8 . $6,678.00 $4,553.00 $13,891 15700
 9 . $15,500.00 $5,529.00 $25,121 9700
 10 . $11,136.00 $4,972.00 $19,576 11300

 With a seed value of 0, you get different results each time that the program is executed, but it is
possible that some of the same observations will be selected as were selected in previous
executions.

 2.2 Creating a Sample Data Set 2-27

38

Using the SURVEYSELECT Procedure
(Self-Study)
The SURVEYSELECT procedure has the following
attributes:

provides a variety of methods for selecting probability-
based random samples
can select a simple random sample or can sample
according to a complex multistage sample design
that includes stratification, clustering, and unequal
probabilities of selection
is part of SAS/STAT

39

Using the SURVEYSELECT Procedure
(Self-Study)
This program creates a SAS data set, sample,
containing 100 observations randomly selected from the
ia.sales SAS data set.

proc surveyselect data = ia.sales
method = srs n = 100
out = sample;

run;

c02s2d5

2-28 Chapter 2 Accessing Observations

40

Using the SURVEYSELECT Procedure
(Self Study)
General form of the SURVEYSELECT procedure:

PROC SURVEYSELECT options;
STRATA variables;
CONTROL variables;
SIZE variable;
ID variables;

RUN;

PROC SURVEYSELECT options;
STRATA variables;
CONTROL variables;
SIZE variable;
ID variables;

RUN;

The STRATA statement partitions the input data set into non-overlapping groups defined by the
STRATA variables. PROC SURVEYSELECT then selects independent
samples from these strata, according to the selection method and design
parameters specified in the PROC SURVEYSELECT statement. PROC
SURVEYSELECT expects the input data set to be sorted in the order of the
STRATA variables.

The CONTROL statement names variables for sorting the input data set. The CONTROL variables can
be character or numeric. PROC SURVEYSELECT sorts the input data set by
the CONTROL variables before selecting the sample. If you also specify a
STRATA statement, PROC SURVEYSELECT sorts by the CONTROL
variables within the strata.

The SIZE statement names one and only one size measure variable, which contains the size
measures to be used when sampling with probability proportional to size.
The SIZE variable must be numeric. When the value of an observation's
SIZE variable is missing or non-positive, that observation has no chance of
being selected for the sample.

The ID statement names variables from the DATA= input data set to be included in the OUT=
data set of selected units. If there is no ID statement, PROC
SURVEYSELECT includes all variables from the DATA= data set in the
OUT= data set. The ID variables can be character or numeric.

 2.2 Creating a Sample Data Set 2-29

41

Using the SURVEYSELECT Procedure
(Self-Study)
The PROC SURVEYSELECT statement performs the
following tasks:

invokes the procedure
optionally identifies input and output data sets
specifies the sample selection method, the sample
size, and other sample design parameters

The PROC SURVEYSELECT statement is the only
statement required to create a simple random sample.

42

Options for the SURVEYSELECT Procedure
(Self-Study)
The following options can be specified in the
PROC SURVEYSELECT statement:

SEED=Specify random number seed

SAMPSIZE=Specify sample size

METHOD=Specify selection method

NOPRINTSuppress displayed output

OUT=Specify output data sets

DATA=Specify the input data set

Use this option:To do this:

2-30 Chapter 2 Accessing Observations

43

Methods Used by the SURVEYSELECT
Procedure (Self-Study)
Selected values for the METHOD= option are as follows:

The method of unrestricted random sampling selects
units with equal probability and with replacement.
Because units are selected with replacement, a unit
can be selected for the sample more than once.

URS

The method of simple random sampling selects units
with equal probability and without replacement. The
selection probability for each individual unit equals
n/N.

SRS

The method of systematic random sampling selects
units at a fixed interval throughout the sampling frame
or stratum after a random start.

SYS

METHOD=

These methods correspond to the DATA step examples at the beginning of this section.

44

Reviewing the SURVEYSELECT Procedure
Example (Self-Study)
This program creates a SAS data set, sample,
containing 100 observations randomly selected from the
ia.sales SAS data set.

proc surveyselect data = ia.sales
method = srs n = 100
out = sample;

run;

c02s2d5

The SURVEYSELECT procedure step produces similar output to the c02s2d3 example earlier in this
chapter, except that it selects more samples (100 versus 10).

 2.2 Creating a Sample Data Set 2-31

45

Using the SURVEYSELECT Procedure
(Self-Study)
In addition to creating the SAS data set, Sample,
PROC SURVEYSELECT provides the following
information in the Output window:

The SURVEYSELECT Procedure

Selection Method Simple Random Sampling

Input Data Set SALES
Random Number Seed 955326001
Sample Size 100
Selection Probability 0.000304
Sampling Weight 3292.64
Output Data Set SAMPLE

Because the SEED= option is not specified
in the PROC SURVEYSELECT statement,
the seed value is obtained using the time of
day from the computer's clock.

To specify a seed so that you can replicate a sample, use the SEED= option on the PROC
SURVEYSELECT statement.
proc surveyselect data = ia.sales
 method = srs n = 100
 out = sample
 seed = 12345;
run;

2-32 Chapter 2 Accessing Observations

46

Using the SURVEYSELECT Procedure
(Self-Study)
In addition to creating the SAS data set, Sample,
PROC SURVEYSELECT provides the following
information in the log:

The SURVEYSELECT Procedure

Selection Method Simple Random Sampling

Input Data Set SALES
Random Number Seed 955326001
Sample Size 100
Selection Probability 0.000304
Sampling Weight 3292.64
Output Data Set SAMPLE

The Selection Probability for each individual
unit is calculated as 100/329264 (sample
size/number of observations in the input
data set).

47

Using the SURVEYSELECT Procedure
(Self-Study)
In addition to creating the SAS data set, Sample,
PROC SURVEYSELECT provides the following
information in the log:

The SURVEYSELECT Procedure

Selection Method Simple Random Sampling

Input Data Set SALES
Random Number Seed 955326001
Sample Size 100
Selection Probability 0.000304
Sampling Weight 3292.64
Output Data Set SAMPLE

The Sampling Weight is the inverse of the
selection probability, 329264/100.

 2.2 Creating a Sample Data Set 2-33

Partial Output from the SAS Data Set SAMPLE
Using PROC SURVEYSELECT to create a Random Sample without Replacement

 Flight
Obs ID RouteID Origin Dest DestType FltDate Cap1st CapBus

 1 IA06900 0000069 LHR AMS International 29OCT2005 14 .
 2 IA01905 0000019 RDU BOS Domestic 14FEB2005 12 .
 3 IA01904 0000019 RDU BOS Domestic 22MAY2005 12 .
 4 IA04901 0000049 LHR BRU International 26JAN2005 14 .
 5 IA10303 0000103 SYD CBR International 30OCT2005 12 .
 6 IA09103 0000091 DEL CCU International 08MAR2005 12 .
 7 IA09801 0000098 PEK CCU International 23DEC2005 28 52
 8 IA04301 0000043 LHR CDG International 15NOV2005 14 .
 9 IA06001 0000060 MAD CDG International 23NOV2005 14 .
 10 IA06000 0000060 MAD CDG International 26NOV2005 14 .
 11 IA05701 0000057 FRA CPH International 05APR2005 14 .
 12 IA08500 0000085 FRA CPT International 12JUL2005 19 56

 Cap Num
 Pass Num Num Pass
Obs CapEcon Total CapCargo Num1st Bus Econ Total Rev1st

 1 125 139 39700 13 . 106 119 $1,170.00
 2 138 150 36900 11 . 115 126 $2,772.00
 3 138 150 36900 12 . 137 149 $3,024.00
 4 125 139 39700 14 . 101 115 $1,190.00
 5 138 150 36900 12 . 118 130 $768.00
 6 138 150 36900 12 . 131 143 $4,032.00
 7 157 237 85900 28 48 146 222 $23,324.00
 8 125 139 39700 14 . 106 120 $1,274.00
 9 125 139 39700 14 . 115 129 $3,710.00
 10 125 139 39700 13 . 112 125 $3,445.00
 11 125 139 39700 12 . 106 118 $2,088.00
 12 163 238 105500 18 50 124 192 $43,344.00

 Cargo
Obs RevBus RevEcon CargoRev RevTotal Wt

 1 . $3,074.00 $2,226.00 $6,470.00 15900
 2 . $9,545.00 $4,563.00 $16,880.00 11700
 3 . $11,371.00 $2,769.00 $17,164.00 7100
 4 . $2,828.00 $2,171.00 $6,189.00 16700
 5 . $2,478.00 $1,090.00 $4,336.00 10900
 6 . $14,541.00 $4,316.00 $22,889.00 8300
 7 $27,264.00 $40,442.00 $53,120.00 $144,150.00 41500
 8 . $3,180.00 $2,198.00 $6,652.00 15700
 9 . $10,120.00 $5,699.00 $19,529.00 13900
 10 . $9,856.00 $6,027.00 $19,328.00 14700
 11 . $6,042.00 $4,347.00 $12,477.00 16100
 12 $82,050.00 $99,076.00 $247,599.00 $472,069.00 67100

2-34 Chapter 2 Accessing Observations

48

Comparison of the DATA Step and the
SURVEYSELECT Procedure (Self-Study)

Part of SAS/STATPart of Base SAS

One output data set with
additional statistics

Can create multiple output
data sets

Less codingFull power of DATA step
processing

PROC SURVEYSELECTDATA Step

 2.2 Creating a Sample Data Set 2-35

Exercises

1. Generating a Random Sample with Replacement

Generate a random sample with replacement of 50 employees from ia.salcomps to analyze their
current salaries.

If the current salary is over $30,000, then place the employee’s information in the work.over30
SAS data set.

If the current salary is $30,000 or less, then place the employee’s information in the
work.ltoreq30 SAS data set.

 If you obtain zero observations in one of the data sets, run the program again. It is possible
that the selected observations might all be over $30,000 or all $30,000 or less.

2. Generating a Random Sample without Replacement (Optional)

Generate a random sample without replacement of ten flights from ia.cap2000.

2-36 Chapter 2 Accessing Observations

2.3 Creating and Using an Index

51

Objectives
Define indexes.
List the uses of indexes.
Use the DATA step to create indexes.
Use PROC DATASETS to create and maintain
indexes.
Use PROC SQL to create and maintain indexes.

52

Using Indexes
To decrease the time used to query a heavily used
SAS data set, create an index on ia.sales.

Flight
Obs ID RouteID Origin Dest DestType FltDate . . .

1 IA10700 0000107 WLG AKL International 01JAN2004 . . .
2 IA10701 0000107 WLG AKL International 01JAN2004 . . .
3 IA10702 0000107 WLG AKL International 01JAN2004 . . .
4 IA10703 0000107 WLG AKL International 01JAN2004 . . .
5 IA10704 0000107 WLG AKL International 01JAN2004 . . .

.

.

.

Flight
Obs ID RouteID Origin Dest DestType FltDate . . .

329259 IA10800 0000108 AKL WLG International 30DEC2005 . . .
329260 IA10801 0000108 AKL WLG International 30DEC2005 . . .
329261 IA10802 0000108 AKL WLG International 30DEC2005 . . .
329262 IA10803 0000108 AKL WLG International 30DEC2005 . . .
329263 IA10804 0000108 AKL WLG International 30DEC2005 . . .
329264 IA10805 0000108 AKL WLG International 30DEC2005 . . .

 The data set ia.sales used for demonstrations and exercises contains fewer observations than
the data set ia.sales used for the course notes.

 2.3 Creating and Using an Index 2-37

53

Indexed SAS Data Set

Simplified Index File
Key Variable=Origin

Key Record Identifiers
Value Page(obs,obs...)

AKL 25(1,2,3,...) 32(...)...
AMS 82(22,23,...) 96(...)...
ANC 75(18,34,...) 96(...)...

. ...

. ...

. ...

Flight
ID RouteID Origin Dest DestType FltDate . . .

IA10800 0000108 AKL WLG International 30DEC2005 . . .
IA10801 0000108 AKL WLG International 30DEC2005 . . .
IA10802 0000108 AKL WLG International 30DEC2005 . . .
IA10803 0000108 AKL WLG International 30DEC2005 . . .

obs

329259
329260
329261
329262

Using Indexes

 The index is stored with the key values in sorted order.

54

An index is an optional file that you can create for a
SAS data file that does the following:

points to observations based on the values of one or
more key variables
provides direct access to specific observations

In other words, index usage locates an observation by
value.

Using Indexes

 This section discusses indexes for Base SAS data files. A discussion of indexes for Scalable
Performance Data Engine (SPDE) data files is presented in a later chapter.

2-38 Chapter 2 Accessing Observations

55

The Purpose of Indexes
Indexes can provide direct access to observations in
SAS data sets to accomplish the following:

yield faster access to small subsets (WHERE)
return observations in sorted order (BY)
perform table lookup operations (SET with KEY=)
join observations (PROC SQL)
modify observations (MODIFY with KEY=)

56

Why Use an Index?

...

data _null_;
set ia.sales;
where FltDate = '02JUL2004'd;

run;

What happens when you
submit this program?

 2.3 Creating and Using an Index 2-39

57

Without an Index

Buffers

BuffersOutput
Data
Set

Input
SAS
Data

The WHERE statement
selects observations

by reading data
sequentially.

...

PDV
ID Route Origin Dest

 I/O

MemoryDisk

I/O

ALL
pages
loaded

2-40 Chapter 2 Accessing Observations

58

Buffers

BuffersOutput
Data
Set

Input
SAS
Data

PDV
ID Route Origin Dest

I/O

I/O

MemoryDisk

Only necessary
pages are loaded.

The WHERE statement
selects observations

by using direct access.

Index
Index

The index file is checked.

...

With an Index

When SAS uses an index to process data, SAS accomplishes the following:
• performs a binary search on the index file
• positions the index to the first entry containing a qualified value
• transfers a page of data containing the first record identifier for the qualified value to a buffer
• directly accesses the value specified by the record identifier
• positions the index to the next entry containing a qualified value
• transfers the page of data, if it is not already in the buffer
• directly accesses the value specified by the record identifier
• continues to process the data until there is no more data that satisfies the WHERE expression

 If the data values are sorted in ascending order by the indexed variables, fewer I/O operations are
required. In addition, if observations with the same key values are near each other in the file, for
whatever reason, I/O will be minimized.

 2.3 Creating and Using an Index 2-41

59

Using Indexes
The index file consists of entries that are organized in
a tree structure, and connected by pointers.
When an index is used to process a request, such as
for WHERE processing, SAS searches the index file in
order to locate the requested record(s) rapidly.

Directory-based Index File Naming Conventions

FlightID
FltDate
Origin

Key variables in
ia.sales

Origin
DteFlt

Indexes in the index
file for ia.sales

sales.sas7bdat sales.sas7bndx

60

Index Terminology
There are two types of indexes.

DteFlt

Origin

Example

Must be given a name
that is not the same as
any variable or existing
index

Automatically given the
same name as its key
variable

Name

the values of more
than one variable
concatenated to
form a single value

Composite

the value of only
one variable

Simple

Based OnType

2-42 Chapter 2 Accessing Observations

61

Index Terminology
Index options include the following:
UNIQUE Values of the key variable(s) must be

unique. The option prevents an observation
with a duplicate value for the key variable(s)
from being added to the data set.

Flight
ID RouteID Origin Dest DestType FltDate . . .

IA10800 0000108 AKL WLG International 30DEC2005 . . .
IA10801 0000108 AKL WLG International 30DEC2005 . . .
IA10802 0000108 AKL WLG International 30DEC2005 . . .
IA10803 0000108 AKL WLG International 30DEC2005 . . .

The concatenation of the values for FlightID and
FltDate forms a unique identifier for a row of data.

In an existing data set, if the variable(s) on which you attempt to create a unique index has duplicate
values, the index is not created and an error message is written to the SAS log.

62

Creating Indexes
To create indexes at the same time that you create a
data set, use the INDEX= data set option on the
output data set.
To create or delete indexes in existing data sets,
use the one of the following:

− DATASETS procedure
− SQL procedure

Indexes can also be created using the SAS Management Console that is part of SAS Business Intelligence
Architecture.

 2.3 Creating and Using an Index 2-43

63

Creating Indexes
When creating the index, you can do the following:

designate the key variable(s)
select a valid SAS name for the index
(composite index only)
specify the UNIQUE index option if appropriate

A data set can have these features:
multiple simple and composite indexes
character and numeric key variables

 For increased efficiency, use the INDEX= option to create indexes when you initially create a
SAS data set.

2-44 Chapter 2 Accessing Observations

Creating an Index with the DATA Step

c02s3d1
options msglevel=i;

data ia.Sales(index = (Origin
 DteFlt = (FltDate FlightID)/unique));
 infile 'sales.dat' lrecl=162; * PC and Unix;
 *infile '.prog3.rawdata(sales)' lrecl=162; * mainframe ;
 input FlightID $7. RouteID $7. Origin $3. Dest $3.
 DestType $13. FltDate date9. Cap1st 8. CapBus 8.
 CapEcon 8. CapPassTotal 8. CapCargo 8. Num1st 8.
 NumBus 8. NumEcon 8. NumPassTotal 8. Rev1st comma8.
 RevBus comma8. RevEcon comma8. CargoRev comma8.
 RevTotal comma8. CargoWeight comma8.;
 format FltDate date9.;
run;

Log
679 options msglevel=i;
680
681 data ia.Sales(index = (Origin
682 DteFlt = (FltDate FlightID)/unique));
683 infile 'sales.dat' lrecl=162; * PC and Unix;
684 *infile '.prog3.rawdata(sales)' lrecl=162; * mainframe ;
685 input FlightID $7. RouteID $7. Origin $3. Dest $3.
686 DestType $13. FltDate date9. Cap1st 8. CapBus 8.
687 CapEcon 8. CapPassTotal 8. CapCargo 8. Num1st 8.
688 NumBus 8. NumEcon 8. NumPassTotal 8. Rev1st comma8.
689 RevBus comma8. RevEcon comma8. CargoRev comma8.
690 RevTotal comma8. CargoWeight comma8.;
691 format FltDate date9.;
692 run;

NOTE: The infile 'C:\workshop\winsas\prog3\sales.dat' is:
 File Name=C:\workshop\winsas\prog3\sales.dat,
 RECFM=V,LRECL=162

NOTE: 329264 records were read from the infile 'C:\workshop\winsas\prog3\sales.dat'
 The minimum record length was 162.
 The maximum record length was 162.
NOTE: The data set IA.SALES has 329264 observations and 21 variables.
NOTE: Composite index DteFlt has been defined.
NOTE: Simple index Origin has been defined.
NOTE: DATA statement used (Total process time):
 real time 10.76 seconds
 cpu time 3.85 seconds

 The external file sales used for demonstrations and exercises contains fewer observations than
the external file sales used for the course notes.

 2.3 Creating and Using an Index 2-45

65

When creating a data set in a DATA step, use the
INDEX= data set option to create an index at the same
time.
General form of the INDEX= data set option:

DATA SAS-data-file-name(INDEX =
(index-specification-1</option>

…<index-specification-n</option>>));

DATA SAS-data-file-name(INDEX =
(index-specification-1</option>

…<index-specification-n</option>>));

Creating Indexes with the DATA Step

The following are conditions for an index-specification

simple index is the name of the key variable.

composite index is index-name = (list of key variables).

You can specify the UNIQUE option with the INDEX= data set option.

The INDEX= data set option can also be used in procedures with OUT= options and also with ODS
OUTPUT statements.

2-46 Chapter 2 Accessing Observations

66

Viewing Information about Indexes
To display information in the log concerning index
creation or index usage, change the value of the
MSGLEVEL= system option from its default value
of N to I.
General form of the MSGLEVEL= system option:

OPTIONS MSGLEVEL = N | I;OPTIONS MSGLEVEL = N | I;

N only prints notes, warnings, and error messages. This is the default.

I also prints informational or INFO notes that pertain to index creation and usage, merge
processing, and host sort utilities.

 2.3 Creating and Using an Index 2-47

Managing Indexes with PROC DATASETS

c02s3d2
proc datasets library = ia nolist;
 modify Sales;
 index delete Origin;
 index delete DteFlt;

 index create Origin;
 index create DteFlt = (FltDate FlightID) / unique;
quit;

 The NOLIST option prevents a list of library members from being printed in the log.

Log
703 options msglevel = i;
704
705 proc datasets library = ia nolist;
706 modify Sales;
707 index delete Origin;
NOTE: Index Origin deleted.
708 index delete DteFlt;
NOTE: All indexes defined on IA.SALESDATA.DATA have been deleted.
709
710 index create Origin;
NOTE: Simple index Origin has been defined.
711 index create DteFlt = (FltDate FlightID) / unique;
NOTE: Composite index DteFlt has been defined.
712 quit;

NOTE: MODIFY was successful for IA.SALES.DATA.
NOTE: PROCEDURE DATASETS used (Total process time):
 real time 0.84 seconds
 cpu time 0.80 seconds

2-48 Chapter 2 Accessing Observations

68

Managing Indexes with PROC DATASETS
You can use the DATASETS procedure on existing
data sets to create or delete indexes.
General form of the PROC DATASETS step to delete
or create indexes:

PROC DATASETS LIBRARY = libref ;
MODIFY SAS-data-set-name;

INDEX DELETE index-name;
INDEX CREATE index-specification

< / options>;
QUIT;

PROC DATASETS LIBRARY = libref ;
MODIFY SAS-data-set-name;

INDEX DELETE index-name;
INDEX CREATE index-specification

< / options>;
QUIT;

 The INDEX CREATE statement in PROC DATASETS cannot be used if the index to be created
already exists.

If the index to be created already exists, you must do the following:
• Delete the existing index of the same name.
• Create the new index to avoid an error.

If you delete and create indexes in the same step, delete indexes first so that the newly created
indexes can reuse the space of the deleted indexes.

You can specify the UNIQUE option on the INDEX CREATE statement.

 2.3 Creating and Using an Index 2-49

Managing Indexes with PROC SQL

c02s3d3
options msglevel = n;

proc sql;
 drop index Origin
 from ia.Sales;
 drop index DteFlt
 from ia.Sales;

 create index Origin
 on ia.Sales(Origin);
 create unique index DteFlt
 on ia.Sales(FltDate,FlightID);
quit;

Log
739 options msglevel = n;
740
741 proc sql;
742 drop index Origin
743 from ia.Sales;
NOTE: Index Origin has been dropped.
744 drop index DteFlt
745 from ia.Sales;
NOTE: Index DteFlt has been dropped.
746
747 create index Origin
748 on ia.Sales(Origin);
NOTE: Simple index Origin has been defined.
749 create unique index DteFlt
750 on ia.Sales(FltDate,FlightID);
NOTE: Composite index DteFlt has been defined.
751 quit;
NOTE: PROCEDURE SQL used (Total process time):
 real time 0.88 seconds
 cpu time 0.77 seconds

2-50 Chapter 2 Accessing Observations

70

Managing Indexes with the SQL Procedure
You can use PROC SQL on existing data sets to create
or delete indexes.
General form of the PROC SQL step to create or delete
indexes:

PROC SQL;
DROP INDEX index-name

FROM table-name;
CREATE <option> INDEX index-name

ON table-name(column-name-1,...
column-name-n);

PROC SQL;
DROP INDEX index-name

FROM table-name;
CREATE <option> INDEX index-name

ON table-name(column-name-1,...
column-name-n);

 PROC SQL cannot be used if the index to be created already exists.

If the index to be created already exists, you must do the following:

1. Drop the existing index of the same name.

2. Create the new index.

In most data processing situations, SAS maintains an index automatically.

The SQL procedure CREATE|DROP INDEX syntax is ANSI standard syntax.

You can specify the UNIQUE option in the CREATE INDEX statement.

 2.3 Creating and Using an Index 2-51

71

Index Documentation
PROC CONTENTS
PROC DATASETS
SAS Explorer
SAS Management Console

2-52 Chapter 2 Accessing Observations

Documenting Indexes

c02s3d4

proc contents data = ia.sales;
run;

Partial Output
The CONTENTS Procedure

Data Set Name IA.SALES Observations 329264
Member Type DATA Variables 21
Engine V9 Indexes 2
Created Monday, March 28, Observation Length 168
 2005 05:55:43 PM
Last Modified Monday, March 28, Deleted Observations 0
 2005 06:06:25 PM
Protection Compressed NO
Data Set Type Sorted NO
Label
Data Representation WINDOWS_32
Encoding wlatin1 Western (Windows)

< lines of output removed >

Alphabetic List of Indexes and Attributes

 # of
 Unique Unique
Index Option Values Variables

1 DteFlt YES 329264 FltDate FlightID
2 Origin 52

 The data set ia.sales used for demonstrations and exercises contains fewer observations than
the data set ia.sales used for the course notes.

 2.3 Creating and Using an Index 2-53

Exercises

1. Creating Indexes with the DATA Step

Open the program, c02ex3Start, and add the INDEX= option to create two indexes:
• a simple index Depart, based on the Depart variable
• a unique composite index FltDte, based on the Flight and Date variables

2. Deleting Indexes with the SQL Procedure

Use PROC SQL to delete the Depart index from the ia.schedule data set.

3. Creating Indexes with the DATASETS Procedure

Use PROC DATASETS to create a simple index Date based on the Date variable for the
ia.schedule data set.

4. Viewing Index Information

Use PROC CONTENTS or PROC DATASETS to look at the index information.

2-54 Chapter 2 Accessing Observations

74

Index Usage Possible
An index might be used when a WHERE expression
references one of the following:

a simple index key variable
the primary key variable of a composite index

Using an index to process
a WHERE expression might
improve performance, and
is referred to as optimizing
the WHERE expression.

In a compound expression using the logical operator
AND, only one simple index can be used.

75

Index Usage Possible

continued...

where Origin =:'L';Comparison
operators with the
colon modifier

where FlightID ne 'IA07903';
where Origin not in

('LHR','CDG');

Comparison
operators with NOT

where FlightID eq 'IA07903';
where EconomyRev < 5000;
where Origin in ('LHR','CDG');

Comparison
operators and
the IN operator

ExamplesCondition

There are simple indexes on the variables FlightID, EconomyRev, and Origin.

 The colon modifier indicates a starts with condition. It cannot be used in the SQL procedure.

 2.3 Creating and Using an Index 2-55

76

Index Usage Possible

continued...

where 5000 < EconomyRev <
10000;

where EconomyRev between
5000 and 10000;

Fully bounded range
conditions specifying
both an upper and
lower limit, which
includes the
BETWEEN-AND
operator

where Origin contains 'L';CONTAINS operator
ExamplesCondition

There are simple indexes on the variables EconomyRev and Origin.

77

continued...

Index Usage Possible

where trim(City)='London';TRIM function

where Origin is null;
where Origin is missing;

IS NULL or IS
MISSING operator

where Origin like 'L%';
where Origin like 'YY_';

Pattern-matching
operator LIKE

ExamplesCondition

There are simple indexes on the variables Origin and City.

2-56 Chapter 2 Accessing Observations

78

Index Usage Possible

where substr(City,1,2)='Ca';The SUBSTR
function with the
conditions that the
starting position = 1
and the length is
less than or equal to
the length of the
string variable.

ExamplesCondition

There is a simple index on the variable City.

General form of the SUBSTR function:

SUBSTR (variable,position,<length>)

 2.3 Creating and Using an Index 2-57

79

When Is an Index Not Used?
An index is not used in the following circumstances:

with a subsetting IF statement in a DATA step
with particular WHERE expressions
if SAS determines that it is more efficient to read
the data sequentially

 The conditions listed here apply to indexed Base SAS data files only. A discussion of when an
index is used with Scalable Performance Data Engine data files is contained in a later chapter.

80

No Index Usage
SAS does not use an index when a WHERE expression
references an indexed variable if the following conditions
exist:

No single index could supply all required observations.

Any function other than TRIM or SUBSTR appears
in the WHERE expression.

continued...

where RouteID = '000035' or FlightID = '202';

where weekday(FlightDate) = 6;

2-58 Chapter 2 Accessing Observations

81

No Index Usage
The SUBSTR function does not search a string
beginning at the first position.

The sounds-like operator (=*) is used.

where substr(Destination,2,1) = 'F';

where Destination =* 'lacks';

82

Compound Optimization
When you write a WHERE expression using all the key
variables in a composite index, you can take advantage
of compound optimization.
Compound optimization means that SAS can use a
composite index to optimize some WHERE expressions
that involve multiple variables.

where FlightID = 'IA10703' and
FltDate = '03DEC2004'd;

There is a composite index, DteFlt, on the variables FlightID and FltDate.

 2.3 Creating and Using an Index 2-59

83

Compound Optimization
For compound optimization to occur, all of the following
must be true:

At least the first two key variables in the composite
index must be used in the WHERE conditions.
The conditions are connected using the AND operator.
At least one condition must be the EQ or IN operator.

84

WHERE Expression Index Usage
To decide whether to use indexed or sequential access,
SAS must do the following:

determine whether the WHERE expression can be
satisfied by an existing index
select the best index if several indexes are available
estimate the number of observations that qualify
compare probable resource usage for both methods

2-60 Chapter 2 Accessing Observations

85

Number of Qualified Observations
SAS might

use an index.

SAS will
use an index.

0%
3%

Data Set

...

SAS will probably
use an index.

33.3%

To determine whether it is more efficient to satisfy the WHERE expression by using the index or reading
the data sequentially, SAS uses these guidelines:
• If only a few observations are qualified, it is more efficient to use the index than to do a sequential

search of the entire data file.
• If most or all of the observations qualify, then it is more efficient to read the data file sequentially.

 2.3 Creating and Using an Index 2-61

86

Number of Qualified Observations
To help SAS estimate the number of observations that
would be selected by a WHERE expression, each index
stores 21 statistics called cumulative percentiles or
centiles.
Centiles provide information about the distribution of
values in an index.

For information on updating and viewing the centile information, see the centiles information in the SAS
documentation for the CONTENTS and DATASETS procedures.

87

Comparing Resource Usage
predicts the I/O operations
required to read via index

calculates I/Os needed
to read sequentially

compares the two
resource costs

...

2-62 Chapter 2 Accessing Observations

88

Factors Affecting I/O
Size of the subset relative to the size of the data file
Order of data
Page size of the data file
Number of buffers allocated
Cost to uncompress a compressed file for a
sequential read

89

Data Order
Sort order can affect the number of I/O operations
required for indexed access.

sorted data setunsorted data set

Flight
Obs ID RouteID Origin . .

1 IA10800 0000108 AKL . . .
2 IA10801 0000108 AKL . . .
3 IA10802 0000108 AKL . . .
4 IA10803 0000108 AKL . . .

Flight
Obs ID RouteID Origin . .

4367 IA10804 0000108 AKL . . .
4368 IA10805 0000108 AKL . . .
4369 IA07000 0000070 AMS . . .
4370 IA07001 0000070 AMS . . .
4371 IA07002 0000070 AMS . . .
4372 IA07003 0000070 AMS . . .

Flight
Obs ID RouteID Origin . .

450 IA10803 0000108 AKL . . .
451 IA10804 0000108 AKL . . .
452 IA10805 0000108 AKL . . .
. . . .
. . . .
898 IA10800 0000108 AKL . . .
899 IA10801 0000108 AKL . . .
900 IA10802 0000108 AKL . . .
901 IA10803 0000108 AKL . . .
902 IA10804 0000108 AKL . . .
903 IA10805 0000108 AKL . . .
. . . .
. . . .

1350 IA10800 0000108 AKL . . .
1351 IA10801 0000108 AKL . . .
1352 IA10802 0000108 AKL . . .
1353 IA10803 0000108 AKL . . .

If the data set is sorted on the indexed variable(s), the qualified observations are adjacent to each other.
Fewer pages must be read into the input buffers.

 2.3 Creating and Using an Index 2-63

90

Controlling WHERE Processing Index Usage
You can control index usage for WHERE processing
with these data set options:

IDXWHERE=YES | NO
overrides the software’s decision regarding whether
to use an index.
IDXNAME=index-name
directs SAS to use a specific index.

IDXWHERE = YES | NO

YES SAS uses the best available index to process the WHERE expression, even if SAS estimates that
processing sequentially is faster.

NO SAS processes the data sequentially, even if SAS estimates that processing with an index is
faster.

You cannot use IDXWHERE= to override the use of an index to process a BY statement.

2-64 Chapter 2 Accessing Observations

91

Using the IDXWHERE= Option
Suppose that the variable Country in the data set
ia.freqflyers has the value 'USA' in 71%
of the observations.

To insure that SAS does not use an index when printing
the data for Country = 'USA', use the following
code:

options msglevel = i;
proc print data = ia.freqflyers

(idxwhere = no);
where Country = 'USA';

run;

c02s3d5

92

Using the IDXWHERE= Option
Partial Log

18 proc print data = ia.freqflyers
19 (idxwhere = no);
20 where Country = 'USA';
INFO: Data set option (IDXWHERE=NO) forced a sequential pass
of the data rather than use of an index for where-clause
processing.
21 run;

NOTE: There were 65935 observations read from the data set
IA.FREQFLYERS.

WHERE Country='USA';
NOTE: PROCEDURE PRINT used (Total process time):

real time 4.86 seconds
cpu time 0.89 seconds

 2.3 Creating and Using an Index 2-65

93

Guidelines for Indexing
Suggested guidelines for creating indexes:

Minimize the number of indexes to reduce disk storage
and update costs. Create indexes only on variables
that are often used in queries or BY-group processing
(when data cannot be sorted).
Do not create an index if the data file page count is
less than three pages. It is faster to access the data
sequentially.
Consider the cost of an index for a data file that is
frequently changed.
Create indexes on variables that are discriminating.
These variables precisely identify observations that
satisfy WHERE expressions.

continued...

A variable such as Gender is not discriminating. A discriminating variable is one that enables you to
break the data into many small groups or subsets.

94

Guidelines for Indexing
When you create a composite index, make the first
key variable the most discriminating.
Create an index when you intend to retrieve a small
subset of observations from a large data file.
To reduce the number of I/Os performed when you
create an index, first sort the data by the key variable.
Then, to improve performance, maintain the data file
in sorted order by the key variable.
Consider how often your applications use an index.
An index must be used often in order to compensate
for the resources used in creating and maintaining it.
When you create an index to process a WHERE
expression, do not try to create one index that is used
to satisfy every conceivable query.

2-66 Chapter 2 Accessing Observations

95

Index Trade-offs
BENEFITS

Fast access to a small
subset of observations
Values returned
in sorted order
Can enforce uniqueness

COSTS
Extra CPU cycles and I/O
operations to create and
maintain an index
Increased CPU to read
the data
Extra disk space to store
the index file
Extra memory to load
index pages and SAS C
code to use the index

96

Maintaining Indexes

Index file constructed
for new file

Copy the data set with
drag-and-drop in SAS
Explorer.

Index file deleted
from IN= library;
rebuilt in OUT= library

Move the data set
with the MOVE option
in the COPY procedure.

Index file constructed
for new data file

Copy the data set with the
COPY procedure or the
DATASETS procedure.

Index Action TakenData Management Tasks

 2.3 Creating and Using an Index 2-67

97

Maintaining Indexes

Value/identifier pairs addedAdd observations.

Value/identifier pairs
deleted; space recovered
for re-use

Delete observations.

Value/identifier pairs
updated if values change

Update observations.

Variable renamed to new
name in index file

Rename variable.

Index file renamedRename data set.

Index Action TakenData Management Tasks

Indexes are maintained by updates in place, such as using the Viewtable window to update, add, or delete
observations, and the APPEND or SQL procedures to append data. Using the Explorer window or the
DATASETS procedure maintains indexes when data sets or variables are renamed. However, recreating a
data set with the SET, MERGE, or UPDATE statements does not automatically maintain indexes.

2-68 Chapter 2 Accessing Observations

98

Maintaining Indexes

Index file deletedSort the data set in place with the
FORCE option in the SORT
procedure.
proc sort data = a force;

by var;
run;

Index file deletedRebuild a data set with a DATA
step.
data a;

set a;
run;

Index file deletedDelete a data set.
proc datasets lib = work;

delete a;
run;

Index Action TakenData Management Tasks

If you use the UPLOAD procedure or the DOWNLOAD procedure, the index is re-created by default
when you upload or download a single data set and omit the OUT= option, or when you upload or
download a SAS data library. Use the INDEX=NO data set option to upload or download without re-
creating the index.

Index re-created:
proc upload data = schedule;
run;

Index not re-created:
proc download data = Sales(index = no);
run;

 2.3 Creating and Using an Index 2-69

Exercises

5. Using an Index

Open the program, c02ex7Start, and submit it. Consult the log and answer the questions following the
program code listed here.

c02ex7Start
options msglevel=I obs = 500;

*** Example 1;

data rdu;
 set ia.Sales;
 if Origin = 'RDU';
run;

*** Example 2;

proc print data=ia.Sales;
 where Origin = 'RDU' or FltDate = '01dec2004'd;
run;

*** Example 3;

proc print data=ia.Sales;
 where Origin ne 'RDU';
run;

*** Example 4;

proc print data=ia.Sales;
 where Origin='ATH';
run;

**** Example 5;

proc print data=ia.Sales;
 where FltDate='24mar2005'd;
run;

*****Example 6;

data SalesCopy;
 set ia.Sales;
run;

2-70 Chapter 2 Accessing Observations

Questions:

a. Does Example 1 use an index? Why or why not?

b. Does Example 2 use an index? Why or why not?

c. Does Example 3 use an index? Why or why not?

d. Does Example 4 use an index? Why or why not?

e. Does Example 5 use an index? Why or why not?

f. In Example 6, does the data set SalesCopy have an index?

 2.4 Solutions to Exercises 2-71

2.4 Solutions to Exercises

1. Generating a Random Sample with Replacement

Generate a random sample with replacement of 50 employees from ia.salcomps to analyze their
current salaries.

If the current salary is over $30,000, then place the employee’s information in the work.over30
SAS data set.

If the current salary is $30,000 or less, then place the employee's information in the
work.ltoreq30 SAS data set.

data over30 ltoreq30;
 SampSize = 50;
 do i = 1 to SampSize;
 PickIt = ceil(ranuni(0)*TotObs);
 set ia.salcomps point = PickIt nobs = TotObs;
 if Salary > 30000 then output over30;
 else output ltoreq30;
 end;
 stop;
run;

2. Generating a Random Sample without Replacement (Optional)

Generate a random sample without replacement of ten flights from ia.cap2000.

DATA Step Solution:
data work.CapSample(drop = ObsLeft SampSize);
 SampSize = 10;
 ObsLeft = TotObs;
 do while(SampSize > 0 and ObsLeft > 0);
 PickIt + 1;
 if ranuni(0) < SampSize/ObsLeft then
 do;
 set ia.cap2000 point = PickIt
 nobs = TotObs;
 output;
 SampSize = SampSize - 1;
 end;
 ObsLeft = ObsLeft - 1;
 end;
 stop;
run;

SURVEYSELECT Procedure Solution:
proc surveyselect data=ia.cap2000
 method=srs n=10
 out=CapSample;
run;

2-72 Chapter 2 Accessing Observations

3. Creating Indexes with the DATA Step

Open the program, c02ex3Start, and add the INDEX= option to create two indexes:
• a simple index Depart, based on the Depart variable
• a unique composite index FltDte, based on the Flight and Date variables
data ia.schedule(index = (Depart
 FltDte = (Flight Date)/unique));
 infile 'schedule.dat'; *PC/Unix;
 *infile '.prog3.rawdata(schedule)'; *z/OS;
 input Flight $7. Depart time5. Date date9.;
 format Depart time5. Date date9.;
run;

4. Deleting Indexes with the SQL Procedure

Use PROC SQL to delete the Depart index from the ia.schedule data set.

proc sql;
 drop index Depart
 from ia.schedule;
quit;

5. Creating Indexes with the DATASETS Procedure

Use PROC DATASETS to create a simple index Date based on the Date variable for the
ia.schedule data set.
proc datasets library = ia nolist;
 modify schedule;
 index create Date;
quit;

6. Viewing Index Information

Use PROC CONTENTS to look at the index information.

proc contents data = ia.schedule;
run;

7. Using Indexes

Open the program, c02ex7Start, and submit it. Consult the log and answer the questions following the
program code listed here.

Questions:

a. Does Example 1 use an index? Why or why not?

No, Example 1 does not use an index because the example uses a subsetting IF statement instead
of a WHERE statement.

b. Does Example 2 use an index? Why or why not?

No, Example 2 does not use an index because the WHERE statement uses the OR operator.

 2.4 Solutions to Exercises 2-73

c. Does Example 3 use an index? Why or why not?

No, Example 3 does not use an index because the subset is too large for an index to be
appropriate.

d. Does Example 4 use an index? Why or why not?

Yes, Example 4 uses an index because the WHERE statement selects a small subset.

e. Does Example 5 use an index? Why or why not?

Yes, Example 5 uses an index because the WHERE statement selects a small subset. The WHERE
statement is using the composite index, DteFlt, because the subset is on the primary key
variable.

f. In Example 6, does the data set SalesCopy have an index?

No, the data set ia.sales maintains its index, but SalesCopy does not retain the index from
ia.sales.

2-74 Chapter 2 Accessing Observations

Chapter 3 Combining Data
Horizontally

3.1 Joining Data Sets by Value ..3-3

3.2 Combining Summary and Detail Data...3-37

3.3 Using an Index to Combine Data...3-56

3.4 Updating Data ...3-72

3.5 Combining Summary and Detail Data Using Two SET Statements (Self-Study).....3-93

3.6 Solutions to Exercises ...3-106

3-2 Chapter 3 Combining Data Horizontally

 3.1 Joining Data Sets by Value 3-3

3.1 Joining Data Sets by Value

3

Objectives
Use the DATA step with a MERGE statement to join
more than two SAS data sets.
Use the SQL procedure to join SAS data sets without
a common variable.
Investigate the differences between the DATA step
MERGE and PROC SQL.
Combine data conditionally.

4

Business Task
Merge multiple SAS data sets with no common BY variable.

Date
FlightID
Expenses

ia.expenses

Dest
Date
FlightID
Origin
RevBusiness
RevEcon
Rev1st

ia.revenue

City
Code
Country
Name

ia.airports

Date
FlightID
Expenses
Dest
Date
FlightID
Origin
RevBusiness
RevEcon
Rev1st
DestCity
DestApt
OriginCity
OriginApt
Profit calculated

ia.alldata

ia.expenses

ia.revenue

ia.airports

...

3-4 Chapter 3 Combining Data Horizontally

5

Methods for the Match-Merge
You can perform a match-merge of two or more
SAS data sets with the following:

DATA step with the MERGE statement and a
BY statement
PROC SQL join

6

DATA Step MERGE Statement
DATA data-set-name;

MERGE SAS-data-sets;
BY variables;

RUN;

DATA data-set-name;
MERGE SAS-data-sets;
BY variables;

RUN;

Matches on equal values for like-named variables:

Airport
Code

Airport
Code

Airport
Code

 3.1 Joining Data Sets by Value 3-5

Using the DATA Step to Perform a Match-Merge

c03s1d1
proc sort data = ia.expenses out = expenses;
 by FlightID Date;
run;

proc sort data = ia.revenue out = revenue;
 by FlightID Date;
run;

data exprev;
 merge expenses(in = e) revenue(in = r);
 by FlightID Date;
 if e and r;
 Profit = sum(Rev1st, RevBusiness, RevEcon, -Expenses);
run;

proc sort data = exprev;
 by Dest;
run;

proc sort data = ia.airports out = airports;
 by Code;
run;

data destinfo;
 merge exprev(in = exp)
 airports(keep = City Name Code
 rename = (Code = Dest City = DestCity
 Name = DestApt));
 by Dest;
 if exp;
run;

proc sort data = destinfo;
 by Origin;
run;

(Continued on the next page.)

3-6 Chapter 3 Combining Data Horizontally

data alldata;
 merge destinfo(in = des)
 airports(keep = City Name Code
 rename = (Code = Origin City = OriginCity
 Name = OriginApt));
 by Origin;
 if des;
run;

proc print data = alldata(obs=5);
 title 'Result of Merging Three Data Sets';
 format Date date9.;
run;

 This DATA step creates the city variable for the destination.

 This DATA step creates the city variable for the origin.

Partial Output
Result of Merging Three Data Sets

 Flight Rev Rev
 Obs ID Date Expenses Origin Dest Rev1st Business Econ Profit DestCity

 1 IA03400 02DEC2005 89155 ANC RDU 15829 28420 68688 23782 Raleigh-Durham, NC
 2 IA03400 03DEC2005 22008 ANC RDU 15829 26460 68688 88969 Raleigh-Durham, NC
 3 IA03400 04DEC2005 71609 ANC RDU 18707 23520 77751 48369 Raleigh-Durham, NC
 4 IA03400 05DEC2005 82454 ANC RDU 15829 27440 64872 25687 Raleigh-Durham, NC
 5 IA03400 06DEC2005 85174 ANC RDU 17268 27440 67257 26791 Raleigh-Durham, NC

 Obs DestApt OriginCity OriginApt

 1 Raleigh-Durham International Airport Anchorage, AK Anchorage International Airport
 2 Raleigh-Durham International Airport Anchorage, AK Anchorage International Airport
 3 Raleigh-Durham International Airport Anchorage, AK Anchorage International Airport
 4 Raleigh-Durham International Airport Anchorage, AK Anchorage International Airport
 5 Raleigh-Durham International Airport Anchorage, AK Anchorage International Airport

 3.1 Joining Data Sets by Value 3-7

8

Advantages of DATA Step MERGE
Multiple values can be returned.
There is no limit to the size of the table, other than disk
space.
Multiple BY variables enable lookups that depend on
more than one variable.
Multiple data sets can be used to provide access to
different tables.
A merge enables complex business logic to be
incorporated into the new data set by using DATA step
processing, such as arrays and DO loops, in addition
to merging features.

continued...

9

Advantages of DATA Step MERGE
The IN= data set option and subsequent
IF-THEN/ELSE logic afford comprehensive control
over whether to accept, reject, or process differently
depending on which data set contributed each
observation.
Observations with duplicate BY values are joined
one-to-one instead of being expanded into a
Cartesian product, as SQL does.

3-8 Chapter 3 Combining Data Horizontally

10

Disadvantages of DATA Step MERGE
Data sets must be sorted by or indexed based on the
BY variable(s).
An exact match on the key value(s) must be found.
The BY variable(s) must be present in all data sets.
When more than one data set contributes variables
with the same name, the values from the variable in
the rightmost data set overwrite the other like-named
variables, and no warning is printed.

Example:

Data set ONE

X Y Z

1 2 3

Data set TWO

X Y W

1 8 9

data three;
 merge one two;
 by x;
run;

Data set THREE

X Y Z W

1 8 3 9

 To avoid this behavior, merge on all common BY variables or use the RENAME input data set
option.

 3.1 Joining Data Sets by Value 3-9

11

General form of the SQL procedure CREATE TABLE
statement:

PROC SQL;
CREATE TABLE SAS-data-set AS
SELECT column-1, column-2,… ,column-n

FROM table-1, table-2,…,table-n
WHERE joining criteria
ORDER BY sorting criteria;

PROC SQL;
CREATE TABLE SAS-data-set AS
SELECT column-1, column-2,… ,column-n

FROM table-1, table-2,…,table-n
WHERE joining criteria
ORDER BY sorting criteria;

The SQL Procedure

3-10 Chapter 3 Combining Data Horizontally

Using a PROC SQL Join to Perform a Match-Merge

c03s1d2
proc sql;
 create table usesql as
 select revenue.FlightID, revenue.Date,
 Expenses,
 Origin, Dest,
 Rev1st, RevBusiness, RevEcon,
 sum(Rev1st, RevBusiness, RevEcon, -Expenses)
 as Profit,
 d.City as DestCity, d.Name as DestApt,
 o.City as OriginCity, o.Name as OriginApt
 from ia.expenses, ia.revenue,
 ia.airports as d, ia.airports as o
 where expenses.FlightID = revenue.FlightID
 and expenses.Date = revenue.Date
 and d.Code = revenue.Dest
 and o.Code = revenue.Origin
 order by revenue.FlightID, revenue.Date;
quit;

proc print data = usesql(obs=5);
 title 'Result of Joining Three Data Sets';
 format Date date9.;
run;

 The data set ia.airports is named twice in the FROM clause so that the airport Code variable
can be used twice in the code and the airport City can be extracted twice: once for the destination
city and once for the city of origin. An alias is required on the duplicated data set names to distinguish
which of the duplicate column names is requested.

 3.1 Joining Data Sets by Value 3-11

Partial Output
Result of Joining Three Data Sets

 Flight Rev Rev
 Obs ID Date Expenses Origin Dest Rev1st Business Econ Profit DestCity

 1 IA00100 02DEC2005 58907 RDU LHR 19200 31610 79650 71553 London, England
 2 IA00100 03DEC2005 108543 RDU LHR 17600 25070 80181 14308 London, England
 3 IA00100 04DEC2005 21963 RDU LHR 17600 28340 84960 108937 London, England
 4 IA00100 05DEC2005 31517 RDU LHR 17600 32700 72216 90999 London, England
 5 IA00100 06DEC2005 105682 RDU LHR 22400 29430 74871 21019 London, England

 Obs DestApt OriginCity OriginApt

 1 Heathrow Airport Raleigh-Durham, NC Raleigh-Durham International Airport
 2 Heathrow Airport Raleigh-Durham, NC Raleigh-Durham International Airport
 3 Heathrow Airport Raleigh-Durham, NC Raleigh-Durham International Airport
 4 Heathrow Airport Raleigh-Durham, NC Raleigh-Durham International Airport
 5 Heathrow Airport Raleigh-Durham, NC Raleigh-Durham International Airport

3-12 Chapter 3 Combining Data Horizontally

13

Advantages of PROC SQL Joins
Multiple data sets can be joined without having
common variables in all data sets.
Data sets do not have to be sorted or indexed.
Inequality joins can be performed.
You can create data files (tables), views, or reports.
PROC SQL follows ANSI standard language
definitions, so that you can use knowledge gained
from other languages.

14

Disadvantages of PROC SQL Joins
The maximum number of tables that can be joined at
one time is 32.
PROC SQL might require more resources than the
DATA step with the MERGE statement for simple
joins.
Complex business logic is difficult to incorporate into
the join.
Duplicate BY values are combined into a Cartesian
product, which can produce an extremely large output
data set.

 3.1 Joining Data Sets by Value 3-13

15

The following programs are used to generate the results
for the next four result sets.

data three;
merge one two;
by x;

run;

proc sql;
select one.x, one.y, two.z

from one, two
where one.x = two.x;

quit;

Comparison Programs

 The DATA step and SQL procedure code remain constant. The data values change in the
following examples.

16

ONE-TO-ONE matches produce identical results:

1 a
2 b

1 f
2 g

1 a f
2 b g

X Y Z

MERGE and SQL Join Comparison

X Y

one

X Z

two

The X values are unique in both data sets one and two.

3-14 Chapter 3 Combining Data Horizontally

17

ONE-TO-MANY matches produce identical results:

1 a
2 b

1 f
1 r
2 g

1 a f
1 a r
2 b g

MERGE and SQL Join Comparison

X Y

one

X Z

two

X Y Z

The X values are unique in one but not in two.

 3.1 Joining Data Sets by Value 3-15

18

MERGE and SQL Join Comparison
MANY-TO-MANY matches produce different results:

1 a
1 c
2 b

1 a f
1 c r
2 b g

1 a f
1 a r
1 c f
1 c r
2 b g

1 f
1 r
2 g

X Y Z

DATA Step X Y Z

PROC SQLX Y

one

X Z

two

The X values in data sets one and two are not unique.

 Many-to-many joins are problematic. The question is not efficiency of the technique; rather, the
question is which output do you want? Do you want two or four observations for a 2-to-2 match?

Reference Information

The following DATA step creates a Cartesian product.
data three(drop = temp);
 set one;
 do I = 1 to totobs;
 set two(rename = (x = temp))
 nobs=totobs point = i;
 if x = temp then output;
 end;
run;

3-16 Chapter 3 Combining Data Horizontally

19

NONMATCHING data produces different results:

1 a
2 b
3 c

1 f
3 t
4 w

1 a f
3 c t

1 a f
2 b
3 c t
4 w

MERGE and SQL Join Comparison

X Y Z

DATA Step

X Y Z

PROC SQL

X Y

one

X Z

two

Reference Information

The following SQL step produces results that are identical to those of the DATA step when there is
non-matching data.
proc sql;
 select coalesce(one.x, two.x) as x, y, z
 from one full join two
 on one.x = two.x;
quit;

.

 3.1 Joining Data Sets by Value 3-17

20

How does the DATA step perform a match-merge?

X Y Z

1 f
1 r
3 t
4 w

1 a
1 d
3 c

PDV

MERGE and SQL Join Comparison

X Y

one

X Z

two

...

The DATA step MERGE statement processes sequentially, top to bottom, by default.

21

How does the DATA step perform a match-merge?

MERGE and SQL Join Comparison

X Y Z

1 f
1 r
3 t
4 w

1 a
1 d
3 c

PDV

X Y

one

X Z

two

1 a f

...

3-18 Chapter 3 Combining Data Horizontally

22

X Y Z

1 f
1 r
3 t
4 w

1 a
1 d
3 c

PDV

X Y

one

X Z

two
How does the DATA step perform a match-merge?

MERGE and SQL Join Comparison

d r1

...

23

X Y Z

1 f
1 r
3 t
4 w

1 a
1 d
3 c

PDV

X Y

one

X Z

two
How does the DATA step perform a match-merge?

MERGE and SQL Join Comparison

3 c t

...

 3.1 Joining Data Sets by Value 3-19

24

X Y Z

1 f
1 r
3 t
4 w

1 a
1 d
3 c

PDV

X Y

one

X Z

two

MERGE and SQL Join Comparison
How does the DATA step perform a match-merge?

4

EOF

w

25

1 a f
1 d r
3 c t
4 w

X Y Z

three 1 f
1 r
3 t
4 w

X Z

two

1 a
1 d
3 c

X Y

one

MERGE and SQL Join Comparison
Both the matches and the non-matches on X remain.

3-20 Chapter 3 Combining Data Horizontally

26

How does PROC SQL perform a join?

1 a

1 d

3 c

X Y

one

1 f

1 r

3 t

4 w

X Z

two

MERGE and SQL Join Comparison

...
Without a WHERE clause

PROC SQL processes by creating a Cartesian product.

27

1 a 1 f
1 a 1 r
1 a 3 t
1 a 4 w
1 d 1 f
1 d 1 r
1 d 3 t
1 d 4 w
3 c 1 f
3 c 1 r
3 c 3 t
3 c 4 w

X Y X Z

MERGE and SQL Join Comparison
How does PROC SQL perform a join?

1 a

1 d

3 c

X Y

one

1 f

1 r

3 t

4 w

X Z

two

Without a WHERE clause

Conceptually, PROC SQL creates the result set pictured above. There are optimization routines that make
the process more efficient.

Administrator
高亮

 3.1 Joining Data Sets by Value 3-21

28

1 a 1 f
1 a 1 r
1 a 3 t
1 a 4 w
1 d 1 f
1 d 1 r
1 d 3 t
1 d 4 w
3 c 1 f
3 c 1 r
3 c 3 t
3 c 4 w

X Y X Z

MERGE and SQL Join Comparison

where one.x = two.x
How does PROC SQL perform a join?

1 a

1 d

3 c

X Y

one

1 f

1 r

3 t

4 w

X Z

two

With a WHERE clause

The non-matches on X are eliminated.

29

1 a f
1 a r
1 d f
1 d r
3 c t

X Y Z

three

All combinations of observations
from ONE and TWO with matches on X remain.

MERGE and SQL Join Comparison
How does PROC SQL perform a join?

1 a

1 d

3 c

X Y

one

1 f

1 r

3 t

4 w

X Z

two

3-22 Chapter 3 Combining Data Horizontally

Exercises

1. Joining Data Sets to Create a New Data Set

Using PROC SQL, join ia.employees, ia.jcodedat, and ia.newsals to create a data set
that contains employee IDs, employee job codes, job code descriptions, current salaries, and new
salaries. Print the resulting data set.

There is no variable common to all three SAS data sets. Use PROC CONTENTS, PROC
DATASETS, or the SAS Explorer to determine the columns on which to join the rows.

Partial Output
 Job
EmpID Code Descript Salary NewSalary

E00001 FLTAT3 FLIGHT ATTENDANT GRADE 3 $25,000 $27,420.04
E00003 VICEPR VICE PRESIDENT $120,000 $143,789.80
E00005 GRCREW GROUND CREW $19,000 $20,757.68
E00008 OFFMGR OFFICE MANAGER $85,000 $93,811.78
E00012 MKTCLK MARKETING CLERK $33,000 $38,481.44
E00013 RECEPT RECEPTIONIST $22,000 $23,243.79
E00014 MECH02 MECHANIC GRADE 2 $19,000 $20,434.78
E00017 RESCLK RESERVATIONS CLERK $36,000 $36,241.64
E00018 FACMNT FACILITIES MAINTENANCE OPERATIVE $33,000 $35,947.80
E00022 FACCLK FACILITIES CLERK $27,000 $27,530.65

2. Combining Data with the DATA Step MERGE Statement

Repeat the same task using the DATA step MERGE statement to merge all three data sets. Print the
resulting data set.

Partial Output
 Job
EmpID Code Descript Salary NewSalary

E00001 FLTAT3 FLIGHT ATTENDANT GRADE 3 $25,000 $27,420.04
E00003 VICEPR VICE PRESIDENT $120,000 $143,789.80
E00005 GRCREW GROUND CREW $19,000 $20,757.68
E00008 OFFMGR OFFICE MANAGER $85,000 $93,811.78
E00012 MKTCLK MARKETING CLERK $33,000 $38,481.44
E00013 RECEPT RECEPTIONIST $22,000 $23,243.79
E00014 MECH02 MECHANIC GRADE 2 $19,000 $20,434.78
E00017 RESCLK RESERVATIONS CLERK $36,000 $36,241.64
E00018 FACMNT FACILITIES MAINTENANCE OPERATIVE $33,000 $35,947.80
E00022 FACCLK FACILITIES CLERK $27,000 $27,530.65

 The results should be identical to the previous exercise.

 3.1 Joining Data Sets by Value 3-23

31

Conditionally Combining Data
Some combinations of data are based on a condition.
For example, the data set ia.madrid contains the
flights from Madrid in March 2005. The revenue amounts
are in dollars.
Partial Data Set

Flight
Obs ID FltDate Rev1st RevBus

1 IA05900 01MAR2005 $3,445.00 .
2 IA05901 01MAR2005 $2,915.00 .
3 IA05902 01MAR2005 $2,915.00 .
4 IA05903 01MAR2005 $2,915.00 .

Obs RevEcon CargoRev RevTotal

1 $8,360.00 $7,421.00 $19,226
2 $10,824.00 $5,289.00 $19,028
3 $8,448.00 $7,503.00 $18,866
4 $9,416.00 $6,601.00 $18,932

32

Conditionally Combining Data
The data set ia.rates has the conversion rate for
converting from dollars to euros.

Obs BDate EDate rate

1 03/01/2005 03/07/2005 0.76
2 03/08/2005 03/10/2005 0.75
3 03/11/2005 03/13/2005 0.74
4 03/14/2005 03/15/2005 0.75
5 03/16/2005 03/16/2005 0.74
6 03/17/2005 03/20/2005 0.75
7 03/21/2005 03/22/2005 0.76
8 03/23/2005 03/27/2005 0.77
9 03/28/2005 03/28/2005 0.78

10 03/29/2005 03/31/2005 0.77

3-24 Chapter 3 Combining Data Horizontally

33

Conditionally Combining Data
What needs to be done:

Use the current value of rate when FltDate is
between BDate and EDate.

BDate EDate rate
03/01/2005 03/07/2005 0.76

current rate

ID Dest FltDate
IA05900 MAD 01MAR2005

BDate <= FltDate <= EDate?

...

continued...

34

Conditionally Combining Data
What needs to be done:

Read a new value for rate when FltDate is not
between BDate and EDate.

ID Dest FltDate
IA05900 MAD 08MAR2005

BDate <= FltDate <= EDate?

...

BDate EDate rate
03/01/2005 03/07/2005 0.76

current rate

 3.1 Joining Data Sets by Value 3-25

36

Conditionally Combining Data
The MERGE statement cannot be used in this example.
It can only be used to join data when one of the following
conditions are met:

The data can be joined by comparing values of a
common BY value.

or
The data can be combined by observation number. In
this case, there is no BY statement in the DATA step.

37

Conditionally Combining Data
You can use multiple SET statements to combine
observations from several SAS data sets.
When you use multiple SET statements, the following
occurs:

Processing stops when SAS encounters the end-of-file
marker on either data set.
The variables in the PDV are not reinitialized when a
second SET statement is executed.

Example:

data Euros;
set ia.madrid;
set ia.rates;

run;

3-26 Chapter 3 Combining Data Horizontally

38

Conditionally Combining Data
data Euros;

set ia.Madrid(keep = FlightID FltDate
RevTotal);

do while (not (BDate le FltDate le
EDate));

set ia.rates;
end;
RevEuros = RevTotal*rate;

run;

c03s1d3

ia.madrid must be sorted by FltDate.

ia.rates must be sorted by BDate.

 The DO WHILE statement executes statements in a DO loop while a condition is true. The expression
is evaluated at the top of the loop. The statements in the loop never execute if the expression is
initially false.

40

FlightID BDateFltDate

PDV
RevTotal EDate Rate RevEuros

BDate EDate Rate

03/01/2005 03/07/2005 0.76
03/08/2005 03/10/2005 0.75
03/11/2005 03/13/2005 0.74
03/14/2005 03/15/2005 0.75
03/16/2005 03/16/2005 0.74

Execution
ia.rates

IA05900 01MAR2005 19226

FlightID FltDate RevTotal

IA05900 01MAR2005 19226
IA05901 01MAR2005 19028

. . .

. . .
IA05900 08MAR2005 18902
IA05901 08MAR2005 19310

ia.madrid

data Euros;
set ia.madrid(keep = FlightID FltDate

RevTotal);
do while (not (BDate le FltDate le

EDate));
set ia.rates;

end;
RevEuros = RevTotal*rate;

run;

...

 3.1 Joining Data Sets by Value 3-27

41

FlightID BDateFltDate

PDV
RevTotal EDate Rate RevEuros

BDate EDate Rate

03/01/2005 03/07/2005 0.76
03/08/2005 03/10/2005 0.75
03/11/2005 03/13/2005 0.74
03/14/2005 03/15/2005 0.75
03/16/2005 03/16/2005 0.74

Execution
ia.rates

. . . .IA05900 01MAR2005 19226

FlightID FltDate RevTotal

IA05900 01MAR2005 19226
IA05901 01MAR2005 19028

. . .

. . .
IA05900 08MAR2005 18902
IA05901 08MAR2005 19310

ia.madrid

data Euros;
set ia.madrid(keep = FlightID FltDate

RevTotal);
do while (not (BDate le FltDate le

EDate));
set ia.rates;

end;
RevEuros = RevTotal*rate;

run;
False

. <= 01MAR2005 <= .

...

42

FlightID BDateFltDate

PDV
RevTotal EDate Rate RevEuros

BDate EDate Rate

03/01/2005 03/07/2005 0.76
03/08/2005 03/10/2005 0.75
03/11/2005 03/13/2005 0.74
03/14/2005 03/15/2005 0.75
03/16/2005 03/16/2005 0.74

Execution
ia.rates

. . . .IA05900 01MAR2005 19226

FlightID FltDate RevTotal

IA05900 01MAR2005 19226
IA05901 01MAR2005 19028

. . .

. . .
IA05900 08MAR2005 18902
IA05901 08MAR2005 19310

ia.madrid

data Euros;
set ia.madrid(keep = FlightID FltDate

RevTotal);
do while (not (BDate le FltDate le

EDate));
set ia.rates;

end;
RevEuros = RevTotal*rate;

run;
True

not (False)

...

3-28 Chapter 3 Combining Data Horizontally

43

FlightID BDateFltDate

PDV
RevTotal EDate Rate RevEuros

BDate EDate Rate

03/01/2005 03/07/2005 0.76
03/08/2005 03/10/2005 0.75
03/11/2005 03/13/2005 0.74
03/14/2005 03/15/2005 0.75
03/16/2005 03/16/2005 0.74

Execution
ia.rates

.01MAR2005 07MAR2005 0.76IA05900 01MAR2005 19226

FlightID FltDate RevTotal

IA05900 01MAR2005 19226
IA05901 01MAR2005 19028

. . .

. . .
IA05900 08MAR2005 18902
IA05901 08MAR2005 19310

ia.madrid

data Euros;
set ia.madrid(keep = FlightID FltDate

RevTotal);
do while (not (BDate le FltDate le

EDate));
set ia.rates;

end;
RevEuros = RevTotal*rate;

run;

...

44

FlightID BDateFltDate

PDV
RevTotal EDate Rate RevEuros

BDate EDate Rate

03/01/2005 03/07/2005 0.76
03/08/2005 03/10/2005 0.75
03/11/2005 03/13/2005 0.74
03/14/2005 03/15/2005 0.75
03/16/2005 03/16/2005 0.74

Execution
ia.rates

.01MAR2005 07MAR2005 0.76IA05900 01MAR2005 19226

FlightID FltDate RevTotal

IA05900 01MAR2005 19226
IA05901 01MAR2005 19028

. . .

. . .
IA05900 08MAR2005 18902
IA05901 08MAR2005 19310

ia.madrid

data Euros;
set ia.madrid(keep = FlightID FltDate

RevTotal);
do while (not (BDate le FltDate le

EDate));
set ia.rates;

end;
RevEuros = RevTotal*rate;

run;
False

not (True)

...

 3.1 Joining Data Sets by Value 3-29

45

FlightID BDateFltDate

PDV
RevTotal EDate Rate RevEuros

BDate EDate Rate

03/01/2005 03/07/2005 0.76
03/08/2005 03/10/2005 0.75
03/11/2005 03/13/2005 0.74
03/14/2005 03/15/2005 0.75
03/16/2005 03/16/2005 0.74

Execution
ia.rates

14611.7601MAR2005 07MAR2005 0.76IA05900 01MAR2005 19226

FlightID FltDate RevTotal

IA05900 01MAR2005 19226
IA05901 01MAR2005 19028

. . .

. . .
IA05900 08MAR2005 18902
IA05901 08MAR2005 19310

ia.madrid

data Euros;
set ia.madrid(keep = FlightID FltDate

RevTotal);
do while (not (BDate le FltDate le

EDate));
set ia.rates;

end;
RevEuros = RevTotal*rate;

run;

...

46

FlightID BDateFltDate

PDV
RevTotal EDate Rate RevEuros

BDate EDate Rate

03/01/2005 03/07/2005 0.76
03/08/2005 03/10/2005 0.75
03/11/2005 03/13/2005 0.74
03/14/2005 03/15/2005 0.75
03/16/2005 03/16/2005 0.74

Execution
ia.rates

14611.7601MAR2005 07MAR2005 0.76IA05900 01MAR2005 19226

FlightID FltDate RevTotal

IA05900 01MAR2005 19226
IA05901 01MAR2005 19028

. . .

. . .
IA05900 08MAR2005 18902
IA05901 08MAR2005 19310

ia.madrid

data Euros;
set ia.madrid(keep = FlightID FltDate

RevTotal);
do while (not (BDate le FltDate le

EDate));
set ia.rates;

end;
RevEuros = RevTotal*rate;

run;

Implied Output

...

3-30 Chapter 3 Combining Data Horizontally

47

FlightID BDateFltDate

PDV
RevTotal EDate Rate RevEuros

BDate EDate Rate

03/01/2005 03/07/2005 0.76
03/08/2005 03/10/2005 0.75
03/11/2005 03/13/2005 0.74
03/14/2005 03/15/2005 0.75
03/16/2005 03/16/2005 0.74

Execution
ia.rates

.01MAR2005 07MAR2005 0.76IA05900 01MAR2005 19226

FlightID FltDate RevTotal

IA05900 01MAR2005 19226
IA05901 01MAR2005 19028

. . .

. . .
IA05900 08MAR2005 18902
IA05901 08MAR2005 19310

ia.madrid

data Euros;
set ia.madrid(keep = FlightID FltDate

RevTotal);
do while (not (BDate le FltDate le

EDate));
set ia.rates;

end;
RevEuros = RevTotal*rate;

run;

...

49

FlightID BDateFltDate

PDV
RevTotal EDate Rate RevEuros

BDate EDate Rate

03/01/2005 03/07/2005 0.76
03/08/2005 03/10/2005 0.75
03/11/2005 03/13/2005 0.74
03/14/2005 03/15/2005 0.75
03/16/2005 03/16/2005 0.74

Execution
ia.rates

.01MAR2005 07MAR2005 0.76IA05901 01MAR2005 19028

FlightID FltDate RevTotal

IA05900 01MAR2005 19226
IA05901 01MAR2005 19028

. . .

. . .
IA05900 08MAR2005 18902
IA05901 08MAR2005 19310

ia.madrid

data Euros;
set ia.madrid(keep = FlightID FltDate

RevTotal);
do while (not (BDate le FltDate le

EDate));
set ia.rates;

end;
RevEuros = RevTotal*rate;

run;
True

01MAR2005 <= 01MAR2005 <= 07MAR2005

...

 3.1 Joining Data Sets by Value 3-31

50

FlightID BDateFltDate

PDV
RevTotal EDate Rate RevEuros

BDate EDate Rate

03/01/2005 03/07/2005 0.76
03/08/2005 03/10/2005 0.75
03/11/2005 03/13/2005 0.74
03/14/2005 03/15/2005 0.75
03/16/2005 03/16/2005 0.74

Execution
ia.rates

.01MAR2005 07MAR2005 0.76IA05901 01MAR2005 19028

FlightID FltDate RevTotal

IA05900 01MAR2005 19226
IA05901 01MAR2005 19028

. . .

. . .
IA05900 08MAR2005 18902
IA05901 08MAR2005 19310

ia.madrid

data Euros;
set ia.madrid(keep = FlightID FltDate

RevTotal);
do while (not (BDate le FltDate le

EDate));
set ia.rates;

end;
RevEuros = RevTotal*rate;

run;
False

not (True)

...

52

FlightID BDateFltDate

PDV
RevTotal EDate Rate RevEuros

BDate EDate Rate

03/01/2005 03/07/2005 0.76
03/08/2005 03/10/2005 0.75
03/11/2005 03/13/2005 0.74
03/14/2005 03/15/2005 0.75
03/16/2005 03/16/2005 0.74

Execution
ia.rates

14461.2801MAR2005 07MAR2005 0.76IA05901 01MAR2005 19028

FlightID FltDate RevTotal

IA05900 01MAR2005 19226
IA05901 01MAR2005 19028

. . .

. . .
IA05900 08MAR2005 18902
IA05901 08MAR2005 19310

ia.madrid

data Euros;
set ia.madrid(keep = FlightID FltDate

RevTotal);
do while (not (BDate le FltDate le

EDate));
set ia.rates;

end;
RevEuros = RevTotal*rate;

run;

Implied Output

...

3-32 Chapter 3 Combining Data Horizontally

54

FlightID BDateFltDate

PDV
RevTotal EDate Rate RevEuros

FlightID FltDate RevTotal

IA05900 01MAR2005 19226
IA05901 01MAR2005 19028

. . .

. . .
IA05900 08MAR2005 18902
IA05901 08MAR2005 19310

BDate EDate Rate

03/01/2005 03/07/2005 0.76
03/08/2005 03/10/2005 0.75
03/11/2005 03/13/2005 0.74
03/14/2005 03/15/2005 0.75
03/16/2005 03/16/2005 0.74data Euros;

set ia.madrid(keep = FlightID FltDate
RevTotal);

do while (not (BDate le FltDate le
EDate));

set ia.rates;
end;
RevEuros = RevTotal*rate;

run;

Execution
ia.rates

ia.madrid

14415.6801MAR2005 07MAR2005 0.76IA06005 07MAR2005 18968

Continue reading ia.madrid
until FltDate=08MAR2005.

...

55

FlightID BDateFltDate

PDV
RevTotal EDate Rate RevEuros

FlightID FltDate RevTotal

IA05900 01MAR2005 19226
IA05901 01MAR2005 19028

. . .

. . .
IA05900 08MAR2005 18902
IA05901 08MAR2005 19310

BDate EDate Rate

03/01/2005 03/07/2005 0.76
03/08/2005 03/10/2005 0.75
03/11/2005 03/13/2005 0.74
03/14/2005 03/15/2005 0.75
03/16/2005 03/16/2005 0.74data Euros;

set ia.madrid(keep = FlightID FltDate
RevTotal);

do while (not (BDate le FltDate le
EDate));

set ia.rates;
end;
RevEuros = RevTotal*rate;

run;

Execution
ia.rates

ia.madrid

.01MAR2005 07MAR2005 0.76IA05900 08MAR2005 18902

...

 3.1 Joining Data Sets by Value 3-33

56

FlightID BDateFltDate

PDV
RevTotal EDate Rate RevEuros

FlightID FltDate RevTotal

IA05900 01MAR2005 19226
IA05901 01MAR2005 19028

. . .

. . .
IA05900 08MAR2005 18902
IA05901 08MAR2005 19310

BDate EDate Rate

03/01/2005 03/07/2005 0.76
03/08/2005 03/10/2005 0.75
03/11/2005 03/13/2005 0.74
03/14/2005 03/15/2005 0.75
03/16/2005 03/16/2005 0.74data Euros;

set ia.madrid(keep = FlightID FltDate
RevTotal);

do while (not (BDate le FltDate le
EDate));

set ia.rates;
end;
RevEuros = RevTotal*rate;

run;

Execution
ia.rates

ia.madrid

01MAR2005 07MAR2005 0.76IA05900 08MAR2005 18902

...

.

False
01MAR2005 <= 08MAR2005 <= 07MAR52005

57

FlightID BDateFltDate

PDV
RevTotal EDate Rate RevEuros

FlightID FltDate RevTotal

IA05900 01MAR2005 19226
IA05901 01MAR2005 19028

. . .

. . .
IA05900 08MAR2005 18902
IA05901 08MAR2005 19310

BDate EDate Rate

03/01/2005 03/07/2005 0.76
03/08/2005 03/10/2005 0.75
03/11/2005 03/13/2005 0.74
03/14/2005 03/15/2005 0.75
03/16/2005 03/16/2005 0.74data Euros;

set ia.madrid(keep = FlightID FltDate
RevTotal);

do while (not (BDate le FltDate le
EDate));

set ia.rates;
end;
RevEuros = RevTotal*rate;

run;

Execution
ia.rates

ia.madrid

01MAR2005 07MAR2005 0.76IA05900 08MAR2005 18902

...

.

True
not (False)

3-34 Chapter 3 Combining Data Horizontally

58

FlightID BDateFltDate

PDV
RevTotal EDate Rate RevEuros

FlightID FltDate RevTotal

IA05900 01MAR2005 19226
IA05901 01MAR2005 19028

. . .

. . .
IA05900 08MAR2005 18902
IA05901 08MAR2005 19310

BDate EDate Rate

03/01/2005 03/07/2005 0.76
03/08/2005 03/10/2005 0.75
03/11/2005 03/13/2005 0.74
03/14/2005 03/15/2005 0.75
03/16/2005 03/16/2005 0.74data Euros;

set ia.madrid(keep = FlightID FltDate
RevTotal);

do while (not (BDate le FltDate le
EDate));

set ia.rates;
end;
RevEuros = RevTotal*rate;

run;

Execution
ia.rates

ia.madrid

08MAR2005 10MAR2005 0.75IA05900 08MAR2005 18902

...

.

60

FlightID BDateFltDate

PDV
RevTotal EDate Rate RevEuros

FlightID FltDate RevTotal

IA05900 01MAR2005 19226
IA05901 01MAR2005 19028

. . .

. . .
IA05900 08MAR2005 18902
IA05901 08MAR2005 19310

BDate EDate Rate

03/01/2005 03/07/2005 0.76
03/08/2005 03/10/2005 0.75
03/11/2005 03/13/2005 0.74
03/14/2005 03/15/2005 0.75
03/16/2005 03/16/2005 0.74data Euros;

set ia.madrid(keep = FlightID FltDate
RevTotal);

do while (not (BDate le FltDate le
EDate));

set ia.rates;
end;
RevEuros = RevTotal*rate;

run;

Execution
ia.rates

ia.madrid

08MAR2005 10MAR2005 0.75IA05900 08MAR2005 18902

...

14176.50

Implied Output

 3.1 Joining Data Sets by Value 3-35

61

Conditional Merge Output
Flight

Obs ID FltDate RevTotal BDate EDate Rate RevEuros

1 IA05900 01MAR2005 $19,226 03/01/2005 03/07/2005 0.76 14611.76
2 IA05901 01MAR2005 $19,028 03/01/2005 03/07/2005 0.76 14461.28
3 IA05902 01MAR2005 $18,866 03/01/2005 03/07/2005 0.76 14338.16
4 IA05903 01MAR2005 $18,932 03/01/2005 03/07/2005 0.76 14388.32
5 IA05904 01MAR2005 $19,232 03/01/2005 03/07/2005 0.76 14616.32
6 IA05905 01MAR2005 $18,950 03/01/2005 03/07/2005 0.76 14402.00
7 IA05900 02MAR2005 $19,340 03/01/2005 03/07/2005 0.76 14698.40
8 IA05901 02MAR2005 $19,370 03/01/2005 03/07/2005 0.76 14721.20

<Rows Removed>

40 IA05903 07MAR2005 $19,061 03/01/2005 03/07/2005 0.76 14486.36
41 IA05904 07MAR2005 $19,322 03/01/2005 03/07/2005 0.76 14684.72
42 IA05905 07MAR2005 $19,139 03/01/2005 03/07/2005 0.76 14545.64
43 IA05900 08MAR2005 $18,902 03/08/2005 03/10/2005 0.75 14176.50
44 IA05901 08MAR2005 $19,310 03/08/2005 03/10/2005 0.75 14482.50
45 IA05902 08MAR2005 $19,589 03/08/2005 03/10/2005 0.75 14691.75
46 IA05903 08MAR2005 $19,346 03/08/2005 03/10/2005 0.75 14509.50
47 IA05904 08MAR2005 $18,998 03/08/2005 03/10/2005 0.75 14248.50
48 IA05905 08MAR2005 $19,547 03/08/2005 03/10/2005 0.75 14660.25
49 IA05900 09MAR2005 $18,896 03/08/2005 03/10/2005 0.75 14172.00

 The secret to using multiple SET statements in this fashion is to have both data sets in order
(ascending or descending) by the variables tested in the DO WHILE statement.

62

Using The SQL Procedure
proc sql;

create table combinesql as
select FlightID, FltDate, RevTotal,

rate, RevTotal*rate as
RevEuros

from ia.Madrid, ia.rates
where FltDate between BDate and EDate
order by FltDate, FlightID;

quit;

PROC SQL can use the BETWEEN
operator in the WHERE clause.

c03s1d4

Neither data set must be sorted.

...

3-36 Chapter 3 Combining Data Horizontally

Exercises

3. Combining Two Data Sets Conditionally

The data set ia.options has the number of stock options awarded to the crew employees based
on the date they were hired. The hired dates for the crew are stored in the data set ia.crew. Create
a data set named crewshrs that combines the two data sets. The data set crewshrs should
contain only the variables LastName, FirstName, HireDate, and NumShares and should be
in order by HireDate.

ia.options
 Num

 Obs BeginDte EndDte Shares

 1 01JAN1980 31DEC1984 500
 2 01JAN1985 31DEC1987 550
 3 01JAN1988 31DEC1992 600
 4 01Jan1993 31DEC1996 700

ia.crew (First 5 observations)
 Job
Obs HireDate LastName FirstName Location Phone EmpID Code Salary JobCat

 1 15JAN1982 CHRISTIAN JOHN G. LONDON 1369 E01146 FLTAT1 28000 Flight Attendant
 2 23FEB1981 ELLIS GREGORY FRANKFURT 1595 E00364 FLTAT1 25000 Flight Attendant
 3 15APR1994 EUNICE ROBERT N. CARY 1157 E03022 FLTAT1 23000 Flight Attendant
 4 23DEC1990 FITZGERALD JAMES V. CARY 1168 E03511 FLTAT1 21000 Flight Attendant
 5 11JUN1983 GOODWIN CYNTHIA Q. CARY 1752 E03510 FLTAT1 29000 Flight Attendant

crewshrs (First 10 observations)
 Num

Obs LastName FirstName HireDate Shares

 1 WAKELIN DAVE 14JAN1980 500
 2 WASCHK ROBERT 18FEB1980 500
 3 GODFREY GERALD T. 13AUG1980 500
 4 WHITE RUTH M. 25SEP1980 500
 5 MEEKS KRAIG E. 11OCT1980 500
 6 WHITMEYER ROBERTA J. 02JAN1981 500
 7 WILDER TODD C. 09JAN1981 500
 8 ELLIS GREGORY 23FEB1981 500
 9 PIERCE STEVEN W. 19AUG1981 500
 10 STRAUSS REINHARD 09OCT1981 500

 3.2 Combining Summary and Detail Data 3-37

3.2 Combining Summary and Detail Data

65

Objectives
Create an output SAS data set that contains
summary statistics from PROC MEANS.
Combine PROC MEANS summary statistics in a
SAS data set with a detail SAS data set.

66

Combining Summary and Detail Data
The following are common business tasks:

Create a summary statistic from a data set variable.
Combine the summary information with detail rows
of the original data set.
Calculate percentages.

...

3-38 Chapter 3 Combining Data Horizontally

67

Combining Summary and Detail Data
The data set ia.empcount has one row for every
value of JobCode.

Partial Output
Job Num

Obs Code Emps

1 BAGCLK 140
2 BAGSUP 18
3 CHKCLK 125
4 CHKSUP 18
5 FACCLK 124
6 FACMGR 17
7 FACMNT 60
8 FINACT 36
9 FINCLK 53

10 FINMGR 20

68

Combining Summary and Detail Data
Summarize the data to get the total number of employees
at International Airlines.

TotalEmps

2070

 3.2 Combining Summary and Detail Data 3-39

69

Combining Summary and Detail Data
Combine the summary data with the detail data
in ia.empcount to calculate the percentage of
employees in each job code.

Resulting SAS Data Set
Percentage of Each Job Code

Total Job Num
Obs Emps Code Emps PctEmps

1 2070 BAGCLK 140 6.76%
2 2070 BAGSUP 18 0.87%
3 2070 CHKCLK 125 6.04%
4 2070 CHKSUP 18 0.87%
5 2070 FACCLK 124 5.99%
6 2070 FACMGR 17 0.82%
7 2070 FACMNT 60 2.90%
8 2070 FINACT 36 1.74%
9 2070 FINCLK 53 2.56%

10 2070 FINMGR 20 0.97%

70

Creating a Summary Data Set
Some methods used to create a summary data set are as
follows:

the Output Delivery System (ODS)
the SUMMARY or MEANS procedure with an
OUTPUT statement
the DATA step
the SQL procedure

...

3-40 Chapter 3 Combining Data Horizontally

71

The MEANS Procedure
For numeric variables within a SAS data set, the Means
procedure computes descriptive statistics such as the
following:

mean
minimum
maximum
number of non-missing values
standard deviation

The default statistics generated by PROC MEANS are listed. For a complete list
of statistics, please refer to the SAS documentation.

72

Using the OUTPUT Statement
The following program creates the summary data set.

PROC PRINT Output of Summary

c03s2d1

proc means data = ia.empcount;
var NumEmps;
output out = summary sum = TotalEmps;

run;

Total
Obs _TYPE_ _FREQ_ Emps

1 0 42 2070

 3.2 Combining Summary and Detail Data 3-41

73

PROC MEANS OUTPUT Statement
By default, PROC MEANS generates a report that
contains the descriptive statistics.
The report can be routed to a SAS data set using an
OUTPUT statement.

PROC MEANS DATA = SAS-data-set NOPRINT;
OUTPUT OUT = SAS-data-set

output-statistic-specification(s);

PROC MEANS DATA = SAS-data-set NOPRINT;
OUTPUT OUT = SAS-data-set

output-statistic-specification(s);

 The NOPRINT option suppresses the printing of the PROC MEANS report.

For a complete listing of PROC MEANS statements and options, see the SAS documentation.

The output data set contains variables that contain the requested statistics plus the following:
• _TYPE_ contains information about the class variables.
• _FREQ_ contains the number of observations that an output level represents.

PROC SUMMARY can also be used to generate a data set that contains summary statistics.

3-42 Chapter 3 Combining Data Horizontally

74

Combining Summary and Detail Data
After creating the summary statistic, perform the following
tasks:

Combine the summary information with the detail
rows.
Calculate the percentages.

...

75

Combining Summary and Detail Data (Review)
You can use multiple SET statements to combine
observations from several SAS data sets.
When you use multiple SET statements, the following
events occur:

Processing stops when SAS encounters the end-of-file
marker on either data set.
The variables in the PDV are not reinitialized when a
second SET statement is executed.

Example:
data out;

set total;
set details;

run;

Administrator
高亮

Administrator
高亮

 3.2 Combining Summary and Detail Data 3-43

76

100

SUM

total

VALUE
30
70

details

100 30

SUM VALUE

Multiple SET Statements (Incorrect Use)
data out;

set total;
set details;

run;

Iteration 1

N=1

OUTPUT

...

77

100 30

SUM VALUE

Multiple SET Statements (Incorrect Use)
Iteration 2

N=2

EOF
STOP!

...

data out;
set total;
set details;

run;

VALUE
30
70

details

Observation
2 (and higher)
are never read!

100

SUM

total

3-44 Chapter 3 Combining Data Horizontally

78

Using _N_

is set to 1 initially
is incremented by 1 as the DATA step loops past the
DATA statement
is dropped automatically from the data set that is
created
can be used in the DATA step to control when
statements are executed

During the execution of a DATA step, the automatic
variable _N_ has the following features:

79

data percent;
if _n_ = 1 then

set summary(keep = TotalEmps);
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

Combining Summary and Detail Data

c03s2d2

 The _n_ = 1 condition causes the summary data set to be read only during the first iteration of the
DATA step. Without it, the DATA step reaches the end of file of summary on the second iteration of
the DATA step, and the DATA step terminates with one observation in the data set percent1.

 The data set ia.empcount is read for each iteration of the DATA step.

 3.2 Combining Summary and Detail Data 3-45

80

Compilation

summary

N NumEmps PctEmpsTotalEmps
PDV

JobCode

ia.empcount

...

TotalEmps

2070

D

JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then set summary (keep = TotalEmps);
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

. . . .1

81

Execution

summary

N NumEmps PctEmpsTotalEmps
PDV

JobCode

...

TotalEmps

2070

. . . .

ia.empcount

D

JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then set summary (keep = TotalEmps);
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;
True

1

3-46 Chapter 3 Combining Data Horizontally

82

summary

N NumEmps PctEmpsTotalEmps
PDV

JobCode

...

TotalEmps

2070

12070

Execution ia.empcount

D

JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then set summary (keep = TotalEmps);
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

83

summary

data percent;
if _n_ = 1 then set summary (keep = TotalEmps);
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

N NumEmps PctEmpsTotalEmps
PDV

JobCode

...

TotalEmps

2070

. . . .

Execution ia.empcount

BAGCLK 1401

D

2070

JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then set summary (keep = TotalEmps);
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

 3.2 Combining Summary and Detail Data 3-47

84

summary

data percent;
if _n_ = 1 then set summary (keep = TotalEmps);
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

N NumEmps PctEmpsTotalEmps
PDV

JobCode

...

TotalEmps

2070

. . .

Execution ia.empcount

1 BAGCLK 140

D

2070

JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then set summary (keep = TotalEmps);
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

0.067632

85

summary

data percent;
if _n_ = 1 then set summary (keep = TotalEmps);
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

N NumEmps PctEmpsTotalEmps
PDV

JobCode

...

TotalEmps

2070

. . .

Execution ia.empcount

BAGCLK 1401

D

2070

JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then set summary (keep = TotalEmps);
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

Implied Output

0.067632

3-48 Chapter 3 Combining Data Horizontally

86

data percent;
if _n_ = 1 then set summary (keep = TotalEmps);
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

summary

N NumEmps PctEmpsTotalEmps
PDV

JobCode

...

TotalEmps

2070

. . .

Execution ia.empcount

BAGCLK 1402

D

2070

JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then set summary (keep = TotalEmps);
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;
False

87

summary

data percent;
if _n_ = 1 then set summary (keep = TotalEmps);
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

N NumEmps PctEmpsTotalEmps
PDV

JobCode

...

TotalEmps

2070

. . .

Execution ia.empcount

BAGSUP2

D

2070

JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then set summary (keep = TotalEmps);
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

18

 3.2 Combining Summary and Detail Data 3-49

88

summary

data percent;
if _n_ = 1 then set summary (keep = TotalEmps);
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

N NumEmps PctEmpsTotalEmps
PDV

JobCode

...

TotalEmps

2070

. . .

Execution ia.empcount

BAGSUP 0.0086952

D

2070

JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then set summary (keep = TotalEmps);
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

18

89

summary

data percent;
if _n_ = 1 then set summary (keep = TotalEmps);
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

N NumEmps PctEmpsTotalEmps
PDV

JobCode

...

TotalEmps

2070

. . .

Execution ia.empcount

BAGSUP 0.0086952

D

2070

JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then set summary (keep = TotalEmps);
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

18

Implied Output

3-50 Chapter 3 Combining Data Horizontally

90

Partial Output
The previous program creates the following data:

c03s2d2

Percentage of Each Job Code

Total Job Num
Obs Emps Code Emps PctEmps

1 2070 BAGCLK 140 6.76%
2 2070 BAGSUP 18 0.87%
3 2070 CHKCLK 125 6.04%
4 2070 CHKSUP 18 0.87%
5 2070 FACCLK 124 5.99%
6 2070 FACMGR 17 0.82%
7 2070 FACMNT 60 2.90%
8 2070 FINACT 36 1.74%
9 2070 FINCLK 53 2.56%

10 2070 FINMGR 20 0.97%

The report was created by the following program:
proc print data = percent noobs;
 title 'Percentage of Each Job Code';
 format PctEmps percent8.2;
run;

91

proc sql;
title 'Percentage of Each Job Code';
create table percent as
select JobCode, NumEmps,

NumEmps / TotalEmps as PctEmps
from summary, ia.empcount;

quit;

Combining Data Using SQL

c03s2d3

You can join a summary data set and a detail data set
using SQL.

This program takes advantage of the Cartesian
product that SQL forms when BY values repeat.

 3.2 Combining Summary and Detail Data 3-51

92

Combining Data Using SQL
Partial Output from SQL Join

c03s2d3

Percentage of Each Job Code

Job Num
Obs Code Emps PctEmps

1 BAGCLK 140 6.76%
2 BAGSUP 18 0.87%
3 CHKCLK 125 6.04%
4 CHKSUP 18 0.87%
5 FACCLK 124 5.99%
6 FACMGR 17 0.82%
7 FACMNT 60 2.90%
8 FINACT 36 1.74%
9 FINCLK 53 2.56%

10 FINMGR 20 0.97%

The report was created by the following program:
proc print data = percent noobs;
 title 'Percentage of Each Job Code';
 format PctEmps percent8.2;
run;

3-52 Chapter 3 Combining Data Horizontally

93

proc sql;
title 'Remerging Summary Data with Detail Data';
create table percent as

select JobCode, NumEmps,
NumEmps / sum(NumEmps) as PctEmps

from ia.empcount;
quit;

Combining Data Using SQL

c03s2d4

You can remerge overall summary results, such as grand
totals, with detail data using SQL.

When SQL remerges summary data, it puts a note in the SAS log:
7 proc sql;
8 title 'Remerging Summary Data with Detail Data';
9 create table percent as
10 select JobCode, NumEmps,
11 NumEmps / sum(NumEmps) as PctEmps
12 from ia.empcount;
NOTE: The query requires remerging summary statistics back with the original data.
13 quit;
NOTE: PROCEDURE SQL used (Total process time):
 real time 0.33 seconds
 cpu time 0.05 seconds

 3.2 Combining Summary and Detail Data 3-53

94

Combining Data using SQL
Partial Output from SQL Remerge

c03s2d4

Remerging Summary Data with Detail Data

Job Num
Obs Code Emps PctEmps

1 BAGCLK 140 6.76%
2 BAGSUP 18 0.87%
3 CHKCLK 125 6.04%
4 CHKSUP 18 0.87%
5 FACCLK 124 5.99%
6 FACMGR 17 0.82%
7 FACMNT 60 2.90%
8 FINACT 36 1.74%
9 FINCLK 53 2.56%
10 FINMGR 20 0.97%

The report was created by the following program:
proc print data = percent noobs;
 title 'Percentage of Each Job Code';
 format PctEmps percent8.2;
run;

3-54 Chapter 3 Combining Data Horizontally

Exercises

4. Creating a Summary Data Set

Using PROC MEANS, create a SAS data set named ia.mean that contains the overall average
employee contribution stored in ia.contrib. Name the summary variable AvgAmt.

Partial Listing of ia.contrib
ia.contrib

 Qtr
 Obs EmpID Num Amount

 1 E00224 qtr1 12
 2 E00224 qtr2 33
 3 E00224 qtr3 22
 4 E00224 qtr4 .
 5 E00367 qtr1 35
 6 E00367 qtr2 48
 7 E00367 qtr3 40
 8 E00367 qtr4 30
 9 E00441 qtr1 .
 10 E00441 qtr2 63
 11 E00441 qtr3 89
 12 E00441 qtr4 90
 13 E00587 qtr1 16
 14 E00587 qtr2 19
 15 E00587 qtr3 30
 16 E00587 qtr4 29
 17 E00598 qtr1 4
 18 E00598 qtr2 8
 19 E00598 qtr3 6

Output
ia.mean

Obs AvgAmt

1 28.9667

 3.2 Combining Summary and Detail Data 3-55

5. Combining a Summary Data Set with a Detail Data Set

Combine ia.mean from the previous exercise with ia.contrib to determine the difference
between the overall average contribution and each individual employee contribution.
• Create a new SAS data set named diffs that contains the differences.
• Round the difference to the nearest cent.
• Print the resulting data set.

Partial Output
 Qtr
 Obs AvgAmt EmpID Num Amount Diff

 1 28.9667 E00224 qtr1 12 -16.97
 2 28.9667 E00224 qtr2 33 4.03
 3 28.9667 E00224 qtr3 22 -6.97
 4 28.9667 E00224 qtr4 . .
 5 28.9667 E00367 qtr1 35 6.03
 6 28.9667 E00367 qtr2 48 19.03
 7 28.9667 E00367 qtr3 40 11.03
 8 28.9667 E00367 qtr4 30 1.03
 9 28.9667 E00441 qtr1 . .
 10 28.9667 E00441 qtr2 63 34.03

6. Combining Summary and Detail Data Using PROC SQL (Optional)

Repeat the previous exercise and use PROC SQL to achieve the same result.

3-56 Chapter 3 Combining Data Horizontally

3.3 Using an Index to Combine Data

97

Objectives
Use the SET statement with the KEY= option to
combine two SAS data sets.
Use _IORC_ to determine whether the index search
was successful.

98

Combining a Large Data Set with a Small One
Use the index on ia.sales to match observations from
a small SAS data set, ia.dnunder, that contains
information about New Zealand and Australia.

ia.dnunder
Flight

ID Expenses FltDate

IA10200 154269 01DEC2005
IA10201 71165 01DEC2005
IA10200 65188 02DEC2005
IA10201 14259 02DEC2005
IA10200 161419 03DEC2005
IA10201 194320 03DEC2005
IA10200 140349 04DEC2005
IA10201 34894 04DEC2005
IA10200 149703 05DEC2005
IA10201 129356 05DEC2005
: : :

 The data set ia.dnunder used for demonstrations and exercises contains fewer observations
than the data set ia.dnunder used for the course notes.

 3.3 Using an Index to Combine Data 3-57

99

Business Task
Build a data set with the following variables:

Date
FlightID
Expenses

ia.dnunder

Date
FlightID
Rev1st
RevBus
RevEcon
CargoRev

ia.sales

Expenses
Date
FlightID
Rev1st
RevBus
RevEcon
CargoRev
Profit

ia.dnunder

ia.sales

calculated

ia.dnunder has 900 observations.

ia.sales has 329,264 observations and a
composite index, DteFlt on Date and FlightID.

 The data sets ia.sales and ia.dnunder used for demonstrations and exercises contain
fewer observations than the data sets ia.sales and ia.dnunder used for the course notes.

100

Indexes on ia.sales
Partial PROC CONTENTS Output for ia.sales

Alphabetic List of Indexes and Attributes

of
Unique Unique

Index Option Values Variables

1 DteFlt YES 329264 FltDate FlightID
2 Origin 52

3-58 Chapter 3 Combining Data Horizontally

101

Using the KEY= Option
An index is always used when a SET or MODIFY
statement contains the KEY= option.
Specify the KEY= option in the SET statement to use an
index to retrieve observations that have key values equal
to the current value of the key variable(s).
General form of the KEY= option:

SET SAS-data-file-name KEY = index-name;SET SAS-data-file-name KEY = index-name;

• Assign a value to the index key variable(s) before the SET statement is executed.
• The index is then used to retrieve an observation with the key value.
• WHERE processing is not allowed for a data set read with the KEY= option.

102

data profit;
set ia.dnunder;
set ia.sales(keep = FlightID FltDate Rev1st

RevBus RevEcon RevCargo)
key = DteFlt;

Profit = sum(Rev1st, RevBus, RevEcon, CargoRev,
- Expenses);

run;

Using the KEY= Option

c03s3d1

 The data set ia.dnunder is read sequentially.
 The data set ia.sales is read by direct access.

 3.3 Using an Index to Combine Data 3-59

103

data profit;
set ia.dnunder;
set ia.sales(keep = FlightID FltDate Rev1st

RevBus RevEcon CargoRev)
key = DteFlt;

Profit = sum(Rev1st, RevBus, RevEcon, CargoRev,
- Expenses);

run;

FlightID FltDate Expenses

.

Rev1st

.

RevBus

RevEcon CargoRev Profit _N_D

. . . 1

Execution

...

IA10200 01DEC2005 154269

An observation is read from ia.dnunder sequentially by the first SET statement.

104

data profit;
set ia.dnunder;
set ia.sales(keep = FlightID FltDate Rev1st

RevBus RevEcon CargoRev)
key = DteFlt;

Profit = sum(Rev1st, RevBus, RevEcon, CargoRev,
- Expenses);

run;

FlightID FltDate Expenses

35967

Rev1st

37410

RevBus

RevEcon CargoRev Profit _N_D

98124 188277 .

Execution

...

IA10200 01DEC2005 154269

1

The KEY= option causes the second SET statement to use the current PDV values for FlightID and
FltDate to access an observation through the DteFlt index.

3-60 Chapter 3 Combining Data Horizontally

105

data profit;
set ia.dnunder;
set ia.sales(keep = FlightID FltDate Rev1st

RevBus RevEcon CargoRev)
key = DteFlt;

Profit = sum(Rev1st, RevBus, RevEcon, CargoRev,
- Expenses);

run;

FlightID FltDate Expenses

35967

Rev1st

37410

RevBus

RevEcon CargoRev Profit _N_D

205509

Execution

...

IA10200 01DEC2005 154269

198124 188277

The assignment statement calculates values for Profit.

106

data profit;
set ia.dnunder;
set ia.sales(keep = FlightID FltDate Rev1st

RevBus RevEcon CargoRev)
key = DteFlt;

Profit = sum(Rev1st, RevBus, RevEcon, CargoRev,
- Expenses);

run;

FlightID FltDate Expenses Rev1st RevBus

RevEcon CargoRev Profit _N_D

Execution

...

IA10200 01DEC2005 154269

1

35967 37410

98124 188277 205509

Implied Output

The observation is written to profit.

 3.3 Using an Index to Combine Data 3-61

107

Partial Output
Partial PROC PRINT Output from profit

c03s3d1

Profit for the Flights
to Australia and New Zealand

Flight
Obs ID FltDate Expenses Rev1st RevBus

1 IA10200 01DEC2005 154269 $35,967.00 $37,410.00
2 IA10201 01DEC2005 71165 $34,074.00 $42,570.00
3 IA10200 02DEC2005 65188 $30,288.00 $41,280.00
4 IA10201 02DEC2005 14259 $28,395.00 $43,860.00
5 IA10200 03DEC2005 161419 $28,395.00 $38,700.00

Obs RevEcon CargoRev Profit

1 $98,124.00 $188,277.00 $205,509.00
2 $106,301.00 $178,965.00 $290,745.00
3 $96,237.00 $190,023.00 $292,640.00
4 $97,495.00 $188,277.00 $343,768.00
5 $120,139.00 $169,653.00 $195,468.00

108

Partial Output
Partial PROC PRINT Output from profit

Profit for the Flights
to Australia and New Zealand

Flight
Obs ID FltDate Expenses Rev1st RevBus

898 IA10803 30DEC2005 1204 $1,270.00 .
899 IA10804 30DEC2005 2084 $1,397.00 .
900 IA11805 30DEC2005 4548 $1,397.00 .

Obs RevEcon CargoRev Profit

898 $5,376.00 $1,860.00 $7,302.00
899 $4,872.00 $2,300.00 $6,485.00
900 $4,872.00 $2,300.00 $4,021.00

c03s3d1

Observation 899 is correct, but because the data values are retained when SAS reads observation 900
from ia.dnunder, observation 900 is incorrect.

 The observation number and the data are different in the data set created during the demonstration
than the one created in the course notes.

3-62 Chapter 3 Combining Data Horizontally

109

Log
11 data profit;
212 set ia.dnunder;
213 set ia.sales(keep = FlightID FltDate Rev1st
214 RevBus RevEcon CargoRev)
215 key = DteFlt;
216 Profit = sum(Rev1st, RevBus, RevEcon, CargoRev,
217 - Expenses);
218 run;

FlightID=IA11805 FltDate=30DEC2005 Expenses=4548 Rev1st=$1,397.00
RevBus=. RevEcon=$4,872.00 CargoRev=$2,300.00 Profit=4021
ERROR=1 _IORC_=1230015 _N_=900
NOTE: There were 900 observations read from the data set IA.DNUNDER.
NOTE: The data set WORK.PROFIT has 900 observations and 8 variables.
NOTE: DATA statement used (Total process time):

real time 0.02 seconds
cpu time 0.02 seconds

c03s3d1

The observation that appears in the log is the result of having an observation in ia.dnunder that does
not match an observation in ia.sales.

The last observation in profit is incorrect because there is no flight on December 30, 2005 in the SAS
data set ia.sales.

Administrator
高亮

 3.3 Using an Index to Combine Data 3-63

110

data profit;
set ia.dnunder;
set ia.sales(keep = FlightID FltDate Rev1st

RevBus RevEcon CargoRev)
key = DteFlt;

Profit = sum(Rev1st, RevBus, RevEcon, CargoRev,
- Expenses);

run;

FlightID FltDate Expenses Rev1st RevBus

RevEcon CargoRev Profit _N_D

Execution

...

IA10804 30DEC2005 2084

899

1397 .

4872 2300 6485

Implied Output

PDV for observation 899

At the next iteration of the DATA step, only Profit is reinitialized to missing.

 The observation number is different in the data set created during the demonstration than the one
created in the course notes.

3-64 Chapter 3 Combining Data Horizontally

111

FlightID FltDate Expenses Rev1st RevBus

RevEcon CargoRev Profit _N_D

Retained
from obs

899

data profit;
set ia.dnunder;
set ia.sales(keep = FlightID FltDate Rev1st

RevBus RevEcon CargoRev)
key = DteFlt;

Profit = sum(Rev1st, RevBus, RevEcon, CargoRev,
- Expenses);

run;

Execution

...

IA10805 30DEC2005 4548

900

1397 .

4872 2300 4021

PDV for observation 900

No match foundNo match found

Profit is recalculated using the new value of Expenses and the retained values of Rev1st,
RevBus, RevEcon, and CargoRev.

112

FlightID FltDate Expenses Rev1st RevBus

RevEcon CargoRev Profit _N_D

data profit;
set ia.dnunder;
set ia.sales(keep = FlightID FltDate Rev1st

RevBus RevEcon CargoRev)
key = DteFlt;

Profit = sum(Rev1st, RevBus, RevEcon, CargoRev,
- Expenses);

run;

Execution

...

IA10805 30DEC2005 4548

900

1397 .

4872 2300 4021

Implied Output

 3.3 Using an Index to Combine Data 3-65

113

Using the _IORC_ Automatic Variable

IORC=0 indicates that SAS found
a matching observation.

IORC ne 0 the SET statement did not successfully
execute. One possible cause is that SAS
did not find a matching observation.

When you use the KEY= option, SAS creates an
automatic variable named _IORC_, which is an acronym
for INPUT/OUTPUT Return Code.
You can use _IORC_ to determine whether the index
search was successful.

For values of the _IORC_ automatic variable, see the %SYSRC autocall macro in the Macro Language
Dictionary in the Base SAS Documentation.

114

Using the _IORC_ Automatic Variable
To prevent writing the data error to the log, perform the
following tasks:

Check the value of _IORC_.
Set _ERROR_ to 0, if there is no match.
Delete the non-matching data or write
the non-matching data to an errors data set.

The automatic variable _error_ controls the writing of the PDV contents to the SAS log if there is a
data error. Setting _error_ = 0 prevents writing to the log, even if a data error is encountered.

Administrator
高亮

Administrator
高亮

3-66 Chapter 3 Combining Data Horizontally

116

data profit errors;
set ia.dnunder;
set ia.sales(keep = FlightID FltDate Rev1st

RevBus RevEcon CargoRev)
key = DteFlt;

if _IORC_ = 0 then do;
Profit = sum(Rev1st, RevBus, RevEcon,

CargoRev, - Expenses);
output profit;

end;
else do;

error = 0;
output errors;

end;
run;

c03s3d2

Using _IORC_

...

 Finds a match

 Outputs to profit

 Prevents the non-match from appearing in the log

 Outputs to errors

 The data set ia.sales used for demonstrations and exercises contains fewer observations than
the data set ia.sales used for the course notes.

 3.3 Using an Index to Combine Data 3-67

118

Partial Output
Partial PROC PRINT Output from profit

c03s3d2

The PROFIT Data

Flight
Obs ID FltDate Expenses Rev1st RevBus

895 IA10800 30DEC2005 2934 $1,524.00 .
896 IA10801 30DEC2005 5488 $1,524.00 .
897 IA10802 30DEC2005 3720 $1,397.00 .
898 IA10803 30DEC2005 1204 $1,270.00 .
899 IA10804 30DEC2005 2084 $1,397.00 .

Obs RevEcon CargoRev Profit

895 $4,704.00 $2,420.00 5714
896 $5,586.00 $1,580.00 3202
897 $5,292.00 $1,900.00 4869
898 $5,376.00 $1,860.00 7302
899 $4,872.00 $2,300.00 6485

 The observation number and the data are different in the data set created during the demonstration
than the one created in the course notes.

119

Output
PROC PRINT Output from errors

c03s3d2

The ERRORS data

Flight
Obs ID FltDate Expenses Rev1st RevBus

1 IA11805 30DEC2005 4548 $1,397.00 .

Obs RevEcon CargoRev Profit

1 $4,872.00 $2,300.00 .

3-68 Chapter 3 Combining Data Horizontally

120

Log

c03s3d2

249 data profit errors;
250 set ia.dnunder;
251 set ia.sales(keep = FlightID FltDate Rev1st
252 RevBus RevEcon CargoRev)
253 key = DteFlt;
254 if _IORC_ = 0 then do;
255 Profit = sum(Rev1st, RevBus, RevEcon,
256 CargoRev, - Expenses);
257 output profit;
258 end;
259 else do;
260 _error_ = 0;
261 output errors;
262 end;
263 run;

NOTE: There were 900 observations read from the data set IA.DNUNDER.
NOTE: The data set WORK.PROFIT has 899 observations and 8 variables.
NOTE: The data set WORK.ERRORS has 1 observations and 8 variables.
NOTE: DATA statement used (Total process time):

real time 0.02 seconds
cpu time 0.03 seconds

The non-matching record does not appear in the log.

For a discussion regarding duplicate observations in either the master or transaction data set, see
the course section titled "Modifying SAS Data Sets in Place."

121

Advantages of SET/SET with the KEY= Option
Only the necessary observations are read.
An existing index is used.
Multiple values can be returned.
Availability of DATA step syntax provides the full
power of the DATA step.
Exact matches are returned.
IORC can be used to control non-matching data.

Administrator
高亮

 3.3 Using an Index to Combine Data 3-69

122

Disadvantages of SET/SET with the KEY=
Option

An index on one data set is required.
Creating and maintaining an index use resources.
Useful only for data with exact matches.

3-70 Chapter 3 Combining Data Horizontally

Exercises

7. Combining Data Sets Using an Index

Combine the ia.newtimes data set with the ia.schedule data set using the FltDte index.
The data set ia.newtimes contains a column named TimeDiff that has the number of minutes
later that the flight will depart.

Locate the flight using the FltDte index in the ia.schedule data set that was created in a
previous exercise. If the FltDte index does not exist, create it as a composite unique index of
Flight and Date.

The flight times are stored as SAS time (the number of seconds since midnight).

Create the variable NewDepart that is the new departure time for the flights. Apply the TIME5.
format to NewDepart. (Hint: Use the expression sum(TimeDiff*60,depart).)

Print the resulting data set.

Partial Output
 work.newsched

 time new
 Obs flight date diff depart depart

 20 IA10803 30JUN2000 60 15:35 16:35
 21 IA10804 26JUN2000 75 18:35 19:50
 22 IA10804 27JUN2000 75 18:35 19:50
 23 IA10804 28JUN2000 75 18:35 19:50
 24 IA10804 29JUN2000 75 18:35 19:50
 25 IA10804 30JUN2000 75 18:35 19:50
 26 IA10805 26JUN2000 90 21:35 23:05
 27 IA10805 27JUN2000 90 21:35 23:05
 28 IA10805 28JUN2000 90 21:35 23:05
 29 IA10805 29JUN2000 90 21:35 23:05
 30 IA10805 30JUN2000 90 21:35 23:05
 31 IS10800 26JUN2000 65 21:35 22:40

 The flight value for observation 31 is invalid.

 3.3 Using an Index to Combine Data 3-71

8. Removing Erroneous Data

If you receive any non-matching data errors in your SAS log, repeat the above exercise using
IORC. Direct data errors to a temporary error data set.

NewSched Output
work.newsched

 Time New
 flight date Diff depart Depart

 IA10800 26JUN2000 15 6:35 6:50
 IA10800 27JUN2000 15 6:35 6:50
 IA10800 28JUN2000 15 6:35 6:50
 IA10800 29JUN2000 15 6:35 6:50
 IA10800 30JUN2000 15 6:35 6:50
 IA10801 26JUN2000 30 9:35 10:05
 IA10801 27JUN2000 30 9:35 10:05
 IA10801 28JUN2000 30 9:35 10:05
 IA10801 29JUN2000 30 9:35 10:05
 IA10801 30JUN2000 30 9:35 10:05
 IA10802 26JUN2000 45 12:35 13:20
 IA10802 27JUN2000 45 12:35 13:20
 IA10802 28JUN2000 45 12:35 13:20
 IA10802 29JUN2000 45 12:35 13:20
 IA10802 30JUN2000 45 12:35 13:20
 IA10803 26JUN2000 60 15:35 16:35
 IA10803 27JUN2000 60 15:35 16:35
 IA10803 28JUN2000 60 15:35 16:35
 IA10803 29JUN2000 60 15:35 16:35
 IA10803 30JUN2000 60 15:35 16:35
 IA10804 26JUN2000 75 18:35 19:50
 IA10804 27JUN2000 75 18:35 19:50
 IA10804 28JUN2000 75 18:35 19:50
 IA10804 29JUN2000 75 18:35 19:50
 IA10804 30JUN2000 75 18:35 19:50
 IA10805 26JUN2000 90 21:35 23:05
 IA10805 27JUN2000 90 21:35 23:05
 IA10805 28JUN2000 90 21:35 23:05
 IA10805 29JUN2000 90 21:35 23:05
 IA10805 30JUN2000 90 21:35 23:05

Errors Output
Errors data

 Time New
 Obs flight date Diff depart Depart

 1 IS10800 26JUN2000 65 21:35 .

3-72 Chapter 3 Combining Data Horizontally

3.4 Updating Data

125

Objectives
Update a master data set with a transaction data set.
Use special missing values when updating.
Compare the MERGE statement with the UPDATE
statement.

126

Using the UPDATE Statement
Use the UPDATE statement in the DATA step to update a
master data set with data in a transaction data set.
The UPDATE statement can do the following:

change the values of variables in the master data set
add observations to the master data set
add variables to the master data set

Although the technique is not discussed in this course, the UPDATE statement can also delete
observations from the master data set. See the documentation for the UPDATE statement for details.

 3.4 Updating Data 3-73

127

Updating with the UPDATE Statement
Some of the Human Resources employees have changes
to the employee information data stored in a data set
named ia.hrempsu.

The missing values indicate that the values
for those variables did not change.

Empid Location Jobcode Phone Salary

E00003 BOSTON .
E00003 3422 .
E00010 CARY RESCLK 5153 $20,000
E00068 3253 .
E00133 HRCLK $42,000
E00173 RESCLK $23,000
E00208 $42,000

Transaction Data Set: ia.hrempsu

128

Updating with the UPDATE Statement
Apply these changes to the master data set ia.hremps.

Master data set:
ia.hremps
first 21 rows

EmpID Location Jobcode Phone Salary

E00003 CARY VICEPR 1428 $120,000
E00004 CARY FACMNT 2061 $42,000
E00013 BOSTON RECEPT 1002 $22,000
E00017 CARY RESCLK 2821 $36,000
E00018 CARY FACMNT 1459 $33,000
E00020 CARY FACCLK 1256 $21,000
E00022 CARY FACCLK 1255 $27,000
E00038 CARY FACCLK 2853 $20,000
E00039 TORONTO FACCLK 1053 $38,000
E00066 NASHVILLE TELOP 1010 $39,000
E00068 SYDNEY FACMNT 1060 $23,000
E00070 OSLO RESCLK 1029 $24,000
E00076 CARY RESMGR 1030 $36,000
E00087 FRANKFURT HRCLK 1019 $45,000
E00088 LONDON FACCLK 1053 $33,000
E00090 CARY FACCLK 2657 $29,000
E00094 COPENHAGEN HRCLK 1019 $23,000
E00105 AUSTIN FACMNT 1062 $19,000
E00122 TORONTO RESMGR 1030 $24,000
E00131 OSLO RESCLK 1024 $42,000
E00133 FRANKFURT FACCLK 1056 $38,000

E00010 CARY RESCLK 5153 $20,000

Add a
row.

...

3-74 Chapter 3 Combining Data Horizontally

129

Using the UPDATE Statement
If an observation is in the master data set and not in
the transaction data set, the observation is written to
the new data set without modifying it.
If an observation is in the transaction data set and not
in the master data set, the observation is written to the
new data set.
Multiple transactions can be applied to the master
data set before it is written to the new data set.
By default, SAS does not replace existing values in the
master data set with missing values if those values are
coded as periods (for numeric variables) or blanks
(for character variables) in the transaction data set.

130
c03s4d1

Using a Transaction Data Set to Update

data ia.hremps;
update ia.hremps

ia.hrempsu;
by EmpID;

run;

The UPDATE statement requires a BY statement.
Both data sets must be sorted or indexed.
The BY value must be unique in the master data set.
The transaction data set can add new BY values.

Master data set

Transaction
data set

Administrator
高亮

 3.4 Updating Data 3-75

131

PDV

data ia.hremps;
update ia.hremps

ia.hrempsu;
by EmpID;

run;

ia.hremps
Compilation

EmpID Location Jobcode Phone Salary

E00003 CARY VICEPR 1428 $120,000
E00004 CARY FACMNT 2061 $42,000
E00013 BOSTON RECEPT 1002 $22,000
E00017 CARY RESCLK 2821 $36,000
E00018 CARY FACMNT 1459 $33,000
E00020 CARY FACCLK 1256 $21,000
E00022 CARY FACCLK 1255 $27,000
E00038 CARY FACCLK 2853 $20,000

ia.hrempsu

The PDV is created with all
variables in both data sets
and any variables created
by the DATA step.

JobCode PhoneLocationEmpID Salary First.EmpID Last.EmpID

Empid Location Jobcode Phone Salary

E00003 BOSTON .
E00003 3422 .
E00010 CARY RESCLK 5153 $20,000
E00068 3253 .
E00133 HRCLK $42,000
E00173 RESCLK $23,000
E00208 $42,000

D D

...

During compilation, the following occurs:
• SAS reads the descriptor information of each data set that is named in the UPDATE statement and

creates a program data vector that contains all the variables from all data sets as well as variables
created by the DATA step.

• SAS creates FIRST.variable and LAST.variable for each variable that is listed in the BY
statement.

 FIRST.variable and LAST.variable are utilized to provide information for applying
multiple transactions to an observation.

3-76 Chapter 3 Combining Data Horizontally

132

PDV

ia.hremps
Execution

EmpID Location Jobcode Phone Salary

E00003 CARY VICEPR 1428 $120,000
E00004 CARY FACMNT 2061 $42,000
E00013 BOSTON RECEPT 1002 $22,000
E00017 CARY RESCLK 2821 $36,000
E00018 CARY FACMNT 1459 $33,000
E00020 CARY FACCLK 1256 $21,000
E00022 CARY FACCLK 1255 $27,000
E00038 CARY FACCLK 2853 $20,000

JobCode PhoneLocationEmpID Salary First.EmpID Last.EmpID

Are these BY values equal?

yes

ia.hrempsu

Empid Location Jobcode Phone Salary

E00003 BOSTON .
E00003 3422 .
E00010 CARY RESCLK 5153 $20,000
E00068 3253 .
E00133 HRCLK $42,000
E00173 RESCLK $23,000
E00208 $42,000data ia.hremps;

update ia.hremps
ia.hrempsu;

by EmpID;
run;

D D

0. 0

...
• SAS looks at the first observation in each data set that is named in the UPDATE statement to determine

which BY group should appear first.
• If the transaction BY value precedes the master BY value, SAS reads from the transaction data set only

and sets the variables from the master data set to missing.
• If the master BY value precedes the transaction BY value, SAS reads from the master data set only and

sets the unique variables from the transaction data set to missing.
• If the BY values in the master and transaction data sets are equal, SAS reads from the master data set

first and then applies the first transaction by copying the non-missing values into the program data
vector.

• If the transaction data set contains multiple observations with the same BY value, non-missing values
on all of those observations are applied to the data that was read from the master data set.

 3.4 Updating Data 3-77

133

PDV

1120000 01428VICEPRCARYE00003

ia.hremps
Execution

EmpID Location Jobcode Phone Salary

E00003 CARY VICEPR 1428 $120,000
E00004 CARY FACMNT 2061 $42,000
E00013 BOSTON RECEPT 1002 $22,000
E00017 CARY RESCLK 2821 $36,000
E00018 CARY FACMNT 1459 $33,000
E00020 CARY FACCLK 1256 $21,000
E00022 CARY FACCLK 1255 $27,000
E00038 CARY FACCLK 2853 $20,000

JobCode PhoneLocationEmpID Salary First.EmpID Last.EmpID

ia.hrempsu

Empid Location Jobcode Phone Salary

E00003 BOSTON .
E00003 3422 .
E00010 CARY RESCLK 5153 $20,000
E00068 3253 .
E00133 HRCLK $42,000
E00173 RESCLK $23,000
E00208 $42,000data ia.hremps;

update ia.hremps
ia.hrempsu;

by EmpID;
run; Read ia.hremps.

D D

...

134

PDV

1120000 01428VICEPRBOSTONE00003

ia.hremps
Execution

EmpID Location Jobcode Phone Salary

E00003 CARY VICEPR 1428 $120,000
E00004 CARY FACMNT 2061 $42,000
E00013 BOSTON RECEPT 1002 $22,000
E00017 CARY RESCLK 2821 $36,000
E00018 CARY FACMNT 1459 $33,000
E00020 CARY FACCLK 1256 $21,000
E00022 CARY FACCLK 1255 $27,000
E00038 CARY FACCLK 2853 $20,000

JobCode PhoneLocationEmpID Salary First.EmpID Last.EmpID

ia.hrempsu

Empid Location Jobcode Phone Salary

E00003 BOSTON .
E00003 3422 .
E00010 CARY RESCLK 5153 $20,000
E00068 3253 .
E00133 HRCLK $42,000
E00173 RESCLK $23,000
E00208 $42,000data ia.hremps;

update ia.hremps
ia.hrempsu;

by EmpID;
run;

Apply the
transactions from
ia.hrempsu.

D D

...

3-78 Chapter 3 Combining Data Horizontally

135

PDV

1120000 01428VICEPRBOSTONE00003

ia.hremps
Execution

EmpID Location Jobcode Phone Salary

E00003 CARY VICEPR 1428 $120,000
E00004 CARY FACMNT 2061 $42,000
E00013 BOSTON RECEPT 1002 $22,000
E00017 CARY RESCLK 2821 $36,000
E00018 CARY FACMNT 1459 $33,000
E00020 CARY FACCLK 1256 $21,000
E00022 CARY FACCLK 1255 $27,000
E00038 CARY FACCLK 2853 $20,000

JobCode PhoneLocationEmpID Salary First.EmpID Last.EmpID

ia.hrempsu

Empid Location Jobcode Phone Salary

E00003 BOSTON .
E00003 3422 .
E00010 CARY RESCLK 5153 $20,000
E00068 3253 .
E00133 HRCLK $42,000
E00173 RESCLK $23,000
E00208 $42,000data ia.hremps;

update ia.hremps
ia.hrempsu;

by EmpID;
run;

Is there another observation for
E00003 in the transaction data set?

yes
D D

...
• After completing the first transaction, SAS looks at the next observation in the transaction data set. If

SAS finds one with the same BY value, it applies that transaction, too.
• The first observation then contains the new values from both transactions.

136

PDV

0120000 13422VICEPRBOSTONE00003

ia.hremps
Execution

EmpID Location Jobcode Phone Salary

E00003 CARY VICEPR 1428 $120,000
E00004 CARY FACMNT 2061 $42,000
E00013 BOSTON RECEPT 1002 $22,000
E00017 CARY RESCLK 2821 $36,000
E00018 CARY FACMNT 1459 $33,000
E00020 CARY FACCLK 1256 $21,000
E00022 CARY FACCLK 1255 $27,000
E00038 CARY FACCLK 2853 $20,000

JobCode PhoneLocationEmpID Salary First.EmpID Last.EmpID

ia.hrempsu

Empid Location Jobcode Phone Salary

E00003 BOSTON .
E00003 3422 .
E00010 CARY RESCLK 5153 $20,000
E00068 3253 .
E00133 HRCLK $42,000
E00173 RESCLK $23,000
E00208 $42,000data ia.hremps;

update ia.hremps
ia.hrempsu;

by EmpID;
run;

Apply the
transactions from
ia.hrempsu.

D D

...

 3.4 Updating Data 3-79

138

PDV

0120000 11428VICEPRBOSTONE00003

ia.hremps
Execution

EmpID Location Jobcode Phone Salary

E00003 CARY VICEPR 3422 $120,000
E00004 CARY FACMNT 2061 $42,000
E00013 BOSTON RECEPT 1002 $22,000
E00017 CARY RESCLK 2821 $36,000
E00018 CARY FACMNT 1459 $33,000
E00020 CARY FACCLK 1256 $21,000
E00022 CARY FACCLK 1255 $27,000
E00038 CARY FACCLK 2853 $20,000

JobCode PhoneLocationEmpID Salary First.EmpID Last.EmpID

ia.hrempsu

Empid Location Jobcode Phone Salary

E00003 BOSTON .
E00003 3422 .
E00010 CARY RESCLK 5153 $20,000
E00068 3253 .
E00133 HRCLK $42,000
E00173 RESCLK $23,000
E00208 $42,000data ia.hremps;

update ia.hremps
ia.hrempsu;

by EmpID;
run;

Is there another observation for
E00003 in the transaction data set?

no
D D

...

139

PDV

ia.hremps
Execution

EmpID Location Jobcode Phone Salary

E00003 CARY VICEPR 3422 $120,000
E00004 CARY FACMNT 2061 $42,000
E00013 BOSTON RECEPT 1002 $22,000
E00017 CARY RESCLK 2821 $36,000
E00018 CARY FACMNT 1459 $33,000
E00020 CARY FACCLK 1256 $21,000
E00022 CARY FACCLK 1255 $27,000
E00038 CARY FACCLK 2853 $20,000

JobCode PhoneLocationEmpID Salary First.EmpID Last.EmpID

ia.hrempsu

Empid Location Jobcode Phone Salary

E00003 BOSTON .
E00003 3422 .
E00010 CARY RESCLK 5153 $20,000
E00068 3253 .
E00133 HRCLK $42,000
E00173 RESCLK $23,000
E00208 $42,000data ia.hremps;

update ia.hremps
ia.hrempsu;

by EmpID;
run;

Implied Output

D D

0120000 11428VICEPRBOSTONE00003

...
• If no other transactions exist for that observation, SAS writes the observation to the new data set and

sets the values in the program data vector to missing.
• SAS repeats these steps until it reads all observations from all BY groups in both data sets.

3-80 Chapter 3 Combining Data Horizontally

140

PDV

0120000 13422VICEPRBOSTONE00003

ia.hremps
Execution

EmpID Location Jobcode Phone Salary

E00003 CARY VICEPR 1428 $120,000
E00004 CARY FACMNT 2061 $42,000
E00013 BOSTON RECEPT 1002 $22,000
E00017 CARY RESCLK 2821 $36,000
E00018 CARY FACMNT 1459 $33,000
E00020 CARY FACCLK 1256 $21,000
E00022 CARY FACCLK 1255 $27,000
E00038 CARY FACCLK 2853 $20,000

JobCode PhoneLocationEmpID Salary First.EmpID Last.EmpID

ia.hrempsu

Empid Location Jobcode Phone Salary

E00003 BOSTON .
E00003 3422 .
E00010 CARY RESCLK 5153 $20,000
E00068 3253 .
E00133 HRCLK $42,000
E00173 RESCLK $23,000
E00208 $42,000data ia.hremps;

update ia.hremps
ia.hrempsu;

by EmpID;
run; Which comes first?

D D

...

141

PDV

ia.hremps
Execution

EmpID Location Jobcode Phone Salary

E00003 CARY VICEPR 1428 $120,000
E00004 CARY FACMNT 2061 $42,000
E00013 BOSTON RECEPT 1002 $22,000
E00017 CARY RESCLK 2821 $36,000
E00018 CARY FACMNT 1459 $33,000
E00020 CARY FACCLK 1256 $21,000
E00022 CARY FACCLK 1255 $27,000
E00038 CARY FACCLK 2853 $20,000

JobCode PhoneLocationEmpID Salary First.EmpID Last.EmpID

ia.hrempsu

Empid Location Jobcode Phone Salary

E00003 BOSTON .
E00003 3422 .
E00010 CARY RESCLK 5153 $20,000
E00068 3253 .
E00133 HRCLK $42,000
E00173 RESCLK $23,000
E00208 $42,000data ia.hremps;

update ia.hremps
ia.hrempsu;

by EmpID;
run;

Reinitialize any variables unique to
the transaction data set to missing.

0120000 13422VICEPRBOSTONE00003

D D

...

 3.4 Updating Data 3-81

142

PDV

142000 12061FACMNTCARYE00004

ia.hremps
Execution

EmpID Location Jobcode Phone Salary

E00003 CARY VICEPR 1428 $120,000
E00004 CARY FACMNT 2061 $42,000
E00013 BOSTON RECEPT 1002 $22,000
E00017 CARY RESCLK 2821 $36,000
E00018 CARY FACMNT 1459 $33,000
E00020 CARY FACCLK 1256 $21,000
E00022 CARY FACCLK 1255 $27,000
E00038 CARY FACCLK 2853 $20,000

JobCode PhoneLocationEmpID Salary First.EmpID Last.EmpID

ia.hrempsu

Empid Location Jobcode Phone Salary

E00003 BOSTON .
E00003 3422 .
E00010 CARY RESCLK 5153 $20,000
E00068 3253 .
E00133 HRCLK $42,000
E00173 RESCLK $23,000
E00208 $42,000data ia.hremps;

update ia.hremps
ia.hrempsu;

by EmpID;
run;

D D

Read ia.hremps.

...

143

PDV

142000 12061FACMNTCARYE00004

ia.hremps
Execution

EmpID Location Jobcode Phone Salary

E00003 CARY VICEPR 1428 $120,000
E00004 CARY FACMNT 2061 $42,000
E00013 BOSTON RECEPT 1002 $22,000
E00017 CARY RESCLK 2821 $36,000
E00018 CARY FACMNT 1459 $33,000
E00020 CARY FACCLK 1256 $21,000
E00022 CARY FACCLK 1255 $27,000
E00038 CARY FACCLK 2853 $20,000

JobCode PhoneLocationEmpID Salary First.EmpID Last.EmpID

ia.hrempsu

Empid Location Jobcode Phone Salary

E00003 BOSTON .
E00003 3422 .
E00010 CARY RESCLK 5153 $20,000
E00068 3253 .
E00133 HRCLK $42,000
E00173 RESCLK $23,000
E00208 $42,000data ia.hremps;

update ia.hremps
ia.hrempsu;

by EmpID;
run;

Is there an observation for E00004
in the transaction data set?

no

...

D D

3-82 Chapter 3 Combining Data Horizontally

144

PDV

142000 12061FACMNTCARYE00004

ia.hremps
Execution

EmpID Location Jobcode Phone Salary

E00003 CARY VICEPR 1428 $120,000
E00004 CARY FACMNT 2061 $42,000
E00013 BOSTON RECEPT 1002 $22,000
E00017 CARY RESCLK 2821 $36,000
E00018 CARY FACMNT 1459 $33,000
E00020 CARY FACCLK 1256 $21,000
E00022 CARY FACCLK 1255 $27,000
E00038 CARY FACCLK 2853 $20,000

JobCode PhoneLocationEmpID Salary First.EmpID Last.EmpID

ia.hrempsu

Empid Location Jobcode Phone Salary

E00003 BOSTON .
E00003 3422 .
E00010 CARY RESCLK 5153 $20,000
E00068 3253 .
E00133 HRCLK $42,000
E00173 RESCLK $23,000
E00208 $42,000data ia.hremps;

update ia.hremps
ia.hrempsu;

by EmpID;
run;

Implied Output

...

D D

145

PDV

142000 12061FACMNTCARYE00004

ia.hremps
Execution

EmpID Location Jobcode Phone Salary

E00003 CARY VICEPR 1428 $120,000
E00004 CARY FACMNT 2061 $42,000
E00013 BOSTON RECEPT 1002 $22,000
E00017 CARY RESCLK 2821 $36,000
E00018 CARY FACMNT 1459 $33,000
E00020 CARY FACCLK 1256 $21,000
E00022 CARY FACCLK 1255 $27,000
E00038 CARY FACCLK 2853 $20,000

JobCode PhoneLocationEmpID Salary First.EmpID Last.EmpID

ia.hrempsu

Empid Location Jobcode Phone Salary

E00003 BOSTON .
E00003 3422 .
E00010 CARY RESCLK 5153 $20,000
E00068 3253 .
E00133 HRCLK $42,000
E00173 RESCLK $23,000
E00208 $42,000data ia.hremps;

update ia.hremps
ia.hrempsu;

by EmpID;
run; Which comes first?

...

D D

 3.4 Updating Data 3-83

146

PDV

142000 12061FACMNTCARYE00004

ia.hremps
Execution

EmpID Location Jobcode Phone Salary

E00003 CARY VICEPR 1428 $120,000
E00004 CARY FACMNT 2061 $42,000
E00013 BOSTON RECEPT 1002 $22,000
E00017 CARY RESCLK 2821 $36,000
E00018 CARY FACMNT 1459 $33,000
E00020 CARY FACCLK 1256 $21,000
E00022 CARY FACCLK 1255 $27,000
E00038 CARY FACCLK 2853 $20,000

JobCode PhoneLocationEmpID Salary First.EmpID Last.EmpID

ia.hrempsu

Empid Location Jobcode Phone Salary

E00003 BOSTON .
E00003 3422 .
E00010 CARY RESCLK 5153 $20,000
E00068 3253 .
E00133 HRCLK $42,000
E00173 RESCLK $23,000
E00208 $42,000data ia.hremps;

update ia.hremps
ia.hrempsu;

by EmpID;
run;

Reinitialize any variables unique
to the master data set to missing.

...

D D

147

PDV

120000 15153RESCLKCARYE00010

ia.hremps
Execution

EmpID Location Jobcode Phone Salary

E00003 CARY VICEPR 1428 $120,000
E00004 CARY FACMNT 2061 $42,000
E00013 BOSTON RECEPT 1002 $22,000
E00017 CARY RESCLK 2821 $36,000
E00018 CARY FACMNT 1459 $33,000
E00020 CARY FACCLK 1256 $21,000
E00022 CARY FACCLK 1255 $27,000
E00038 CARY FACCLK 2853 $20,000

JobCode PhoneLocationEmpID Salary First.EmpID Last.EmpID

ia.hrempsu

Empid Location Jobcode Phone Salary

E00003 BOSTON .
E00003 3422 .
E00010 CARY RESCLK 5153 $20,000
E00068 3253 .
E00133 HRCLK $42,000
E00173 RESCLK $23,000
E00208 $42,000data ia.hremps;

update ia.hremps
ia.hrempsu;

by EmpID;
run;

D D

Read ia.hrempsu.

...

3-84 Chapter 3 Combining Data Horizontally

148

PDV

120000 15153RESCLKCARYE00010

ia.hremps
Execution

EmpID Location Jobcode Phone Salary

E00003 CARY VICEPR 1428 $120,000
E00004 CARY FACMNT 2061 $42,000
E00013 BOSTON RECEPT 1002 $22,000
E00017 CARY RESCLK 2821 $36,000
E00018 CARY FACMNT 1459 $33,000
E00020 CARY FACCLK 1256 $21,000
E00022 CARY FACCLK 1255 $27,000
E00038 CARY FACCLK 2853 $20,000

JobCode PhoneLocationEmpID Salary First.EmpID Last.EmpID

ia.hrempsu

Empid Location Jobcode Phone Salary

E00003 BOSTON .
E00003 3422 .
E00010 CARY RESCLK 5153 $20,000
E00068 3253 .
E00133 HRCLK $42,000
E00173 RESCLK $23,000
E00208 $42,000data ia.hremps;

update ia.hremps
ia.hrempsu;

by EmpID;
run;

Implied Output

...

D D

149

PDV

139000 11002RECEPTSINGAPOREE00531

ia.hremps
Execution

EmpID Location Jobcode Phone Salary

E00003 CARY VICEPR 1428 $120,000
E00004 CARY FACMNT 2061 $42,000
E00013 BOSTON RECEPT 1002 $22,000
E00017 CARY RESCLK 2821 $36,000
E00018 CARY FACMNT 1459 $33,000
E00020 CARY FACCLK 1256 $21,000
E00022 CARY FACCLK 1255 $27,000
E00038 CARY FACCLK 2853 $20,000

JobCode PhoneLocationEmpID Salary First.EmpID Last.EmpID

ia.hrempsu

Empid Location Jobcode Phone Salary

E00003 BOSTON .
E00003 3422 .
E00010 CARY RESCLK 5153 $20,000
E00068 3253 .
E00133 HRCLK $42,000
E00173 RESCLK $23,000
E00208 $42,000data ia.hremps;

update ia.hremps
ia.hrempsu;

by EmpID;
run; The DATA step continues until

the end of file in both data sets.

D D

 3.4 Updating Data 3-85

150 c03s4d1

Partial Output of UPDATE
Obs EmpID Location Jobcode Phone Salary

1 E00003 BOSTON VICEPR 3422 $120,000
2 E00004 CARY FACMNT 2061 $42,000
3 E00010 CARY RESCLK 5153 $20,000
4 E00013 BOSTON RECEPT 1002 $22,000
5 E00017 CARY RESCLK 2821 $36,000
6 E00018 CARY FACMNT 1459 $33,000
7 E00020 CARY FACCLK 1256 $21,000
8 E00022 CARY FACCLK 1255 $27,000
9 E00038 CARY FACCLK 2853 $20,000

10 E00039 TORONTO FACCLK 1053 $38,000
11 E00066 NASHVILLE TELOP 1010 $39,000
12 E00068 SYDNEY FACMNT 3253 $23,000
13 E00070 OSLO RESCLK 1029 $24,000
14 E00076 CARY RESMGR 1030 $36,000
15 E00087 FRANKFURT HRCLK 1019 $45,000
16 E00088 LONDON FACCLK 1053 $33,000
17 E00090 CARY FACCLK 2657 $29,000
18 E00094 COPENHAGEN HRCLK 1019 $23,000
19 E00105 AUSTIN FACMNT 1062 $19,000
20 E00122 TORONTO RESMGR 1030 $24,000
21 E00131 OSLO RESCLK 1024 $42,000
22 E00133 FRANKFURT HRCLK 1056 $42,000

**
*

*

*
* updated ** added

151

Using the UPDATE Statement
General form of the DATA step UPDATE and BY
statements:

DATA master-data-set;
UPDATE master-data-set transaction-data-set

<END=variable>
<UPDATEMODE=

MISSINGCHECK|NOMISSINGCHECK>;
BY by-variables;

RUN;

DATA master-data-set;
UPDATE master-data-set transaction-data-set

<END=variable>
<UPDATEMODE=

MISSINGCHECK|NOMISSINGCHECK>;
BY by-variables;

RUN;

END=variable creates and names a temporary variable that contains an end-of-file indicator. This
variable is initialized to 0 and is set to 1 when the UPDATE statement processes the
last observation in both data sets. This variable is not added to any data set.

3-86 Chapter 3 Combining Data Horizontally

152

UPDATE Statement Restriction Summary
UPDATE restrictions:

Only two data set names can appear in the UPDATE
statement.
The master data set must be listed first.
A BY statement that gives the matching variable(s)
must be used.
Both data sets must be sorted by or have indexes
based on the matching variables.
The master data set must not contain more than one
observation with the same BY-variable value.

153

Missing Values in the Transaction Data Set
By default the UPDATEMODE=MISSINGCHECK
option is in effect, so missing values in the transaction
data set do not replace existing values in the master
data set.
If you want missing values in the transaction data set
to replace existing values in the master data set, use
UPDATEMODE=NOMISSINGCHECK.

General form for the UPDATEMODE= option:

UPDATEMODE = MISSINGCHECK
UPDATEMODE = NOMISSINGCHECK
UPDATEMODE = MISSINGCHECK
UPDATEMODE = NOMISSINGCHECK

Administrator
高亮

 3.4 Updating Data 3-87

154

Obs EmpID Location Jobcode Phone Salary

1 E00003 3422 .
2 E00004 CARY FACMNT 2061 $42,000
3 E00010 CARY RESCLK 5153 $20,000
4 E00013 BOSTON RECEPT 1002 $22,000
5 E00017 CARY RESCLK 2821 $36,000
6 E00018 CARY FACMNT 1459 $33,000
7 E00020 CARY FACCLK 1256 $21,000
8 E00022 CARY FACCLK 1255 $27,000
9 E00038 CARY FACCLK 2853 $20,000
10 E00039 TORONTO FACCLK 1053 $38,000
11 E00066 NASHVILLE TELOP 1010 $39,000
12 E00068 3253 .
13 E00070 OSLO RESCLK 1029 $24,000
14 E00076 CARY RESMGR 1030 $36,000
15 E00087 FRANKFURT HRCLK 1019 $45,000

Missing Values in the Transaction Data Set
data ia.hremps;

update ia.hremps
ia.hrempsu
updatemode = nomissingcheck;

by EmpID;
run;

c03s4d2

155

Special Missing Values
Even when UPDATEMODE=MISSINGCHECK is in effect,
you can do the following:

retain the original value of some variables
replace existing values of other variables with missing
values by using special missing value characters in
the transaction data set

If you need to update an existing value in the master data
set to missing, include a special missing value in the
transaction data set.

3-88 Chapter 3 Combining Data Horizontally

156

Special Missing Values
To create the transaction data set with special missing
values, use the MISSING statement in the DATA or
procedure step that creates the transaction data set.

For character values, an underscore (_) represents
the special missing value.
For numeric values, a special missing value can be
represented by an underscore (_) or any letter (A-Z,
a-z). To use special numeric missing values, you
must declare them in a MISSING statement.

General form of the MISSING statement:

MISSING special-value special-value . . . ;MISSING special-value special-value . . . ;

 3.4 Updating Data 3-89

157

Special Missing Values
The data set ia.empupdates contains new
addresses, phone numbers, and birthdates of employees.
One employee has a new address. One wants his
address and birth date excluded. All employees want the
telephone numbers excluded.

Obs EmpID Add1 Telephone DOB

1 1352 _ .
2 212 12 Main St. _ .
3 2512 _ _ _

ia.empupdates

The program, c03s4d3, created the transaction data set ia.empupdates, which contains special
missing values:
data ia.empupdates;
 missing _;
 infile cards missover;
 input EmpID $4. Add1 $12. Telephone $ DOB ;
 cards;
1352 _
212 12 Main St. _
2512 _ _ _
;
run;

3-90 Chapter 3 Combining Data Horizontally

158

Special Missing Values
The data set ia.empinfo has home address,
telephone, and date of birth. This data needs to be
updated.

Obs EmpID Add1 Telephone DOB

1 1352 15 Greenwood St. 467-7753 03/03/1947
2 161 1623 N. Avon Pl. 635-5535 12/31/1945
3 212 42 Glenwood Ave. 634-2570 05/22/1953
4 2512 249 Brady St. 624-8868 04/13/1952
5 2532 2947 Arbor Lane 625-2257 11/12/1957

ia.empinfo

159

Special Missing Values

Output

data ia.empinfo;
update ia.empinfo ia.empupdates;
by EmpID;

run;

Obs EmpID Add1 Telephone DOB

1 1352 15 Greenwood St. 03/03/47
2 161 1623 N. Avon Pl. 635-5535 12/31/45
3 212 12 Main St. 05/22/53
4 2512 .
5 2532 2947 Arbor Lane 625-2257 11/12/57

c03s4d4

 3.4 Updating Data 3-91

160

Using UPDATE versus MERGE

Unlimited number of data setsTwo data sets at a time

Outputs each observation at
the bottom of a DATA step or
explicit OUTPUT statement

Outputs observation at the end
of the BY group

Automatically replaces existing
values in the first data set with
missing values in the second
data set if the variables have
the same name.

Does not replace existing values
in the master data set with missing
values in the transaction data set
unless you use the UPDATEMODE
= NOMISSINGCHECK UPDATE
statement option or special missing
characters

Can update and add
observations to the data

Can update and add observations
to the data

MERGEUPDATE

The output at the end of a BY group used by the UPDATE statement is called conditional output, where
the condition is that the step reached the last observation in the BY group.

3-92 Chapter 3 Combining Data Horizontally

161

Result of Merge

Obs EmpID Location Jobcode Phone Salary

1 E00003 BOSTON .
2 E00003 3422 .
3 E00004 CARY FACMNT 2061 $42,000
4 E00010 CARY RESCLK 5153 $20,000
5 E00013 BOSTON RECEPT 1002 $22,000
6 E00017 CARY RESCLK 2821 $36,000
7 E00018 CARY FACMNT 1459 $33,000
8 E00020 CARY FACCLK 1256 $21,000
9 E00022 CARY FACCLK 1255 $27,000
10 E00038 CARY FACCLK 2853 $20,000
11 E00039 TORONTO FACCLK 1053 $38,000
12 E00066 NASHVILLE TELOP 1010 $39,000
13 E00068 3253 .
14 E00070 OSLO RESCLK 1029 $24,000

Using UPDATE versus MERGE
data ia.hremps;

merge ia.hremps
ia.hrempsu;

by EmpID;
run;

Partial Output of the MERGE

c03s4d5

Partial Output of UPDATE:
The Master Data Set after Updates are Applied

Obs EmpID Location Jobcode Phone Salary

1 E00003 BOSTON VICEPR 3422 $120,000
2 E00004 CARY FACMNT 2061 $42,000
3 E00010 CARY RESCLK 5153 $20,000
4 E00013 BOSTON RECEPT 1002 $22,000
5 E00017 CARY RESCLK 2821 $36,000
6 E00018 CARY FACMNT 1459 $33,000
7 E00020 CARY FACCLK 1256 $21,000
8 E00022 CARY FACCLK 1255 $27,000
9 E00038 CARY FACCLK 2853 $20,000
10 E00039 TORONTO FACCLK 1053 $38,000
11 E00066 NASHVILLE TELOP 1010 $39,000
12 E00068 SYDNEY FACMNT 3253 $23,000
13 E00070 OSLO RESCLK 1029 $24,000
14 E00076 CARY RESMGR 1030 $36,000

 3.5 Combining Summary and Detail Data Using Two SET Statements (Self-Study) 3-93

3.5 Combining Summary and Detail Data Using Two SET
Statements (Self-Study)

163

Combining Summary and Detail Data in the
DATA Step
To create the summary statistic in the DATA step and
combine it with the detail data, you must do the following:

read the data once and calculate the summary statistic
re-read the data to combine the summary statistic with
the detail data and calculate the percentages

3-94 Chapter 3 Combining Data Horizontally

164

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

Combining Data in the DATA Step

c03s5d1

 The DO UNTIL loop is used to read through the entire data set ia.empcount once, in order to
calculate the summary statistics.

 The SUM statement calculates the summary variable TotalEmps.

 When the DO LOOP completes execution, the second SET statement reads the ia.empcount data
set a second time.

 PctEmps is calculated using the TotalEmps summary variable.

 3.5 Combining Summary and Detail Data Using Two SET Statements (Self-Study) 3-95

165

Compilation

ia.empcount

.

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

166

ia.empcount

.

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

Execution

 The value for the END = variable is 0 when reading all observations from a data set except for the
last one, when the value changes to 1.

 The SUM statement creates a variable that is initialized to 0 prior to the execution of the DATA step
and retained across iterations of the DATA step.

3-96 Chapter 3 Combining Data Horizontally

167

ia.empcount

1 0 0 .

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

Execution
JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

True
Evaluated

at bottom of
DO loop

168

ia.empcount

1 0 140 0 .

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

Execution
JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

 3.5 Combining Summary and Detail Data Using Two SET Statements (Self-Study) 3-97

169

ia.empcount

1 0 140 140 .

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

Execution
JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

170

ia.empcount

1 0 140 140 .

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

Execution
JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run; LastObs ne 1

3-98 Chapter 3 Combining Data Horizontally

171

ia.empcount

1 0 140 140 .

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

Execution
JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

Evaluated
at bottom of

DO loop

172

ia.empcount

1 0 18 140 .

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

Execution
JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

 3.5 Combining Summary and Detail Data Using Two SET Statements (Self-Study) 3-99

173

ia.empcount

1 0 18 158 .

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

Execution
JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

174

ia.empcount

1 0 18 158 .

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

Execution
JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run; LastObs ne 1

3-100 Chapter 3 Combining Data Horizontally

175

ia.empcount

1 1 6 2070 .

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

Execution
JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

Continuing until
the last observation ...

176

ia.empcount

1 1 6 2070 .

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

Execution
JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

 3.5 Combining Summary and Detail Data Using Two SET Statements (Self-Study) 3-101

177

ia.empcount

1 1 6 2070 .

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

Execution
JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run; LastObs = 1

178

ia.empcount

BAGCLK1 1 140 2070 .

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

Execution
JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

3-102 Chapter 3 Combining Data Horizontally

179

ia.empcount

BAGCLK1 1 140 2070 0.06763

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

Execution
JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

180

ia.empcount

BAGCLK1 1 140 2070 0.06763

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

Execution
JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run; Implied Output

 3.5 Combining Summary and Detail Data Using Two SET Statements (Self-Study) 3-103

181

ia.empcount

BAGCLK2 1 140 2070 .

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

Execution
JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

False

182

ia.empcount

BAGCLK2 1 18 2070 .

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

Execution
JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

3-104 Chapter 3 Combining Data Horizontally

183

ia.empcount

BAGCLK2 1 18 2070 0.008696

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

Execution
JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run;

184

ia.empcount

BAGCLK2 1 18 2070 0.008696

PDV Total
Emps

Job
Code PctEmps_N_ LastObs NumEmpsD D

...

Execution
JobCode NumEmps

BAGCLK 140
BAGSUP 18
CHKCLK 125
CHKSUP 18
FACCLK 124
FACMGR 17

data percent;
if _n_ = 1 then do until(LastObs);

set ia.empcount(keep = NumEmps) end = LastObs;
TotalEmps + NumEmps;

end;
set ia.empcount;
PctEmps = NumEmps / TotalEmps;

run; Implied Output

 3.5 Combining Summary and Detail Data Using Two SET Statements (Self-Study) 3-105

185

Partial Output
Partial PROC PRINT Output from percent

c03s5d1

Reading through the data twice

Num Total Job
Obs Emps Emps Code PctEmps

1 140 2070 BAGCLK 6.76%
2 18 2070 BAGSUP 0.87%
3 125 2070 CHKCLK 6.04%
4 18 2070 CHKSUP 0.87%
5 124 2070 FACCLK 5.99%
6 17 2070 FACMGR 0.82%
7 60 2070 FACMNT 2.90%
8 36 2070 FINACT 1.74%
9 53 2070 FINCLK 2.56%

10 20 2070 FINMGR 0.97%

3-106 Chapter 3 Combining Data Horizontally

3.6 Solutions to Exercises

1. Joining Data Sets to Create a New Data Set

Using PROC SQL, join ia.employees, ia.jcodedat, and ia.newsals to create a data set
that contains employee IDs, employee job codes, job code descriptions, current salaries, and new
salaries. Print the resulting data set.

There is no variable common to all three SAS data sets. Use PROC CONTENTS, PROC
DATASETS, or the SAS Explorer to determine the columns on which to join the rows.
/* DATASETS solution */
proc datasets lib = ia nolist;
 contents data = newsals;
 contents data = jcodedat;
 contents data = employees;
run;
quit;

/* CONTENTS solution */
proc contents data=ia.newsals;
run;

proc contents data=ia.jcodedat;
run;

proc contents data=ia.employees;
run;

/* PROC SQL solution */
proc sql;
 create table usesql as
 select e.EmpID, j.JobCode,
 Descript, Salary, NewSalary
 from ia.newsals n, ia.jcodedat j,
 ia.employees e
 where e.EmpID = n.EmpID and
 j.JobCode = e.JobCode
 order by e.EmpID;
quit;

proc print data = usesql noobs;
run;

 3.6 Solutions to Exercises 3-107

2. Combining Data Using the DATA Step MERGE Statement

Repeat the same task using the DATA step MERGE statement to merge all three data sets. Print the
resulting data set.

proc sort data = ia.jcodedat out=jcodedat;
 by JobCode;
run;

proc sort data = ia.employees out=employees;
 by JobCode;
run;

data temp1;
 merge employees(in = e) jcodedat(in = j);
 by JobCode;
 if e and j;
run;

proc sort data = ia.newsals out=newsals;
 by EmpID;
run;

proc sort data = temp1;
 by EmpID;
run;

data final;
 merge newsals(in = n) temp1(in = t);
 by EmpID;
 if n and t;
run;

proc print data=final noobs;
title;
 var EmpID JobCode Descript Salary NewSalary;
run;

3-108 Chapter 3 Combining Data Horizontally

3. Combining Two Data Sets Conditionally

The data set ia.options has the number of stock options awarded to the crew employees based
on the date they were hired. The hired dates for the crew are stored in the data set ia.crew. Create
a data set named crewshrs that combines the two data sets. The data set crewshrs should
contain only the variables LastName, FirstName, HireDate, and NumShares NumShares
and should be in order by HireDate.
/* SQL solution */

proc sql;
 create table crewshrs as
 select LastName, FirstName, HireDate, NumShares
 from ia.crew, ia.options
 where crew.HireDate between BeginDte and EndDte
 order by HireDate;
 select *
 from crewshrs;
quit;

/* DATA step solution */

proc sort data = ia.crew out = crew;
 by HireDate;
run;

data crewshrs;
 keep LastName FirstName HireDate NumShares;
 set crew;
 do while (not (BeginDte le HireDate le
 EndDte));
 set ia.options;
 end;
run;

proc print data = crewshrs;
run;

4. Creating a Summary Data Set

Using PROC MEANS, create a SAS data set named ia.mean that contains the overall average
employee contribution stored in ia.contrib. Name the summary variable AvgAmt.
proc means data = ia.contrib noprint;
 var Amount;
 output out = ia.mean mean=AvgAmt;
run;

proc print data = ia.mean;
 title 'ia.mean';
 var avgamt;
run;

 3.6 Solutions to Exercises 3-109

5. Combining a Summary Data Set with a Detail Data Set

Combine ia.mean from the previous exercise with ia.contrib to determine the difference
between the overall average contribution and each individual employee contribution.
• Create a new SAS data set named diffs that contains the differences.
• Round the difference to the nearest cent.
• Print the resulting data set.
data diffs;
 if _n_ = 1 then set ia.mean(keep = AvgAmt);
 set ia.contrib;
 Diff = round(Amount - AvgAmt,.01);
run;

proc print data = diffs;
run;

6. Combining Summary and Detail Data Using PROC SQL (Optional)

Repeat the previous exercise using PROC SQL to achieve the same result.
proc sql;
 create table diffs as
 select avgamt, empid, qtrnum, amount,
 round(amount-avgamt, .01) as diff
 from ia.contrib, ia.mean;
 select * from diffs;
quit;

/* A remerge solution is also feasible */
proc sql;
 create table diffs as
 select mean(amount), empid, qtrnum, amount,
 round(amount-mean(amount), .01) as diff
 from ia.contrib;
 select * from diffs;
quit;

3-110 Chapter 3 Combining Data Horizontally

7. Combining Data Sets Using an Index

Combine the ia.newtimes data set with the ia.schedule data set using the FltDte index.
The data set ia.newtimes contains a column named TimeDiff that has the number of minutes
later that the flight will depart.

Locate the flight using the FltDte index in the ia.schedule data set that was created in a
previous exercise. If the FltDte index does not exist, create it as a composite unique index of
Flight and Date.

The flight times are stored as a SAS time (the number of seconds since midnight).

Create the variable NewDepart that is the new departure time for the flights. Apply the time5.
format to NewDepart. (Hint: Use the expression sum(TimeDiff*60,depart).)

Print the resulting data set.
data work.newsched;
 set ia.newtimes;
 set ia.schedule key = FltDte;
 NewDepart = sum(TimeDiff*60,depart);
 format NewDepart time5.;
run;

proc print data = work.newsched;
 title 'work.newsched';
run;

8. Removing Erroneous Data

If you receive any nonmatching data errors in your SAS log, repeat the above exercise using
IORC. Direct data errors to a temporary error data set.
data work.newsched work.errors;
 set ia.newtimes;
 set ia.schedule key = FltDte;
 if _IORC_ = 0 then do;
 NewDepart = sum(TimeDiff*60,depart);
 output work.newsched;
 end;
 else do;
 error = 0;
 output work.errors;
 end;
 format NewDepart time5.;
run;
proc print data = work.newsched;
 title 'work.newsched';
run;
proc print data = work.errors;
 title 'Errors data';
run;

Chapter 4 Using Lookup Tables to
Match Data

4.1 Introduction to Lookup Techniques..4-3

4.2 Using Arrays as Lookup Tables ..4-6

4.3 Using Hash Objects as Lookup Tables...4-43

4.4 Using Formats as Lookup Tables ...4-77

4.5 Transposing Data to Create a Lookup Table ...4-108

4.6 Solutions to Exercises ... 4-119

4-2 Chapter 4 Using Lookup Tables to Match Data

 4.1 Introduction to Lookup Techniques 4-3

4.1 Introduction to Lookup Techniques

3

Objectives
Define table lookup.
Investigate table look up techniques.

4

Table Lookups
Lookup values for a table lookup can be stored in the
following:

array
hash object
format
data set

Data Values

Lookup Values

loo
ku

p

Lookup techniques include
the following:

array index value
hash object key value
FORMAT statement,
PUT function
merge, join

 The hash object is new in SAS®9.

4-4 Chapter 4 Using Lookup Tables to Match Data

5

Overview of Table Look Up Techniques
Arrays, hash objects, and formats provide an
in-memory lookup table.
The merge and join use lookup values that are stored
on disk.

6

Overview of Arrays
An array is similar to a row of buckets.

1 2 3 4
SAS puts a value in a bucket based on the
bucket number.
Values are retrieved from a bucket based on the
bucket number.

...

 4.1 Introduction to Lookup Techniques 4-5

7

Overview of a Hash Object
A hash object is similar to stacks of buckets that are
referred to by the value of a key.

Key Data Data SAS puts value(s) in
the data bucket(s)
based on the
value(s) in the key
bucket.
Value(s) are
retrieved from the
data bucket(s) based
on the value(s) in the
key bucket.

...

8

Overview of a Format
A format is similar to stacks of buckets that are referred to
by the value of a variable.

Data Value Label SAS puts data values and
label values in the buckets
when the format is used in
a FORMAT statement, PUT
function, or PUT statement.

SAS uses a binary search
on the data value bucket in
order to return the value in
the label bucket.

...

4-6 Chapter 4 Using Lookup Tables to Match Data

4.2 Using Arrays as Lookup Tables

10

Objectives
Review one dimensional arrays.
Write an ARRAY statement for a multidimensional
array.
Process a multidimensional array.
Load a multidimensional array from a SAS data set.
Use a multidimensional array to compare values.

11

Overview of Arrays
An array is similar to a row of buckets.

1 2 3 4
SAS puts a value in a bucket based on the
bucket number.
Values are retrieved from a bucket based on the
bucket number.

 4.2 Using Arrays as Lookup Tables 4-7

12

Reviewing Arrays
An array

is a temporary grouping of SAS variables that are
arranged in a particular order and identified by an
array name
exists only for the duration of the current DATA step.

An array can
perform repetitive calculations on a group of variables
create many variables with the same attributes
restructure data
perform a table lookup with one or more numeric
factors.

4-8 Chapter 4 Using Lookup Tables to Match Data

13

Using One-dimensional Arrays (Review)

General form for the one-dimensional ARRAY statement:

To use an array in a DATA step, declare the array by
using an ARRAY statement.

array numarray{3} num1 – num3;

array char{4} $ 6;

array num{5} _temporary_ (5, 6, 7, 8, 9);

ARRAY array-name {number-of-elements} <$> <length>
<list-of-variables> <(initial-values)>;

ARRAY array-name {number-of-elements} <$> <length>
<list-of-variables> <(initial-values)>;

array-name is a SAS name that identifies the group of variables.

number-of-elements is the number of variables in the group. You must enclose this value in parentheses,
braces, or brackets.

$ indicates that the elements in the array are character elements

length specifies the length of elements in the array that were not previously assigned a
length.

list-of-variables is a list of the names of the variables in the group. All variables that are defined in a
given array must be of the same type, either all character or all numeric.

initial-values gives initial values for the corresponding positional elements in the array.

The keyword _TEMPORARY_ can be used instead of list-of-variables to avoid creating new data set
variables.

 4.2 Using Arrays as Lookup Tables 4-9

14

ARRAY array-name {number-of-elements} <$> <length>
<list-of-variables> <(initial-values)>;

ARRAY array-name {number-of-elements} <$> <length>
<list-of-variables> <(initial-values)>;

General form for the one-dimensional ARRAY statement:

To use an array in a DATA step, declare the array by
using an ARRAY statement.

array numarray{3} num1 – num3;

array char{4} $ 6;

array num{5} _temporary_ (5, 6, 7, 8, 9);

Using One-dimensional Arrays (Review)
A

rr
ay

 n
am

e

15

Using One-dimensional Arrays (Review)

array numarray{3} num1 – num3;

array char{4} $ 6;

array num{5} _temporary_ (5, 6, 7, 8, 9);

number of elements

ARRAY array-name {number-of-elements} <$> <length>
<list-of-variables> <(initial-values)>;

ARRAY array-name {number-of-elements} <$> <length>
<list-of-variables> <(initial-values)>;

General form for the one-dimensional ARRAY statement:

To use an array in a DATA step, declare the array by
using an ARRAY statement.

4-10 Chapter 4 Using Lookup Tables to Match Data

16

Using One-dimensional Arrays (Review)

array numarray{3} num1 – num3;

array char{4} $ 6;

array num{5} _temporary_ (5, 6, 7, 8, 9);

List of numeric
variables

Creates four character variables,
char1 – char4, each a length of 6

Creates temporary numeric variables,
and stores the numeric values 5, 6, 7, 8, 9

General form for the one-dimensional ARRAY statement:

To use an array in a DATA step, declare the array by
using an ARRAY statement.

ARRAY array-name {number-of-elements} <$> <length>
<list-of-variables> <(initial-values)>;

ARRAY array-name {number-of-elements} <$> <length>
<list-of-variables> <(initial-values)>;

17

Using a One-dimensional Array
The data set ia.rdudelay contains the actual
number of minutes that the January 2004 flights to
Raleigh were delayed.

Partial Listing of ia.rdudelay

Flight
Obs ID FltDate Delay

1 IA00201 01JAN2004 11
2 IA00200 01JAN2004 22
3 IA00400 01JAN2004 25
4 IA00401 01JAN2004 8
5 IA00600 01JAN2004 6
6 IA00601 01JAN2004 22

 4.2 Using Arrays as Lookup Tables 4-11

18

Using a One-dimensional Array
The data set ia.delaystats contains delay statistics
for all flights in January 2004 with each day stored in a
variable named JAN01 to JAN31.

Statistic JAN01 JAN02 JAN03 JAN04 JAN05 JAN06 JAN07 JAN08 JAN09
AvgDelay 4.708 4.760 5.842 6.571 4.645 6.0714 5.500 5.080 4.692
SumDelay 113.000 119.000 111.000 184.000 144.000 85.0000 121.000 127.000 122.000
StdDelay 2.971 3.140 3.420 4.316 3.508 4.5987 4.373 4.252 4.688
MedianDelay 5.000 4.000 6.000 6.500 4.000 4.5000 4.000 3.000 2.500

First 10 Variables in ia.delaystats

The two data sets must be combined to calculate the
difference between the average delay and the actual
delay for each day.

19

Desired Results
Flight Delay

Obs ID FltDate Delay Average Dif

1 IA00201 01JAN2004 11 4.70833 6.2917
2 IA00200 01JAN2004 22 4.70833 17.2917
3 IA00400 01JAN2004 25 4.70833 20.2917

<lines removed>
87 IA00201 02JAN2004 8 4.76000 3.2400
88 IA00200 02JAN2004 30 4.76000 25.2400
89 IA00400 02JAN2004 23 4.76000 18.2400
<lines removed>
174 IA00200 03JAN2004 12 5.84211 6.1579
175 IA00400 03JAN2004 11 5.84211 5.1579
176 IA00401 03JAN2004 9 5.84211 3.1579
<lines removed>

from ia.rdudelay Load an array from
ia.delaystats

calculated

4-12 Chapter 4 Using Lookup Tables to Match Data

20

Stored Array Values
Array values should be stored in a SAS data set when the
following conditions exist:

too many values to initialize easily in the ARRAY
values changing frequently
the same values used in many programs

 4.2 Using Arrays as Lookup Tables 4-13

21

Using a One-dimensional Array
data compare;

keep FlightID FltDate Delay Average
DelayDif;

if _n_ = 1 then do;
set ia.delaystats(where =

(Statistic = 'AvgDelay'));
array jan{31} Jan01 - Jan31;

end;
set ia.rdudelay;
day = day(FltDate);
Average = Jan{day};
DelayDif = Delay - Average;

run;

c04s2d1

 During the first time through the DATA step, the data set ia.delaystats is read into the PDV.

 The array JAN is associated with the variables Jan01, Jan02, Jan03, and so forth. The ARRAY
statement that defines the array JAN appears after the SET statement for the data set that contains the
variables JAN01 – JAN31. The array statement does not have to be inside the DO loop because it is
a non-executable statement.

 The value of the JAN array referenced positionally by the value of the variable day is given to the
variable Average.

4-14 Chapter 4 Using Lookup Tables to Match Data

22

ia.rdudelay

...

Execution

ia.delaystats (where =
(Statistic = 'AvgDelay'));

Statistic JAN01 JAN02 JAN03 JAN04 JAN05 JAN06 JAN07 JAN08 JAN09 . . .
AvgDelay 4.708 4.760 5.842 6.571 4.645 6.0714 5.500 5.080 4.692 . . .

Flight
ID FltDate Delay

IA00201 01JAN2004 11
IA00200 01JAN2004 22
IA00400 01JAN2004 25

data compare;
keep FlightID FltDate Delay Average

DelayDif;
if _n_ = 1 then do;

set ia.delaystats(where =
(Statistic = 'AvgDelay'));

array jan{31} Jan01 - Jan31;
end;
set ia.rdudelay;
day = day(FltDate);
Average = Jan{day};
DelayDif = Delay - Average;

run;

.
JAN01

.
JAN02

.
JAN03

.
JAN04

.
JAN05

.
JAN31

. . .

JAN{1}
JAN{2}

JAN{3}
JAN{4}

JAN{5}
JAN{31}

FlightID

.
FltDate

.
Delay

.
day

.
Average

.
DelayDif _N_

D D D D D D

D D

1

24

ia.rdudelay

...

Statistic JAN01 JAN02 JAN03 JAN04 JAN05 JAN06 JAN07 JAN08 JAN09 . . .
AvgDelay 4.708 4.760 5.842 6.571 4.645 6.0714 5.500 5.080 4.692 . . .

Flight
ID FltDate Delay

IA00201 01JAN2004 11
IA00200 01JAN2004 22
IA00400 01JAN2004 25

data compare;
keep FlightID FltDate Delay Average

DelayDif;
if _n_ = 1 then do;

set ia.delaystats(where =
(Statistic = 'AvgDelay'));

array jan{31} Jan01 - Jan31;
end;
set ia.rdudelay;
day = day(FltDate);
Average = Jan{day};
DelayDif = Delay - Average;

run;

4.708

JAN01

4.760

JAN02

5.842

JAN03

6.571

JAN04

4.645

JAN05

6.5

JAN31

. . .

JAN{1}
JAN{2}

JAN{3}
JAN{4}

JAN{5}
JAN{31}

FlightID

.
FltDate

.
Delay

.
day

.
Average

.
DelayDif _N_

D D D D D D

D D

1

ia.delaystats (where =
(Statistic = 'AvgDelay'));

Execution

 4.2 Using Arrays as Lookup Tables 4-15

29

ia.rdudelay

...

Statistic JAN01 JAN02 JAN03 JAN04 JAN05 JAN06 JAN07 JAN08 JAN09 . . .
AvgDelay 4.708 4.760 5.842 6.571 4.645 6.0714 5.500 5.080 4.692 . . .

Flight
ID FltDate Delay

IA00201 01JAN2004 11
IA00200 01JAN2004 22
IA00400 01JAN2004 25

data compare;
keep FlightID FltDate Delay Average

DelayDif;
if _n_ = 1 then do;

set ia.delaystats(where =
(Statistic = 'AvgDelay'));

array jan{31} Jan01 - Jan31;
end;
set ia.rdudelay;
day = day(FltDate);
Average = Jan{day};
DelayDif = Delay - Average;

run;

4.708

JAN01

4.760

JAN02

5.842

JAN03

6.571

JAN04

4.645

JAN05

6.5

JAN31

. . .

JAN{1}
JAN{2}

JAN{3}
JAN{4}

JAN{5}
JAN{31}

FlightID

01JAN2004

FltDate

11

Delay

1

day

4.708

Average

6.2917

DelayDif _N_

D D D D D D

D D

1

Implied Output

ia.delaystats (where =
(Statistic = 'AvgDelay'));

IA00201

Execution

30

ia.rdudelay

...

Statistic JAN01 JAN02 JAN03 JAN04 JAN05 JAN06 JAN07 JAN08 JAN09 . . .
AvgDelay 4.708 4.760 5.842 6.571 4.645 6.0714 5.500 5.080 4.692 . . .

Flight
ID FltDate Delay

IA00201 01JAN2004 11
IA00200 01JAN2004 22
IA00400 01JAN2004 25

data compare;
keep FlightID FltDate Delay Average

DelayDif;
if _n_ = 1 then do;

set ia.delaystats(where =
(Statistic = 'AvgDelay'));

array jan{31} Jan01 - Jan31;
end;
set ia.rdudelay;
day = day(FltDate);
Average = Jan{day};
DelayDif = Delay - Average;

run;

4.708

JAN01

4.760

JAN02

5.842

JAN03

6.571

JAN04

4.645

JAN05

6.5

JAN31

. . .

JAN{1}
JAN{2}

JAN{3}
JAN{4}

JAN{5}
JAN{31}

FlightID

01JAN2004

FltDate

11

Delay

.

day

.

Average

.

DelayDif _N_

D D D D D D

D D

2

F ia.delaystats (where =
(Statistic = 'AvgDelay'));

IA00201

Execution

4-16 Chapter 4 Using Lookup Tables to Match Data

33

ia.rdudelay

...

Statistic JAN01 JAN02 JAN03 JAN04 JAN05 JAN06 JAN07 JAN08 JAN09 . . .
AvgDelay 4.708 4.760 5.842 6.571 4.645 6.0714 5.500 5.080 4.692 . . .

Flight
ID FltDate Delay

IA00201 01JAN2004 11
IA00200 01JAN2004 22
IA00400 01JAN2004 25

data compare;
keep FlightID FltDate Delay Average

DelayDif;
if _n_ = 1 then do;

set ia.delaystats(where =
(Statistic = 'AvgDelay'));

array jan{31} Jan01 - Jan31;
end;
set ia.rdudelay;
day = day(FltDate);
Average = Jan{day};
DelayDif = Delay - Average;

run;

4.708

JAN01

4.760

JAN02

5.842

JAN03

6.571

JAN04

4.645

JAN05

6.5

JAN31

. . .

JAN{1}
JAN{2}

JAN{3}
JAN{4}

JAN{5}
JAN{31}

FlightID

01JAN2004

FltDate

22

Delay

1

day

4.708

Average

17.292

DelayDif _N_

D D D D D D

D D

2

ia.delaystats (where =
(Statistic = 'AvgDelay'));

IA00200

Implied Output

Execution

34

Using a One-dimensional Array
Partial Output

Flight Delay
Obs ID FltDate Delay Average Dif

1 IA00201 01JAN2004 11 4.70833 6.2917
2 IA00200 01JAN2004 22 4.70833 17.2917
3 IA00400 01JAN2004 25 4.70833 20.2917
4 IA00401 01JAN2004 8 4.70833 3.2917
5 IA00600 01JAN2004 6 4.70833 1.2917
6 IA00601 01JAN2004 22 4.70833 17.2917
7 IA00602 01JAN2004 2 4.70833 -2.7083
8 IA00603 01JAN2004 22 4.70833 17.2917
9 IA00604 01JAN2004 21 4.70833 16.2917
10 IA00605 01JAN2004 23 4.70833 18.2917
11 IA00800 01JAN2004 15 4.70833 10.2917

 4.2 Using Arrays as Lookup Tables 4-17

35

Using Multidimensional Arrays
International Airlines needs to determine the windchill
values for each flight. Windchill values are derived from
the air temperature and wind speed.

 -10 -5 0 5 10 15 20 25 30
5 -22 -16 -11 -5 1 7 13 19 25

10 -28 -22 -16 -10 -4 3 9 15 21
15 -32 -26 -19 -13 -7 0 6 13 19
20 -35 -29 -22 -15 -9 -2 4 11 17
25 -37 -31 -24 -17 -11 -4 3 9 16
30 -39 -33 -26 -19 -12 -5 1 8 15
35 -41 -34 -27 -21 -14 -7 0 7 14
40 -43 -36 -29 -22 -15 -8 -1 6 13

Temperature

Wind
Speed

For more information regarding the windchill index, see www.weatherimages.org/data/windchill.html.

36

Using Multidimensional Arrays
When the lookup operation depends on more than one
numerical factor, you can use a multidimensional array.
You can use a two-dimensional array to determine the
windchill based on temperature and wind speed.

4-18 Chapter 4 Using Lookup Tables to Match Data

37

Overview of Arrays
A two-dimensional array is similar to a stack of buckets.

1,1 1,2

2,1 2,2

SAS puts a value in a
bucket based on the
bucket row and
column pair.

Values are retrieved
from a bucket based
on the bucket row and
column pair.

...

38

Using Multidimensional Arrays

ARRAY array-name {…,rows, cols} $ length
elements (initial values);

ARRAY array-name {…,rows, cols} $ length
elements (initial values);

General form for the multidimensional ARRAY statement:

rows
specifies the number of array elements in a row
arrangement.

cols
specifies the number of array elements in a column
arrangement.

Example:
array W{2,3} W1-W6;

The keyword _TEMPORARY_ can be used instead of elements to avoid creating new data set variables.

 4.2 Using Arrays as Lookup Tables 4-19

39

Using Multidimensional Arrays

Temperature

Wind
Speed

 -10 -5 0 5 10 15 20 25 30
5 -22 -16 -11 -5 1 7 13 19 25

10 -28 -22 -16 -10 -4 3 9 15 21
15 -32 -26 -19 -13 -7 0 6 13 19
20 -35 -29 -22 -15 -9 -2 4 11 17
25 -37 -31 -24 -17 -11 -4 3 9 16
30 -39 -33 -26 -19 -12 -5 1 8 15
35 -41 -34 -27 -21 -14 -7 0 7 14
40 -43 -36 -29 -22 -15 -8 -1 6 13

array W{4,2} (-22,-16,-28,-22,-32,-26,-35,-29);

The values in the windchill table can be typed
as initial values in an array named W.

For this example, only the first two columns and four rows are included in the array.

The initial values fill all the columns in a row before moving on to the next row.

4-20 Chapter 4 Using Lookup Tables to Match Data

40

Using Multidimensional Arrays

W
{1

,1
}

W
{1

,2
}

W
{2

,1
}

W
{2

,2
}

W
{3

,1
}

W
{4

,2
}

W
{3

,2
}

W
{4

,1
}

-22

W1

-16

W2

-28

W3

-22

W4

-32

W5

-26

W6

-35

W7

-29

W8

array W{4,2} (-22,-16,-28,-22,-32,-26,-35,-29);

Corresponds to a wind speed of 10 and a temperature of -10

...

When you use a multidimensional array, you
• must supply an index value for each dimension to process a specific array element
• can use a DO loop to process elements in a given dimension
• use nested DO loops to process elements in more than one dimension.

41

Flights Data
Find the windchill for the flights based on the temperature
and wind speed.

ia.flights

flight temp wspeed

IA2736 -8 9
IA6352 -4 16

First Two Observations of ia.flights

 4.2 Using Arrays as Lookup Tables 4-21

42

Desired Results
wndchill

Flight Temp WSpeed Chill

IA2736 -8 9 -28
IA6352 -4 16 -26

ia.flights constants
loaded into
an array

43

Using Multidimensional Arrays
If you want to know the windchill based on wind speed
and temperature, you can use the array as a table lookup.

 -10 -5
5 -22 -16

10 -28 -22
15 -32 -26
20 -35 -29

Temperature

Wind
Speed

IA2736 -8 9

Flight Temp
Wind
Speed

...

4-22 Chapter 4 Using Lookup Tables to Match Data

44

Using Multidimensional Arrays

 -10 -5
5 -22 -16

10 -28 -22
15 -32 -26
20 -35 -29

Temperature
Wind
Speed

IA2736 -8 9

Flight Temp
Wind
Speed

...

Wind speeds in the table
are rounded

to the nearest 5.

To compare the data with
the table, wind speeds in
the data must be rounded
to the nearest 5.

Row = round(wspeed,5);

Example: Row = round(9,5);Row = 10;

45

Row = round(wspeed,5)/5;

Using Multidimensional Arrays
array W{4,2} _temporary_ (-22,-16,-28,-22,-32,-26,-35,-29);

To compare the data with the values in an array,
the rounded values must be divided by 5.

Row = round(wspeed,5)/5;

Row = 10/5;Row = 2;

W
{1

,1
}

W
{1

,2
}

W
{2

,1
}

W
{2

,2
}

W
{3

,1
}

W
{4

,2
}

W
{3

,2
}

W
{4

,1
}

-22 -16 -28 -22 -32 -26 -35 -29

...

Example:

 4.2 Using Arrays as Lookup Tables 4-23

46

Column = round(-8,5);Column = -10;

Using Multidimensional Arrays

 -10 -5
5 -22 -16

10 -28 -22
15 -32 -26
20 -35 -29

IA2736 -8 9

...

Column = round(temp,5);

Temperatures in the table
are rounded

to the nearest 5.

To compare the data with
the table, temperatures in
the data must be rounded
to the nearest 5.

Example:

Temperature
Wind
Speed

Flight
Wind
SpeedTemp

47

Column = round(temp,5)/5;

Using Multidimensional Arrays

To compare the data with the values in an array,
the rounded values must be divided by 5.

Column = round(temp,5)/5;Column = -10/5;Column = -2;

array W{4,2} _temporary_ (-22,-16,-28,-22,-32,-26,-35,-29);

Example:
...

W
{1

,1
}

W
{1

,2
}

W
{2

,1
}

W
{2

,2
}

W
{3

,1
}

W
{4

,2
}

W
{3

,2
}

W
{4

,1
}

-22 -16 -28 -22 -32 -26 -35 -29

4-24 Chapter 4 Using Lookup Tables to Match Data

48

Column = round(temp,5)/5 + 3;

Using Multidimensional Arrays

Column = round(temp,5)/5;Column = -10/5;Column = -2;

array W{4,2} _temporary_ (-22,-16,-28,-22,-32,-26,-35,-29);

Column = -2 + 3;Column = 1;

To compensate for the three negative numbers in the
array column dimension, 3 is added to the computed
value to adjust it to start in column 1 (rather than -2).

...

Example:

W
{1

,1
}

W
{1

,2
}

W
{2

,1
}

W
{2

,2
}

W
{3

,1
}

W
{4

,2
}

W
{3

,2
}

W
{4

,1
}

-22 -16 -28 -22 -32 -26 -35 -29

 4.2 Using Arrays as Lookup Tables 4-25

49

Using Multidimensional Arrays
data wndchill(drop = Column Row);

array W{4,2} _Temporary_
(-22,-16,-28,-22,-32,-26,-35,-29);

set ia.flights (obs = 2);
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

c04s2d2

 In this example, WSpeed must be at least 2.5 and less than 22.5, and Temp must be at least –12.5
and less than –2.5.

 Eight values are typed into the array initial values. The _TEMPORARY_ keyword creates a list of
temporary data elements. They behave in the same way as DATA step variables except that they do
not have names and they do not appear in the output data set.

 WSpeed is rounded to the nearest fifth unit because the lookup table only contains wind speeds
rounded to every 5 units. The value is divided by 5 to derive the row position in the windchill lookup
table.

 The offset of 3 is used because the third column in the windchill lookup table represents zero
degrees.

 The W array is used to look up the windchill values using the row and column variables.

4-26 Chapter 4 Using Lookup Tables to Match Data

50

-22 -16 -22-28 -32 -26 -35 -29

W
{1

,1
}

W
{1

,2
}

W
{2

,1
}

W
{2

,2
}

W
{3

,1
}

W
{4

,2
}

W
{3

,2
}

W
{4

,1
}

PDV

. .
D

data wndchill(drop = Column Row);
array W{4,2} _Temporary_

(-22,-16,-28,-22,-32,-26,-35,-29);
set ia.flights (obs = 2);
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

DFlight Temp WSpeed

. .
Row Column

.
Chill

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

Compilation

ia.flights

...

51

PDV

-8IA2736 9

data wndchill(drop = Column Row);
array W{4,2} _Temporary_

(-22,-16,-28,-22,-32,-26,-35,-29);
set ia.flights (obs = 2);
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

Flight Temp WSpeed

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

Execution

ia.flights

DD

. .
Row Column

.
Chill

...

-22 -16 -22-28 -32 -26 -35 -29

W
{1

,1
}

W
{1

,2
}

W
{2

,1
}

W
{2

,2
}

W
{3

,1
}

W
{4

,2
}

W
{3

,2
}

W
{4

,1
}

 4.2 Using Arrays as Lookup Tables 4-27

54

PDV

-8IA2736 9

data wndchill(drop = Column Row);
array W{4,2} _Temporary_

(-22,-16,-28,-22,-32,-26,-35,-29);
set ia.flights (obs = 2);
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

DFlight Temp WSpeed

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

Execution

ia.flights

DD

2 1

Row Column

.

Chill

-22 -16 -22-28 -32 -26 -35 -29

W
{1

,1
}

W
{1

,2
}

W
{2

,1
}

W
{2

,2
}

W
{3

,1
}

W
{4

,2
}

W
{3

,2
}

W
{4

,1
}

...

55

PDV

-8IA2736 9

data wndchill(drop = Column Row);
array W{4,2} _Temporary_

(-22,-16,-28,-22,-32,-26,-35,-29);
set ia.flights (obs = 2);
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

DFlight Temp WSpeed

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

Execution

ia.flights

DD

2 1

Row Column
-28

Chill

-22 -16 -22-28 -32 -26 -35 -29

W
{1

,1
}

W
{1

,2
}

W
{2

,1
}

W
{2

,2
}

W
{3

,1
}

W
{4

,2
}

W
{3

,2
}

W
{4

,1
}

...

4-28 Chapter 4 Using Lookup Tables to Match Data

56

PDV

-8IA2736 9

data wndchill(drop = Column Row);
array W{4,2} _Temporary_

(-22,-16,-28,-22,-32,-26,-35,-29);
set ia.flights (obs = 2);
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

DFlight Temp WSpeed

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

Execution

ia.flights

DD

2 1

Row Column
-28

Chill

Implied Output

-22 -16 -22-28 -32 -26 -35 -29

W
{1

,1
}

W
{1

,2
}

W
{2

,1
}

W
{2

,2
}

W
{3

,1
}

W
{4

,2
}

W
{3

,2
}

W
{4

,1
}

...

57

PDV

-4IA6352 16

data wndchill(drop = Column Row);
array W{4,2} _Temporary_

(-22,-16,-28,-22,-32,-26,-35,-29);
set ia.flights (obs = 2);
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

DFlight Temp WSpeed

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

Execution

ia.flights

DD

. .

Row Column

.

Chill

-22 -16 -22-28 -32 -26 -35 -29

W
{1

,1
}

W
{1

,2
}

W
{2

,1
}

W
{2

,2
}

W
{3

,1
}

W
{4

,2
}

W
{3

,2
}

W
{4

,1
}

...

 4.2 Using Arrays as Lookup Tables 4-29

58

PDV

-4IA6352 16

data wndchill(drop = Column Row);
array W{4,2} _Temporary_

(-22,-16,-28,-22,-32,-26,-35,-29);
set ia.flights (obs = 2);
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

DFlight Temp WSpeed

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

Execution

ia.flights

DD

3 2

Row Column
-26

Chill

-22 -16 -22-28 -32 -26 -35 -29

W
{1

,1
}

W
{1

,2
}

W
{2

,1
}

W
{2

,2
}

W
{3

,1
}

W
{4

,2
}

W
{3

,2
}

W
{4

,1
}

59

Output
PROC PRINT Output from work.wndchill

c04s2d2

wndchill

Flight Temp WSpeed Chill

IA2736 -8 9 -28
IA6352 -4 16 -26

4-30 Chapter 4 Using Lookup Tables to Match Data

Exercises

1. Using a Two-dimensional Array

The company recently sponsored a triathlon involving bicycling (EVENT = 1), swimming
(EVENT = 2), and running (EVENT = 3). The finish order of the top four contestants in all events
is stored in ia.compete. Use the following table and a two-dimensional array to determine the
scores received for each event. The newly created SAS data set should be named results.

Event 1st Place 2nd Place 3rd Place 4th Place

1 65 55 45 35

2 80 70 60 50

3 70 60 50 40

Output
work.results

 Frst
 LastName Name Event Finish Score

 Tuttle Thomas 1 1 65
 Gomez Alan 1 2 55
 Chapman Neil 1 3 45
 Welch Darius 1 4 35
 Vandeusen Richard 2 1 80
 Tuttle Thomas 2 2 70
 Venter Vince 2 3 60
 Morgan Mel 2 4 50
 Chapman Neil 3 1 70
 Gomez Alan 3 2 60
 Morgan Mel 3 3 50
 Tuttle Thomas 3 4 40

 4.2 Using Arrays as Lookup Tables 4-31

61

Using Multidimensional Arrays
Suppose the windchill values are stored in a SAS data set
named ia.wchill where the rows represent wind
speeds and the columns represent temperatures.

Obs Neg10 Neg5 Tmp0 Tmp5 Tmp10 Tmp15 Tmp20 Tmp25 Tmp30

1 -22 -16 -11 -5 1 7 13 19 25
2 -28 -22 -16 -10 -4 3 9 15 21
3 -32 -26 -19 -13 -7 0 6 13 19
4 -35 -29 -22 -15 -9 -2 4 11 17
5 -37 -31 -24 -17 -11 -4 3 9 16
6 -39 -33 -26 -19 -12 -5 1 8 15
7 -41 -34 -27 -21 -14 -7 0 7 14
8 -43 -36 -29 -22 -15 -8 -1 6 13

You can load the array
from the values in the SAS data set.

62

Stored Array Values (Review)
Array values should be stored in a SAS data set when the
following conditions exist:

too many values to initialize easily in the array
values changing frequently
the same values used in many programs

4-32 Chapter 4 Using Lookup Tables to Match Data

63

Using Multidimensional Arrays
data wndchll(keep = Flight Temp

Wspeed Chill);
array W{8,9} _Temporary_;
if _n_ = 1 then do I = 1 to 8;

set ia.wchill;
array Tmp{9} Neg10 -- Tmp30;
do J = 1 to 9;

W{I,J} = Tmp{J};
end;

end;
set ia.flights;
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

c04s2d3

 The index variable, I, is used so that the SET statement is executed for each observation in
ia.wchill.

 The array, Tmp, is associated with the variables Neg10 through Tmp30.

 The two-dimensional array W is loaded with the values of the Tmp array.

64

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

ia.flights

...

Neg10 Neg5 Tmp0 Tmp5 Tmp10 Tmp15 Tmp20 Tmp25 Tmp30
-22 -16 -11 -5 1 7 13 19 25
-28 -22 -16 -10 -4 3 9 15 21

Executiondata wndchll(keep = Flight Temp
Wspeed Chill);

array W{8,9} _Temporary_;
if _n_ = 1 then do I = 1 to 8;

set ia.wchill;
array Tmp{9} Neg10 -- Tmp30;
do J = 1 to 9;

W{I,J} = Tmp{J};
end;

end;
set ia.flights;
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

PDV

.
Neg10

.
Neg5

.
Tmp0

.
Tmp5

.
Tmp10

.
Tmp15

.
Tmp20

.
Tmp25

.
Tmp30

.
Flight

.
Temp

.
WSpeed

.
Row

.
Column

.
Chill

Tmp{1}
Tmp{2}

Tmp{3}
Tmp{4}

Tmp{5}
Tmp{6}

Tmp{7}
Tmp{8}

Tmp{9}

ia.wchill

1

N

.
I

.
J

D DDD DDDD DDD

D

….
W{1,1}

.
W{1,2}

.
W{1,3}

.
W{1,4}

.
W{1,5}

.
W{1,6}

.
W{1,7}

.
W{1,8}

.
W{1,9}

.
W{2,1}

.
W{2,2}

.
W{2,3}

.
W{8,9}

 4.2 Using Arrays as Lookup Tables 4-33

65

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

ia.flights

...

Neg10 Neg5 Tmp0 Tmp5 Tmp10 Tmp15 Tmp20 Tmp25 Tmp30
-22 -16 -11 -5 1 7 13 19 25
-28 -22 -16 -10 -4 3 9 15 21

data wndchll(keep = Flight Temp
Wspeed Chill);

array W{8,9} _Temporary_;
if _n_ = 1 then do I = 1 to 8;

set ia.wchill;
array Tmp{9} Neg10 -- Tmp30;
do J = 1 to 9;

W{I,J} = Tmp{J};
end;

end;
set ia.flights;
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

PDV

.
Neg10

.
Neg5

.
Tmp0

.
Tmp5

.
Tmp10

.
Tmp15

.
Tmp20

.
Tmp25

.
Tmp30

.
Flight

.
Temp

.
WSpeed

.
Row

.
Column

.
Chill

Tmp{1}
Tmp{2}

Tmp{3}
Tmp{4}

Tmp{5}
Tmp{6}

Tmp{7}
Tmp{8}

Tmp{9}

.
W{1,1}

.
W{1,2}

.
W{1,3}

.
W{1,4}

.
W{1,5}

.
W{1,6}

.
W{1,7}

.
W{1,8}

.
W{1,9}

.
W{2,1}

.
W{2,2}

.
W{2,3}

.
W{8,9}

ia.wchill
T

1

N

.
I

.
J

D DDD DDDD DDD

D

…

Execution

66

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

ia.flights

...

Neg10 Neg5 Tmp0 Tmp5 Tmp10 Tmp15 Tmp20 Tmp25 Tmp30
-22 -16 -11 -5 1 7 13 19 25
-28 -22 -16 -10 -4 3 9 15 21

data wndchll(keep = Flight Temp
Wspeed Chill);

array W{8,9} _Temporary_;
if _n_ = 1 then do I = 1 to 8;

set ia.wchill;
array Tmp{9} Neg10 -- Tmp30;
do J = 1 to 9;

W{I,J} = Tmp{J};
end;

end;
set ia.flights;
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

PDV

.
Neg10

.
Neg5

.
Tmp0

.
Tmp5

.
Tmp10

.
Tmp15

.
Tmp20

.
Tmp25

.
Tmp30

.
Flight

.
Temp

.
WSpeed

.
Row

.
Column

.
Chill

Tmp{1}
Tmp{2}

Tmp{3}
Tmp{4}

Tmp{5}
Tmp{6}

Tmp{7}
Tmp{8}

Tmp{9}

ia.wchill

1

N

1

I

.
J

D DDD DDDD DDD

D

.
W{1,1}

.
W{1,2}

.
W{1,3}

.
W{1,4}

.
W{1,5}

.
W{1,6}

.
W{1,7}

.
W{1,8}

.
W{1,9}

.
W{2,1}

.
W{2,2}

.
W{2,3}

.
W{8,9}

…

Execution

4-34 Chapter 4 Using Lookup Tables to Match Data

67

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

ia.flights

...

Neg10 Neg5 Tmp0 Tmp5 Tmp10 Tmp15 Tmp20 Tmp25 Tmp30
-22 -16 -11 -5 1 7 13 19 25
-28 -22 -16 -10 -4 3 9 15 21

data wndchll(keep = Flight Temp
Wspeed Chill);

array W{8,9} _Temporary_;
if _n_ = 1 then do I = 1 to 8;

set ia.wchill;
array Tmp{9} Neg10 -- Tmp30;
do J = 1 to 9;

W{I,J} = Tmp{J};
end;

end;
set ia.flights;
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

PDV

-22
Neg10

-16
Neg5

-11
Tmp0

-5
Tmp5

1
Tmp10

7
Tmp15

13
Tmp20

19
Tmp25

25
Tmp30

.
Flight

.
Temp

.
WSpeed

.
Row

.
Column

.
Chill

Tmp{1}
Tmp{2}

Tmp{3}
Tmp{4}

Tmp{5}
Tmp{6}

Tmp{7}
Tmp{8}

Tmp{9}

ia.wchill

1

N

1

I

.
J

D DDD DDDD DDD

D

….
W{1,1}

.
W{1,2}

.
W{1,3}

.
W{1,4}

.
W{1,5}

.
W{1,6}

.
W{1,7}

.
W{1,8}

.
W{1,9}

.
W{2,1}

.
W{2,2}

.
W{2,3}

.
W{8,9}

Execution

68

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

ia.flights

...

Neg10 Neg5 Tmp0 Tmp5 Tmp10 Tmp15 Tmp20 Tmp25 Tmp30
-22 -16 -11 -5 1 7 13 19 25
-28 -22 -16 -10 -4 3 9 15 21

data wndchll(keep = Flight Temp
Wspeed Chill);

array W{8,9} _Temporary_;
if _n_ = 1 then do I = 1 to 8;

set ia.wchill;
array Tmp{9} Neg10 -- Tmp30;
do J = 1 to 9;

W{I,J} = Tmp{J};
end;

end;
set ia.flights;
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

PDV

ia.wchill

1

N

1

I

1

J

D DDD DDDD DDD

D

….
W{1,1}

.
W{1,2}

.
W{1,3}

.
W{1,4}

.
W{1,5}

.
W{1,6}

.
W{1,7}

.
W{1,8}

.
W{1,9}

.
W{2,1}

.
W{2,2}

.
W{2,3}

.
W{8,9}

-22
Neg10

-16
Neg5

-11
Tmp0

-5
Tmp5

1
Tmp10

7
Tmp15

13
Tmp20

19
Tmp25

25
Tmp30

.
Flight

.
Temp

.
WSpeed

.
Row

.
Column

.
Chill

Tmp{1}
Tmp{2}

Tmp{3}
Tmp{4}

Tmp{5}
Tmp{6}

Tmp{7}
Tmp{8}

Tmp{9}

Execution

 4.2 Using Arrays as Lookup Tables 4-35

81

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

ia.flights

...

Neg10 Neg5 Tmp0 Tmp5 Tmp10 Tmp15 Tmp20 Tmp25 Tmp30
-22 -16 -11 -5 1 7 13 19 25
-28 -22 -16 -10 -4 3 9 15 21

data wndchll(keep = Flight Temp
Wspeed Chill);

array W{8,9} _Temporary_;
if _n_ = 1 then do I = 1 to 8;

set ia.wchill;
array Tmp{9} Neg10 -- Tmp30;
do J = 1 to 9;

W{I,J} = Tmp{J};
end;

end;
set ia.flights;
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

PDV

ia.wchill

D DDD DDDD DDD

D

…

1

N

1

I

10

J

-22
Neg10

-16
Neg5

-11
Tmp0

-5
Tmp5

1
Tmp10

7
Tmp15

13
Tmp20

19
Tmp25

25
Tmp30

.
Flight

.
Temp

.
WSpeed

.
Row

.
Column

.
Chill

Tmp{1}
Tmp{2}

Tmp{3}
Tmp{4}

Tmp{5}
Tmp{6}

Tmp{7}
Tmp{8}

Tmp{9}

-22
W{1,1}

-16
W{1,2}

-11
W{1,3}

-5
W{1,4}

1
W{1,5}

7
W{1,6}

13
W{1,7}

19
W{1,8}

25
W{1,9}

.
W{2,1}

.
W{2,2}

.
W{2,3}

.
W{8,9}

Execution

82

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

ia.flights

...

Neg10 Neg5 Tmp0 Tmp5 Tmp10 Tmp15 Tmp20 Tmp25 Tmp30
-22 -16 -11 -5 1 7 13 19 25
-28 -22 -16 -10 -4 3 9 15 21

data wndchll(keep = Flight Temp
Wspeed Chill);

array W{8,9} _Temporary_;
if _n_ = 1 then do I = 1 to 8;

set ia.wchill;
array Tmp{9} Neg10 -- Tmp30;
do J = 1 to 9;

W{I,J} = Tmp{J};
end;

end;
set ia.flights;
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

PDV

ia.wchill

D DDD DDDD DDD

D

…

1

N

2

I

10

J

-22
Neg10

-16
Neg5

-11
Tmp0

-5
Tmp5

1
Tmp10

7
Tmp15

13
Tmp20

19
Tmp25

25
Tmp30

.
Flight

.
Temp

.
WSpeed

.
Row

.
Column

.
Chill

Tmp{1}
Tmp{2}

Tmp{3}
Tmp{4}

Tmp{5}
Tmp{6}

Tmp{7}
Tmp{8}

Tmp{9}

-22
W{1,1}

-16
W{1,2}

-11
W{1,3}

-5
W{1,4}

1
W{1,5}

7
W{1,6}

13
W{1,7}

19
W{1,8}

25
W{1,9}

.
W{2,1}

.
W{2,2}

.
W{2,3}

.
W{8,9}

Execution

4-36 Chapter 4 Using Lookup Tables to Match Data

83

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

ia.flights

...

Neg10 Neg5 Tmp0 Tmp5 Tmp10 Tmp15 Tmp20 Tmp25 Tmp30
-22 -16 -11 -5 1 7 13 19 25
-28 -22 -16 -10 -4 3 9 15 21

data wndchll(keep = Flight Temp
Wspeed Chill);

array W{8,9} _Temporary_;
if _n_ = 1 then do I = 1 to 8;

set ia.wchill;
array Tmp{9} Neg10 -- Tmp30;
do J = 1 to 9;

W{I,J} = Tmp{J};
end;

end;
set ia.flights;
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

PDV

ia.wchill

D DDD DDDD DDD

D

…

1

N

2

I

10

J

-28
Neg10

-22
Neg5

-16
Tmp0

-10
Tmp5

-4
Tmp10

3
Tmp15

9
Tmp20

15
Tmp25

21
Tmp30

.
Flight

.
Temp

.
WSpeed

.
Row

.
Column

.
Chill

Tmp{1}
Tmp{2}

Tmp{3}
Tmp{4}

Tmp{5}
Tmp{6}

Tmp{7}
Tmp{8}

Tmp{9}

-22
W{1,1}

-16
W{1,2}

-11
W{1,3}

-5
W{1,4}

1
W{1,5}

7
W{1,6}

13
W{1,7}

19
W{1,8}

25
W{1,9}

.
W{2,1}

.
W{2,2}

.
W{2,3}

.
W{8,9}

Execution

88

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

ia.flights

...

Neg10 Neg5 Tmp0 Tmp5 Tmp10 Tmp15 Tmp20 Tmp25 Tmp30
-22 -16 -11 -5 1 7 13 19 25
-28 -22 -16 -10 -4 3 9 15 21

data wndchll(keep = Flight Temp
Wspeed Chill);

array W{8,9} _Temporary_;
if _n_ = 1 then do I = 1 to 8;

set ia.wchill;
array Tmp{9} Neg10 -- Tmp30;
do J = 1 to 9;

W{I,J} = Tmp{J};
end;

end;
set ia.flights;
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

PDV

ia.wchill
Continue until i = 9

and j = 10

D DDD DDDD DDD

D

…

1

N

9

I

10

J

-28
Neg10

-22
Neg5

-16
Tmp0

-10
Tmp5

-4
Tmp10

3
Tmp15

9
Tmp20

15
Tmp25

21
Tmp30

.
Flight

.
Temp

.
WSpeed

.
Row

.
Column

.
Chill

Tmp{1}
Tmp{2}

Tmp{3}
Tmp{4}

Tmp{5}
Tmp{6}

Tmp{7}
Tmp{8}

Tmp{9}

-22
W{1,1}

-16
W{1,2}

-11
W{1,3}

-5
W{1,4}

1
W{1,5}

7
W{1,6}

13
W{1,7}

19
W{1,8}

25
W{1,9}

-28
W{2,1}

-22
W{2,2}

-16
W{2,3}

13
W{8,9}

Execution

 4.2 Using Arrays as Lookup Tables 4-37

89

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

ia.flights

...

Neg10 Neg5 Tmp0 Tmp5 Tmp10 Tmp15 Tmp20 Tmp25 Tmp30
-22 -16 -11 -5 1 7 13 19 25
-28 -22 -16 -10 -4 3 9 15 21

data wndchll(keep = Flight Temp
Wspeed Chill);

array W{8,9} _Temporary_;
if _n_ = 1 then do I = 1 to 8;

set ia.wchill;
array Tmp{9} Neg10 -- Tmp30;
do J = 1 to 9;

W{I,J} = Tmp{J};
end;

end;
set ia.flights;
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

PDV

ia.wchill

D DDD DDDD DDD

D

…

1

N

9

I

10

J

-28
Neg10

-22
Neg5

-16
Tmp0

-10
Tmp5

-4
Tmp10

3
Tmp15

9
Tmp20

15
Tmp25

21
Tmp30

IA2736

Flight

-8
Temp

9
WSpeed

.
Row

.
Column

.
Chill

Tmp{1}
Tmp{2}

Tmp{3}
Tmp{4}

Tmp{5}
Tmp{6}

Tmp{7}
Tmp{8}

Tmp{9}

-22
W{1,1}

-16
W{1,2}

-11
W{1,3}

-5
W{1,4}

1
W{1,5}

7
W{1,6}

13
W{1,7}

19
W{1,8}

25
W{1,9}

-28
W{2,1}

-22
W{2,2}

-16
W{2,3}

13
W{8,9}

Execution

92

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

ia.flights

...

Neg10 Neg5 Tmp0 Tmp5 Tmp10 Tmp15 Tmp20 Tmp25 Tmp30
-22 -16 -11 -5 1 7 13 19 25
-28 -22 -16 -10 -4 3 9 15 21

data wndchll(keep = Flight Temp
Wspeed Chill);

array W{8,9} _Temporary_;
if _n_ = 1 then do I = 1 to 8;

set ia.wchill;
array Tmp{9} Neg10 -- Tmp30;
do J = 1 to 9;

W{I,J} = Tmp{J};
end;

end;
set ia.flights;
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

PDV

ia.wchill

1
N

9
I

10
J

D DDD DDDD DDD

D

…

1

N

9

I

10

J

-28
Neg10

-22
Neg5

-16
Tmp0

-10
Tmp5

-4
Tmp10

3
Tmp15

9
Tmp20

15
Tmp25

21
Tmp30

IA2736

Flight

-8
Temp

9
WSpeed

2
Row

1
Column

-28
Chill

Tmp{1}
Tmp{2}

Tmp{3}
Tmp{4}

Tmp{5}
Tmp{6}

Tmp{7}
Tmp{8}

Tmp{9}

-22
W{1,1}

-16
W{1,2}

-11
W{1,3}

-5
W{1,4}

1
W{1,5}

7
W{1,6}

13
W{1,7}

19
W{1,8}

25
W{1,9}

-28
W{2,1}

-22
W{2,2}

-16
W{2,3}

13
W{8,9}

Execution

4-38 Chapter 4 Using Lookup Tables to Match Data

93

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

ia.flights

...

Neg10 Neg5 Tmp0 Tmp5 Tmp10 Tmp15 Tmp20 Tmp25 Tmp30
-22 -16 -11 -5 1 7 13 19 25
-28 -22 -16 -10 -4 3 9 15 21

data wndchll(keep = Flight Temp
Wspeed Chill);

array W{8,9} _Temporary_;
if _n_ = 1 then do I = 1 to 8;

set ia.wchill;
array Tmp{9} Neg10 -- Tmp30;
do J = 1 to 9;

W{I,J} = Tmp{J};
end;

end;
set ia.flights;
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

PDV

ia.wchill

Implied output

D DDD DDDD DDD

D

…

1

N

9

I

10

J

-28
Neg10

-22
Neg5

-16
Tmp0

-10
Tmp5

-4
Tmp10

3
Tmp15

9
Tmp20

15
Tmp25

21
Tmp30

IA2736

Flight

-8
Temp

9
WSpeed

2
Row

1
Column

-28
Chill

Tmp{1}
Tmp{2}

Tmp{3}
Tmp{4}

Tmp{5}
Tmp{6}

Tmp{7}
Tmp{8}

Tmp{9}

-22
W{1,1}

-16
W{1,2}

-11
W{1,3}

-5
W{1,4}

1
W{1,5}

7
W{1,6}

13
W{1,7}

19
W{1,8}

25
W{1,9}

-28
W{2,1}

-22
W{2,2}

-16
W{2,3}

13
W{8,9}

Execution

94

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

ia.flights

...

Neg10 Neg5 Tmp0 Tmp5 Tmp10 Tmp15 Tmp20 Tmp25 Tmp30
-22 -16 -11 -5 1 7 13 19 25
-28 -22 -16 -10 -4 3 9 15 21

data wndchll(keep = Flight Temp
Wspeed Chill);

array W{8,9} _Temporary_;
if _n_ = 1 then do I = 1 to 8;

set ia.wchill;
array Tmp{9} Neg10 -- Tmp30;
do J = 1 to 9;

W{I,J} = Tmp{J};
end;

end;
set ia.flights;
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

PDV

ia.wchillF

D DDD DDDD DDD

D

…

2

N

.

I

.

J

-28
Neg10

-22
Neg5

-16
Tmp0

-10
Tmp5

-4
Tmp10

3
Tmp15

9
Tmp20

15
Tmp25

21
Tmp30

IA2736

Flight

-8
Temp

9
WSpeed

.
Row

.
Column

.
Chill

Tmp{1}
Tmp{2}

Tmp{3}
Tmp{4}

Tmp{5}
Tmp{6}

Tmp{7}
Tmp{8}

Tmp{9}

-22
W{1,1}

-16
W{1,2}

-11
W{1,3}

-5
W{1,4}

1
W{1,5}

7
W{1,6}

13
W{1,7}

19
W{1,8}

25
W{1,9}

-28
W{2,1}

-22
W{2,2}

-16
W{2,3}

13
W{8,9}

Execution

 4.2 Using Arrays as Lookup Tables 4-39

95

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

ia.flights

...

Neg10 Neg5 Tmp0 Tmp5 Tmp10 Tmp15 Tmp20 Tmp25 Tmp30
-22 -16 -11 -5 1 7 13 19 25
-28 -22 -16 -10 -4 3 9 15 21

data wndchll(keep = Flight Temp
Wspeed Chill);

array W{8,9} _Temporary_;
if _n_ = 1 then do I = 1 to 8;

set ia.wchill;
array Tmp{9} Neg10 -- Tmp30;
do J = 1 to 9;

W{I,J} = Tmp{J};
end;

end;
set ia.flights;
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

PDV

ia.wchill

D DDD DDDD DDD

D

…

2

N

.

I

.

J

-28
Neg10

-22
Neg5

-16
Tmp0

-10
Tmp5

-4
Tmp10

3
Tmp15

9
Tmp20

15
Tmp25

21
Tmp30

IA6352

Flight

-4
Temp

16
WSpeed

.
Row

.
Column

.
Chill

Tmp{1}
Tmp{2}

Tmp{3}
Tmp{4}

Tmp{5}
Tmp{6}

Tmp{7}
Tmp{8}

Tmp{9}

-22
W{1,1}

-16
W{1,2}

-11
W{1,3}

-5
W{1,4}

1
W{1,5}

7
W{1,6}

13
W{1,7}

19
W{1,8}

25
W{1,9}

-28
W{2,1}

-22
W{2,2}

-16
W{2,3}

13
W{8,9}

Execution

96

Flight Temp WSpeed

IA2736 -8 9
IA6352 -4 16

ia.flights

...

Neg10 Neg5 Tmp0 Tmp5 Tmp10 Tmp15 Tmp20 Tmp25 Tmp30
-22 -16 -11 -5 1 7 13 19 25
-28 -22 -16 -10 -4 3 9 15 21

data wndchll(keep = Flight Temp
Wspeed Chill);

array W{8,9} _Temporary_;
if _n_ = 1 then do I = 1 to 8;

set ia.wchill;
array Tmp{9} Neg10 -- Tmp30;
do J = 1 to 9;

W{I,J} = Tmp{J};
end;

end;
set ia.flights;
Row = round(WSpeed,5)/5;
Column = (round(Temp,5)/5)+3;
Chill = W{Row,Column};

run;

PDV

ia.wchill

D DDD DDDD DDD

D

…

2

N

.

I

.

J

-28
Neg10

-22
Neg5

-16
Tmp0

-10
Tmp5

-4
Tmp10

3
Tmp15

9
Tmp20

15
Tmp25

21
Tmp30

IA6352

Flight

-4
Temp

16
WSpeed

3
Row

2
Column

-26
Chill

Tmp{1}
Tmp{2}

Tmp{3}
Tmp{4}

Tmp{5}
Tmp{6}

Tmp{7}
Tmp{8}

Tmp{9}

-22
W{1,1}

-16
W{1,2}

-11
W{1,3}

-5
W{1,4}

1
W{1,5}

7
W{1,6}

13
W{1,7}

19
W{1,8}

25
W{1,9}

-28
W{2,1}

-22
W{2,2}

-16
W{2,3}

13
W{8,9}

Execution

4-40 Chapter 4 Using Lookup Tables to Match Data

98

Advantages of an Array
Advantages of using an array include the following:

use of positional order
use of multiple values to determine the array element
to be returned
ability to use a non-sorted and non-indexed base
data set
use of numeric mathematical expressions to determine
which element of the array to be looked up; exact
match not required

An array will always be faster than
a hash object or format if you can use it.

99

Disadvantages of an Array
Disadvantages of using an array include the following:

memory requirements to load the entire array
requirement that you must have a numeric value as
pointer to the array elements
return of only a single value from the lookup operation
dimensions supplied at compile time by either hard-
coding or macro variables

An array requests a contiguous chunk of memory
requested at compile time.

 4.2 Using Arrays as Lookup Tables 4-41

Exercises

2. Loading an Array from a SAS Data Set

The company recently sponsored a triathlon involving bicycling (EVENT = 1), swimming
(EVENT = 2), and running (EVENT = 3). The finish order of the top four contestants in all events
is stored in ia.compete. Use the ia.events data set, which contains the points awarded for
each event and finish, and a two-dimensional array to determine the scores received for each event.
The newly created SAS data set should be named results.

Output
work.results

 Frst
 LastName Name Event Finish Score

 Tuttle Thomas 1 1 65
 Gomez Alan 1 2 55
 Chapman Neil 1 3 45
 Welch Darius 1 4 35
 Vandeusen Richard 2 1 80
 Tuttle Thomas 2 2 70
 Venter Vince 2 3 60
 Morgan Mel 2 4 50
 Chapman Neil 3 1 70
 Gomez Alan 3 2 60
 Morgan Mel 3 3 50
 Tuttle Thomas 3 4 40

3. Loading an Array from a SAS Data Set (Optional)

The ia.mealplan data set contains information on which meals, if any, are served on flights. Meal
service is based on the day of the week (1 to 7), DOW, and the hour of the day of the flight, Hour.

a. Produce a SAS data set named meals that contains the meal service code for each flight.

b. Use ia.schedule to obtain the flight information.

c. Create a two-dimensional array from ia.mealplan.

d. Look up the meal for each flight using the WEEKDAY function on Date and the HOUR function
on Depart.

 The HOUR function returns values between 0 and 23. The Hour variable in
ia.mealplan contains the values 1 to 24.

e. Print only the first 15 observations. The expected output is below.

4-42 Chapter 4 Using Lookup Tables to Match Data

Output
meals

 Obs flight depart date Service

 1 IA10800 6:35 01JUN2000 Breakfast
 2 IA10801 9:35 01JUN2000 None
 3 IA10802 12:35 01JUN2000 Snack
 4 IA10803 15:35 01JUN2000 None
 5 IA10804 18:35 01JUN2000 Dinner
 6 IA10805 21:35 01JUN2000 None
 7 IA10800 6:35 02JUN2000 Breakfast
 8 IA10801 9:35 02JUN2000 Snack
 9 IA10802 12:35 02JUN2000 Lunch
 10 IA10803 15:35 02JUN2000 Snack
 11 IA10804 18:35 02JUN2000 Dinner
 12 IA10805 21:35 02JUN2000 None
 13 IA10800 6:35 03JUN2000 Breakfast
 14 IA10801 9:35 03JUN2000 Snack
 15 IA10802 12:35 03JUN2000 Lunch

 4.3 Using Hash Objects as Lookup Tables 4-43

4.3 Using Hash Objects as Lookup Tables

102

Objectives
Define the DATA step hash object.
Use the hash object as a lookup table.
Use the hash object to match records.

103

DATA Step Hash Objects
The DATA step hash object

provides in-memory data storage and retrieval
has a data component and a key component
uses the key for quick data retrieval
can store multiple data items per key
does not require the data to be sorted
is sized dynamically.

The hash object is a good choice for lookups
using unordered data that can fit into memory.

4-44 Chapter 4 Using Lookup Tables to Match Data

104

Overview of a Hash Object
A hash object is similar to stacks of buckets that are
referred to by the value of a key.

Key Data Data SAS puts value(s) in
the data bucket(s)
based on the
value(s) in the key
bucket.

Value(s) are
retrieved from the
data bucket(s) based
on the value(s) in the
key bucket.

...

105

DATA Step Hash Objects
The hash object

resembles a table with rows and columns
might have numeric columns and character columns
can be loaded from hard-coded values
can be loaded from a SAS data set
exists for the duration of the DATA step.

 4.3 Using Hash Objects as Lookup Tables 4-45

106

DATA Step Hash Objects
The data component

can contain multiple data values per key value
can consist of numeric and character values.

The key component
might consist of numeric and character values
maps key values to data rows
must be unique
can be composite.

Data and keys are DATA step variables.

107

Using Hash Objects
The data set ia.Contrib contains quarterly
contributions to a retirement fund. Calculate the difference
between the actual contribution and the goal amount.

EmpID QtrNum Amount

E00224 qtr1 12
E00224 qtr2 33
E00224 qtr3 22
E00224 qtr4 .
E00367 qtr1 35
E00367 qtr2 48
E00367 qtr3 40
E00367 qtr4 30
E00441 qtr1 .
E00441 qtr2 63

ia.Contrib
(Partial Listing)

Quarter Goal amount

1 10
2 15
3 5
4 15

4-46 Chapter 4 Using Lookup Tables to Match Data

108

Using Hash Objects for Table Lookups
When a lookup operation depends on one or more key
values, you can use a hash object.

hash object (single key)
Key Data
qtr1 10
qtr2 15

qtr4 15
qtr3 5

EmpID QtrNum Amount

E00224 qtr1 12
E00224 qtr2 33
E00224 qtr3 22
E00224 qtr4 .
E00367 qtr1 35
E00367 qtr2 48
E00367 qtr3 40
E00367 qtr4 30
E00441 qtr1 .
E00441 qtr2 63

ia.Contrib
(Partial Listing)

109

EmpID QtrNum Amount

E00224 qtr1 12
E00224 qtr2 33
E00224 qtr3 22
E00224 qtr4 .
E00367 qtr1 35
E00367 qtr2 48
E00367 qtr3 40
E00367 qtr4 30
E00441 qtr1 .
E00441 qtr2 63

ia.Contrib
(Partial Listing)

Using Hash Objects for Table Lookups
The hash object is the lookup table.

Key: Data:
QtrNum GoalAmount

qtr1 10

qtr2 15

qtr4 15

qtr3 5

Actual contribution

Goal amount

Calculate the difference

hash object (single key)

A set of lookup values can be stored in a hash object. Whereas an array uses a series of consecutive
integers to address array elements, a hash object can use any combination of numeric and character values
as addresses.

 4.3 Using Hash Objects as Lookup Tables 4-47

110

Using a Hash Object as Lookup Table
Load the goal amounts into a hash object.

Key Data
qtr1 10
qtr2 15

qtr4 15
qtr3 5

hash object

GoalAmountQtrNum

111

Creating a Hash Object

c04s3d1

data Difference(drop = GoalAmount);
length GoalAmount 8;
if _N_ = 1 then do;

declare hash Goal();
Goal.definekey ("QtrNum");
Goal.definedata("GoalAmount");
Goal.definedone();
call missing(GoalAmount);
Goal.add(key:'qtr1', data:10);
Goal.add(key:'qtr2', data:15);
Goal.add(key:'qtr3', data: 5);
Goal.add(key:'qtr4', data:15);

end;
set ia.Contrib;
Goal.find();
Diff = Amount - GoalAmount;

run;

4-48 Chapter 4 Using Lookup Tables to Match Data

112

data Difference(drop = GoalAmount);
length GoalAmount 8;
if _N_ = 1 then do;

declare hash Goal();
Goal.definekey ("QtrNum");
Goal.definedata("GoalAmount");
Goal.definedone();
call missing(GoalAmount);
Goal.add(key:'qtr1', data:10);
Goal.add(key:'qtr2', data:15);
Goal.add(key:'qtr3', data: 5);
Goal.add(key:'qtr4', data:15);

end;
set ia.Contrib;
Goal.find();
Diff = Amount - GoalAmount;

run;

EmpID QtrNum Amount

E00224 qtr1 12
E00224 qtr2 33
E00224 qtr3 22
E00224 qtr4 .
E00367 qtr1 35

ia.Contrib (Partial Listing)

PDV
QtrNum

Goal
Amount

Difference

D
Empid Amount Diff _N_

1

D

T

. ..

...

113

data Difference(drop = GoalAmount);
length GoalAmount 8;
if _N_ = 1 then do;

declare hash Goal();
Goal.definekey ("QtrNum");
Goal.definedata("GoalAmount");
Goal.definedone();
call missing(GoalAmount);
Goal.add(key:'qtr1', data:10);
Goal.add(key:'qtr2', data:15);
Goal.add(key:'qtr3', data: 5);
Goal.add(key:'qtr4', data:15);

end;
set ia.Contrib;
Goal.find();
Diff = Amount - GoalAmount;

run;

EmpID QtrNum Amount

E00224 qtr1 12
E00224 qtr2 33
E00224 qtr3 22
E00224 qtr4 .
E00367 qtr1 35

ia.Contrib (Partial Listing)

PDV
QtrNum

Goal
Amount

Difference

D
Empid Amount Diff _N_

1

D

Key:
QtrNum

. ..

...

 4.3 Using Hash Objects as Lookup Tables 4-49

114

data Difference(drop = GoalAmount);
length GoalAmount 8;
if _N_ = 1 then do;

declare hash Goal();
Goal.definekey ("QtrNum");
Goal.definedata("GoalAmount");
Goal.definedone();
call missing(GoalAmount);
Goal.add(key:'qtr1', data:10);
Goal.add(key:'qtr2', data:15);
Goal.add(key:'qtr3', data: 5);
Goal.add(key:'qtr4', data:15);

end;
set ia.Contrib;
Goal.find();
Diff = Amount - GoalAmount;

run;

EmpID QtrNum Amount

E00224 qtr1 12
E00224 qtr2 33
E00224 qtr3 22
E00224 qtr4 .
E00367 qtr1 35

ia.Contrib (Partial Listing)

PDV
QtrNum

Goal
Amount

Difference

D
Empid Amount Diff _N_

1

D

Key: Data:
QtrNum GoalAmount

. ..

...

115

data Difference(drop = GoalAmount);
length GoalAmount 8;
if _N_ = 1 then do;

declare hash Goal();
Goal.definekey ("QtrNum");
Goal.definedata("GoalAmount");
Goal.definedone();
call missing(GoalAmount);
Goal.add(key:'qtr1', data:10);
Goal.add(key:'qtr2', data:15);
Goal.add(key:'qtr3', data: 5);
Goal.add(key:'qtr4', data:15);

end;
set ia.Contrib;
Goal.find();
Diff = Amount - GoalAmount;

run;

EmpID QtrNum Amount

E00224 qtr1 12
E00224 qtr2 33
E00224 qtr3 22
E00224 qtr4 .
E00367 qtr1 35

ia.Contrib (Partial Listing)

PDV
QtrNum

Goal
Amount

Difference

D
Empid Amount Diff _N_

1

D

Key: Data:
QtrNum GoalAmount

.. ..

Prevents the Note in the Log:
NOTE: Variable GoalAmount is uninitialized.

...

4-50 Chapter 4 Using Lookup Tables to Match Data

119

data Difference(drop = GoalAmount);
length GoalAmount 8;
if _N_ = 1 then do;

declare hash Goal();
Goal.definekey ("QtrNum");
Goal.definedata("GoalAmount");
Goal.definedone();
call missing(GoalAmount);
Goal.add(key:'qtr1', data:10);
Goal.add(key:'qtr2', data:15);
Goal.add(key:'qtr3', data: 5);
Goal.add(key:'qtr4', data:15);

end;
set ia.Contrib;
Goal.find();
Diff = Amount - GoalAmount;

run;

EmpID QtrNum Amount

E00224 qtr1 12
E00224 qtr2 33
E00224 qtr3 22
E00224 qtr4 .
E00367 qtr1 35

ia.Contrib (Partial Listing)

PDV
QtrNum

Goal
Amount

Difference

D
Empid Amount Diff _N_

1

D

Key: Data:
QtrNum GoalAmount

qtr1 10
qtr2 15

qtr4 15
qtr3 5

. ..

...

120

data Difference(drop = GoalAmount);
length GoalAmount 8;
if _N_ = 1 then do;

declare hash Goal();
Goal.definekey ("QtrNum");
Goal.definedata("GoalAmount");
Goal.definedone();
call missing(GoalAmount);
Goal.add(key:'qtr1', data:10);
Goal.add(key:'qtr2', data:15);
Goal.add(key:'qtr3', data: 5);
Goal.add(key:'qtr4', data:15);

end;
set ia.Contrib;
Goal.find();
Diff = Amount - GoalAmount;

run;

EmpID QtrNum Amount

E00224 qtr1 12
E00224 qtr2 33
E00224 qtr3 22
E00224 qtr4 .
E00367 qtr1 35

ia.Contrib (Partial Listing)

PDV
QtrNum

Goal
Amount

Difference

D
Empid Amount Diff _N_

1

D

Key: Data:
QtrNum GoalAmount

qtr1 10
qtr2 15

qtr4 15
qtr3 5

E00224qtr1 12. .

...

 4.3 Using Hash Objects as Lookup Tables 4-51

121

data Difference(drop = GoalAmount);
length GoalAmount 8;
if _N_ = 1 then do;

declare hash Goal();
Goal.definekey ("QtrNum");
Goal.definedata("GoalAmount");
Goal.definedone();
call missing(GoalAmount);
Goal.add(key:'qtr1', data:10);
Goal.add(key:'qtr2', data:15);
Goal.add(key:'qtr3', data: 5);
Goal.add(key:'qtr4', data:15);

end;
set ia.Contrib;
Goal.find();
Diff = Amount - GoalAmount;

run;

EmpID QtrNum Amount

E00224 qtr1 12
E00224 qtr2 33
E00224 qtr3 22
E00224 qtr4 .
E00367 qtr1 35

ia.Contrib (Partial Listing)

PDV
QtrNum

Goal
Amount

Difference

D
Empid Amount Diff _N_

1

D

Key: Data:
QtrNum GoalAmount

qtr1 10
qtr2 15

qtr4 15
qtr3 5

E00224qtr1 12. .

...

122

data Difference(drop = GoalAmount);
length GoalAmount 8;
if _N_ = 1 then do;

declare hash Goal();
Goal.definekey ("QtrNum");
Goal.definedata("GoalAmount");
Goal.definedone();
call missing(GoalAmount);
Goal.add(key:'qtr1', data:10);
Goal.add(key:'qtr2', data:15);
Goal.add(key:'qtr3', data: 5);
Goal.add(key:'qtr4', data:15);

end;
set ia.Contrib;
Goal.find();
Diff = Amount - GoalAmount;

run;

EmpID QtrNum Amount

E00224 qtr1 12
E00224 qtr2 33
E00224 qtr3 22
E00224 qtr4 .
E00367 qtr1 35

ia.Contrib (Partial Listing)

PDV
QtrNum

Goal
Amount

Difference

D
Empid Amount Diff _N_

1

D

Key: Data:
QtrNum GoalAmount

qtr1 10
qtr2 15

qtr4 15
qtr3 5

E00224qtr1 1210 .

...

4-52 Chapter 4 Using Lookup Tables to Match Data

123

data Difference(drop = GoalAmount);
length GoalAmount 8;
if _N_ = 1 then do;

declare hash Goal();
Goal.definekey ("QtrNum");
Goal.definedata("GoalAmount");
Goal.definedone();
call missing(GoalAmount);
Goal.add(key:'qtr1', data:10);
Goal.add(key:'qtr2', data:15);
Goal.add(key:'qtr3', data: 5);
Goal.add(key:'qtr4', data:15);

end;
set ia.Contrib;
Goal.find();
Diff = Amount - GoalAmount;

run;

EmpID QtrNum Amount

E00224 qtr1 12
E00224 qtr2 33
E00224 qtr3 22
E00224 qtr4 .
E00367 qtr1 35

ia.Contrib (Partial Listing)

PDV
QtrNum

Goal
Amount

Difference

D
Empid Amount Diff _N_

1

D

Key: Data:
QtrNum GoalAmount

qtr1 10
qtr2 15

qtr4 15
qtr3 5

E00224qtr1 1210 2

...

124

data Difference(drop = GoalAmount);
length GoalAmount 8;
if _N_ = 1 then do;

declare hash Goal();
Goal.definekey ("QtrNum");
Goal.definedata("GoalAmount");
Goal.definedone();
call missing(GoalAmount);
Goal.add(key:'qtr1', data:10);
Goal.add(key:'qtr2', data:15);
Goal.add(key:'qtr3', data: 5);
Goal.add(key:'qtr4', data:15);

end;
set ia.Contrib;
Goal.find();
Diff = Amount - GoalAmount;

run;

EmpID QtrNum Amount

E00224 qtr1 12
E00224 qtr2 33
E00224 qtr3 22
E00224 qtr4 .
E00367 qtr1 35

ia.Contrib (Partial Listing)

PDV
QtrNum

Goal
Amount

Difference

D
Empid Amount Diff _N_

1

D

Key: Data:
QtrNum GoalAmount

qtr1 10
qtr2 15

qtr4 15
qtr3 5

E00224qtr1 1210 2

Implied Output

...

 4.3 Using Hash Objects as Lookup Tables 4-53

125

data Difference(drop = GoalAmount);
length GoalAmount 8;
if _N_ = 1 then do;

declare hash Goal();
Goal.definekey ("QtrNum");
Goal.definedata("GoalAmount");
Goal.definedone();
call missing(GoalAmount);
Goal.add(key:'qtr1', data:10);
Goal.add(key:'qtr2', data:15);
Goal.add(key:'qtr3', data: 5);
Goal.add(key:'qtr4', data:15);

end;
set ia.Contrib;
Goal.find();
Diff = Amount - GoalAmount;

run;

EmpID QtrNum Amount

E00224 qtr1 12
E00224 qtr2 33
E00224 qtr3 22
E00224 qtr4 .
E00367 qtr1 35

ia.Contrib (Partial Listing)

PDV
QtrNum

Goal
Amount

Difference

D
Empid Amount Diff _N_

2

D

Key: Data:
QtrNum GoalAmount

qtr1 10
qtr2 15

qtr4 15
qtr3 5

E00224qtr1 12. .

F

...

126

data Difference(drop = GoalAmount);
length GoalAmount 8;
if _N_ = 1 then do;

declare hash Goal();
Goal.definekey ("QtrNum");
Goal.definedata("GoalAmount");
Goal.definedone();
call missing(GoalAmount);
Goal.add(key:'qtr1', data:10);
Goal.add(key:'qtr2', data:15);
Goal.add(key:'qtr3', data: 5);
Goal.add(key:'qtr4', data:15);

end;
set ia.Contrib;
Goal.find();
Diff = Amount - GoalAmount;

run;

EmpID QtrNum Amount

E00224 qtr1 12
E00224 qtr2 33
E00224 qtr3 22
E00224 qtr4 .
E00367 qtr1 35

ia.Contrib (Partial Listing)

PDV
QtrNum

Goal
Amount

Difference

D
Empid Amount Diff _N_

2

D

Key: Data:
QtrNum GoalAmount

qtr1 10
qtr2 15

qtr4 15
qtr3 5

E00224qtr2 33. .

...

4-54 Chapter 4 Using Lookup Tables to Match Data

127

data Difference(drop = GoalAmount);
length GoalAmount 8;
if _N_ = 1 then do;

declare hash Goal();
Goal.definekey ("QtrNum");
Goal.definedata("GoalAmount");
Goal.definedone();
call missing(GoalAmount);
Goal.add(key:'qtr1', data:10);
Goal.add(key:'qtr2', data:15);
Goal.add(key:'qtr3', data: 5);
Goal.add(key:'qtr4', data:15);

end;
set ia.Contrib;
Goal.find();
Diff = Amount - GoalAmount;

run;

EmpID QtrNum Amount

E00224 qtr1 12
E00224 qtr2 33
E00224 qtr3 22
E00224 qtr4 .
E00367 qtr1 35

ia.Contrib (Partial Listing)

PDV
QtrNum

Goal
Amount

Difference

D
Empid Amount Diff _N_

2

D

Key: Data:
QtrNum GoalAmount

qtr1 10
qtr2 15

qtr4 15
qtr3 5

E00224qtr2 33. .

...

129

data Difference(drop = GoalAmount);
length GoalAmount 8;
if _N_ = 1 then do;

declare hash Goal();
Goal.definekey ("QtrNum");
Goal.definedata("GoalAmount");
Goal.definedone();
call missing(GoalAmount);
Goal.add(key:'qtr1', data:10);
Goal.add(key:'qtr2', data:15);
Goal.add(key:'qtr3', data: 5);
Goal.add(key:'qtr4', data:15);

end;
set ia.Contrib;
Goal.find();
Diff = Amount - GoalAmount;

run;

EmpID QtrNum Amount

E00224 qtr1 12
E00224 qtr2 33
E00224 qtr3 22
E00224 qtr4 .
E00367 qtr1 35

ia.Contrib (Partial Listing)

PDV
QtrNum

Goal
Amount

Difference

D
Empid Amount Diff _N_

2

D

Key: Data:
QtrNum GoalAmount

qtr1 10
qtr2 15

qtr4 15
qtr3 5

E00224qtr2 3315 18

...

 4.3 Using Hash Objects as Lookup Tables 4-55

130

data Difference(drop = GoalAmount);
length GoalAmount 8;
if _N_ = 1 then do;

declare hash Goal();
Goal.definekey ("QtrNum");
Goal.definedata("GoalAmount");
Goal.definedone();
call missing(GoalAmount);
Goal.add(key:'qtr1', data:10);
Goal.add(key:'qtr2', data:15);
Goal.add(key:'qtr3', data: 5);
Goal.add(key:'qtr4', data:15);

end;
set ia.Contrib;
Goal.find();
Diff = Amount - GoalAmount;

run;

EmpID QtrNum Amount

E00224 qtr1 12
E00224 qtr2 33
E00224 qtr3 22
E00224 qtr4 .
E00367 qtr1 35

ia.Contrib (Partial Listing)

PDV
QtrNum

Goal
Amount

Difference

D
Empid Amount Diff _N_

2

D

Key: Data:
QtrNum GoalAmount

qtr1 10
qtr2 15

qtr4 15
qtr3 5

E00224qtr2 3315 18

Implied Output

...

131

data Difference(drop = GoalAmount);
length GoalAmount 8;
if _N_ = 1 then do;

declare hash Goal();
Goal.definekey ("QtrNum");
Goal.definedata("GoalAmount");
Goal.definedone();
call missing(GoalAmount);
Goal.add(key:'qtr1', data:10);
Goal.add(key:'qtr2', data:15);
Goal.add(key:'qtr3', data: 5);
Goal.add(key:'qtr4', data:15);

end;
set ia.Contrib;
Goal.find();
Diff = Amount - GoalAmount;

run;

EmpID QtrNum Amount

E00224 qtr1 12
E00224 qtr2 33
E00224 qtr3 22
E00224 qtr4 .
E00367 qtr1 35

ia.Contrib (Partial Listing)

PDV
QtrNum

Goal
Amount

Difference

D
Empid Amount Diff _N_

2

D

Key: Data:
QtrNum GoalAmount

qtr1 10
qtr2 15

qtr4 15
qtr3 5

E00224qtr2 3315 18

Continues to execute
until the DATA step

encounters the
end of the file.

...

4-56 Chapter 4 Using Lookup Tables to Match Data

132

The Difference Data Set

Qtr
EmpID Num Amount Diff

E00224 qtr1 12 2
E00224 qtr2 33 18
E00224 qtr3 22 17
E00224 qtr4 . .
E00367 qtr1 35 25
E00367 qtr2 48 33
E00367 qtr3 40 35
E00367 qtr4 30 20
E00441 qtr1 . .
E00441 qtr2 63 48

Partial Output

133

Using Hash Objects
The DATA step hash object can be defined as follows:

is a DATA step component object
has attributes and methods
is created with a DECLARE statement
is manipulated with object dot syntax

An attribute is a property. A method is a function.

 When a DATA step hash object is created, it is said to be instantiated.

 4.3 Using Hash Objects as Lookup Tables 4-57

134

Declaring a Hash Object

DECLARE object variable (<arg_tag-1: value-1
<,…arg_tag-n: value-n>>);

DECLARE object variable (<arg_tag-1: value-1
<,…arg_tag-n: value-n>>);

General form for the DECLARE statement:

object specifies the component object.
variable specifies the variable name for the component

object.
arg_tag specifies the information that is used to create

an instance of the component object.
value specifies the value for an argument tag.

declare hash Goal();

135

Declaring a Hash Object
Valid values for object are as follows:
hash indicates a hash object.
hiter indicates a hash iterator object.

The hash iterator object retrieves data from the hash
object in ascending or descending key order.

Valid values for the argument_tag depend on the component object.

4-58 Chapter 4 Using Lookup Tables to Match Data

136

Hash Object Argument Tags

The sort order for the
OUTPUT method or the
iterator object (default = 'NO')

ordered : 'NO' |
'ascending' |
'descending' |
'YES' | 'Y'

The hash object's table size,
where the size of the hash
table is 2n (default n = 8, max
n= 16)

hashexp : n

The name of a SAS data set
to load into the hash object

dataset : 'dataset_name'

Value DescriptionArgument_tag

The table in a hash object is an array of buckets. The default hash table size (the default number of
buckets) is 256 (28) and the maximum size is 65,536 (216). When multiple key values hash to the same
index (same bucket), the key values are stored in a binary tree in the bucket for rapid retrieval. The size of
the tree is limited only by the available memory.

137

Declaring a Hash Object

creates a hash object named Goal.

declare hash Goal();

declare hash Goal(dataset: 'ia.ideal');

declare hash Goal(hashexp: 10,
ordered: 'ascending');

The DECLARE statement is an executable statement.

creates the Goal hash object, assigns a size, and
specifies a return order.

creates the Goal hash object and loads it from ia.ideal.

 4.3 Using Hash Objects as Lookup Tables 4-59

138

Using Object Dot Syntax

General form for object dot method syntax:

object name of the object
method method to invoke
arg_tag name of an argument to be passed
value value of the argument

OBJECT.METHOD(<arg_tag-1: value-1<
,…arg_tag-n: value-n>>);

OBJECT.METHOD(<arg_tag-1: value-1<
,…arg_tag-n: value-n>>);

Goal.definekey ("QtrNum");
Goal.definedata("GoalAmount");
Goal.definedone();

4-60 Chapter 4 Using Lookup Tables to Match Data

139

Defining Key and Data Variables
Use the DEFINEKEY, DEFINEDATA, and DEFINEDONE
methods to specify variables that hold the hash object's
key and data values.

The DEFINEDONE method must be called to complete
the initialization of the hash object.

Goal.definekey ("QtrNum");
Goal.definedata("GoalAmount");
Goal.definedone();

Selected hash object methods include the following:

DEFINEKEY defines key variables for the hash object.

DEFINEDATA defines data variables for the hash object.

DEFINEDONE completes the initialization of the hash object.

ADD adds key and data values to the hash object.

FIND searches the hash object for a key value, and returns a zero if successful.

OUTPUT outputs the hash object’s data values to a SAS data set.

DELETE deletes a hash object.

REPLACE replaces the data for a key in the hash object.

REMOVE removes a key and its associated data from the hash object.

For more information on using the DATA step object attributes and methods, see "Using DATA Step
Component Objects" in the DATA Step Contents section of the SAS Language Reference: Concepts
chapter of the SAS documentation for SAS®9.

 4.3 Using Hash Objects as Lookup Tables 4-61

140

Loading Key and Data Values
Use the ADD method to load key and data values into the
hash object.

Goal.add(key:'qtr1', data:10);
Goal.add(key:'qtr2', data:15);
Goal.add(key:'qtr3', data: 5);
Goal.add(key:'qtr4', data:15);

141

Retrieving Matching Data
Use the FIND method to retrieve matching data from the
hash object.

Goal.find();

4-62 Chapter 4 Using Lookup Tables to Match Data

142

Business Task

Date
FlightID
Expenses

ia.expenses Dest
Date
FlightID
Origin
RevBusiness
RevEcon
Rev1st

ia.revenue

City
Code
Country
Name

ia.airports

Date
FlightID
Expenses
Dest
Date
FlightID
Origin
RevBusiness
RevEcon
Rev1st
DestCity
DestApt
OriginCity
OriginApt
Profit calculated

ia.alldata

ia.expenses

ia.revenue

ia.airports

Combine three data sets to create a report showing
revenues, expenses, profits, and airport information.

...

143

Using Hash Objects for Table Lookups
You can use a hash object to retrieve matching records
from a master table.

ia.Airports

ia.Revenue ia.Expenses

merge

hash object
Key Data

Flight Transactions Airport Information

load
lookup

 4.3 Using Hash Objects as Lookup Tables 4-63

144

Using a Hash Object as Lookup Table
Load the ia.airport data set into a hash object.

hash object

CityCode Name

Key Data Data
AKL Auckland International

AMS Amsterdam Schiphol

ARN Stockholm Arlanda

ANC Anchorage Anchorage International Airport

ATH Athens Hellinikon International Airport

BHM Birmingham Birmingham International Airport

145

Preview of Program
data Alldata_hash;

if _N_ = 1 then do;
if 0 then

set ia.Airports(keep=Code City Name);
declare hash airports(dataset: "ia.Airports");
airports.definekey ("Code");
airports.definedata("City", "Name");
airports.definedone();

end;
merge Expenses(in = e) Revenue(in = r);
by FlightID Date;
if e and r;
Profit = sum(Rev1st, RevBusiness, RevEcon, -Expenses);
rc = airports.find(key:origin);
OriginCity = city;
OriginAirport = name;
rc=airports.find(key:dest);
DestCity = city;
DestAirport = name;

run;
c04s3d2

4-64 Chapter 4 Using Lookup Tables to Match Data

146

data Alldata_hash;
if _N_ = 1 then do;

if 0 then
set ia.Airports(keep=Code City Name);

declare hash airports(dataset: "ia.Airports");
airports.definekey ("Code");
airports.definedata("City", "Name");
airports.definedone();

end;
merge Expenses(in = e) Revenue(in = r);
by FlightID Date;
if e and r;
Profit = sum(Rev1st, RevBusiness, RevEcon, -Expenses);
rc = airports.find(key:origin);
OriginCity = city;
OriginAirport = name;
rc=airports.find(key:dest);
DestCity = city;
DestAirport = name;

run;

Preview of Program

c04s3d2 ...

 4.3 Using Hash Objects as Lookup Tables 4-65

147

Creating a Hash Object from a SAS Data Set

data alldata_hash;

if _N_ = 1 then do;
if 0 then

set ia.airports(keep = Code City Name);
declare hash airports(dataset: "ia.Airports");
airports.definekey ("Code");
airports.definedata("City", "Name");
airports.definedone();

end;

c04s3d2

Partial Program

 To initialize the attributes of hash variables that originate from an existing SAS data set, you can use a
non-executing SET statement. When you use this technique, the MISSING routine is not required.

IF 0 THEN SET data-set-name (KEEP=hash-variables);

 Creates a hash object named airports and loads it from ia.airports.

 Defines the key to be the value of the variable Code.

 Defines the data to be the value of the variables City and Name.

Administrator
高亮

4-66 Chapter 4 Using Lookup Tables to Match Data

148

data alldata_hash;

if _N_ = 1 then do;
if 0 then

set ia.airports(keep = Code City Name);
declare hash airports(dataset: "ia.Airports");
airports.definekey ("Code");
airports.definedata("City", "Name");
airports.definedone();

end;

Partial Program
Creating a Hash Object from a SAS Data Set

c04s3d2

Because the IF condition is false during execution,
the SET statement is compiled but not executed. The PDV
would be created with the variables Code, City, and Name

from ia.airports.

...

if 0 then
set ia.airports(keep = Code City Name);

149

data alldata_hash;

if _N_ = 1 then do;
if 0 then

set ia.airports(keep = Code City Name);
declare hash airports(dataset: "ia.Airports");
airports.definekey ("Code");
airports.definedata("City", "Name");
airports.definedone();

end;

Partial Program
Creating a Hash Object from a SAS Data Set

...c04s3d2

Key: Data: Data:
Code City Name

AMS Amsterdam Schiphol

<more keys and data added>

AKL Auckland International

 4.3 Using Hash Objects as Lookup Tables 4-67

150

Partial Program
Creating a Hash Object from a SAS Data Set

...c04s3d2

rc = airports.find(key:origin);
OriginCity = city;
OriginAirport = name;
rc = airports.find(key:dest);
DestCity = city;
DestAirport = name;

Key: Data: Data:
Code City Name

LHR London, England Heathrow

<more keys and data added>

CDG Paris Charles de Gaulle

Partial PDV
D

CDG LHR

Origin Dest City Name
Origin
City

Origin
Airport

Dest
City

Dest
Airportrc

Partial Hash Object

RC is a variable that contains the return
code from the FIND method.

151

rc = airports.find(key:origin);
OriginCity = city;
OriginAirport = name;
rc = airports.find(key:dest);
DestCity = city;
DestAirport = name;

Key: Data: Data:
Code City Name

LHR London, England Heathrow

<more keys and data added>

CDG Paris Charles de Gaulle

Partial Hash Object

Partial Program
Creating a Hash Object from a SAS Data Set

...c04s3d2

Partial PDV
D

CDG LHR

Origin Dest City Name
Origin
City

Origin
Airport

Dest
City

Dest
Airportrc

Paris
Charles de

Gaulle0

4-68 Chapter 4 Using Lookup Tables to Match Data

152

Partial Program
Creating a Hash Object from a SAS Data Set

...c04s3d2

rc = airports.find(key:origin);
OriginCity = city;
OriginAirport = name;
rc = airports.find(key:dest);
DestCity = city;
DestAirport = name;

Partial PDV
D

CDG LHR

Origin Dest City Name
Origin
City

Origin
Airport

Dest
City

Dest
Airportrc

Paris
Charles de

Gaulle0 Paris
Charles de

Gaulle

Key: Data: Data:
Code City Name

LHR London, England Heathrow

<more keys and data added>

CDG Paris Charles de Gaulle

Partial Hash Object

153

rc = airports.find(key:origin);
OriginCity = city;
OriginAirport = name;
rc = airports.find(key:dest);
DestCity = city;
DestAirport = name;

Key: Data: Data:
Code City Name

LHR London, England Heathrow

<more keys and data added>

CDG Paris Charles de Gaulle

Partial Program
Creating a Hash Object from a SAS Data Set

...c04s3d2

Partial PDV
D

CDG LHR

Origin Dest City Name
Origin
City

Origin
Airport

Dest
City

Dest
Airportrc

London,
England Heathrow0 Paris

Charles de
Gaulle

Partial Hash Object

 4.3 Using Hash Objects as Lookup Tables 4-69

154

Partial Program
Creating a Hash Object from a SAS Data Set

...c04s3d2

rc = airports.find(key:origin);
OriginCity = city;
OriginAirport = name;
rc = airports.find(key:dest);
DestCity = city;
DestAirport = name;

Partial PDV
D

CDG LHR

Origin Dest City Name
Origin
City

Origin
Airport

Dest
City

Dest
Airportrc

London,
England Heathrow0 Paris

Charles de
Gaulle

London,
England

Heathrow

Key: Data: Data:
Code City Name

LHR London, England Heathrow

<more keys and data added>

CDG Paris Charles de Gaulle

Partial Hash Object

155

Using the FIND Method
The FIND method creates return code that is a numeric
value that specifies whether the FIND method succeeded
or failed.

The return code can be used in conditional logic to
insure that the FIND method found a KEY value in the
hash object that matches the KEY value from the PDV.
If the program does not contain a return code variable
for the method call and the method fails, then an
appropriate error message is written to the log.

zero success
non-zero failure

Values of the return code variable

4-70 Chapter 4 Using Lookup Tables to Match Data

156

Using the Return Code for the FIND Method

rc = airports.find(key:origin);
OriginCity = city;
OriginAirport = name;
rc = airports.find(key:dest);
DestCity = city;
DestAirport = name;

Replace this code:

rc = airports.find(key:origin);
if rc = 0 then do;

OriginCity = city;
OriginAirport = name;

end;
else do;

OriginCity = ' ';
OriginAirport = ' ';

end;
rc = airports.find(key:dest);
if rc = 0 then do;

DestCity = city;
DestAirport = name;

end;
else do;

DestCity = ' ';
DestAirport = ' ';

end;

With this code:

 4.3 Using Hash Objects as Lookup Tables 4-71

Combining the Three Data Sets

c04s3d2

Use a hash object.
proc sort data = ia.Expenses out = Expenses;
 by FlightID Date;
run;

proc sort data = ia.Revenue out = Revenue;
 by FlightID Date;
run;

data Alldata_hash;

 if _N_ = 1 then do;
 if 0 then
 set ia.Airports(keep=Code City Name);
 declare hash airports(dataset: "ia.Airports");
 airports.definekey ("Code");
 airports.definedata("City", "Name");
 airports.definedone();
 end;

 merge Expenses(in = e) Revenue(in = r);
 by FlightID Date;
 if e and r;
 Profit = sum(Rev1st, RevBusiness, RevEcon, -Expenses);

 rc = airports.find(key:origin);
 OriginCity = city;
 OriginAirport = name;
 rc=airports.find(key:dest);
 DestCity = city;
 DestAirport = name;
run;

proc print data = Alldata_hash(obs = 5);
 title 'Result of Merge plus Hash Object Lookup';
 var FlightID Date OriginCity OriginAirport DestCity DestAirport Profit;
 format Date date9.;
run;

title;

(Continued on the next page.)

4-72 Chapter 4 Using Lookup Tables to Match Data

/*****************************/
/* Alternate Solution */
/* Checking the Return Code */
/*****************************/

proc sort data = ia.Expenses out = Expenses;
 by FlightID Date;
run;

proc sort data = ia.Revenue out = Revenue;
 by FlightID Date;
run;

data Alldata_hash;

 if _N_ = 1 then do;
 if 0 then
 set ia.Airports(keep=Code City Name);
 declare hash airports(dataset: "ia.Airports");
 airports.definekey ("Code");
 airports.definedata("City", "Name");
 airports.definedone();
 end;

 merge Expenses(in = e) Revenue(in = r);
 by FlightID Date;
 if e and r;
 Profit = sum(Rev1st, RevBusiness, RevEcon, -Expenses);

 rc = airports.find(key:origin);
 if rc = 0 then do;
 OriginCity = city;
 OriginAirport = name;
 end;
 else do;
 OriginCity = ' ';
 OriginAirport = ' ';
 end;

 rc = airports.find(key:dest);
 if rc = 0 then do;
 DestCity = city;
 DestAirport = name;
 end;
 else do;
 DestCity = ' ';
 DestAirport = ' ';
 end;
run;

proc print data = Alldata_hash(obs = 5);
 title 'Result of Merge plus Hash Object Lookup';
 var FlightID Date OriginCity OriginAirport DestCity DestAirport Profit;
 format Date date9.;
run;

 4.3 Using Hash Objects as Lookup Tables 4-73

To define all data set variables as data variables for the hash object, use the ALL: "YES" option.

hashobject.DEFINEDATA (ALL: "YES");

Result of Merge plus Hash Object Lookup

 Flight
 Obs ID Date OriginCity

 1 IA00100 02DEC2005 Raleigh-Durham, NC
 2 IA00100 03DEC2005 Raleigh-Durham, NC
 3 IA00100 04DEC2005 Raleigh-Durham, NC
 4 IA00100 05DEC2005 Raleigh-Durham, NC
 5 IA00100 06DEC2005 Raleigh-Durham, NC

 Obs OriginAirport DestCity

 1 Raleigh-Durham International Airport London, England
 2 Raleigh-Durham International Airport London, England
 3 Raleigh-Durham International Airport London, England
 4 Raleigh-Durham International Airport London, England
 5 Raleigh-Durham International Airport London, England

 Obs DestAirport Profit

 1 Heathrow Airport 71553
 2 Heathrow Airport 14308
 3 Heathrow Airport 108937
 4 Heathrow Airport 90999
 5 Heathrow Airport 21019

4-74 Chapter 4 Using Lookup Tables to Match Data

158

Advantages of Hash Objects
Advantages of using hash objects include the following:

use of character and numeric keys
use of composite keys
ability for faster lookup
ability to be loaded from a SAS data set
fine level of control (flexibility)
ability to do chained lookups

159

Disadvantages of Hash Objects
Disadvantages of using a hash object include the
following:

unique keys required
DATA step only

 4.3 Using Hash Objects as Lookup Tables 4-75

Exercises

4. Using a Hash Object

a. Create a report that shows revenues, expenses, and profits for flights to Australia and New
Zealand. Expenses for flights to Australia and New Zealand are in ia.Dnunder (145
observations). Revenues for all flights are in ia.Sales (about 50,000 observations).

b. Load the relevant data from ia.Sales in a hash object and use it as a lookup table for the
flights in ia.Dnunder. Include the variables FlightID, RouteID, FltDate, RevTotal,
Expenses, and Profit in the report.

Partial Listing
ia.dnunder

 Flight
 Obs ID FltDate Expenses

 1 IA10200 01DEC2005 154269
 2 IA10200 02DEC2005 65188
 3 IA10200 03DEC2005 161419
 4 IA10201 08DEC2005 56839
 5 IA10200 13DEC2005 80197

Partial Listing
ia.sales

 Flight
Obs ID RouteID Origin Dest DestType FltDate Cap1st CapBus

 1 IA10700 0000107 WLG AKL International 01JAN2004 12 .
 2 IA10701 0000107 WLG AKL International 01JAN2004 12 .
 3 IA10702 0000107 WLG AKL International 01JAN2004 12 .
 4 IA10703 0000107 WLG AKL International 01JAN2004 12 .
 5 IA10704 0000107 WLG AKL International 01JAN2004 12 .

 Cap Num
 Pass Num Num Pass
Obs CapEcon Total CapCargo Num1st Bus Econ Total Rev1st RevBus

 1 138 150 36900 11 . 126 137 $1,397.00 .
 2 138 150 36900 12 . 136 148 $1,524.00 .
 3 138 150 36900 10 . 112 122 $1,270.00 .
 4 138 150 36900 12 . 113 125 $1,524.00 .
 5 138 150 36900 10 . 118 128 $1,270.00 .

 Cargo
 Obs RevEcon CargoRev RevTotal Weight

 1 $5,292.00 $1,900.00 $8,589 9500
 2 $5,712.00 $1,460.00 $8,696 7300
 3 $4,704.00 $2,500.00 $8,474 12500
 4 $4,746.00 $2,380.00 $8,650 11900
 5 $4,956.00 $2,260.00 $8,486 11300

4-76 Chapter 4 Using Lookup Tables to Match Data

Partial Output
Profit for Flights to Australia and New Zealand

 Flight Rev
 Obs ID RouteID FltDate Total Expenses Profit

 1 IA10200 0000102 01DEC2005 359778 154269 205509
 2 IA10200 0000102 02DEC2005 357828 65188 292640
 3 IA10200 0000102 03DEC2005 356887 161419 195468
 4 IA10201 0000102 08DEC2005 357015 56839 300176
 5 IA10200 0000102 13DEC2005 357543 80197 277346

 4.4 Using Formats as Lookup Tables 4-77

4.4 Using Formats as Lookup Tables

162

Objectives
Create permanent formats.
Access permanent formats.
Create formats from SAS data sets.
Maintain formats.
Use formats as lookup tables.

4-78 Chapter 4 Using Lookup Tables to Match Data

163

Table Lookup Using Formats
The appearance of values is controlled by formats.

Use the FORMAT procedure to define tables that store
coded values and the definitions of the codes.
Reference these user-defined formats when a table
lookup operation is needed.

You can use PROC FORMAT to define the following:
• VALUES
• PICTURES
• INFORMATS

You can code missing values using the following:
• ' ' (missing character)
• . (missing numeric)

You can use the following keywords:
• OTHER
• HIGH
• LOW

You can code non-inclusive ranges:
• <

 4.4 Using Formats as Lookup Tables 4-79

164

Overview of a Format
A format is similar to stacks of buckets that are referred to
by the value of a variable.

Data Value Label SAS puts data values and
label values in the buckets
when the format is used in
a FORMAT statement, PUT
function, or PUT statement.

SAS uses a binary search
on the data value bucket in
order to return the value in
the label bucket.

...

4-80 Chapter 4 Using Lookup Tables to Match Data

Using Permanent Formats as Lookup Tables

c04s4d1

Example 1
proc format library = ia.formats;

 value $routes 'Route1' = 'Zone One'
 'Route2' - 'Route4' = 'Zone Two'
 'Route5' - 'Route7' = 'Zone Three'
 ' ' = 'Missing'
 other = 'Unknown';

 value $dest 'AKL','AMS','ARN',
 'ATH','BKK','BRU',
 'CBR','CCU','CDG',
 'CPH','CPT','DEL',
 'DXB','FBU','FCO',
 'FRA','GLA','GVA',
 'HEL','HKG','HND',
 'JED','JNB','JRS',
 'LHR','LIS','MAD',
 'NBO','PEK','PRG',
 'SIN','SYD','VIE','WLG' = 'International'
 'ANC','BHM','BNA',
 'BOS','DFW','HNL',
 'IAD','IND','JFK',
 'LAX','MCI','MIA',
 'MSY','ORD','PWM',
 'RDU','SEA','SFO' = 'Domestic';

 value revfmt . = 'Missing'
 low - 10000 = 'Up to $10,000'
 10000 <- 20000 = '$10,000+ to $20,000'
 20000 <- 30000 = '$20,000+ to $30,000'
 30000 <- 40000 = '$30,000+ to $40,000'
 40000 <- 50000 = '$40,000+ to $50,000'
 50000 <- high = 'More than $50,000';
run;

 4.4 Using Formats as Lookup Tables 4-81

Example 2
proc catalog cat = ia.FORMATS;
 contents;
run;
quit;

proc format library = ia fmtlib;
 title 'Using the FMTLIB option to view the formats';
run;

Output
Contents of Catalog IA.FORMATS

 # Name Type Create Date Modified Date Description
 ƒƒ
 1 DATES FORMAT 26OCT2001:14:29:34 26OCT2001:14:29:34
 2 REVFMT FORMAT 22JAN2004:11:20:14 22JAN2004:11:20:14
 3 DEST FORMATC 22JAN2004:11:20:14 22JAN2004:11:20:14
 4 ROUTES FORMATC 22JAN2004:11:20:14 22JAN2004:11:20:14

Using the FMTLIB option to view the formats

 „ƒƒ†
 ‚ FORMAT NAME: REVFMT LENGTH: 18 NUMBER OF VALUES: 7 ‚
 ‚ MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 18 FUZZ: STD ‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒ‰
 ‚START ‚END ‚LABEL (VER. V7|V8 13MAY2005:15:36:19)‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒ‰
 ‚ .‚ .‚Missing ‚
 ‚LOW ‚ 10000‚Up to $10,000 ‚
 ‚ 10000< 20000‚$10,000+ to $20000 ‚
 ‚ 20000< 30000‚$20,000+ to $30000 ‚
 ‚ 30000< 40000‚$30,000+ to $40000 ‚
 ‚ 40000< 50000‚$40,000+ to $50000 ‚
 ‚ 50000<HIGH ‚More than $50,000 ‚
 Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒŒ

(Continued on the next page.)

4-82 Chapter 4 Using Lookup Tables to Match Data

 „ƒƒ†
 ‚ FORMAT NAME: $AIRPORT LENGTH: 28 NUMBER OF VALUES: 52 ‚
 ‚ MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 28 FUZZ: 0 ‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒ‰
 ‚START ‚END ‚LABEL (VER. V7|V8 20APR2005:13:41:43)‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒ‰
 ‚AKL ‚AKL ‚Auckland ‚
 ‚AMS ‚AMS ‚Amsterdam ‚
 ‚ANC ‚ANC ‚Anchorage, AK ‚
 ‚ARN ‚ARN ‚Stockholm ‚
 ‚ATH ‚ATH ‚Athens (Athinai) ‚
 ‚BHM ‚BHM ‚Birmingham, AL ‚
 ‚BKK ‚BKK ‚Bangkok ‚
 ‚BNA ‚BNA ‚Nashville, TN ‚
 ‚BOS ‚BOS ‚Boston, MA ‚
 ‚BRU ‚BRU ‚Brussels (Bruxelles) ‚
 ‚CBR ‚CBR ‚Canberra, Australian Capitol ‚
 ‚CCU ‚CCU ‚Calcutta ‚
 ‚CDG ‚CDG ‚Paris ‚
 ‚CPH ‚CPH ‚Kobenhavn (Copenhagen) ‚
 ‚CPT ‚CPT ‚Cape Town ‚
 ‚DEL ‚DEL ‚Delhi ‚
 ‚DFW ‚DFW ‚Dallas/Fort Worth, TX ‚
 ‚DXB ‚DXB ‚Dubai ‚
 ‚FBU ‚FBU ‚Oslo ‚
 ‚FCO ‚FCO ‚Roma (Rome) ‚
 ‚FRA ‚FRA ‚Frankfurt ‚
 ‚GLA ‚GLA ‚Glasgow, Scotland ‚
 ‚GVA ‚GVA ‚Geneva ‚
 ‚HEL ‚HEL ‚Helsinki ‚
 ‚HKG ‚HKG ‚Hong Kong ‚
 ‚HND ‚HND ‚Tokyo ‚
 ‚HNL ‚HNL ‚Honolulu, HI ‚
 ‚IAD ‚IAD ‚Washington, DC ‚
 ‚IND ‚IND ‚Indianapolis, IN ‚
 ‚JED ‚JED ‚Jeddah ‚
 ‚JFK ‚JFK ‚New York, NY ‚
 ‚JNB ‚JNB ‚Johannesburg ‚
 ‚JRS ‚JRS ‚Jerusalem ‚
 ‚LAX ‚LAX ‚Los Angeles, CA ‚
 ‚LHR ‚LHR ‚London, England ‚
 ‚LIS ‚LIS ‚Lisboa (Lisbon) ‚
 ‚MAD ‚MAD ‚Madrid ‚
 ‚MCI ‚MCI ‚Kansas City, MO ‚
 ‚MIA ‚MIA ‚Miami, FL ‚
 ‚MSY ‚MSY ‚New Orleans, LA ‚
 ‚NBO ‚NBO ‚Nairobi ‚
 ‚ORD ‚ORD ‚Chicago, IL ‚
 ‚PEK ‚PEK ‚Beijing (Peking) ‚
 ‚PRG ‚PRG ‚Praha (Prague) ‚
 ‚PWM ‚PWM ‚Portland, ME ‚
 ‚RDU ‚RDU ‚Raleigh-Durham, NC ‚
 ‚SEA ‚SEA ‚Seattle, WA ‚
 ‚SFO ‚SFO ‚San Francisco, CA ‚
 ‚SIN ‚SIN ‚Singapore ‚
 ‚SYD ‚SYD ‚Sydney, New South Wales ‚
 ‚VIE ‚VIE ‚Wien (Vienna) ‚
 ‚WLG ‚WLG ‚Wellington ‚
 Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒŒ

(Continued on the next page.)

 4.4 Using Formats as Lookup Tables 4-83

 „ƒƒ†
 ‚ FORMAT NAME: $DEST LENGTH: 13 NUMBER OF VALUES: 52 ‚
 ‚ MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 13 FUZZ: 0 ‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒ‰
 ‚START ‚END ‚LABEL (VER. V7|V8 13MAY2005:15:36:19)‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒ‰
 ‚AKL ‚AKL ‚International ‚
 ‚AMS ‚AMS ‚International ‚
 ‚ANC ‚ANC ‚Domestic ‚
 ‚ARN ‚ARN ‚International ‚
 ‚ATH ‚ATH ‚International ‚
 ‚BHM ‚BHM ‚Domestic ‚
 ‚BKK ‚BKK ‚International ‚
 ‚BNA ‚BNA ‚Domestic ‚
 ‚BOS ‚BOS ‚Domestic ‚
 ‚BRU ‚BRU ‚International ‚
 ‚CBR ‚CBR ‚International ‚
 ‚CCU ‚CCU ‚International ‚
 ‚CDG ‚CDG ‚International ‚
 ‚CPH ‚CPH ‚International ‚
 ‚CPT ‚CPT ‚International ‚

(Continued on the next page.)

4-84 Chapter 4 Using Lookup Tables to Match Data

Using the FMTLIB option to view the formats

 „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒ†
 ‚ FORMAT NAME: $DEST LENGTH: 13 NUMBER OF VALUES: 52 ‚
 ‚ MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 13 FUZZ: 0 ‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒ‰
 ‚START ‚END ‚LABEL (CONT'D)‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒ‰
 ‚DEL ‚DEL ‚International ‚
 ‚DFW ‚DFW ‚Domestic ‚
 ‚DXB ‚DXB ‚International ‚
 ‚FBU ‚FBU ‚International ‚
 ‚FCO ‚FCO ‚International ‚
 ‚FRA ‚FRA ‚International ‚
 ‚GLA ‚GLA ‚International ‚
 ‚GVA ‚GVA ‚International ‚
 ‚HEL ‚HEL ‚International ‚
 ‚HKG ‚HKG ‚International ‚
 ‚HND ‚HND ‚International ‚
 ‚HNL ‚HNL ‚Domestic ‚
 ‚IAD ‚IAD ‚Domestic ‚
 ‚IND ‚IND ‚Domestic ‚
 ‚JED ‚JED ‚International ‚
 ‚JFK ‚JFK ‚Domestic ‚
 ‚JNB ‚JNB ‚International ‚
 ‚JRS ‚JRS ‚International ‚
 ‚LAX ‚LAX ‚Domestic ‚
 ‚LHR ‚LHR ‚International ‚
 ‚LIS ‚LIS ‚International ‚
 ‚MAD ‚MAD ‚International ‚
 ‚MCI ‚MCI ‚Domestic ‚
 ‚MIA ‚MIA ‚Domestic ‚
 ‚MSY ‚MSY ‚Domestic ‚
 ‚NBO ‚NBO ‚International ‚
 ‚ORD ‚ORD ‚Domestic ‚
 ‚PEK ‚PEK ‚International ‚
 ‚PRG ‚PRG ‚International ‚
 ‚PWM ‚PWM ‚Domestic ‚
 ‚RDU ‚RDU ‚Domestic ‚
 ‚SEA ‚SEA ‚Domestic ‚
 ‚SFO ‚SFO ‚Domestic ‚
 ‚SIN ‚SIN ‚International ‚
 ‚SYD ‚SYD ‚International ‚
 ‚VIE ‚VIE ‚International ‚
 ‚WLG ‚WLG ‚International ‚
 Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒŒ

(Continued on the next page.)

 4.4 Using Formats as Lookup Tables 4-85

Using the FMTLIB option to view the formats

 „ƒƒ†
 ‚ FORMAT NAME: $ROUTES LENGTH: 10 NUMBER OF VALUES: 5 ‚
 ‚ MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 10 FUZZ: 0 ‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒ‰
 ‚START ‚END ‚LABEL (VER. V7|V8 13MAY2005:15:36:19)‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒ‰
 ‚ ‚ ‚Missing ‚
 ‚Route1 ‚Route1 ‚Zone One ‚
 ‚Route2 ‚Route4 ‚Zone Two ‚
 ‚Route5 ‚Route7 ‚Zone Three ‚
 ‚**OTHER** ‚**OTHER** ‚Unknown ‚
 Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒŒ

4-86 Chapter 4 Using Lookup Tables to Match Data

166

General Form of a PROC FORMAT Step
PROC FORMAT LIBRARY = libref.catalog;

VALUE $charfmt 'value1' = 'formatted-value-1'
'value2' = 'formatted-value-2'
'valuen' = 'formatted-value-n';

VALUE numfmt value1 = 'formatted-value-1'
value2 = 'formatted-value-2'
valuen = 'formatted-value-n';

RUN;

PROC FORMAT LIBRARY = libref.catalog;
VALUE $charfmt 'value1' = 'formatted-value-1'

'value2' = 'formatted-value-2'
'valuen' = 'formatted-value-n';

VALUE numfmt value1 = 'formatted-value-1'
value2 = 'formatted-value-2'
valuen = 'formatted-value-n';

RUN;

To avoid re-creating formats each time that a job is run,
store formats permanently.

A VALUE statement is required for each format.

Format names must meet the following conditions:
• cannot duplicate SAS format names, such as DOLLAR and SSN
• cannot end in a number
• must be 32 characters or fewer

For character formats, these are the requirements:
• Format names must begin with a $.
• Input values are quoted.

For numeric formats, input values are not quoted.

 Format names are limited to eight characters in versions of SAS prior to SAS®9.

 4.4 Using Formats as Lookup Tables 4-87

167

How Are Formats Stored?
Formats are stored as SAS catalog entries.
SAS catalogs are special SAS files that store many
different kinds of information in smaller units called
entries.
A single SAS catalog can contain several different
catalog entries.

SAS Catalog ia.formats

revfmt.format dest.formatc routes.formatc

Catalog entries have four-level names: libref.catalog.entry-name.type.

The type for character formats is formatc. The type for numeric formats is format.

168

How Are Formats Stored?
Without the LIBRARY= option, formats are stored in the
work.formats catalog and exist for the duration of
the SAS session.

PROC FORMAT;PROC FORMAT;

If the LIBRARY= option specifies only a libref, formats are
stored permanently in libref.formats.

PROC FORMAT LIBRARY = libref ;PROC FORMAT LIBRARY = libref ;

If the LIBRARY= option specifies libref.catalog, formats
are stored permanently in that catalog.

PROC FORMAT LIBRARY = libref.catalog;PROC FORMAT LIBRARY = libref.catalog;

4-88 Chapter 4 Using Lookup Tables to Match Data

169

The CATALOG Procedure
The CATALOG procedure manages entries in
SAS catalogs.
Selected functions of PROC CATALOG:

creating a listing of the contents of a catalog
copying a catalog or selected entries within a catalog
renaming or deleting entries within a catalog
modifying the description of a catalog entry

You can also use the Explorer window
in SAS to see the contents of a catalog.

170

General Form of PROC CATALOG
PROC CATALOG CATALOG = <libref.>catalog <options>;

CONTENTS <OUT = SAS-data-set>
<FILE = fileref>;

COPY OUT = <libref.>catalog <options>;
SELECT entry(s) </ ENTRYTYPE=etype>;
EXCLUDE entry(s) </ ENTRYTYPE=etype>;

DELETE entry(s) </ ENTRYTYPE=etype>;
RUN;
QUIT;

PROC CATALOG CATALOG = <libref.>catalog <options>;
CONTENTS <OUT = SAS-data-set>

<FILE = fileref>;
COPY OUT = <libref.>catalog <options>;

SELECT entry(s) </ ENTRYTYPE=etype>;
EXCLUDE entry(s) </ ENTRYTYPE=etype>;

DELETE entry(s) </ ENTRYTYPE=etype>;
RUN;
QUIT;

For a complete listing of the CATALOG procedure statements and functionality, see the procedures
section of the Base SAS Procedures Guide in the Base SAS documentation.

 4.4 Using Formats as Lookup Tables 4-89

171

Documenting Formats
You can use the FMTLIB option in the PROC FORMAT
statement to document the format.
General form of the FMTLIB option:

PROC FORMAT LIBRARY = libref.catalog
FMTLIB;

<other statements>;
RUN;

PROC FORMAT LIBRARY = libref.catalog
FMTLIB;

<other statements>;
RUN;

Other statements can include the following:

SELECT format-name format-name...;

EXCLUDE format-name format-name...;

You can use either the SELECT or EXCLUDE statement to process specific formats rather than an entire
catalog.

4-90 Chapter 4 Using Lookup Tables to Match Data

172

Using Permanent Formats
You can reference formats in any of the following:

FORMAT statements
PUT statements
PUT functions in assignment, WHERE, or IF
statements
FORMAT= options

When a user-defined format is referenced, SAS does the following:
• loads the format from the catalog entry into memory
• performs a binary search on values in the table to execute a lookup
• returns a single result for each lookup

 4.4 Using Formats as Lookup Tables 4-91

Using Permanent Formats as Lookup Tables

c04s4d2

options fmtsearch = (ia);

proc print data = ia.cargorev(obs = 10);
 where put(Route,$routes.) = 'Zone Two';
 format RevCargo revfmt. Date mmddyyb10.;
 var Date Route RevCargo;
 title 'Revenue Cargo for Zone Two';
 title2 'First Ten Rows';
run;

Output
Revenue Cargo for Zone Two

First Ten Rows

 Obs Date Route RevCargo

 1 01 01 2000 Route2 Up to $10,000
 2 01 01 2000 Route3 More than $50,000
 6 01 02 2000 Route3 More than $50,000
 7 01 03 2000 Route3 Up to $10,000
 9 01 03 2000 Route3 Up to $10,000
 11 01 03 2000 Route4 $40,000 to $50000
 12 01 04 2000 Route3 Up to $10,000
 14 01 05 2000 Route3 Up to $10,000
 15 01 05 2000 Route4 Up to $10,000
 20 01 05 2000 Route4 More than $50,000

You can use the WHERE statement when the OBS= option is in effect.

 The MMDDYYB10. format displays the Date variable value using a blank as a separator.

General form:

MMDDYYxw.

Value of x Separator

B blank

C colon

D dash

N no separator

P period

S slash

4-92 Chapter 4 Using Lookup Tables to Match Data

174

Using the FMTSEARCH= System Option
To use permanent formats or to search multiple catalogs,
use the FMTSEARCH= system option to identify the
catalog(s) to be searched for the format(s).
General form of the FMTSEARCH= system option:

OPTIONS FMTSEARCH = (item-1 item-2…item-n);OPTIONS FMTSEARCH = (item-1 item-2…item-n);

By specifying multiple items in the FMTSEARCH= option, you can concatenate format catalogs. This
enables you to do the following:
• define personal format catalogs to be used in addition to corporate catalogs
• use test and production format catalogs without duplicating the production catalog
• control the order in which catalogs are searched

 4.4 Using Formats as Lookup Tables 4-93

175 ...

Using the FMTSEARCH= System Option
options fmtsearch = (ia ia.formats3);

SAS Supplied Formats

library.formatslibrary.formats

ia.formatsia.formats

ia.formats3ia.formats3

work.formatswork.formats

Because ia is a libref without a catalog name, formats is assumed to be the catalog name.

SAS-supplied formats are always searched first. The work.formats catalog is always searched second,
unless it appears in the FMTSEARCH list. If the library libref is assigned, the library.formats catalog is
searched after work.formats and before anything else in the FMTSEARCH list, unless it appears in the
list. To assign the library libref, use the code shown below:

libname library 'SAS-data-library-containing-format-catalog';

4-94 Chapter 4 Using Lookup Tables to Match Data

176

Using the NOFMTERR System Option
By default, the FMTERR system option is in effect. If you
use a format that SAS cannot load, SAS issues an error
message and stops processing the step.
To prevent the default action, change the system option
FMTERR to NOFMTERR.

OPTIONS FMTERR | NOFMTERR; OPTIONS FMTERR | NOFMTERR;

FMTERR specifies that when SAS cannot find a specified variable format, it generates an error
message and does not allow default substitution to occur.

NOFMTERR replaces missing formats with the w. or $w. default format, issues a note, and continues
processing.

 4.4 Using Formats as Lookup Tables 4-95

177

Using a Control Data Set to Create a Format
The data set ia.acities contains airport codes and
airport cities. Rather than typing the values in the PROC
FORMAT code, you can create a format from the data set
and use the format as a lookup table.

Airport Airport Airport Airport
Code City Name Country

AKL Auckland International New Zealand
AMS Amsterdam Schiphol Netherlands
ANC Anchorage, AK Anchorage International USA
ARN Stockholm Arlanda Sweden
ATH Athens Hellinikon International Greece
BHM Birmingham, AL Birmingham International USA
BKK Bangkok Don Muang International Thailand

The control data set has the following attributes:
• must contain the variables FmtName, Start, and Label
• must contain the variable Type for character formats, unless the value for FmtName begins with a $
• does not require a Type variable for numeric formats
• assumes that the ending value of the format range is equal to the value of Start if no variable named
End is found

• does not require the other variables created by the CNTLOUT= option that specify optional attributes
• can be created by a DATA step, another PROC step, or an interactive application such as the Viewtable

window
• can be used to create new formats, as well as re-create existing formats
• must be grouped by FmtName if multiple formats are specified

4-96 Chapter 4 Using Lookup Tables to Match Data

Using a Control Data Set to Create a Format

c04s4d3

Create the CNTLIN data set.
data aports;
 keep Start Label FmtName;
 retain FmtName '$airport';
 set ia.acities (rename = (Code = Start
 City = Label));
run;

proc print data = work.aports(obs = 10) noobs;
 title 'Airports';
run;

Output
Airports

 fmtname Label Start

 $airport Auckland AKL
 $airport Amsterdam AMS
 $airport Anchorage, AK ANC
 $airport Stockholm ARN
 $airport Athens (Athinai) ATH
 $airport Birmingham, AL BHM
 $airport Bangkok BKK
 $airport Nashville, TN BNA
 $airport Boston, MA BOS
 $airport Brussels (Bruxelles) BRU

Create the format and document its contents:
proc format library = ia cntlin = aports;
run;

proc format library = ia fmtlib;
 select $airport;
 title '$airport format';
run;

 4.4 Using Formats as Lookup Tables 4-97

Partial Output
$airport format

„ƒƒ†
‚ FORMAT NAME: $AIRPORT LENGTH: 28 NUMBER OF VALUES: 52 ‚
‚ MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 28 FUZZ: 0 ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒ‰
‚START ‚END ‚LABEL (VER. V7|V8 20APR2005:13:41:43)‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒ‰
‚AKL ‚AKL ‚Auckland ‚
‚AMS ‚AMS ‚Amsterdam ‚
‚ANC ‚ANC ‚Anchorage, AK ‚
‚ARN ‚ARN ‚Stockholm ‚
‚ATH ‚ATH ‚Athens (Athinai) ‚
‚BHM ‚BHM ‚Birmingham, AL ‚
‚BKK ‚BKK ‚Bangkok ‚
‚BNA ‚BNA ‚Nashville, TN ‚
‚BOS ‚BOS ‚Boston, MA ‚
‚BRU ‚BRU ‚Brussels (Bruxelles) ‚
‚CBR ‚CBR ‚Canberra, Australian Capitol ‚
‚CCU ‚CCU ‚Calcutta ‚
‚CDG ‚CDG ‚Paris ‚

Use the format:
options fmtsearch = (ia);

data international;
 set ia.international;
 DestCity = put(dest,$airport.);
 OriginCity = put(Origin,$airport.);
run;

proc print data=international (obs = 10);
 title 'International Cities';
run;

International Cities

 Num
 Flight Num Num Pass
 Obs ID Origin Dest FltDate Num1st Bus Econ Total DestCity OriginCity

 1 IA10700 WLG AKL 01JAN2005 11 . 126 137 Auckland Wellington
 2 IA10701 WLG AKL 01JAN2005 12 . 136 148 Auckland Wellington
 3 IA10702 WLG AKL 01JAN2005 10 . 112 122 Auckland Wellington
 4 IA10703 WLG AKL 01JAN2005 12 . 113 125 Auckland Wellington
 5 IA10704 WLG AKL 01JAN2005 10 . 118 128 Auckland Wellington
 6 IA10705 WLG AKL 01JAN2005 11 . 117 128 Auckland Wellington
 7 IA06900 LHR AMS 01JAN2005 13 . 102 115 Amsterdam London, England
 8 IA06901 LHR AMS 01JAN2005 13 . 105 118 Amsterdam London, England
 9 IA06902 LHR AMS 01JAN2005 12 . 95 107 Amsterdam London, England
 10 IA06903 LHR AMS 01JAN2005 14 . 119 133 Amsterdam London, England

4-98 Chapter 4 Using Lookup Tables to Match Data

179

Using a Control Data Set to Create a Format
You can create a format from a SAS data set that
contains value information (called a control data set).
Use the CNTLIN= option to read the data and create the
format.
General form of CNTLIN= option:

PROC FORMAT LIBRARY = libref.catalog
CNTLIN = SAS-data-set;

RUN;

PROC FORMAT LIBRARY = libref.catalog
CNTLIN = SAS-data-set;

RUN;

Review

The CNTLIN= data set has the following features:
• must contain the variables FmtName, Start, and Label
• must contain the variable Type for character formats, unless the value for FmtName begins with a $
• does not require a Type variable for numeric formats
• assumes that the ending value of the format range is equal to the value of Start if no variable named
End is found

• does not require the other variables created by the CNTLOUT= option that specify optional attributes
• can be created by a DATA step, another PROC step, or an interactive application such as the Viewtable

window
• can be used to create new formats, as well as re-create existing formats
• must be grouped by FmtName if multiple formats are specified

 4.4 Using Formats as Lookup Tables 4-99

180

Maintaining Formats
To maintain formats, perform one of the following tasks:

Edit the PROC FORMAT code that created the original
format.

or
Create a SAS data set from the format, edit the data
set, and use the CNTLIN= option to re-create the
format.

181 ...

Permanent
Formats
Catalog

Maintaining Permanent Formats

EditEdit
ValuesValues

proc format library = libref.catalog
cntlout = SAS-data-set;

run;

proc format library = libref.catalog
cntlin = SAS-data-set;

run;

SAS
Data Set

 When the data set created by the CNTLOUT= option will be used as a CNTLIN= data set in a
subsequent FORMAT procedure step, the minimum variables that must be edited are START,
END, FMTNAME, and LABEL.

4-100 Chapter 4 Using Lookup Tables to Match Data

Maintaining Permanent Formats

c04s4d4

proc format lib = ia cntlout = fmtdata;
 select $airport;
run;

Log
295 proc format lib = ia cntlout = fmtdata;
296 select $airport;
297 run;

NOTE: PROCEDURE FORMAT used:
 real time 0.41 seconds
 cpu time 0.04 seconds

NOTE: The data set WORK.FMTDATA has 52 observations and 21 variables.

Add the new observations, re-create the format, and document the format:
proc fsedit data = work.fmtdata;
run;

proc format library = ia cntlin = fmtdata;
run;

proc format library = ia fmtlib;
 select $airport;
 title 'New values in the $AIRPORT Format';
run;

Rather than using an interactive technique to add data, you can use procedures such as PROC SQL.
proc format lib = ia cntlout = fmtdata;
 select $airport;
run;

proc sql;
 insert into FmtData
 set FmtName = '$airport',
 Start = 'YQB',
 End = 'YQB',
 Label = 'Quebec, QC'
 set FmtName = '$AIRPORT',
 Start = 'YUL',
 End = 'YUL',
 Label = 'Montreal, QC';
quit;

 4.4 Using Formats as Lookup Tables 4-101

Log
proc sql;
 insert into fmtdata
 set FmtName = '$airport',
 Start = 'YQB',
 End = 'YQB',
 Label = 'Quebec, QC'
 set FmtName = '$airport',
 Start = 'YUL',
 End = 'YUL' ,
 Label = 'Montreal, QC';
NOTE: 2 rows were inserted into WORK.FMTDATA.

proc format library = ia cntlin = fmtdata;
run;

proc format library = ia fmtlib;
 select $airport;
 title 'New values in the $AIRPORT Format';
run;

You can also use a DATA step.

proc format lib = ia cntlout = fmtdata;
 select $airport;
run;

data work.fmtdata;
 set work.fmtdata end=last;
 output;
 if last then do;
 FmtName = '$airport';
 Start = 'YYC';
 End = 'YYC';
 Label = 'Calgary, AB';
 output;
 Start = 'YYZ';
 End = 'YYZ';
 Label = 'Toronto, ON';
 output;
 end;
run;

proc format library = ia cntlin = fmtdata;
run;

proc format library = ia fmtlib;
 select $airport;
 title 'New values in the $AIRPORT Format';
run;

4-102 Chapter 4 Using Lookup Tables to Match Data

Partial Output
New values in the $airport Format

 „ƒƒ†
 ‚ FORMAT NAME: $AIRPORT LENGTH: 28 NUMBER OF VALUES: 56 ‚
 ‚ MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 28 FUZZ: 0 ‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒ‰
 ‚START ‚END ‚LABEL (CONT'D)‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒ‰
 ‚SFO ‚SFO ‚San Francisco, CA ‚
 ‚SIN ‚SIN ‚Singapore ‚
 ‚SYD ‚SYD ‚Sydney, New South Wales ‚
 ‚VIE ‚VIE ‚Wien (Vienna) ‚
 ‚WLG ‚WLG ‚Wellington ‚
 ‚YQB ‚YQB ‚Quebec, QC ‚
 ‚YUL ‚YUL ‚Montreal, QC ‚
 ‚YYC ‚YYC ‚Calgary, AB ‚
 ‚YYZ ‚YYZ ‚Toronto, ON ‚
 Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒŒ

 4.4 Using Formats as Lookup Tables 4-103

183

Maintaining Permanent Formats
General form of PROC FORMAT with the CNTLOUT=
option:

PROC FORMAT LIBRARY = libref.catalog
CNTLOUT = SAS-data-set;

<other statements>;
RUN;

PROC FORMAT LIBRARY = libref.catalog
CNTLOUT = SAS-data-set;

<other statements>;
RUN;

Other statements can include the following:
• SELECT format-name format-name...;
• EXCLUDE format-name format-name...;

You can use either the SELECT or EXCLUDE statement to process specific formats rather than an entire
catalog.

The variables in the output control data set completely describe all aspects of each format or informat,
including optional settings.

The output control data set contains one observation per range per format or informat in the specified
catalog.

4-104 Chapter 4 Using Lookup Tables to Match Data

184

Advantages of Formats
Advantages of using formats include the following:

familiarity
no need to create additional data
can be used with procedures
range search for both character and numeric
binary search through lookup table
centralize maintenance
use of multiple PUT functions to create multiple
variables

185

Disadvantages of Formats
Disadvantages of using formats include the following:

memory requirements to load the entire format
for the binary search
use of only one variable for the table lookup
requires more disk space to store a format than
to store SAS data

 4.4 Using Formats as Lookup Tables 4-105

Exercises

5. Creating a Format from a SAS Data Set

Use the ia.jcodedat data set to create a permanent format named $jcodes. View the new
format using the FMTLIB option in PROC FORMAT.

Output
$jcodes Format

 „ƒƒ†
 ‚ FORMAT NAME: $JCODES LENGTH: 32 NUMBER OF VALUES: 42 ‚
 ‚ MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 32 FUZZ: 0 ‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒ‰
 ‚START ‚END ‚LABEL (VER. V7|V8 22JAN2004:11:31:01)‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒ‰
 ‚BAGCLK ‚BAGCLK ‚BAGGAGE CLERK ‚
 ‚BAGSUP ‚BAGSUP ‚BAGGAGE SUPERVISOR ‚
 ‚CHKCLK ‚CHKCLK ‚CHECK IN CLERK ‚
 ‚CHKSUP ‚CHKSUP ‚CHECK IN SUPERVISOR ‚
 ‚FACCLK ‚FACCLK ‚FACILITIES CLERK ‚
 ‚FACMGR ‚FACMGR ‚FACILITES MANAGER ‚
 ‚FACMNT ‚FACMNT ‚FACILITIES MAINTENANCE OPERATIVE ‚
 ‚FINACT ‚FINACT ‚FINANCIAL ACCOUNTANT ‚
 ‚FINCLK ‚FINCLK ‚FINANCE CLERK ‚
 ‚FINMGR ‚FINMGR ‚FINANCE MANAGER ‚
 ‚FLSCHD ‚FLSCHD ‚FLIGHT SCHEDULER ‚
 ‚FLSMGR ‚FLSMGR ‚FLIGHT SCHEDULING MANAGER ‚
 ‚FLTAT1 ‚FLTAT1 ‚FLIGHT ATTENDANT GRADE 1 ‚
 ‚FLTAT2 ‚FLTAT2 ‚FLIGHT ATTENDANT GRADE 2 ‚
 ‚FLTAT3 ‚FLTAT3 ‚FLIGHT ATTENDANT GRADE 3 ‚
 ‚FSVCLK ‚FSVCLK ‚FLIGHT SERVICES CLERK ‚
 ‚FSVMGR ‚FSVMGR ‚FLIGHT SERVICES MANAGER ‚
 ‚GRCREW ‚GRCREW ‚GROUND CREW ‚
 ‚GRCSUP ‚GRCSUP ‚GROUND CREW SUPERVISOR ‚
 ‚HRCLK ‚HRCLK ‚HUMAN RESOURCES CLERK ‚
 ‚HRMGR ‚HRMGR ‚HUMAN RESOURCES MANAGER ‚
 ‚ITCLK ‚ITCLK ‚IT CLERK ‚
 ‚ITMGR ‚ITMGR ‚IT MANAGER ‚
 ‚ITPROG ‚ITPROG ‚COMPUTER PROGRAMMER ‚
 ‚ITSUPT ‚ITSUPT ‚IT SUPPORT SPECIALIST ‚
 ‚MECH01 ‚MECH01 ‚MECHANIC GRADE 1 ‚
 ‚MECH02 ‚MECH02 ‚MECHANIC GRADE 2 ‚
 ‚MECH03 ‚MECH03 ‚MECHANIC GRADE 3 ‚
 ‚MKTCLK ‚MKTCLK ‚MARKETING CLERK ‚
 ‚MKTMGR ‚MKTMGR ‚MARKETING MANAGER ‚
 ‚OFFMGR ‚OFFMGR ‚OFFICE MANAGER ‚
 ‚PILOT1 ‚PILOT1 ‚PILOT GRADE 1 ‚
 ‚PILOT2 ‚PILOT2 ‚PILOT GRADE 2 ‚
 ‚PILOT3 ‚PILOT3 ‚PILOT GRADE 3 ‚
 ‚PRES ‚PRES ‚COMPANY PRESIDENT ‚
 ‚RECEPT ‚RECEPT ‚RECEPTIONIST ‚
 ‚RESCLK ‚RESCLK ‚RESERVATIONS CLERK ‚
 ‚RESMGR ‚RESMGR ‚RESERVATIONS MANAGER ‚
 ‚SALCLK ‚SALCLK ‚SALES CLERK ‚
 ‚SALMGR ‚SALMGR ‚SALES MANAGER ‚
 ‚TELOP ‚TELOP ‚TELEPHONE SWITCHBOARD OPERATOR ‚
 ‚VICEPR ‚VICEPR ‚VICE PRESIDENT ‚
 Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒŒ

4-106 Chapter 4 Using Lookup Tables to Match Data

6. Updating a Format (Optional)

Update an existing format by following these steps:

a. Add to the permanent $jcodes format.

b. Use the CNTLOUT= and CNTLIN= options in PROC FORMAT. Add new data for ticket agents
using the INSERT statement in PROC SQL or a DATA step program.

TKTAG1 Ticket Agent Grade 1

TKTAG2 Ticket Agent Grade 2

TKTAG3 Ticket Agent Grade 3

c. View the new format using the FMTLIB option in PROC FORMAT. The output is on the next
page.

 4.4 Using Formats as Lookup Tables 4-107

Exercise Output
New values in the $JCODES Format

 „ƒƒ†
 ‚ FORMAT NAME: $JCODES LENGTH: 32 NUMBER OF VALUES: 45 ‚
 ‚ MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 32 FUZZ: 0 ‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒ‰
 ‚START ‚END ‚LABEL (VER. V7|V8 22JAN2004:11:50:24)‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒ‰
 ‚BAGCLK ‚BAGCLK ‚BAGGAGE CLERK ‚
 ‚BAGSUP ‚BAGSUP ‚BAGGAGE SUPERVISOR ‚
 ‚CHKCLK ‚CHKCLK ‚CHECK IN CLERK ‚
 ‚CHKSUP ‚CHKSUP ‚CHECK IN SUPERVISOR ‚
 ‚FACCLK ‚FACCLK ‚FACILITIES CLERK ‚
 ‚FACMGR ‚FACMGR ‚FACILITES MANAGER ‚
 ‚FACMNT ‚FACMNT ‚FACILITIES MAINTENANCE OPERATIVE ‚
 ‚FINACT ‚FINACT ‚FINANCIAL ACCOUNTANT ‚
 ‚FINCLK ‚FINCLK ‚FINANCE CLERK ‚
 ‚FINMGR ‚FINMGR ‚FINANCE MANAGER ‚
 ‚FLSCHD ‚FLSCHD ‚FLIGHT SCHEDULER ‚
 ‚FLSMGR ‚FLSMGR ‚FLIGHT SCHEDULING MANAGER ‚
 ‚FLTAT1 ‚FLTAT1 ‚FLIGHT ATTENDANT GRADE 1 ‚
 ‚FLTAT2 ‚FLTAT2 ‚FLIGHT ATTENDANT GRADE 2 ‚
 ‚FLTAT3 ‚FLTAT3 ‚FLIGHT ATTENDANT GRADE 3 ‚
 ‚FSVCLK ‚FSVCLK ‚FLIGHT SERVICES CLERK ‚
 ‚FSVMGR ‚FSVMGR ‚FLIGHT SERVICES MANAGER ‚
 ‚GRCREW ‚GRCREW ‚GROUND CREW ‚
 ‚GRCSUP ‚GRCSUP ‚GROUND CREW SUPERVISOR ‚
 ‚HRCLK ‚HRCLK ‚HUMAN RESOURCES CLERK ‚
 ‚HRMGR ‚HRMGR ‚HUMAN RESOURCES MANAGER ‚
 ‚ITCLK ‚ITCLK ‚IT CLERK ‚
 ‚ITMGR ‚ITMGR ‚IT MANAGER ‚
 ‚ITPROG ‚ITPROG ‚COMPUTER PROGRAMMER ‚
 ‚ITSUPT ‚ITSUPT ‚IT SUPPORT SPECIALIST ‚
 ‚MECH01 ‚MECH01 ‚MECHANIC GRADE 1 ‚
 ‚MECH02 ‚MECH02 ‚MECHANIC GRADE 2 ‚
 ‚MECH03 ‚MECH03 ‚MECHANIC GRADE 3 ‚
 ‚MKTCLK ‚MKTCLK ‚MARKETING CLERK ‚
 ‚MKTMGR ‚MKTMGR ‚MARKETING MANAGER ‚
 ‚OFFMGR ‚OFFMGR ‚OFFICE MANAGER ‚
 ‚PILOT1 ‚PILOT1 ‚PILOT GRADE 1 ‚
 ‚PILOT2 ‚PILOT2 ‚PILOT GRADE 2 ‚
 ‚PILOT3 ‚PILOT3 ‚PILOT GRADE 3 ‚
 ‚PRES ‚PRES ‚COMPANY PRESIDENT ‚
 ‚RECEPT ‚RECEPT ‚RECEPTIONIST ‚
 ‚RESCLK ‚RESCLK ‚RESERVATIONS CLERK ‚
 ‚RESMGR ‚RESMGR ‚RESERVATIONS MANAGER ‚
 ‚SALCLK ‚SALCLK ‚SALES CLERK ‚
 ‚SALMGR ‚SALMGR ‚SALES MANAGER ‚
 ‚TELOP ‚TELOP ‚TELEPHONE SWITCHBOARD OPERATOR ‚
 ‚TKTAG1 ‚TKTAG1 ‚Ticket Agent Grade 1 ‚
 ‚TKTAG2 ‚TKTAG2 ‚Ticket Agent Grade 2 ‚
 ‚TKTAG3 ‚TKTAG3 ‚Ticket Agent Grade 3 ‚
 ‚VICEPR ‚VICEPR ‚VICE PRESIDENT ‚
 Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒŒ

4-108 Chapter 4 Using Lookup Tables to Match Data

4.5 Transposing Data to Create a Lookup Table

188

Objectives
Use the TRANSPOSE procedure to transpose a
SAS data set and prepare it for a table lookup.

Another reason for transposing a data set is to restructure a data set to match the requirements of a
particular procedure.

189

Using the TRANSPOSE Procedure
Compare delay values for flights to Raleigh with the
average delay statistics for all flights.

ia.rdudelay (First Observation)

ia.delaystats (First Ten Variables)

Flight
Obs ID FltDate Delay

1 IA00201 01JAN2004 22

Obs Statistic JAN01 JAN02 JAN03 JAN04 JAN05 JAN06 JAN07 JAN08 JAN09
1 AvgDelay 4.708 4.760 5.842 6.571 4.645 6.0714 5.500 5.080 4.692
2 SumDelay 113.000 119.000 111.000 184.000 144.000 85.0000 121.000 127.000 122.000
3 StdDelay 2.971 3.140 3.420 4.316 3.508 4.5987 4.373 4.252 4.688
4 MedianDelay 5.000 4.000 6.000 6.500 4.000 4.5000 4.000 3.000 2.500

 4.5 Transposing Data to Create a Lookup Table 4-109

190

Using the TRANSPOSE Procedure
An alternate solution to using an array as a lookup table is
to transpose ia.delaystats and merge it with
ia.rdudelay.

Transpose

ia.delaystats
(Partial Output)

stats
(Partial Output)

Obs Statistic JAN01 JAN02 JAN03
1 AvgDelay 4.708 4.760 5.842
2 SumDelay 113.000 119.000 111.000
3 StdDelay 2.971 3.140 3.420
4 MedianDelay 5.000 4.000 6.000

Obs Statistic Day AvgDelay

1 AvgDelay JAN01 4.70833
2 AvgDelay JAN02 4.76000
3 AvgDelay JAN03 5.84211
4 AvgDelay JAN04 6.57143
5 AvgDelay JAN05 4.64516
6 AvgDelay JAN06 6.07143
7 AvgDelay JAN07 5.50000
8 AvgDelay JAN08 5.08000
9 AvgDelay JAN09 4.69231
10 AvgDelay JAN10 5.11538
11 AvgDelay JAN11 4.69231

191

Combining Final Results (Self-Study)
Match-Merge

ia.rdudelay
(Partial Output)stats

(Partial Output)
Obs Statistic Day AvgDelay

1 AvgDelay JAN01 4.70833
2 AvgDelay JAN02 4.76000
3 AvgDelay JAN03 5.84211
4 AvgDelay JAN04 6.57143
5 AvgDelay JAN05 4.64516
6 AvgDelay JAN06 6.07143
7 AvgDelay JAN07 5.50000
8 AvgDelay JAN08 5.08000
9 AvgDelay JAN09 4.69231
10 AvgDelay JAN10 5.11538
11 AvgDelay JAN11 4.69231

Flight
Obs ID FltDate Delay

1 IA00201 01JAN2004 22
2 IA00200 01JAN2004 29
3 IA00400 01JAN2004 18
4 IA00401 01JAN2004 24
5 IA00600 01JAN2004 12
6 IA00601 01JAN2004 10
7 IA00602 01JAN2004 15
8 IA00603 01JAN2004 3
9 IA00604 01JAN2004 6

4-110 Chapter 4 Using Lookup Tables to Match Data

192

Default PROC TRANSPOSE with OUT= Option

c04s5d1

proc transpose data = ia.delaystats
out = stats;

run;

Default PROC TRANSPOSE

Obs _NAME_ COL1 COL2 COL3 COL4

1 JAN01 4.70833 113 2.97057 5.0
2 JAN02 4.76000 119 3.13953 4.0
3 JAN03 5.84211 111 3.41993 6.0
4 JAN04 6.57143 184 4.31559 6.5
5 JAN05 4.64516 144 3.50760 4.0
6 JAN06 6.07143 85 4.59873 4.5
7 JAN07 5.50000 121 4.37253 4.0
8 JAN08 5.08000 127 4.25167 3.0
9 JAN09 4.69231 122 4.68845 2.5

Partial Output

The OUT= option provides the name of the new data set.

The default variable names for transposed variables are _NAME_, COL1, COL2, COL3, and COL4.

The data set is not structured correctly for the merge. More options and statements are needed.

 The variable, Statistic, does not appear in the PROC TRANSPOSE data set because PROC
TRANSPOSE does not automatically transpose character variables.

Administrator
高亮

 4.5 Transposing Data to Create a Lookup Table 4-111

193

NAME= Option
proc transpose data = ia.delaystats

out = stats
name = Day;

run;

Using the NAME =

Obs Day COL1 COL2 COL3 COL4

1 JAN01 4.70833 113 2.97057 5.0
2 JAN02 4.76000 119 3.13953 4.0
3 JAN03 5.84211 111 3.41993 6.0
4 JAN04 6.57143 184 4.31559 6.5
5 JAN05 4.64516 144 3.50760 4.0
6 JAN06 6.07143 85 4.59873 4.5
7 JAN07 5.50000 121 4.37253 4.0
8 JAN08 5.08000 127 4.25167 3.0
9 JAN09 4.69231 122 4.68845 2.5

Partial Output

c04s5d1

The NAME= option specifies the name for the new variable in the output data set that contains the names
of the existing variables being transposed.

4-112 Chapter 4 Using Lookup Tables to Match Data

194

BY Statement
proc sort data = ia.delaystats

out = delaystats;
by Statistic;

run;
proc transpose data = delaystats

out = stats
name = Day;

by Statistic;
run;

Partial Output
Using a BY statement

Obs Statistic Day COL1

1 AvgDelay JAN01 4.70833
2 AvgDelay JAN02 4.76000
3 AvgDelay JAN03 5.84211
<lines removed>
32 MedianDelay JAN01 5.00000
33 MedianDelay JAN02 4.00000
34 MedianDelay JAN03 6.00000
<lines removed>
63 StdDelay JAN01 2.971
64 StdDelay JAN02 3.140
65 StdDelay JAN03 3.420 c04s5d1

For each BY group, PROC TRANSPOSE creates one observation for each variable that it transposes.
The BY variable is not transposed.

The original SAS data set must be sorted or indexed with the BY statement prior to the PROC
TRANSPOSE statement.

The COL1 variable needs a more descriptive variable name. You can use SAS data set options to rename
this variable.

 4.5 Transposing Data to Create a Lookup Table 4-113

195

RENAME= Data Set Option
proc transpose data = delaystats

out = stats (rename = (COL1 = AvgDelay))
name = Day;

by Statistic;
run;

Using the RENAME= option

Obs Statistic Day AvgDelay

1 AvgDelay JAN01 4.70833
2 AvgDelay JAN02 4.76000
3 AvgDelay JAN03 5.84211
4 AvgDelay JAN04 6.57143
5 AvgDelay JAN05 4.64516
6 AvgDelay JAN06 6.07143
7 AvgDelay JAN07 5.50000
8 AvgDelay JAN08 5.08000
9 AvgDelay JAN09 4.69231

Partial Output

c04s5d1

196

Alternate Solution Using the ID Statement
proc transpose data = delaystats

out = stats name = Day;
id Statistic;

run;

Partial Output

c04s5d1

Using the ID Statement

Avg Sum Std Median
Obs Day Delay Delay Delay Delay

1 JAN01 4.70833 113 2.97057 5.0
2 JAN02 4.76000 119 3.13953 4.0
3 JAN03 5.84211 111 3.41993 6.0
4 JAN04 6.57143 184 4.31559 6.5
5 JAN05 4.64516 144 3.50760 4.0
6 JAN06 6.07143 85 4.59873 4.5
7 JAN07 5.50000 121 4.37253 4.0
8 JAN08 5.08000 127 4.25167 3.0
9 JAN09 4.69231 122 4.68845 2.5

The ID statement specifies a variable in the input data set whose formatted values name the transposed
variables in the output data set.

4-114 Chapter 4 Using Lookup Tables to Match Data

197

The TRANSPOSE Procedure Summary

PROC TRANSPOSE <DATA=input-data-set>
<OUT=output-data-set>
<NAME = variable-name>;

<BY <DESCENDING> variable-1
<...<DESCENDING> variable-n>;>

<VAR variable(s);>
<ID variable;>

RUN;

PROC TRANSPOSE <DATA=input-data-set>
<OUT=output-data-set>
<NAME = variable-name>;

<BY <DESCENDING> variable-1
<...<DESCENDING> variable-n>;>

<VAR variable(s);>
<ID variable;>

RUN;

General form of the TRANSPOSE procedure:

• The BY statement is used to transpose each BY group.
• The VAR statement lists the variables to transpose. By default, all numeric variables are transposed.

Any character variables that you want to transpose must be listed in the VAR statement.
• The ID statement specifies a variable in the input data set whose formatted values name the transposed

variables in the output data set.

198

Advantages of Transposing and Merging
Advantages of transposing and merging include the
following:

transposing data can be used for multiple applications
no limit to the size of the data sets

 4.5 Transposing Data to Create a Lookup Table 4-115

199

Disadvantages of Transposing and Merging
Disadvantages of using transposing and merging include
the following:

requires two steps
requires sorted or indexed data
requires exact matches
presence of BY values in all data sets

4-116 Chapter 4 Using Lookup Tables to Match Data

Merging the Transposed Data Set (Self-Study)

c04s5d2
proc sort data = ia.rdudelay out = rdudelay;
 by FltDate;
run;

/*****************************
Program assumes that the data set STATS was created
by the TRANSPOSE procedure using the BY statement
and the RENAME= data set option.
*****************************/

data delays;
 set stats;
 FltDate = mdy(1,input(substr(day,4),2.),2004);
 drop day;
 where Statistic = 'AvgDelay';
run;

data combine;
 merge rdudelay delays;
 by FltDate;
 DelayDif = delay - AvgDelay;
run;

proc print data = combine;
 title 'Transposed Average Delays Combined with the Raleigh Delays';
 var FlightID FltDate Delay DelayDif;
run;

Partial Output
Transposed Average Delays Combined with the Raleigh Delays

 Flight Delay
 Obs ID FltDate Delay Dif

 1 IA00201 01JAN2004 11 6.2917
 2 IA00200 01JAN2004 22 17.2917
 3 IA00400 01JAN2004 25 20.2917
 4 IA00401 01JAN2004 8 3.2917
 5 IA00600 01JAN2004 6 1.2917
 6 IA00601 01JAN2004 22 17.2917
 7 IA00602 01JAN2004 2 -2.7083
 8 IA00603 01JAN2004 22 17.2917
 9 IA00604 01JAN2004 21 16.2917
 10 IA00605 01JAN2004 23 18.2917

 4.5 Transposing Data to Create a Lookup Table 4-117

/***
Alternate Solution if the data set STATS was created with the
TRANSPOSE procedure and the ID statement;
***/

proc sort data = ia.rdudelay out = rdudelay;
 by FltDate;
run;

data delays;
 set stats (keep = Day AvgDelay);
 FltDate = mdy(1,input(substr(day,4),2.),2004);
 drop day;
run;

data combine;
 merge rdudelay delays;
 by FltDate;
 DelayDif = delay - AvgDelay;
run;

proc print data = combine;
 title 'Transposed Average Delays Combined with the Raleigh Delays';
 var FlightID FltDate Delay DelayDif;
run;

4-118 Chapter 4 Using Lookup Tables to Match Data

Exercises

7. Using the TRANSPOSE Procedure

Using PROC TRANSPOSE, transpose the data set ia.econtrib. Name the new SAS data set
ia.tcontrib. It should be structured as shown below, with the following features:
• QtrNum as the name of the column that contains the quarter number
• one column that contains each unique employee contribution named Amount
• printing of the resulting data set

Partial Output
ia.econtrib

 Obs EmpID Qtr1 Qtr2 Qtr3 Qtr4

 1 E00224 $12.00 $33.00 $22.00 .
 2 E00367 $35.00 $48.00 $40.00 $30.00
 3 E00441 . $63.00 $89.00 $90.00
 4 E00587 $16.00 $19.00 $30.00 $29.00
 5 E00598 $4.00 $8.00 $6.00 $1.00

Partial Output
ia.tcontrib

 Qtr
 Obs EmpID Num Amount

 1 E00224 Qtr1 $12.00
 2 E00224 Qtr2 $33.00
 3 E00224 Qtr3 $22.00
 4 E00224 Qtr4 .
 5 E00367 Qtr1 $35.00
 6 E00367 Qtr2 $48.00
 7 E00367 Qtr3 $40.00
 8 E00367 Qtr4 $30.00
 9 E00441 Qtr1 .
 10 E00441 Qtr2 $63.00
 11 E00441 Qtr3 $89.00
 12 E00441 Qtr4 $90.00
 13 E00587 Qtr1 $16.00
 14 E00587 Qtr2 $19.00
 15 E00587 Qtr3 $30.00

 4.6 Solutions to Exercises 4-119

4.6 Solutions to Exercises

1. Using a Two-Dimensional Array

The company recently sponsored a triathlon that involved bicycling (EVENT=1), swimming
(EVENT=2), and running (EVENT=3). The finish order of the top four contestants in all events is
stored in ia.compete. Use the following table and a two-dimensional array to determine the scores
received for each event. The newly created SAS data set should be named results.

Event 1st Place 2nd Place 3rd Place 4th Place

1 65 55 45 35

2 80 70 60 50

3 70 60 50 40

Output
work.results

 Frst
 LastName Name Event Finish Score

 Tuttle Thomas 1 1 65
 Gomez Alan 1 2 55
 Chapman Neil 1 3 45
 Welch Darius 1 4 35
 Vandeusen Richard 2 1 80
 Tuttle Thomas 2 2 70
 Venter Vince 2 3 60
 Morgan Mel 2 4 50
 Chapman Neil 3 1 70
 Gomez Alan 3 2 60
 Morgan Mel 3 3 50
 Tuttle Thomas 3 4 40

data results;
 array Awards{3,4} _Temporary_ (65,55,45,35,
 80,70,60,50,
 70,60,50,40);
 set ia.compete;
 Score = Awards{Event,Finish};
run;

proc print data = results;
run;

4-120 Chapter 4 Using Lookup Tables to Match Data

2. Loading an Array from a SAS Data Set

The company recently sponsored a triathlon involving bicycling (EVENT = 1), swimming
(EVENT = 2), and running (EVENT = 3). The finish order of the top four contestants in all events
is stored in ia.compete. Use the ia.events data set, which contains the points awarded for
each event and finish, and a two-dimensional array to determine the scores received for each event.
The newly created SAS data set should be named results.

Output
work.results

 Frst
 LastName Name Event Finish Score

 Tuttle Thomas 1 1 65
 Gomez Alan 1 2 55
 Chapman Neil 1 3 45
 Welch Darius 1 4 35
 Vandeusen Richard 2 1 80
 Tuttle Thomas 2 2 70
 Venter Vince 2 3 60
 Morgan Mel 2 4 50
 Chapman Neil 3 1 70
 Gomez Alan 3 2 60
 Morgan Mel 3 3 50
 Tuttle Thomas 3 4 40

data results (drop = i j first second third fourth);
 array awards{3, 4} _temporary_;
 if _n_ = 1 then do i = 1 to 3;
 set ia.events;
 array temp{4} first -- fourth;
 do j = 1 to 4;
 awards{i, j} = temp{j};
 end;
 end;
 set ia.compete;
 Score = Awards{Event,Finish};
run;

proc print data = results;
run;

 4.6 Solutions to Exercises 4-121

3. Loading an Array from a SAS Data Set (Optional)

The ia.mealplan data set contains information on which meals, if any, are served on flights. Meal
service is based on the day of the week (1 to 7) , DOW, and the hour of the day of the flight, Hour.

a. Produce a SAS data set named meals that contains the meal service code for each flight.

b. Use ia.schedule to obtain the flight information.

c. Create a two-dimensional array from ia.mealplan.

d. Look up the meal for each flight using the WEEKDAY function on Date and the HOUR function
on Depart.

 The HOUR function returns values between 0 and 23. The Hour variable in
ia.mealplan contains the values 1 to 24.

e. Print only the first 15 observations.

Output
meals

 Obs flight depart date Service

 1 IA10800 6:35 01JUN2000 Breakfast
 2 IA10801 9:35 01JUN2000 None
 3 IA10802 12:35 01JUN2000 Snack
 4 IA10803 15:35 01JUN2000 None
 5 IA10804 18:35 01JUN2000 Dinner
 6 IA10805 21:35 01JUN2000 None
 7 IA10800 6:35 02JUN2000 Breakfast
 8 IA10801 9:35 02JUN2000 Snack
 9 IA10802 12:35 02JUN2000 Lunch
 10 IA10803 15:35 02JUN2000 Snack
 11 IA10804 18:35 02JUN2000 Dinner
 12 IA10805 21:35 02JUN2000 None
 13 IA10800 6:35 03JUN2000 Breakfast
 14 IA10801 9:35 03JUN2000 Snack
 15 IA10802 12:35 03JUN2000 Lunch

data meals;
 array food{7,24} $ 10 _Temporary_;
 if _n_ = 1 then do i = 1 to 7*24;
 set ia.mealplan;
 food{dow,hour} = Meal;
 end;
 set ia.schedule;
 Service = food{weekday(Date),hour(Depart)+1};
 keep Flight Date Depart Service;
run;

proc print data = meals(obs = 15);
 title 'meals';
run;

4-122 Chapter 4 Using Lookup Tables to Match Data

4. Using a Hash Object

a. Create a report that shows revenues, expenses, and profits for flights to Australia and New
Zealand. Expenses for flights to Australia and New Zealand are in ia.Dnunder (900
observations). Revenues for all flights are in ia.Sales (about 330,000 observations).

b. Load the relevant data from ia.Sales in a hash object and use it as a lookup table for the
flights in ia.Dnunder. Include the variables FlightID, RouteID, FltDate, RevTotal,
Expenses, and Profit in the report. The variable RevTotal is the sum of Rev1st,
RevBus, RevEcon, and CargoRev.

Partial Listing
ia.Dnunder

 Flight
 Obs ID FltDate Expenses

 1 IA10200 01DEC2005 154269
 2 IA10201 01DEC2005 71165
 3 IA10200 02DEC2005 65188
 4 IA10201 02DEC2005 14259
 5 IA10200 03DEC2005 161419

Partial Listing
ia.sales

 Flight
Obs ID RouteID Origin Dest DestType FltDate Cap1st CapBus

 1 IA10700 0000107 WLG AKL International 01JAN2004 12 .
 2 IA10701 0000107 WLG AKL International 01JAN2004 12 .
 3 IA10702 0000107 WLG AKL International 01JAN2004 12 .
 4 IA10703 0000107 WLG AKL International 01JAN2004 12 .
 5 IA10704 0000107 WLG AKL International 01JAN2004 12 .

 Cap Num
 Pass Num Num Pass
Obs CapEcon Total CapCargo Num1st Bus Econ Total Rev1st RevBus

 1 138 150 36900 11 . 126 137 $1,397.00 .
 2 138 150 36900 12 . 136 148 $1,524.00 .
 3 138 150 36900 10 . 112 122 $1,270.00 .
 4 138 150 36900 12 . 113 125 $1,524.00 .
 5 138 150 36900 10 . 118 128 $1,270.00 .

 Cargo
Obs RevEcon CargoRev RevTotal Weight

 1 $5,292.00 $1,900.00 $8,589 9500
 2 $5,712.00 $1,460.00 $8,696 7300
 3 $4,704.00 $2,500.00 $8,474 12500
 4 $4,746.00 $2,380.00 $8,650 11900
 5 $4,956.00 $2,260.00 $8,486 11300

 4.6 Solutions to Exercises 4-123

Partial Output
Profit for Flights to Australia and New Zealand

 Flight Total
 Obs ID RouteID Date Revenue Expenses Profit

 1 IA10200 0000102 01DEC2000 359778 154269 205509
 2 IA10201 0000102 01DEC2000 361910 71165 290745
 3 IA10200 0000102 02DEC2000 357828 65188 292640
 4 IA10201 0000102 02DEC2000 358027 14259 343768
 5 IA10200 0000102 03DEC2000 356887 161419 195468

data Profit;
 if _n_ = 1 then do;
 if 0 then set ia.Sales
 (keep = FlightID RouteID FltDate RevTotal);
 declare hash ht(dataset: 'ia.Sales');
 ht.definekey ('FlightID', 'FltDate');
 ht.definedata('RouteID', 'RevTotal');
 ht.definedone();
 end;
 set ia.Dnunder;
 if ht.find() = 0 then do;
 Profit = RevTotal - Expenses;
 output;
 end;
 else putlog 'WARNING: _N_=' _N_ 'No match found. '
 FlightID= FltDate=;
run;

proc print data = work.Profit(obs = 5);
 title 'Profit for Flights to Australia and New Zealand';
 var FlightID RouteID FltDate RevTotal Expenses Profit;
run;

The PUTLOG statement writes text to the log.

General form of the PUTLOG statement:

PUTLOG 'text';

 Preceding the text with WARNING, ERROR, or NOTE displays the text in the color that SAS-
generated warnings, errors, or notes are written to the log.

4-124 Chapter 4 Using Lookup Tables to Match Data

5. Creating a Format from a SAS Data Set

Use the ia.jcodedat data set to create a permanent format named $jcodes. View the new
format using the FMTLIB option in PROC FORMAT.
data jcodes;
 keep Start Label FmtName;
 retain FmtName '$JCodes';
 set ia.jcodedat(rename = (JobCode = Start
 Descript = Label));
run;

proc format library = ia cntlin = JCodes;
run;

options ls = 80;
proc format library = ia fmtlib;
 select $jcodes;
 title '$jcodes Format';
run;

6. Updating a Format (Optional)

Update an existing format by following these steps:

a. Add to the permanent $jcodes format.

b. Use the CNTLOUT= and CNTLIN= options in PROC FORMAT. Add new data for ticket agents
using the INSERT statement in PROC SQL or a DATA step program.

TKTAG1 Ticket Agent Grade 1

TKTAG2 Ticket Agent Grade 2

TKTAG3 Ticket Agent Grade 3

c. View the new format using the FMTLIB option in PROC FORMAT.
proc format lib = ia cntlout = FmtData;
 select $jcodes;
run;

/* SQL solution */
proc sql;
 insert into fmtdata
 set FmtName = '$JCODES',
 Start = 'TKTAG1',
 End = 'TKTAG1',
 Label = 'Ticket Agent Grade 1'
 set FmtName = '$JCODES',
 Start = 'TKTAG2',
 End = 'TKTAG2',
 Label = 'Ticket Agent Grade 2'

(Continued on the next page.)

 4.6 Solutions to Exercises 4-125

 set FmtName = '$JCODES',
 Start = 'TKTAG3',
 End = 'TKTAG3',
 Label = 'Ticket Agent Grade 3';
quit;

/* DATA Step solution */
data FmtData;
 set FmtData end = last;
 output;
 if last then do;
 FmtName = '$JCODES';
 Start = 'TKTAG1';
 End = 'TKTAG1';
 Label = 'Ticket Agent Grade 1';
 output;
 Start = 'TKTAG2';
 End = 'TKTAG2';
 Label = 'Ticket Agent Grade 2';
 output;
 Start = 'TKTAG3';
 End = 'TKTAG3';
 Label = 'Ticket Agent Grade 3';
 output;
 end;
run;

proc format library = ia cntlin = FmtData;
run;

proc format library = ia fmtlib;
 select $jcodes;
 title 'New values in the $JCODES Format';
run;

4-126 Chapter 4 Using Lookup Tables to Match Data

7. Using the TRANSPOSE Procedure

Using PROC TRANSPOSE, transpose the data set ia.econtrib. Name the new SAS data set
ia.tcontrib. It should be structured as shown below, with the following features:
• QtrNum as the name of the column that contains the quarter number
• one column that contains each unique employee contribution named Amount
• printing of the resulting data set

Partial Output
ia.econtrib

 Obs EmpID Qtr1 Qtr2 Qtr3 Qtr4

 1 E00224 $12.00 $33.00 $22.00 .
 2 E00367 $35.00 $48.00 $40.00 $30.00
 3 E00441 . $63.00 $89.00 $90.00
 4 E00587 $16.00 $19.00 $30.00 $29.00
 5 E00598 $4.00 $8.00 $6.00 $1.00

Partial Output
ia.tcontrib

 Qtr
 Obs EmpID Num Amount

 1 E00224 Qtr1 $12.00
 2 E00224 Qtr2 $33.00
 3 E00224 Qtr3 $22.00
 4 E00224 Qtr4 .
 5 E00367 Qtr1 $35.00
 6 E00367 Qtr2 $48.00
 7 E00367 Qtr3 $40.00
 8 E00367 Qtr4 $30.00
 9 E00441 Qtr1 .
 10 E00441 Qtr2 $63.00
 11 E00441 Qtr3 $89.00
 12 E00441 Qtr4 $90.00
 13 E00587 Qtr1 $16.00
 14 E00587 Qtr2 $19.00
 15 E00587 Qtr3 $30.00

proc transpose data = ia.econtrib
 out = ia.tcontrib(rename = (col1 = Amount))
 name = QtrNum;
 by EmpID;
run;

proc print data = ia.tcontrib;
run;

Chapter 5 Combining Data Vertically

5.1 Appending SAS Data Sets ...5-3

5.2 Appending Raw Data Files...5-26

5.3 Solutions to Exercises ...5-52

5-2 Chapter 5 Combining Data Vertically

 5.1 Appending SAS Data Sets 5-3

5.1 Appending SAS Data Sets

3

Objectives
Append two SAS data sets using the APPEND
procedure.
Update a SAS data set using an INSERT INTO
statement in the SQL procedure.

4

Vertical Combination Methods
SAS data can be combined vertically using one of these
four methods:

PROC APPEND
the INSERT INTO statement in PROC SQL
OUTER UNION CORRESPONDING set operator
in PROC SQL
DATA step SET statement

...

 This chapter discusses the APPEND procedure and the SQL procedure INSERT INTO statement.

5-4 Chapter 5 Combining Data Vertically

5

Using the APPEND Procedure
The data set emps contains employees who were hired
in the 1980s. The data set newemps contains
employees who were hired in the 1990s.
You can use the APPEND procedure to concatenate two
SAS data sets.

proc append base = emps
data = newemps;

run;

c05s1d1

Log
113
114 proc append base = emps
115 data = newemps;
116 run;

NOTE: Appending WORK.NEWEMPS to WORK.EMPS.
NOTE: There were 655 observations read from the data set WORK.NEWEMPS.
NOTE: 655 observations added.
NOTE: The data set WORK.EMPS has 2070 observations and 5 variables.
NOTE: PROCEDURE APPEND used (Total process time):
 real time 0.02 seconds
 cpu time 0.02 seconds

117
118 proc print data = ia.emps;
119 title 'All Employees Created';
120 title2 'by Appending ia.newemps to ia.emps';
121 run;

NOTE: There were 2070 observations read from the data set IA.EMPS.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.01 seconds
 cpu time 0.02 seconds

 5.1 Appending SAS Data Sets 5-5

Partial Output
All Employees Created

by Appending ia.newemps to ia.emps

 Obs LastName FirstName

1409 ROY SHEILA M.
1410 GUEGAN JOCELYNE
1411 JENSEN PIA

1412 HORTON SLAVA J. from ia.emps
1413 WARD PHILIP R.
1414 SUMMERS II KAREN H.
1415 MORRIS MATTHEW
1416 MILLS DOROTHY E
1417 BADINE DAVID

1418 LEWIS JOSEPH from ia.newemps
1419 DBAIBO CATHRYN J.
1420 SIMPSON ARTHUR P.
<lines removed>
 Job
 Obs Division HireDate Code

1409 AIRPORT OPERATIONS 20MAR1986 GRCREW
1410 AIRPORT OPERATIONS 30MAY1989 CHKCLK
1411 AIRPORT OPERATIONS 22MAR1980 CHKCLK

1412 AIRPORT OPERATIONS 06OCT1980 BAGSUP from ia.emps
1413 FLIGHT OPERATIONS 17DEC1986 MECH02
1414 AIRPORT OPERATIONS 24JUL1985 FSVCLK
1415 FLIGHT OPERATIONS 16JUL1986 MECH02
1416 FLIGHT OPERATIONS 11MAR1992 FLTAT3
1417 CORPORATE OPERATIONS 15FEB1992 OFFMGR

1418 SALES & MARKETING 13JUL1994 MKTCLK from ia.newemps
1419 HUMAN RESOURCES & FACILITIES 20SEP1991 RECEPT
1420 HUMAN RESOURCES & FACILITIES 13JAN1993 RESCLK
<lines removed>

5-6 Chapter 5 Combining Data Vertically

6

Using the APPEND Procedure
General form of the APPEND procedure:

PROC APPEND BASE=SAS-data-set
DATA=SAS-data-set
<FORCE>;

PROC APPEND BASE=SAS-data-set
DATA=SAS-data-set
<FORCE>;

Using the APPEND procedure preserves any indexes
on the BASE= data set. The indexes are automatically
updated with the observations in the DATA= data set
after the data is appended.

PROC APPEND only reads the data in the DATA= SAS data set, not in the BASE= SAS data set.

The FORCE option forces PROC APPEND to concatenate data sets when the DATA= data set contains
variables that have any of the following characteristics:
• are not in the BASE= data set.
• do not have the same type as the variables in the BASE= data set. (For variables with a type mismatch,

missing values are assigned in the appended observations when the FORCE option is used.)
• are longer than the variables in the BASE= data set.

 5.1 Appending SAS Data Sets 5-7

7

PROC APPEND concatenates the data sets even though
there might be variables in the BASE= data set that do
not exist in the DATA= data set.

allsales

Appending Fewer Variables

partsales

m
issing

To create allsales and partsales, execute the following program (c05ref1):
data allsales;
 set ia.sales(obs = 25);
run;

data partsales(keep = FlightID RouteID FltDate Rev: Cap: Num:);
 set ia.sales(firstobs = 26 obs = 40);
run;

 The data set ia.sales used for demonstrations and exercises contains fewer observations than
the data set ia.sales used for the course notes.

5-8 Chapter 5 Combining Data Vertically

8

Partial Log

c05ref1

8
9 proc append base=allsales data=partsales;
10 run;

NOTE: Appending WORK.PARTSALES to WORK.ALLSALES.
WARNING: Variable Origin was not found on DATA file.
WARNING: Variable Dest was not found on DATA file.
WARNING: Variable DestType was not found on DATA file.
WARNING: Variable CargoRev was not found on DATA file.
WARNING: Variable CargoWeight was not found on DATA file.
NOTE: There were 15 observations read from the data set WORK.PARTSALES.
NOTE: 15 observations added.
NOTE: The data set WORK.ALLSALES has 40 observations and 21 variables.
NOTE: PROCEDURE APPEND used (Total process time):

real time 0.67 seconds
cpu time 0.06 seconds

The FORCE option is not required.

The work.allsales data set has 21 variables. The work.partsales data set has 16 variables.

9

Partial Output

c05ref1

Partial ALLSALES Data Set

Cargo
Obs Origin Dest DestType CargoRev Weight

23 FRA ATH International $23,501.00 33100
24 FRA ATH International $23,501.00 33100
25 RDU BHM Domestic $3,813.00 12300
26 . .
27 . .
28 . .
29 . .

proc print data=allsales(firstobs=23 obs=29);
var Origin Dest DestType CargoRev CargoWeight;
title 'Partial ALLSALES Data Set';

run;

Origin, Dest, DestType, CargoRev, and CargoWeight
are in allsales but not in partsales.

 5.1 Appending SAS Data Sets 5-9

10

The FORCE option enables PROC APPEND to
concatenate the data sets even though there might be
variables in the DATA= data set that do not exist in the
BASE= data set.

allsales

partsales

FORCE Option

...

truncate

The FORCE option can cause loss of data due to truncation or dropping variables.

To create allsales and partsales, execute the following program (c05ref2):
data allsales;
 set ia.sales(obs = 25);
run;

data partsales(keep = FlightID RouteID FltDate Rev: Cap: Num:);
 set ia.sales(firstobs = 26 obs = 40 rename = (RouteID = RouteNum));
 RouteID = input(RouteNum,10.);
run;

 The data set ia.sales used for demonstrations and exercises contains fewer observations than
the data set ia.sales used for the course notes.

5-10 Chapter 5 Combining Data Vertically

11

51
52 proc append base=partsales data=allsales force;
53 run;

NOTE: Appending WORK.ALLSALES to WORK.PARTSALES.
WARNING: Variable Origin was not found on BASE file. The variable will not
be added to the BASE file.
WARNING: Variable Dest was not found on BASE file. The variable will not be
added to the BASE file.
WARNING: Variable DestType was not found on BASE file. The variable will not
be added to the BASE file.
WARNING: Variable CargoRev was not found on BASE file. The variable will not
be added to the BASE file.
WARNING: Variable CargoWeight was not found on BASE file. The variable will
not be added to the BASE file.
WARNING: Variable RouteID not appended because of type mismatch.
NOTE: FORCE is specified, so dropping/truncating will occur.
NOTE: There were 25 observations read from the data set WORK.ALLSALES.
NOTE: 25 observations added.
NOTE: The data set WORK.PARTSALES has 40 observations and 16 variables.
NOTE: PROCEDURE APPEND used (Total process time):

real time 0.06 seconds
cpu time 0.05 seconds

Partial Log

c05ref2

The work.allsales data set has 21 variables. The work.partsales data set has 16 variables.

The variable RouteID is character in the work.allsales data set. The variable RouteID is numeric
in the work.partsales data set.

The type mismatch for RouteID and the additional variables present in work.allsales require the
use of the FORCE option.

 5.1 Appending SAS Data Sets 5-11

12

Partial Output
Partial PARTSALES Data Set

Cap
Flight Pass

Obs ID FltDate Cap1st CapBus CapEcon Total CapCargo

14 IA03504 01JAN2004 12 . 138 150 36900
15 IA03505 01JAN2004 12 . 138 150 36900
16 IA10700 01JAN2004 12 . 138 150 36900
17 IA10701 01JAN2004 12 . 138 150 36900

Num
Num Num Pass Route

Obs Num1st Bus Econ Total Rev1st RevBus RevEcon RevTotal ID

14 12 . 107 119 $2,232.00 . $6,634.00 $12,665 35
15 11 . 127 138 $2,046.00 . $7,874.00 $12,617 35
16 11 . 126 137 $1,397.00 . $5,292.00 $8,589 .
17 12 . 136 148 $1,524.00 . $5,712.00 $8,696 .

numeric

character
Origin, Dest, DestType, CargoRev, and CargoWeight
are in allsales but not in partsales.

c05ref2

5-12 Chapter 5 Combining Data Vertically

Appending Variables with Different Attributes

c05s1d2
proc contents data = airports;
run;

Partial Output
The CONTENTS Procedure

Data Set Name WORK.AIRPORTS Observations 9397
Member Type DATA Variables 4

Alphabetic List of Variables and Attributes

 # Variable Type Len Label

 2 City Char 50 City Where Airport is Located
 1 Code Char 3 Airport Code
 3 Country Char 40 Country Where Airport is Located
 4 Name Char 50 Airport Name

proc contents data = acities;
run;

Partial Output
The CONTENTS Procedure

Data Set Name WORK.ACITIES Observations 52
Member Type DATA Variables 4

Alphabetic List of Variables and Attributes

 # Variable Type Len Label

 1 City Char 30 City Where Airport is Located
 2 Code Char 3 Start Point
 4 Country Char 40 Country Where Airport is Located
 3 Name Char 50 Airport Name

proc append base = acities data = airports force;
run;

proc contents data = acities;
run;

 5.1 Appending SAS Data Sets 5-13

Log
 proc append data=airports base=acities force;
 run;

NOTE: Appending WORK.AIRPORTS to WORK.ACITIES.
WARNING: Variable City has different lengths on BASE and DATA files
 (BASE 30 DATA 50).
NOTE: FORCE is specified, so dropping/truncating will occur.
NOTE: There were 9397 observations read from the data set WORK.AIRPORTS.
NOTE: 9397 observations added.
NOTE: The data set WORK.ACITIES has 9449 observations and 4 variables.
NOTE: PROCEDURE APPEND used:
 real time 0.04 seconds
 cpu time 0.04 seconds

Partial Output
The CONTENTS Procedure

Data Set Name WORK.ACITIES Observations 9449
Member Type DATA Variables 4

Alphabetic List of Variables and Attributes

 # Variable Type Len Label

 1 City Char 30 City Where Airport is Located
 2 Code Char 3 Start Point
 4 Country Char 40 Country Where Airport is Located
 3 Name Char 50 Airport Name

proc contents data = allemps;
run;

Output
The CONTENTS Procedure

Data Set Name WORK.ALLEMPS Observations 550
Member Type DATA Variables 5

Alphabetic List of Variables and Attributes

Variable Type Len

5 Division Char 30
1 EmpID Char 6
2 LastName Char 15
4 Location Char 13
3 Phone Char 4

5-14 Chapter 5 Combining Data Vertically

data pilots;
 keep phone Division LastName Location EmpID;
 set pilots(rename = (phone = ophone));
 phone = input(ophone,4.);
run;

proc contents data = pilots;
run;

Output
The CONTENTS Procedure

Data Set Name WORK.PILOTS Observations 31
Member Type DATA Variables 5

Alphabetic List of Variables and Attributes

 # Variable Type Len Format Informat Label

 2 Division Char 30 $30. $30. Division
 5 EmpID Char 6 $6. $6. Employee Identification Number
 3 LastName Char 32 $32. $32. Employee Last Name
 4 Location Char 16 $16. $16. Employee Office Location
 1 Phone Num 8

proc append base = allemps data = pilots force;
run;

Log
proc append base=allemps data=pilots force;
run;

NOTE: Appending WORK.PILOTS to WORK.ALLEMPS.
WARNING: Variable LastName has different lengths on BASE and DATA files
 (BASE 15 DATA 32).
WARNING: Variable Phone not appended because of type mismatch.
WARNING: Variable Location has different lengths on BASE and DATA files
 (BASE 13 DATA 16).
NOTE: FORCE is specified, so dropping/truncating will occur.
NOTE: There were 31 observations read from the data set WORK.PILOTS.
NOTE: 31 observations added.
NOTE: The data set WORK.ALLEMPS has 581 observations and 5 variables.
NOTE: PROCEDURE APPEND used:
 real time 0.01 seconds
 cpu time 0.01 seconds

 5.1 Appending SAS Data Sets 5-15

proc print data = allemps;
 var phone;
run;

Output
 Obs Phone

 547 1003
 548 1028
 549 1070
 550 1016
 551
 552
 553
 554

proc contents data = allemps;
run;

Output
The CONTENTS Procedure

Data Set Name WORK.ALLEMPS Observations 581
Member Type DATA Variables 5

Alphabetic List of Variables and Attributes

Variable Type Len

5 Division Char 30
1 EmpID Char 6
2 LastName Char 15
4 Location Char 13
3 Phone Char 4

5-16 Chapter 5 Combining Data Vertically

14

Summary of APPEND Procedure

DATA= data set variable
values are truncated.

Yesare longer than the
variables in the
BASE= data set.

Missing values are assigned
to extra BASE= data set
variables.

Noare in the BASE= data
set, but BASE= data set
has more variables.

Data is not appended.
Missing values are assigned
to mismatched data.

Yesdo not have the same
type as variables in
the BASE= data set.

Extra DATA= data set
variables are dropped.

Yesare not in the BASE=
data set.

ConsequencesForce
Required?

DATA= data set
contains variables
that …

15

Advantages of the APPEND Procedure
PROC APPEND has the following advantages:

reads only the DATA= data set
uses the FORCE option to concatenate data with
different variable attributes
updates indexes once at the end of the append

Administrator
高亮

 5.1 Appending SAS Data Sets 5-17

16

PROC APPEND has the following disadvantages:
can combine only two data sets
cannot manipulate data
cannot create a new (third) data set
cannot change the descriptor portion of the
BASE= data set

Disadvantages of the APPEND Procedure

5-18 Chapter 5 Combining Data Vertically

17

Using the SQL Procedure
The INSERT INTO statement in the SQL procedure can
be used to add rows to a new or existing table or view.
There are three ways that INSERT INTO can be used:

the SET clause to specify or alter the values of a
column.
the VALUES clause to insert lists of values into a
table. (A value for each column in the table or values
for only the columns specified in the list of column
names must be specified.)
a query expression to insert the results into a table.

Using the SQL procedure also preserves indexes.

 When you use the INSERT INTO statement with a view, the view must reference one and only
one table. The INSERT INTO statement cannot add rows to a view of joined tables.

The columns are matched positionally when you use the VALUES clause or a query expression to insert
the results in a table. If the data types do not match, if there are more values than columns, or if there are
fewer values than columns, the row is not inserted. Whether or not other rows are inserted depends on the
current value of the UNDO_POLICY SQL statement option.

 5.1 Appending SAS Data Sets 5-19

18

Using the INSERT INTO Statement
proc sql;

insert into acities
set City = 'Toronto',Code = 'YYZ',

Name = 'Pearson International',
Country = 'Canada'

set City = 'Montreal', Code = 'YUL',
Name = 'Montreal Trudeau',
Country = 'Canada';

quit;

c05s1d3

1

PROC SQL;
INSERT INTO table-name<(column<, ... column>)>

SET column=sql-expression
<, ... column=sql-expression>
<SET column=sql-expression
<, ... column=sql-expression>>;

QUIT;

PROC SQL;
INSERT INTO table-name<(column<, ... column>)>

SET column=sql-expression
<, ... column=sql-expression>
<SET column=sql-expression
<, ... column=sql-expression>>;

QUIT;

1

 Each SET clause contains column names and their values separated by commas. The value for a
column can be the result of a SELECT clause.

Log
76 proc sql;
77 insert into acities
78 set City = 'Toronto',Code = 'YYZ',
79 Name = 'Pearson International',
80 Country = 'Canada'
81 set City = 'Montreal', Code = 'YUL',
82 Name = 'Montreal Trudeau',
83 Country = 'Canada';

NOTE: 2 rows were inserted into WORK.ACITIES.

 A partial log file is shown above.

5-20 Chapter 5 Combining Data Vertically

19

Using the INSERT INTO Statement
proc sql;

insert into acities(City, Code, Name, Country)
values

('Toronto','YYZ','Pearson International','Canada')
values

('Montreal','YUL','Montreal Trudeau','Canada');
quit;

2

c05s1d4

PROC SQL;
INSERT INTO table-name <(column<, ... column>)>
VALUES (value <, ... value>)
<... VALUES (value <, ... value>)>;

QUIT;

PROC SQL;
INSERT INTO table-name <(column<, ... column>)>
VALUES (value <, ... value>)
<... VALUES (value <, ... value>)>;

QUIT;
2

 The VALUES clause is positional unless the columns are specified in the INSERT INTO clause.

Log
86 proc sql;
87 insert into acities(City, Code, Name, Country)
88 values
89 ('Toronto','YYZ','Pearson International','Canada')
90 values
91 ('Montreal','YUL','Montreal Trudeau','Canada');

NOTE: 2 rows were inserted into WORK.ACITIES.

 A partial log file is shown above.

 5.1 Appending SAS Data Sets 5-21

20

Using the INSERT INTO Statement
proc sql;

insert into acities
select city, code, name, country from ia.airports

where code in ('YYZ','YUL');
quit;

3

c05s1d5

PROC SQL;
INSERT INTO table-name

SELECT <(column<, ...column>)>
FROM table-name query-expression;

QUIT;

PROC SQL;
INSERT INTO table-name

SELECT <(column<, ...column>)>
FROM table-name query-expression;

QUIT;

3

 The query-expression can be any SELECT clause.

Log
94 proc sql;
95 insert into acities
96 select city, code, name, country from ia.airports
97 where Code in ('YYZ','YUL');

NOTE: 2 rows were inserted into WORK.ACITIES.

 A partial log file is shown above.

5-22 Chapter 5 Combining Data Vertically

21

Advantages of the SQL Procedure
PROC SQL with the INSERT INTO statement has the
following advantages:

only reads the data set on the FROM clause
can manipulate data in the FROM data set only
uses ANSI standard syntax
maintains indexes

22

PROC SQL with the INSERT INTO statement has the
following disadvantages:

can combine only two data sets
cannot create a new data set

Disadvantages of the SQL Procedure

 5.1 Appending SAS Data Sets 5-23

Reference Information

Other techniques to concatenate SAS data sets:

DATA Step with SET Statement

Pros:
• This technique enables the full power of the DATA step to manipulate the data.
• Creation of a new data set occurs.
• An unlimited number of SAS data sets can be read.

Cons:
• All of the SAS data sets must be read.

PROC SQL with OUTER UNION CORRESPONDING

Pros:
• Data manipulation occurs in both data sets.
• There is a combination of joins and OUTER UNION CORRESPONDING.
• A new data set is created.
• ANSI standard syntax is used.

Cons:
• All data sets are read.

 Only the APPEND procedure and the INSERT INTO statement in the SQL procedure were
discussed in this section.

Concatenation

 SET PROC
APPEND

SQL INSERT
INTO

SQL OUTER
UNION CORR

Data manipulation allowed X On second data set X

Creation of a new data set X X

Unlimited number of SAS data sets X X

All SAS data sets must be read X X

Only one SAS data set must be read X X

5-24 Chapter 5 Combining Data Vertically

Exercises

1. Updating a Data Set Using the APPEND Procedure

Create the work.quarter4 and work.y2005 data sets by submitting the code in the ProcCopy
program file:
proc copy in = ia out = work;
 select Quarter4 Y2005;
run;

Append work.quarter4 to work.y2005. First, determine if the data sets have the same
variables. The resulting data set should be work.y2005 data with the additional observations from
work.quarter4.

Partial Output: Added Observations
work.y2005 with Quarter4 Data

Obs CrgoRev1 CrgoRev2 CrgoRev3 CrgoRev4

265 $3,281,364 $558,698 $2,094,261 $1,814,348
266 $3,296,780 $534,094 $2,403,148 $1,803,004
267 $3,317,456 $567,020 $2,155,557 $1,822,840
268 $3,279,250 $526,076 $1,893,366 $1,801,768
269 $3,260,316 $552,722 $2,133,225 $1,834,500
270 $3,243,090 $559,722 $2,337,188 $1,849,388
271 $3,293,606 $531,262 $2,132,043 $1,824,242
272 $3,268,782 $553,850 $2,114,361 $1,828,158
273 $3,227,646 $545,726 $2,369,204 $1,825,288
274 $3,287,060 $549,280 $2,132,679 $1,817,324
275 $3,281,134 $555,670 $1,917,524 $1,769,740
276 $3,270,620 $572,136 $2,102,609 $1,775,210
277 $3,296,466 $592,800 $2,352,088 $1,797,826
278 $3,299,664 $542,860 $2,102,151 $1,846,074
279 $3,283,118 $538,246 $2,135,697 $1,795,390
280 $3,212,646 $528,154 $2,403,092 $1,800,462

Obs CrgoRev5 CrgoRev6 Date

265 $216,498 $1,229,390 22SEP2005
266 $233,466 $975,811 23SEP2005
267 $217,542 $943,923 24SEP2005
268 $219,428 $967,185 25SEP2005
269 $214,046 $985,297 26SEP2005
270 $212,828 $949,119 27SEP2005
271 $223,846 $943,461 28SEP2005
272 $219,926 $1,194,524 29SEP2005
273 $219,114 $974,305 30SEP2005
274 $219,792 $972,585 01OCT2005
275 $225,944 $984,625 02OCT2005
276 $215,386 $981,231 03OCT2005
277 $216,650 $941,179 04OCT2005
278 $217,364 $980,101 05OCT2005
279 $225,754 $1,211,148 06OCT2005
280 $213,560 $969,143 07OCT2005

 5.1 Appending SAS Data Sets 5-25

2. Updating a Data Set Using the INSERT INTO Statement in the SQL Procedure (Optional)

Create the work.quarter4 and work.y2005 data sets by submitting the code in the ProcCopy
program file:
proc copy in = ia out = work;
 select Quarter4 Y2005;
run;

Append work.quarter4 to work.y2005 using the INSERT INTO statement in the SQL
procedure. First, determine if the data sets have the same variables. The resulting data set should be
work.y2005 data with the additional observations from work.quarter4.

Partial Output: Added Observations
work.y2005 with Quarter4 Data

Obs CrgoRev1 CrgoRev2 CrgoRev3 CrgoRev4

265 $3,281,364 $558,698 $2,094,261 $1,814,348
266 $3,296,780 $534,094 $2,403,148 $1,803,004
267 $3,317,456 $567,020 $2,155,557 $1,822,840
268 $3,279,250 $526,076 $1,893,366 $1,801,768
269 $3,260,316 $552,722 $2,133,225 $1,834,500
270 $3,243,090 $559,722 $2,337,188 $1,849,388
271 $3,293,606 $531,262 $2,132,043 $1,824,242
272 $3,268,782 $553,850 $2,114,361 $1,828,158
273 $3,227,646 $545,726 $2,369,204 $1,825,288
274 $3,287,060 $549,280 $2,132,679 $1,817,324
275 $3,281,134 $555,670 $1,917,524 $1,769,740
276 $3,270,620 $572,136 $2,102,609 $1,775,210
277 $3,296,466 $592,800 $2,352,088 $1,797,826
278 $3,299,664 $542,860 $2,102,151 $1,846,074
279 $3,283,118 $538,246 $2,135,697 $1,795,390
280 $3,212,646 $528,154 $2,403,092 $1,800,462

Obs CrgoRev5 CrgoRev6 Date

265 $216,498 $1,229,390 22SEP2005
266 $233,466 $975,811 23SEP2005
267 $217,542 $943,923 24SEP2005
268 $219,428 $967,185 25SEP2005
269 $214,046 $985,297 26SEP2005
270 $212,828 $949,119 27SEP2005
271 $223,846 $943,461 28SEP2005
272 $219,926 $1,194,524 29SEP2005
273 $219,114 $974,305 30SEP2005
274 $219,792 $972,585 01OCT2005
275 $225,944 $984,625 02OCT2005
276 $215,386 $981,231 03OCT2005
277 $216,650 $941,179 04OCT2005
278 $217,364 $980,101 05OCT2005
279 $225,754 $1,211,148 06OCT2005
280 $213,560 $969,143 07OCT2005

Administrator
高亮

5-26 Chapter 5 Combining Data Vertically

5.2 Appending Raw Data Files

25

Objectives
Create a SAS data set from multiple raw data files
using the FILENAME statement.
Create a SAS data set from multiple raw data files
using the FILEVAR= option.

26

Vertical Combination Methods

...

Raw data might be combined vertically using several
methods:

concatenating files using multiple INFILE statements
concatenating files using a FILENAME statement
using the FILEVAR= option to read a list of files
operating system techniques

 Only the FILENAME statement and the FILEVAR= option are discussed in this section.

 5.2 Appending Raw Data Files 5-27

27

To read multiple raw data files, you can use multiple
INFILE statements.

Reading Multiple Raw Data Files

Obs 1
Obs 1
Obs 2
Obs 2

...

Use multiple INFILE statements to read a record from one raw data file, a record from the second raw
data file, a record from the third raw data file, and so on (similar to an interleave).

Multiple INFILE statements can be used to concatenate raw data files that have different file layouts.

28

To read multiple raw data files, you can use the
FILENAME statement.

Reading Multiple Raw Data Files

...

Use the FILENAME statement to concatenate multiple raw data files whose names can be hard-coded.

5-28 Chapter 5 Combining Data Vertically

29

Using the FILENAME Statement

c05s2d1

filename Q1 ('month1.dat' 'month2.dat'
'month3.dat');

data firstq;
infile Q1;
input Flight $ Origin $ Dest $

Date : date9.
RevCargo : comma15.;

run;

IA10200 SYD HKG 01JAN2005 $191,187.00
IA10201 SYD HKG 01JAN2005 $169,653.00
IA10300 SYD CBR 01JAN2005 $850.00
IA10301 SYD CBR 01JAN2005 $970.00
IA10302 SYD CBR 01JAN2005 $1,030.00
IA10303 SYD CBR 01JAN2005 $1,410.00
IA10304 SYD CBR 01JAN2005 $870.00

Partial Listing of month1.dat

Under z/OS (OS/390):
filename Q1 ('.prog3.rawdata(month1)'
 '.prog3.rawdata(month2)'
 '.prog3.rawdata(month3)');

 5.2 Appending Raw Data Files 5-29

Windows/UNIX Log
filename Q1 ('month1.dat' 'month2.dat' 'month3.dat');

 data firstq;
 infile Q1;
 input Flight $ Origin $ Dest $ Date : date9. RevCargo : comma15.;
 run;

NOTE: The infile Q1 is:
 File Name=c:\workshop\winsas\prog3\month1.dat,

 File List=('c:\workshop\winsas\prog3\month1.dat'
 'c:\workshop\winsas\prog3\month2.dat'
 'c:\workshop\winsas\prog3\month3.dat'),
 RECFM=V,LRECL=256

NOTE: The infile Q1 is:
 File Name=c:\workshop\winsas\prog3\month2.dat,

 File List=('c:\workshop\winsas\prog3\month1.dat'
 'c:\workshop\winsas\prog3\month2.dat'
 'c:\workshop\winsas\prog3\month3.dat'),
 RECFM=V,LRECL=256

NOTE: The infile Q1 is:
 File Name=c:\workshop\winsas\prog3\month3.dat,

 File List=('c:\workshop\winsas\prog3\month1.dat'
 'c:\workshop\winsas\prog3\month2.dat'
 'c:\workshop\winsas\prog3\month3.dat'),
 RECFM=V,LRECL=256

NOTE: 2299 records were read from the infile Q1.
 The minimum record length was 33.
 The maximum record length was 37.
NOTE: 2090 records were read from the infile Q1.
 The minimum record length was 33.
 The maximum record length was 37.
NOTE: 2297 records were read from the infile Q1.
 The minimum record length was 33.
 The maximum record length was 37.
NOTE: The data set WORK.FIRSTQ has 6686 observations and 5 variables.
NOTE: DATA statement used:
 real time 0.31 seconds
 cpu time 0.12 seconds

5-30 Chapter 5 Combining Data Vertically

30

FILENAME Statement Syntax
General form of the FILENAME statement:

fileref
is any SAS name that is eight characters or fewer.

'external-file'
is the physical name of an external file. The physical
name is the name that is recognized by the operating
environment.

FILENAME fileref ('external-file1'
'external-file2' … 'external-filen');

FILENAME fileref ('external-file1'
'external-file2' … 'external-filen');

A FILENAME statement can associate a fileref with multiple physical external files.

31

Provide reports of three months of data to IA executives.
The three months are the current month and the previous
two months (rolling quarter).

month8month8 month9month9 month10month10 month11month11 month12month12

...

Making the Program More Flexible

 5.2 Appending Raw Data Files 5-31

32

Provide reports of three months of data to IA executives.
The three months are the current month and the previous
two months (rolling quarter).

...

month8month8 month9month9 month10month10 month11month11 month12month12

Making the Program More Flexible

33

Provide reports of three months of data to IA executives.
The three months are the current month and the previous
two months (rolling quarter).

month8month8 month9month9 month10month10 month11month11 month12month12

Use the FILEVAR= option in the INFILE statement
to provide the name of the raw data file.

Making the Program More Flexible

5-32 Chapter 5 Combining Data Vertically

34

How can you change and assign the names of the three
files to be read?

Creating the File Name

month + 9 + .dat
month + 10 + .dat
month + 11 + .dat

 5.2 Appending Raw Data Files 5-33

35

Creating the File Name

When I = 11
NextFile = month11.dat

When I = 10
NextFile = month10.dat

When I = 9
NextFile = month 9.dat

Notice the space!

...

do I = 11,10,9;
NextFile = "month"||put(I,2.)||".dat";
infile zzz filevar = NextFile;

end;

The value of a FILEVAR= variable option is a character string that contains the physical filename of the
raw data file to be read. When the next INPUT statement executes, it reads from the new file that the
FILEVAR= variable option specifies. Similar to automatic variables, the FILEVAR= variable is not
written to the data set.

The FILEVAR= variable option can read raw data files conditionally. You can construct the names of the
raw data files programmatically.

 The concatenation characters can be !! or ||.

Administrator
高亮

5-34 Chapter 5 Combining Data Vertically

36

INFILE Statement with FILEVAR= Option

FILEVAR = variable
names a variable whose change in value causes the
INFILE statement to close the current input file and
open a new one.

General form of the FILEVAR= variable option:

INFILE file-specification FILEVAR = variable;INFILE file-specification FILEVAR = variable;

37

INFILE Statement with FILEVAR= Option

zzz
is an arbitrarily named placeholder, not an actual
filename or a fileref that was assigned to a file
previously. SAS uses this placeholder for reporting
processing information to the SAS log.

NextFile
contains the name of the raw data file to be read
(month9.dat, month10.dat, month11.dat,
and so on).

infile zzz filevar = NextFile;

The placeholder must be eight characters or fewer, and must begin with an alpha character or underscore,
followed by alphanumeric characters or underscores.

 5.2 Appending Raw Data Files 5-35

38

COMPRESS Function
To eliminate the space in filenames such as
month 9.dat, use the COMPRESS function.
General form of the COMPRESS function:

COMPRESS(source,<characters-to-remove>)COMPRESS(source,<characters-to-remove>)

NextFile = compress(NextFile,' ');

specifies the character or
characters that SAS removes from
the source string.

characters-to-remove

specifies a source string that
contains the characters to remove.

source

Example:

If the characters-to-remove option is omitted, the COMPRESS function removes blanks from the source.

Administrator
高亮

5-36 Chapter 5 Combining Data Vertically

39

Why is the STOP statement needed?
How many observations are in movingq?

c05s2d2

data movingq;
length Dest Origin $ 3 Flight $ 7;
do I = 11,10,9;

NextFile = "month"||put(I,2.)||".dat";
NextFile = compress(NextFile,' ');
infile zzz filevar = NextFile;
input Flight $ Origin $ Dest $

Date : date9.
RevCargo : comma15.;

output;
end;
stop;

run;

Reading Raw Data

 Creates the name of the raw data file.

 Removes any blanks from the name of the raw data file.

 Names the raw data file. In addition, it closes the current file and opens the new file.

 Outputs the observation that is created by the INPUT statement.

 Stops the DATA step after all of the observations are written.

In this example, the DATA step does not encounter the end of file. If the STOP statement were not
included, the program would continue to execute the DO loop repetitively. Therefore, the STOP statement
is needed to prevent an infinite loop of the DATA step.

There are three observations in movingq.

 5.2 Appending Raw Data Files 5-37

Log
data movingq;
 length Dest Origin $ 3 Flight $ 7;
 do i = 11,10,9;
 NextFile = "month"||put(I,2.)||".dat";
 NextFile = compress(NextFile,' ');
 infile zzz filevar=NextFile;
 input Flight $ Origin $ Dest $ Date : date9. RevCargo : comma15.;
 output;
 end;
 stop;
run;

NOTE: The infile ZZZ is:
 File Name=c:\workshop\winsas\prog3\month11.dat,
 RECFM=V,LRECL=256

NOTE: The infile ZZZ is:
 File Name=c:\workshop\winsas\prog3\month10.dat,
 RECFM=V,LRECL=256

NOTE: The infile ZZZ is:
 File Name=c:\workshop\winsas\prog3\month9.dat,
 RECFM=V,LRECL=256

NOTE: 1 record was read from the infile ZZZ.
 The minimum record length was 37.
 The maximum record length was 37.
NOTE: 1 record was read from the infile ZZZ.
 The minimum record length was 37.
 The maximum record length was 37.
NOTE: 1 record was read from the infile ZZZ.
 The minimum record length was 37.
 The maximum record length was 37.
NOTE: The data set WORK.MOVINGQ has 3 observations and 6 variables.
NOTE: DATA statement used:
 real time 0.15 seconds
 cpu time 0.01 seconds

5-38 Chapter 5 Combining Data Vertically

40

How can the program always read the current month and
previous two months?

data movingq;
length Dest Origin $ 3 Flight $ 7;
do I = 11,10,9;

NextFile = "month"||put(I,2.)||".dat";
NextFile = compress(NextFile,' ');
do until (LastObs);

infile zzz filevar = NextFile end = LastObs;
input Flight $ Origin $ Dest $ Date : date9.

RevCargo : comma15.;
output;

end;
end;
stop;

run;

c05s2d3

Reading Raw Data

 The DO UNTIL statement continues to execute the INFILE statement for every record of the raw data
file until the value of LastObs = 1. The DO UNTIL statement checks the condition at the bottom
of the loop.

 The END= option creates the variable LastObs that can be used to determine the end of the raw data
file. The END= option names a variable whose value is one of the following:

0 when the current input data record is not the last in the current input file

1 when the current input record is the last in the current input file

 5.2 Appending Raw Data Files 5-39

Partial Log
42 data movingq;
43 length Dest Origin $ 3 Flight $ 7;
44 do I = 11,10,9;
45 NextFile = "month"||put(I,2.)||".dat";
46 NextFile = compress(NextFile,' ');
47 do until (LastObs);
48 infile zzz filevar = NextFile end = LastObs;
49 input Flight $ Origin $ Dest $ Date : date9.
50 RevCargo : comma15.2;
51 output;
52 end;
53 end;
54 stop;
55 run;

NOTE: The infile ZZZ is:
 File Name=c:\workshop\winsas\prog3\month11.dat,
 RECFM=V,LRECL=256

NOTE: The infile ZZZ is:
 File Name=c:\workshop\winsas\prog3\month10.dat,
 RECFM=V,LRECL=256

NOTE: The infile ZZZ is:
 File Name=c:\workshop\winsas\prog3\month9.dat,
 RECFM=V,LRECL=256

NOTE: 2195 records were read from the infile ZZZ.
 The minimum record length was 33.
 The maximum record length was 37.
NOTE: 2306 records were read from the infile ZZZ.
 The minimum record length was 33.
 The maximum record length was 37.
NOTE: 2215 records were read from the infile ZZZ.
 The minimum record length was 33.
 The maximum record length was 37.
NOTE: The data set WORK.MOVINGQ has 6716 observations and 6
 variables.
NOTE: DATA statement used (Total process time):
 real time 0.18 seconds
 cpu time 0.07 seconds

5-40 Chapter 5 Combining Data Vertically

41

data movingq;
length Dest Origin $ 3 Flight $ 7;
drop MonNum MidMon LastMon I;
MonNum = month(today()); X
MidMon = MonNum-1; Y
LastMon = MidMon-1; Y
do I = MonNum, MidMon, LastMon;

NextFile = "month"||put(i,2.)||".dat";
NextFile = compress(NextFile,' ');
do until (LastObs);

infile zzz filevar = NextFile end = LastObs;
input Flight $ Origin $ Dest $

Date : date9. RevCargo : comma15.;
output;

end;
end;
stop;

run;

Reading the Current Month

c05s2d4

 Obtains the month number of today’s date to begin the rolling month range.

 Calculates the month numbers of the two months prior to today’s month number.

42

What if the current month is January or February?

Calendar Logic

 5.2 Appending Raw Data Files 5-41

43

INTNX Function

01SEP2005intnx('month',BDate, 2)04JUL2005
01AUG2005intnx('month',BDate, 1)04JUL2005
01JUL2005intnx('month',BDate, 0)04JUL2005
01JUN2005intnx('month',BDate, -1)04JUL2005

01JAN2004intnx('year',BDate, -1)04JUL2005

01JAN2007intnx('year',BDate, 2)04JUL2005
01JAN2006intnx('year',BDate, 1)04JUL2005
01JAN2005intnx('year',BDate, 0)04JUL2005

Formatted Value
of EDate

Using the INTNX functionFormatted Value
of BDate

The INTNX function increments a date value by a given
interval or intervals, and returns a date value.

EDate = intnx('interval',BDate, increment)

 The INTNX function can increment dates, time, or datetime values by a given interval or
intervals, and returns a date, time, or datetime value.

5-42 Chapter 5 Combining Data Vertically

44

INTNX Function
General form of the INTNX function:

'interval'
specifies a character constant or variable of date,
datetime, or time intervals.

start-from
specifies a SAS expression that represents a SAS
date,datetime, or time value identifying a starting point.

increment
specifies a negative or positive integer that represents
the specific number of time intervals.

INTNX('interval',start-from,increment<,alignment>)INTNX('interval',start-from,increment<,alignment>)

Optional arguments:

INTNX(interval<multiple><.shift-index>, start-from, increment<,alignment>)

interval specifies a character constant, a variable, or an expression that contains a time interval such
as WEEK, SEMIYEAR, QTR, or HOUR. The type of interval (date, datetime, or time) must
match the type of value in start-from and increment.

multiple specifies a multiple of the interval. It sets the interval equal to a multiple of the interval type.
For example, YEAR2 consists of two-year, or biennial, periods.

shift-index specifies the starting point of the interval. By default, the starting point is 1. A value that is
greater than 1 shifts the start to a later point within the interval. The unit for shifting depends
on the interval. For example, YEAR.3 specifies yearly periods that are shifted to start on the
first of March of each calendar year and to end in February of the following year. The shift
index cannot be greater than the number of periods in the entire interval. For example,
YEAR2.24 has a valid shift index, but YEAR2.25 is invalid because there is no twenty-fifth
month in a two-year interval. If the default shift period is the same as the interval type, then
you can shift only multi-period intervals with the shift index. For example, because MONTH
type intervals shift by MONTH sub-periods by default, you cannot shift monthly intervals
with the shift index. However, you can shift bimonthly intervals with the shift index, because
two MONTH intervals exist in each MONTH2 interval. The interval name MONTH2.2, for
example, specifies bimonthly periods starting on the first day of even-numbered months.

 5.2 Appending Raw Data Files 5-43

start-from specifies a SAS expression that represents a SAS date, time, or datetime value that identifies
a starting point.

increment specifies a negative, positive, or zero integer that represents the number of date, time, or
datetime intervals. Increment is the number of intervals to shift the value of start-from.

alignment controls the position of SAS dates within the interval. Alignment can be one of these values:
BEGINNING | B specifies that the returned date is aligned to the beginning

of the interval. (DEFAULT)
MIDDLE | M specifies that the returned date is aligned to the midpoint of

the interval.
END | E specifies that the returned date is aligned to the end of the

interval.
SAMEDAY | S | SAME specifies that the date that is returned is aligned to the same

calendar date with the corresponding interval increment.
 Alignment is new in SAS®9.

5-44 Chapter 5 Combining Data Vertically

Reading Multiple Raw Data Files

c05s2d5
data movingq;
 drop MonNum MidMon LastMon I;
 MonNum=month(today());
 MidMon=month(intnx('month',today(),-1));
 LastMon=month(intnx('month',today(),-2));
 do i=MonNum, MidMon, LastMon;
 NextFile="month"||put(i,2.)||".dat";
 NextFile=compress(NextFile,' ');
 do until (LastObs);
 infile zzz filevar=NextFile end=LastObs;
 input Flight $ Origin $ Dest $ Date : date9.
 RevCargo : comma15.;
 output;
 end;
 end;
 stop;
run;

 For z/OS (OS/390):
NextFile = '.prog3.rawdata(month'||put(i,2.)||')';

 5.2 Appending Raw Data Files 5-45

Log
data movingq;
 drop MonNum MidMon LastMon I;
 MonNum=month(today());
 MidMon=month(intnx('month',today(),-1));
 LastMon=month(intnx('month',today(),-2));
 do i=MonNum, MidMon, LastMon;
 NextFile="month"||put(i,2.)||".dat";
 NextFile=compress(NextFile,' ');
 do until (LastObs);
 infile zzz filevar=NextFile end=LastObs;
 input Flight $ Origin $ Dest $ Date : date9.
 RevCargo : comma15.;
 output;
 end;
 end;
 stop;
run;

NOTE: The infile ZZZ is:
 File Name=c:\workshop\winsas\prog3\month2.dat,
 RECFM=V,LRECL=256

NOTE: The infile ZZZ is:
 File Name=c:\workshop\winsas\prog3\month1.dat,
 RECFM=V,LRECL=256

NOTE: The infile ZZZ is:
 File Name=c:\workshop\winsas\prog3\month12.dat,
 RECFM=V,LRECL=256

NOTE: 2090 records were read from the infile ZZZ.
 The minimum record length was 33.
 The maximum record length was 37.
NOTE: 2299 records were read from the infile ZZZ.
 The minimum record length was 33.
 The maximum record length was 37.
NOTE: 2190 records were read from the infile ZZZ.
 The minimum record length was 33.
 The maximum record length was 37.
NOTE: The data set WORK.MOVINGQ has 6579 observations and 5 variables.
NOTE: DATA statement used:
 real time 0.48 seconds
 cpu time 0.14 seconds

 This program was run in February.

5-46 Chapter 5 Combining Data Vertically

46

Considering Efficiency
To make the program more efficient, call the TODAY
function only once.

c05s2d5a

today = today();
MonNum = month(today);
MidMon = month(intnx('month',today,-1));
LastMon = month(intnx('month',today,-2));

c05s2d5a
data movingq;
 drop MonNum MidMon LastMon I today;
 today = today();
 MonNum = month(today);
 MidMon = month(intnx('month',today,-1));
 LastMon = month(intnx('month',today,-2));
 do i=MonNum, MidMon, LastMon;
 NextFile = "month"||put(i,2.)||".dat"; * PC and Unix;
 *Nextfile = ".prog3.rawdata(month"||put(i,2.)||")"; * mainframe ;
 NextFile=compress(NextFile,' ');
 do until (LastObs);
 infile xxx filevar=NextFile end=LastObs;
 input Flight $ Origin $ Dest $ Date : date9.
 RevCargo : comma15.2;
 output;
 end;
 end;
 stop;
run;

 5.2 Appending Raw Data Files 5-47

Instead of using the concatenate operator (|| or !!), you could use the concatenation functions.

Function Use Example

CAT concatenates character strings without removing
leading or trailing blanks.

newvar = cat(var1,var);

CATS concatenates character strings and removes
leading and trailing blanks.

newvar = cats(var1,var);

CATT concatenates character strings and removes
trailing blanks only.

newvar = catt(var1,var);

CATX concatenates character strings, removes leading
and trailing blanks, and inserts separators.

newvar = catx(' ',var1,var);

Caution: Without specifying the LENGTH of the new variable, the value of the new variable returned
by any of the CAT functions has a length of up to the following:
• 200 characters in WHERE clauses and in PROC SQL
• 32,767 characters in the DATA step except in WHERE clauses
• 65,534 characters when string is called from the macro processor

Administrator
高亮

Administrator
高亮

Administrator
高亮

5-48 Chapter 5 Combining Data Vertically

Reference Information

Storing the Raw Data Filenames in a SAS Data Set

If raw data files that are to be read are in the SAS data set ia.rawdata shown below:
Obs ReadIt

1 route1.dat
2 route2.dat
3 route3.dat
4 route4.dat
5 route5.dat

then you can use the following code:

c05ref3.sas
data route1_5;
 set ia.rawdata;
 infile zzz filevar = ReadIt end = LastFile ;
 do while(LastFile = 0);
 input @1 RouteID $7.
 @8 Origin $3.
 @11 Dest $3.
 @14 Distance 5.
 @19 Fare1st 4.
 @23 FareBusiness 4.
 @27 FareEcon 4.
 @31 FareCargo 5.;
 output;
 end;
run;

 The data set ia.rawdata contains the variable named Readit whose value is the name of the
raw data files: month1, month2, month3, month4, and month5.

 The letter grouping zzz is a placeholder, not an actual filename or a fileref that was previously
assigned to a file. SAS uses this placeholder for reporting processing information to the SAS log.
The placeholder is an arbitrary word; however, it must be eight characters or fewer, begin with an
alpha character or underscore, followed by alphanumeric characters or underscores.

 The FILEVAR= option specifies the value for the FILEVAR= variable. The INFILE statement
closes the current file and opens a new one if the value of Readit changed when the INFILE
statement executed.

 LastFile is the arbitrary variable name created by the END= option. LastFile is a
temporary variable and is set to 1 after each file is finished being read.

 The DO WHILE loop checks the value of the variable LastFile at the top of the loop.
Therefore, the INPUT statement reads from the current open INPUT file. Use a DO WHILE loop
here, not a DO UNTIL loop. The DO UNTIL stops the DATA step if any file is empty.

 The OUTPUT statement writes the contents of the Program Data Vector to create an observation
of the SAS data set. The OUTPUT statement is required in this DATA step. Without the OUTPUT
statement, the data set route1_5 contains only six observations, that is, one per external file.

 5.2 Appending Raw Data Files 5-49

Storing the Raw Data Filenames in an External File

If the raw data files to be read are in the external file rawfiles.dat shown below:
route1.dat
route2.dat
route3.dat
route4.dat
route5.dat

then you can use the following code:

c05ref4.sas
data route1_5;
 infile 'rawfiles.dat';
 input ReadIt $ 10.;
 infile zzz filevar = ReadIt end = LastFile ;
 do while(LastFile = 0);
 input @1 RouteID $7.
 @8 Origin $3.
 @11 Dest $3.
 @14 Distance 5.
 @19 Fare1stclass 4.
 @23 FareBusiness 4.
 @27 FareEcon 4.
 @31 FareCargo 5.;
 output;
 end;
run;

 The raw data file rawfiles contains the field whose value is the name of the raw data files,
month1, month2, month3, month4, and month5. The INPUT statement reads the variable
ReadIt of length 10.

 The letter grouping zzz is a placeholder, not an actual filename or a fileref that was previously
assigned to a file. SAS uses this placeholder for reporting processing information to the SAS log.
The placeholder is an arbitrary word; however, it must be eight characters or fewer, begin with an
alpha character or underscore, followed by alphanumeric characters or underscores.

 The FILEVAR= option specifies the value for the FILEVAR= variable. The INFILE statement
closes the current file and opens a new one if the value of Readit changed when the INFILE
statement executes.

 LastFile is the arbitrary variable name created by the END= option. LastFile is a
temporary variable and is set to 1 after each file is finished being read.

 The DO WHILE loop checks the value of the variable LastFile at the top of the loop.
Therefore, the INPUT statement reads from the current open INPUT file. Use a DO WHILE loop
here, not a DO UNTIL loop. The DO UNTIL stops the DATA step if any file is empty.

 The OUTPUT statement writes the contents of the Program Data Vector to create an observation
of the SAS data set. The OUTPUT statement is required in this DATA step. Without the OUTPUT
statement, the data set route1_5 contains only six observations, that is, one per external file.

5-50 Chapter 5 Combining Data Vertically

Exercises

3. Using the FILEVAR= Option

Concatenate the company’s annual raw data files for the current year and previous two years using the
FILEVAR= option. Create a SAS data set named last3.

The raw data files use the naming convention Yyyyy. For example:

For directory based: y2005.dat

For z/OS (OS/390): '.prog3.rawdata(y2005)'

Open the program c05ex3Start, which contains the following INPUT statement:
input Flight $ Date : date9. Depart : time5.;

Partial Output
Three Years of Data

 Obs Flight Date Depart

 1 IA00100 01JAN2005 7:00
 2 IA00101 01JAN2005 19:00
 3 IA00200 01JAN2005 23:30
 4 IA00201 01JAN2005 11:30
 5 IA00300 01JAN2005 7:30
 6 IA00301 01JAN2005 19:30
 7 IA00400 01JAN2005 1:30
 8 IA00401 01JAN2005 13:30
 9 IA00500 01JAN2005 6:30
 10 IA00501 01JAN2005 10:00

4. Using the FILENAME Statement

Use the FILENAME statement to concatenate the route3 and route5 raw data files and create a
SAS data set named EuropeFlights. The raw data files are as follows:

For directory based: route3.dat

 route5.dat

For z/OS (OS/390): '.prog3.rawdata(route3)'

 '.prog3.rawdata(route5)'

Open the program c05ex4Start, which contains the following INPUT statement:

 5.2 Appending Raw Data Files 5-51

input @1 RouteID $7.
 @8 Origin $3.
 @11 Destination $3.
 @14 cargo 5.
 @19 totalpass 4.
 @23 boarded 4.
 @27 transfered 4.;

Partial Output
 European Flights

 Obs RouteID Origin Destination cargo totalpass boarded transfered

 1 0000002 LHR RDU 3893 1600 1090 531
 2 0000004 FRA RDU 4288 1761 1201 585
 3 0000043 LHR CDG 223 91 62 30
 4 0000044 CDG LHR 223 91 62 30
 5 0000045 LHR GLA 347 142 97 47
 6 0000046 GLA LHR 347 142 97 47
 7 0000047 LHR FRA 397 163 111 54
 8 0000048 FRA LHR 397 163 111 54
 9 0000049 LHR BRU 207 85 57 28
 10 0000050 BRU LHR 207 85 57 28
 11 0000051 LHR GVA 465 190 130 63
 12 0000052 GVA LHR 465 190 130 63
 13 0000055 FRA FCO 595 244 167 81
 14 0000056 FCO FRA 595 244 167 81
 15 0000057 FRA CPH 424 174 118 57
 16 0000059 CDG MAD 644 265 180 88
 17 0000060 MAD CDG 644 265 180 88
 18 0000061 CDG LIS 899 369 251 123
 19 0000062 LIS CDG 899 369 251 123

5-52 Chapter 5 Combining Data Vertically

5.3 Solutions to Exercises

1. Updating a Data Set Using the APPEND Procedure

Create the work.quarter4 and work.y2005 data sets by submitting the code in the ProcCopy
program file:
proc copy in = ia out = work;
 select Quarter4 Y2005;
run;

Append work.quarter4 to work.y2005. First, determine if the data sets have the same
variables. The resulting data set should be work.y2005 data with the additional observations from
work.quarter4.
proc append data = quarter4 base = y2005 force;
run;

2. Updating a Data Set Using the INSERT INTO Statement in the SQL Procedure (Optional)

Create the work.quarter4 and work.y2005 data sets by submitting the code in the ProcCopy
program file:
proc copy in = ia out = work;
 select Quarter4 Y2005;
run;

Append work.quarter4 to work.y2005 using the INSERT INTO statement in the SQL
procedure. First, determine if the data sets have the same variables. The resulting data set should be
work.y2005 data with the additional observations from work.quarter4.
proc sql;
 insert into work.y2005(CrgoRev1, CrgoRev2, CrgoRev3,
 CrgoRev4, CrgoRev5, CrgoRev6,
 Date)
 select CrgoRev1, CrgoRev2, CrgoRev3, CrgoRev4,
 CrgoRev5, CrgoRev6, Date
 from work.quarter4;
quit;

 5.3 Solutions to Exercises 5-53

3. Using the FILEVAR= Option

Concatenate the company’s annual raw data files for the current year and previous two years using the
FILEVAR= option. Create a SAS data set named last3.

The raw data files use the following naming convention: Yyyyy. For example:

For directory based: y2005.dat

For z/OS (OS/390): '.prog3.rawdata(y2005)'

Open the program c05ex3Start, which contains the following INPUT statement:
input Flight $ Date : date9. Depart : time5.;

Save your SAS program.

For directory based: ch3ex1.sas

For z/OS (OS/390): '.prog3.sascode(ch3ex1)'
data last3(drop=year thisyear);
 thisyear=year(today());
 do year=thisyear to thisyear-2 by -1;
 NextFile="y"||put(year,4.)||".dat";
 do until(Last);
 infile zzz filevar=NextFile end=Last;
 input Flight $ Date : date9. Depart : time5.;
 output;
 end;
 end;
 stop;
run;

proc print data=last3;
 format Date date9. Depart time5.;
 title 'Three Years of Data';
run;

5-54 Chapter 5 Combining Data Vertically

4. Using the FILENAME Statement

Use the FILENAME statement to concatenate the route3 and route5 raw data files and create a
SAS data set named EuropeFlights. The raw data files are as follows:

For directory based: route3.dat

 route5.dat

For z/OS (OS/390): '.prog3.rawdata(route3)'

 '.prog3.rawdata(route5)'

Open the program c05ex4Start, which contains the following INPUT statement:
input @1 RouteID $7.
 @8 Origin $3.
 @11 Destination $3.
 @14 cargo 5.
 @19 totalpass 4.
 @23 boarded 4.
 @27 transfered 4.;

filename europe ('route3.dat' 'route5.dat'); /* Windows/UNIX */
*filename europe ('.prog3.rawdata(route3)'
 '.prog3.rawdata(route5)'); /* z/OS */

data EuropeFlights;
 infile europe;
 input @1 RouteID $7.
 @8 Origin $3.
 @11 Destination $3.
 @14 cargo 5.
 @19 totalpass 4.
 @23 boarded 4.
 @27 transfered 4.;
run;

title1 'European Flights';

proc print data=europeflights;
run;

Chapter 6 BY-Group Processing and
Sorting

6.1 Introduction...6-3

6.2 Eliminating Duplicates ...6-5

6.3 Sorting Resources..6-16

6.4 Choosing the Right Sort Routine (Self-Study)...6-31

6.5 Alternatives to Sorting ...6-37

6.6 Solutions to Exercises ...6-65

6-2 Chapter 6 BY-Group Processing and Sorting

 6.1 Introduction 6-3

6.1 Introduction

3

Objectives
Investigate the reasons for sorting data.
Define BY-group processing.
List alternatives to the SORT procedure.

4

Reasons for Sorting Data
Data is sorted to accomplish the following:

reorder the data for reporting

store ordered data to reduce data retrieval time

Create a report with employees listed in alphabetical
order.

enable BY-group processing in both DATA and PROC
steps

A WHERE statement executes faster if data is sorted
by the variables used in the WHERE expression.

Create individual reports for each employee.

...

6-4 Chapter 6 BY-Group Processing and Sorting

5

BY-Group Processing
BY-group processing has these characteristics:

is a method of processing observations that are
grouped or ordered by the values of common variables
can be used in both DATA and PROC steps
can be used to eliminate observations with duplicate
BY values

These techniques can be used to perform BY-group
processing:

use the SORT procedure
index the data set
use the NOTSORTED option in the BY statement

6

Alternatives to Sorting
There are several alternatives to sorting data:

indexing
using grouped, but not sorted, data
implementing user-sort assertion
using a CLASS statement

 6.2 Eliminating Duplicates 6-5

6.2 Eliminating Duplicates

8

Objectives
Use the NODUPKEY option.
Use FIRST. and LAST. processing.
Create a data set using the DUPOUT= option.

9

Using the NODUPKEY Option
NODUPKEY

checks for and eliminates observations
with duplicate BY values.

General form of the NODUPKEY option:

PROC SORT DATA = data-set-name NODUPKEY;PROC SORT DATA = data-set-name NODUPKEY;

6-6 Chapter 6 BY-Group Processing and Sorting

Reference Information

The NODUPRECS option checks for and eliminates duplicate consecutive observations.

PROC SORT DATA = data-set-name NODUPRECS;

The example below demonstrates the fact that duplicates might remain in the data set.

TABLE_ONE
A B C D
1 3 5 8
1 3 5 8
2 4 6 8
1 2 8 6
1 3 5 8
2 5 7 3

proc sort data=table_one noduprecs;
 by a;
run;

TABLE_ONE (after the sort, but before NODUPRECS)
A B C D
1 3 5 8
1 3 5 8
1 2 8 6
1 3 5 8
2 4 6 8
2 5 7 3

Only one row containing A = 1, B = 3, C = 5, and D = 8 is removed because it is the only consecutive row
that contains those values.
proc sort data=table_one noduprecs;
 by a b c d;
run;

TABLE_ONE (after the sort with NODUPRECS on all variables)
A B C D
1 2 8 6
1 3 5 8
2 4 6 8
2 5 7 3

The DATA step with FIRST. or LAST. has the advantage of additional data processing in the same step.

Removed

 6.2 Eliminating Duplicates 6-7

SORTDUP=PHYSICAL | LOGICAL
is a system option that controls how NODUPRECS processing works.

PHYSICAL removes duplicates based on all variables in the data set. This is the default.

LOGICAL removes duplicates based only on variables remaining after DROP= and KEEP= data set
options are processed.

An example of using the SORTDUP= system option is shown below.

TABLE_ONE
A B C D
1 3 5 8
1 3 8 6
1 3 8 6

options sortdup = physical; /* This is the default. */
proc sort data = table_one(drop = C D) noduprecs;
 by a b;
run;

TABLE_ONE
A B
1 3
1 3

Because the first two rows are different before columns C and D are dropped, PROC SORT with the
NODUPRECS option retains both rows in the output table when SORTDUP=PHYSICAL.
options sortdup = logical;
proc sort data = table_one(drop = C D) noduprecs;
 by a b;
run;

TABLE_ONE
A B
1 3

6-8 Chapter 6 BY-Group Processing and Sorting

10

Eliminate Duplicates
The data set ia.allemps contains data for both
retired and current employees. Because the data was
drawn from different sources, multiple observations were
accidentally inserted for some employee ID numbers.
Create a new SAS data set that contains only one
observation for each employee ID number.

Obs EmpID LastName Phone Location Division

1 E00010 FOSKEY 1666 CARY AIRPORT OPERATIONS
2 E00015 BROWN 1263 CARY AIRPORT OPERATIONS
3 E00025 BROCKLEBANK 1248 CARY AIRPORT OPERATIONS
4 E00029 MAROON 1325 CARY AIRPORT OPERATIONS
5 E00042 ANDERSON 1045 CARY AIRPORT OPERATIONS
6 E00053 CURTIS 1468 CARY AIRPORT OPERATIONS

ia.allemps (First Six Observations)

11

DATA Step with FIRST. Processing
proc sort data = ia.allemps

out = allemps;
by EmpID;

run;

data allemps dups;
set allemps;
by EmpID;
if first.EmpID then output

allemps;
else output dups;

run;

c06s2d1

 6.2 Eliminating Duplicates 6-9

12

Using the DUPOUT= Option
The SORT procedure DUPOUT= option specifies the
output data set to which duplicate observations are
written.

proc sort data = ia.allemps nodupkey
out = allemps
dupout = dups;

by EmpID;
run;

c06s2d2

 The NODUPKEY option selects duplicate observations based on the key value EmpID.

 The DUPOUT= option creates a data set named dups that contains the duplicate observations.

 The DUPOUT= option is new in SAS®9.

6-10 Chapter 6 BY-Group Processing and Sorting

Partial work.allemps Data Set
Work.Allemps Data Set

Obs EmpID LastName Phone Location Division

 1 E00001 MILLS 2380 CARY FLIGHT OPERATIONS
 2 E00002 BOWER 1214 CARY FINANCE & IT
 3 E00003 READING 1428 CARY HUMAN RESOURCES & FACILITIES
 4 E00004 JUDD 2061 CARY HUMAN RESOURCES & FACILITIES
 5 E00005 WONSILD 1086 COPENHAGEN AIRPORT OPERATIONS
 6 E00006 ANDERSON 1007 CARY SALES & MARKETING
 7 E00007 MASSENGILL 2290 CARY FLIGHT OPERATIONS
 8 E00008 BADINE 1000 TORONTO CORPORATE OPERATIONS
 9 E00009 DEMENT 1506 CARY FINANCE & IT
 10 E00010 FOSKEY 1666 CARY AIRPORT OPERATIONS
 11 E00011 POOLE 2594 CARY FLIGHT OPERATIONS
 12 E00012 LEWIS 2207 CARY SALES & MARKETING
 13 E00013 DBAIBO 1002 BOSTON HUMAN RESOURCES & FACILITIES
 14 E00014 KEARNEY 2075 CARY FLIGHT OPERATIONS
 15 E00015 BROWN 1263 CARY AIRPORT OPERATIONS
 16 E00017 SIMPSON 2821 CARY HUMAN RESOURCES & FACILITIES
 17 E00018 CROSS 1459 CARY HUMAN RESOURCES & FACILITIES
 18 E00019 DANZIN 1005 BRUSSELS SALES & MARKETING
 19 E00020 JOHNSON 1256 CARY HUMAN RESOURCES & FACILITIES
 20 E00021 BAKER JR. 1001 HOUSTON SALES & MARKETING

Partial work.dups Data Set
Work.Dups Data Set

 Obs EmpID LastName Phone Location Division

 1 E00019 DANZIN 1012 CARY AIRLINE OPERATIONS
 2 E00059 BAUWENS 1001 BRUSSELS SALES & MARKETING
 3 E00068 PENDERGRASS 1060 SYDNEY HUMAN RESOURCES & FACILITIES

 6.2 Eliminating Duplicates 6-11

13

Using the EQUALS | NOEQUALS Option
The EQUALS | NOEQUALS option specifies the order of
the observations in the output data set.

For observations with identical BY-variable values,
EQUALS maintains the relative order of the
observations within the input data set in the output
data set.
NOEQUALS does not necessarily preserve this order
in the output data set.

 EQUALS is the default.

Additionally, there is a new SAS global option, SORTEQUALS | NOSORTEQUALS, that enables you to
globally disengage the stable sorting logic (EQUALS) that is on by default in the SORT procedure.
SORTEQUALS is the shipped default to maintain backward compatibility, but NOSORTEQUALS is
recommended.

6-12 Chapter 6 BY-Group Processing and Sorting

14

EQUALS Option versus NOEQUALS Option
proc sort data = ia.allemps out = allemps

nodupkey equals;
by EmpID;

run;

proc sort data = ia.allemps out = allemps
nodupkey noequals;

by EmpID;
run;

When you use the NODUPKEY option to remove
observations in the output data set, the choice of EQUALS
or NOEQUALS can affect which observations are removed.

c06s2d3

 EQUALS maintains the relative order of the observations within the input data set in the output data
set.

 NOEQUALS does not necessarily preserve this order in the output data set.

15

Using the EQUALS | NOEQUALS Option
Using NOEQUALS can save CPU time and memory.
However, with multi-threaded sort the following results
might occur:

Using the NOEQUALS option might result in the order
of observations within BY groups being different in
each run.
Using the EQUALS option might reduce I/O
performance because partitioned data sets will be
processed as if they were non-partitioned data sets.

 6.2 Eliminating Duplicates 6-13

Exercises

1. Creating Data Sets with the SORT procedure

The data set ia.retirees is a list of recent retirees from International Airlines and contains
duplicate observations. Create two data sets, one named retirees that contains unique rows of data
for each employee ID number and the other named duprets containing the duplicate observations.

6-14 Chapter 6 BY-Group Processing and Sorting

Retirees data set:
Retirees Data Set - After Duplicates Removed

Obs Division HireDate LastName

 1 FINANCE & IT 28DEC1945 LIMING
 2 AIRPORT OPERATIONS 03MAY1943 NOSCHKA
 3 FLIGHT OPERATIONS 02NOV1947 WALKER
 4 HUMAN RESOURCES & FACILITIES 16DEC1941 MILLER
 5 HUMAN RESOURCES & FACILITIES 21JUN1946 COOKE
 6 FINANCE & IT 29APR1940 STROTHER
 7 FLIGHT OPERATIONS 06DEC1944 SHARMA
 8 FINANCE & IT 22MAY1940 JAYAWICKRAMA
 9 SALES & MARKETING 26APR1950 SEDELL
 10 FLIGHT OPERATIONS 13DEC1945 ERICKSON
 11 FLIGHT OPERATIONS 03OCT1945 LEGEROS
 12 SALES & MARKETING 04JUN1944 BAYLOR JR.
 13 FINANCE & IT 23MAY1943 MORRIS
 14 AIRPORT OPERATIONS 17AUG1946 PELLET

Obs FirstName EmpCountry

 1 RHONDA D. USA
 2 IRIS GERMANY
 3 CHARLES H. USA
 4 RAYMA M. USA
 5 HARALD GERMANY
 6 ROGER USA
 7 STEVEN UNITED KINGDOM
 8 LEWIS USA
 9 SANDRA USA
 10 KECIA H. USA
 11 SELBY USA
 12 JULIE R. USA
 13 MARK J. USA
 14 ISABELLE FRANCE
 Job
Obs EmpLocation Phone EmpID Code

 1 CARY 2215 E00369 FINACT
 2 FRANKFURT 1128 E00566 FLSCHD
 3 CARY 3070 E00919 MECH01
 4 DALLAS 1061 E01394 FACMNT
 5 FRANKFURT 1023 E01854 RESCLK
 6 CARY 2910 E01976 ITCLK
 7 LONDON 1131 E02044 PILOT1
 8 CARY 2011 E02225 FINMGR
 9 SAN FRANCISCO 1009 E02663 MKTCLK
 10 CARY 1156 E03083 FLTAT1
 11 CARY 2186 E03292 FLTAT3
 12 DALLAS 1004 E03486 SALCLK
 13 CARY 2411 E03693 FINMGR
 14 PARIS 1063 E04182 GRCSUP

(Continued on the next page.)

 6.2 Eliminating Duplicates 6-15

Retirees Data Set - After Duplicates Removed

Obs Division HireDate LastName

 15 AIRPORT OPERATIONS 17NOV1941 FABIAN
 16 FLIGHT OPERATIONS 16FEB1947 HUMMEL

Obs FirstName EmpCountry

 15 GUENTER GERMANY
 16 THOMAS GERMANY

 Job
Obs EmpLocation Phone EmpID Code

 15 FRANKFURT 1036 E04395 CHKCLK
 16 FRANKFURT 1071 E04614 MECH01

Duprets data set:
Duprets Data Set

Obs Division HireDate LastName

 1 FINANCE & IT 28DEC1945 LIMING
 2 FLIGHT OPERATIONS 13DEC1945 ERICKSON
 3 FLIGHT OPERATIONS 03OCT1945 LEGEROS

Obs FirstName EmpCountry

 1 RHONDA D. USA
 2 KECIA H. USA
 3 SELBY USA

 Job
Obs EmpLocation Phone EmpID Code

 1 CARY 2215 E00369 FINACT
 2 CARY 1156 E03083 FLTAT1
 3 CARY 2186 E03292 FLTAT3

6-16 Chapter 6 BY-Group Processing and Sorting

6.3 Sorting Resources

18

Objectives
Define threading.
Understand the workspace and library space
required to sort a SAS data file.
Estimate sort workspace.
Allocate sort workspace.

19

Threading
In SAS®9, the SORT procedure is multi-threaded.
A thread is defined as the following:

a single path of execution
a basic unit of program execution in a thread-enabled
operating environment

Administrator
高亮

 6.3 Sorting Resources 6-17

20

Multi-Threaded Processing
Multi-threaded processing is a type of parallel
processing introduced in SAS®9.
Parallel processing means that multiple units of work
are available to be scheduled for concurrent execution
by the operating system.
This technology takes advantage of hardware called
symmetric multiprocessing machines (SMPs) that has
multiple central processing units (CPUs).

6-18 Chapter 6 BY-Group Processing and Sorting

21

Multi-Threaded Processing
A symmetric multiprocessing environment possesses the
following features:

has multiple CPUs that share the same memory and
a thread-enabled operating system
can spawn and process multiple threads
simultaneously using multiple CPUs
enables the application to coordinate threads from the
same process to share data very efficiently

• In an SMP computer environment, one instance of an operating system runs on several CPUs.

Applications that run under this operating system can also run on several or all existing CPUs. All
processes (operating system and applications) share the same memory and the same I/O resources.

• SMP systems are referred to as shared everything systems.
• One advantage of the SMP architecture is the ability to distribute the computational load dynamically

over the existing CPUs and thus achieve equal loading of the CPUs.
• SMP systems can be arranged in multiple clusters to achieve even more scalability that often extends

into 10 terabytes or more of data capacity and processing support.

 6.3 Sorting Resources 6-19

22

Parallel Processing with Four Threads

Data file partitioned
into chunks
Where subset, keep
list filter, summarize,
sort, and so on

Collate process

Partial Results

Thread 1Thread 2 Thread 3 Thread 4

1 2 3 4

In this example, four processing threads are created:
• Thread 1 starts reading and processing the first chunk of data.
• Thread 2 takes the second chunk of data.
• Thread 3 takes the third chunk of data.
• Thread 4 takes the fourth chunk of data.

The chunks of data are approximately equal in size and the size is generally the total number of
observations in the data set size divided by the current value of the CPUCOUNT SAS system option. For
example, if the total data set has 1,073,741,824 observations and the value of CPUCOUNT is 4, each
thread has a chunk of data that is approximately 268,435,456 observations in size.

Administrator
高亮

6-20 Chapter 6 BY-Group Processing and Sorting

23

Multi-Threaded Processing
Processes suitable for threading are the following:

sorting
grouping
summarizing

Threading can be enabled or disabled for the following
Base SAS procedures:

MEANS/SUMMARY
REPORT
SORT (excludes TAGSORT option)
SQL (GROUP BY and ORDER BY)
TABULATE

 When you benchmark using the threaded procedures, use the Real Time statistic rather than the
CPU time statistic. The back-end collating process to re-create the single data set might result in
an increase in total CPU time, while reducing wall-clock time (time from submission of code for
execution to return of results).

24

Threaded Procedures in Base SAS
Threaded processing can be controlled via the
SAS system option THREADS | NOTHREADS.

The default is THREADS.

OPTIONS THREADS | NOTHREADS;OPTIONS THREADS | NOTHREADS;

 6.3 Sorting Resources 6-21

25

Threaded Procedures in Base SAS

PROC SORT DATA = SAS-data-set THREADS | NOTHREADS;PROC SORT DATA = SAS-data-set THREADS | NOTHREADS;

The THREADS | NOTHREADS option also can
be specified in the PROC statement, which enables
or disables multi-threaded processing of the input
data set.
When the option is specified in the PROC statement,
the SAS system option THREADS | NOTHREADS is
overridden.

Example:

26

Threaded Procedures in Base SAS
The number of CPUs to use for processing can be
controlled with the CPUCOUNT system option.

1-1024
is the number of CPUs that SAS will assume
are available for use by threaded-enabled
applications.

ACTUAL
is the number of CPUs that SAS detects are
available for a specific session.

The default is ACTUAL.

OPTIONS CPUCOUNT = 1-1024 | ACTUAL;OPTIONS CPUCOUNT = 1-1024 | ACTUAL;

 The SAS Administrator might have limited the number of CPUs that are available for SAS
processing, so the value ACTUAL might be less than the total number of CPUs in the machine that
SAS is using.

6-22 Chapter 6 BY-Group Processing and Sorting

27

Sort Space Requirements

sales

ia

sales

proc sort data = ia.sales force;
by FltDate FlightID;

run;

Disk Space

SORT utility work space

...

mem
ory

Space required for the SAS sort.

28

Sort Space Requirements
The amount of space that the SAS sort needs depends on
the following conditions:

whether the sorting can be accomplished with
threading
the length of the observations
the number of variables in the BY statement
the length of the variables in the BY statement
the operating environment in which the PROC SORT
executes
the library to which the sorted data is written

 6.3 Sorting Resources 6-23

29

Sort Space Requirements
By default, the space requirements of the SAS sort
include the space for two copies of the original data set
and the utility work space that can be split between disk
and memory.

A quick rule of thumb method for estimating the space
requirements for sorting with the SAS sort would be four
times the size of the SAS data set being sorted.
This provides a "ballpark estimate" that is greatly
influenced by the factors listed previously.

6-24 Chapter 6 BY-Group Processing and Sorting

30

Estimating Sort Workspace (Self-Study)
The formula below calculates the estimated amount of
space needed by a single-threaded PROC SORT.

The formula below calculates the estimated amount of
space needed by a multi-threaded PROC SORT.

bytes required = ((4 * obslen) + (2 * keylen)) * numobs

bytes required = 3 * (obslen * numobs)

Use the CONTENTS or DATASETS procedure
to gather the required information.

obslen length of the observation

keylen length of the BY variables when concatenated to form a single value

numobs number of observations in the data set

This space calculation assumes that the SAS®9 sort can take place in memory, without using utility swap
files.

 The space calculation for the SAS Release 8.2 sort is as follows:

 bytes required = (keylen + obslen) * numobs*N

where N = 4 (Windows and z/OS) or N = 5 (UNIX).

 6.3 Sorting Resources 6-25

31

You want to sort the ia.sales data set by FltDate
and FlightID. Before you submit the SORT
procedure, submit this program:

Estimating Sort Workspace

proc contents data = ia.sales;
run;

c06s3d1

32

The CONTENTS Procedure

Data Set Name IA.SALES Observations 329264
Member Type DATA Variables 21
Engine V9 Indexes 2
Created Monday, March 28, 2005 04:33:52 PM Observation Length 168

-----Engine/Host Dependent Information-----

Data Set Page Size 16384
Number of Data Set Pages 3396

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Informat Label

1 FlightID Char 7 Flight Number
6 FltDate Num 8 DATE9. Scheduled Date of Flight

 The data set ia.sales used for demonstrations and exercises contains fewer observations than
the data set ia.sales used for the course notes.

6-26 Chapter 6 BY-Group Processing and Sorting

33

Estimating Single-Threaded Sort Workspace
Substitute the values into the equation to calculate the
workspace required to sort the data using a single thread:

((4 * 168) + (2 * (8+7)) * 329264 = 231,143,328 bytes

bytes required = ((4 * obslen) + (2 * keylen)) * numobs

 6.3 Sorting Resources 6-27

34

Estimating Multi-Threaded Sort Workspace
Substitute the values into the equation to calculate the
workspace required to sort the data using multiple
threads:

3 * (168 * 329264) = 165,949,056 bytes

bytes required = 3 * (obslen * numobs)

In multi-threaded environments, if you use the OVERWRITE option in the PROC SORT statement, you
need space equal to the data set size. The OVERWRITE option enables the input data set to be deleted
before the replacement output data set is populated with observations. The OVERWRITE option is
supported by the SAS sort and SAS multi-threaded sort only. The option has no effect if you use a host
sort or the TAGSORT option.

Use the OVERWRITE option only with a data set that is backed up or with a data set that you can
reconstruct. Because the input data set is deleted, data will be lost if a failure occurs while the output data
set is being written.

6-28 Chapter 6 BY-Group Processing and Sorting

35

Allocating Sort Workspace
If the actual required workspace is less than or equal to
the value specified in the SORTSIZE= system or
procedure option, then the entire sort can occur in
memory, which reduces processing time.
If the actual required workspace is greater than the value
specified in the SORTSIZE= option, then utility files on
disk are required, which increases processing time.

The multi-threaded SAS 9.1.x sort fails to complete
a sort if the value of SORTSIZE is too small.

36

Use the SORTSIZE= option to do the following:
specify the amount of memory that is available to the
SORT procedure
improve the sort performance by restricting the
swapping of memory that is controlled by the operating
system

General form of the SORTSIZE= option:

Using the SORTSIZE= Option

SORTSIZE=n | nK | nM | nG | MIN | MAX | hexX | SIZE; SORTSIZE=n | nK | nM | nG | MIN | MAX | hexX | SIZE;

 6.3 Sorting Resources 6-29

37

The SORTSIZE= Option to Increase Efficiency
If the SORT procedure requires more workspace
than specified in SORTSIZE=, it performs the following
tasks:

creates a temporary utility file in the SAS Work
directory or mainframe temporary area
requests memory up to the value specified by
SORTSIZE=
writes partially sorted data to the utility file
repeats the process until all the data is sorted
combines the data in the utility files to create the final
data set

38

The SORTSIZE= Option to Increase Efficiency
The SORT procedure's algorithm can swap data more
efficiently than the operating environment can
because the procedure knows what data is needed
and what is not.
For optimal performance, set the SORTSIZE= option
to a value less than the available physical memory,
and allow programs and the operating environment to
stay in memory.

6-30 Chapter 6 BY-Group Processing and Sorting

39

Using the SORTSIZE= Option
You should investigate how resources are affected if
you change the SORTSIZE= option.

proc sort data = ia.sales force
sortsize = max;

by FlightID FltDate;
run;

c06s3d2

 6.4 Choosing the Right Sort Routine (Self-Study) 6-31

6.4 Choosing the Right Sort Routine (Self-Study)

41

Objectives
Understand the processing differences between host
and portable sort utilities.
Learn how to specify a particular sort utility.

42

What Is the Portable Sort?
The portable sort utility has the following characteristics:

is supplied by SAS for all operating environments
executes in memory up to the limit imposed by the
SORTSIZE= option
minimizes its use of external storage

Administrator
高亮

6-32 Chapter 6 BY-Group Processing and Sorting

43

What Is a Host Sort Utility?
Third-party sort packages
Available on Windows platforms in SAS Release 8.2
and later
Available in UNIX and z/OS

Ask your system administrator if a host sort utility
is available at your site.

44

Host Sort Utilities

* Default

Syncsort *Windows

Syncsort *Unix

Dfsort *
Syncsort

z/OS

Host Sort UtilitiesPlatform

 6.4 Choosing the Right Sort Routine (Self-Study) 6-33

45

SAS System Options for Selecting a Host Sort
Use these options to select a host sort:

SORTPGM=
SORTCUTP=
SORTNAME=

Administrator
高亮

Administrator
高亮

Administrator
高亮

6-34 Chapter 6 BY-Group Processing and Sorting

46

SORTPGM= System Option
The SORTPGM= system option specifies which sort utility
to use.
General form of the SORTPGM= system option:

OPTIONS SORTPGM = utility | BEST | HOST | SAS;OPTIONS SORTPGM = utility | BEST | HOST | SAS;

utility names the host sort utility.

BEST specifies that SAS chooses the sort utility. This is the default in z/OS.

HOST specifies that the host sort utility is always used.

SAS specifies that the SAS sort utility is always used. This is the default on UNIX and Windows.

SORTPGM = BEST
• enables SAS to pass an ORDER BY clause to the DBMS when the SAS data set is accessed via a

SAS/ACCESS engine.
• sorts data according to the DBMS sort rules, then the host sort rules, and then the SAS sort rules.

(Sorting uses the first available and pertinent sorting algorithm in this list.) This is the default.

 6.4 Choosing the Right Sort Routine (Self-Study) 6-35

47

SORTCUTP= System Option
The SORTCUTP= system option specifies the size limit
(in bytes) of a SAS data set. If the data set size is larger
than the specified size, the host sort utility is used instead
of the portable sort utility.
General form of the SORTCUTP= system option:

OPTIONS SORTCUTP=n | nK | nM | nG | MAX | MIN | hexX;OPTIONS SORTCUTP=n | nK | nM | nG | MAX | MIN | hexX;

 Under UNIX and Windows, SORTCUT= is an alias for SORTCUTP=.

48

Default SORTCUTP= System Option Values

* SAS sort is used until this value is reached.
** SAS sort is always used.

0 **Windows

0 **UNIX

4M *z/OS

Default SORTCUTP= ValuesPlatform

6-36 Chapter 6 BY-Group Processing and Sorting

49

SORTNAME= System Option
The SORTNAME= system option specifies the host sort
utility to be invoked if SORTPGM=BEST | HOST.
General form of the SORTNAME= system option:

OPTIONS SORTNAME = host-sort-utility-name;OPTIONS SORTNAME = host-sort-utility-name;

 The SORTNAME= option is only required if you have more than one host sort installed at your
site on your platform.

 6.5 Alternatives to Sorting 6-37

6.5 Alternatives to Sorting

51

Objectives
Use indexes to return the data in sorted order.
Use indexes to combine data horizontally.
Use a format to group data for BY-group processing.
Use a CLASS statement.

6-38 Chapter 6 BY-Group Processing and Sorting

52

Using an Index for BY-Group Processing
BY-group processing with an index eliminates the
need to sort data.
Having multiple indexes enables sequencing data by
different variables without having to repeat the sort
procedure.
Indexes are updated when observations are modified
or are added to a SAS data set, and thus eliminate the
need to re-sort.

options msglevel = i;
proc print data = ia.sales(obs = 25);

by Origin;
var FlightID FltDate Cap1st CapBus CapEcon;
title 'Using Indexes to Avoid a Sort';

run;

c06s5d1

Using an index for BY-group processing with Scalable Performance Data Engine data is discussed in a
later chapter.

 The data set ia.sales used for demonstrations and exercises contains fewer observations than
the data set ia.sales used for the course notes.

53

Using an Index for BY-Group Processing
However, BY-group processing with an index has the
following limitations:

less efficient than sequentially reading a sorted data set
storage space requirement for the index
extra memory requirement to use the index

c06s5d1

49 options msglevel = i;
450 proc print data=ia.sales(obs = 25);
451 by Origin;
INFO: Index Origin selected for BY clause processing.
NOTE: An index was selected to execute the BY statement.

The observations will be returned in index order rather than in physical order.
The selected index is for the variable(s):

Origin
452 var FlightID FltDate Cap1st CapBus CapEcon;
453 title 'Using Indexes to Avoid a Sort';
454 run;

NOTE: There were 25 observations read from the data set IA.SALES.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.00 seconds
cpu time 0.01 seconds

Partial Log

 6.5 Alternatives to Sorting 6-39

54

Using an Index for BY-Group Processing
Using Indexes to Avoid a Sort

-------------------- Start Point=AKL -------------------
Flight

Obs ID FltDate Cap1st CapBus CapEcon

447 IA10800 01JAN2004 12 . 138
448 IA10801 01JAN2004 12 . 138
449 IA10802 01JAN2004 12 . 138
450 IA10803 01JAN2004 12 . 138
451 IA10804 01JAN2004 12 . 138
452 IA10805 01JAN2004 12 . 138
898 IA10800 02JAN2004 12 . 138
899 IA10801 02JAN2004 12 . 138
900 IA10802 02JAN2004 12 . 138
901 IA10803 02JAN2004 12 . 138
902 IA10804 02JAN2004 12 . 138
903 IA10805 02JAN2004 12 . 138
1350 IA10800 03JAN2004 12 . 138
1351 IA10801 03JAN2004 12 . 138
1352 IA10802 03JAN2004 12 . 138

c06s5d1

Partial Output

55

BY Statement Does Not Use an Index
A BY statement does not use an index if the following
conditions are present:

The BY statement includes the DESCENDING
or NOTSORTED option.
SAS is aware that the data file is physically stored
in sorted order on the BY variables.

6-40 Chapter 6 BY-Group Processing and Sorting

56

1. The first SET statement names the data set that has
the key values that will be used to retrieve
observations from the second data set.

2. Specify the KEY= option in the second SET statement
to use an index to retrieve observations.

General form of the KEY= option:

Using Indexes
You can use the SET/SET statements with the KEY=
option to avoid sorting a large data set when you merge
a large SAS data set with a smaller data set that can be
indexed.

SET SAS-data-file-name KEY = index-name;SET SAS-data-file-name KEY = index-name;

Use of the SET/SET statements with the KEY= option is also a good technique for merging a small driver
data set with a larger indexed data set when only the matches are required to be returned.

57

Using Indexes
The SAS data set ia.distances contains the
distance for each airline route.

Partial Data Set
RouteID Distance

0000108 298
0000070 231
0000034 3480
0000032 2018
0000066 762
0000074 1130
0000024 480
0000096 893
0000036 442

. .

. .
0000103 147
0000102 4581
0000072 388
0000107 298
0000106 1446

 6.5 Alternatives to Sorting 6-41

58

Using Indexes
The data set ia.sales is not sorted by RouteID.
There are two indexes on the data set, Origin and
DteFlt. Neither of them can be used in the merge, and
you do not want to sort the large data set.

Partial Data Set
Flight
ID RouteID Origin Dest DestType FltDate . . .

IA10700 0000107 WLG AKL International 01JAN2004 . . .
IA10701 0000107 WLG AKL International 01JAN2004 . . .
IA10702 0000107 WLG AKL International 01JAN2004 . . .
IA10703 0000107 WLG AKL International 01JAN2004 . . .
IA10704 0000107 WLG AKL International 01JAN2004 . . .
IA10705 0000107 WLG AKL International 01JAN2004 . . .
IA06900 0000069 LHR AMS International 01JAN2004 . . .
IA06901 0000069 LHR AMS International 01JAN2004 . . .
IA06902 0000069 LHR AMS International 01JAN2004 . . .

 The data set ia.sales used for demonstrations and exercises contains fewer observations than
the data set ia.sales used for the course notes.

59

Using Indexes

c06s5d2

proc datasets lib = ia;
modify distances;
index create RouteID;

run;
quit;

data routes;
set ia.sales;
set ia.distances key = RouteID/unique;

run;

 ia.sales is read sequentially.
 ia.distances is read by direct access using the index on RouteID.
 The UNIQUE option causes a KEY= search to always begin at the top of the index.

6-42 Chapter 6 BY-Group Processing and Sorting

61

Without the UNIQUE Option
When the UNIQUE option is not specified, the following
events occur:

Each change in the value of the KEY= variable(s)
causes the SET statement to begin searching at the
top of the index.
Repeated values of the KEY= variable(s) cause the
SET statement to retrieve successive observations
that have duplicate values of the KEY= variables.
If more consecutive duplicate KEY= values are
specified than exist in the data set that is being read,
ERROR is set to 1 and _IORC_ is not equal to 0.

62

Without the UNIQUE Option
In this example, the UNIQUE option is needed because
the data set ia.sales has duplicate RouteID
values.
Without the UNIQUE option, the output is correct.
However, the following conditions exist:

The value of _IORC_ ne 0.
The value of _ERROR_ = 1.
The log contains data error messages.

 6.5 Alternatives to Sorting 6-43

63

Without the UNIQUE Option
45 data routes_bad;
846 set ia.sales;
847 set ia.distances key = RouteID;
848 run;

FlightID=IA10701 RouteID=0000107 Origin=WLG Dest=AKL DestType=International
FltDate=01JAN2004
Cap1st=12 CapBus=. CapEcon=138 CapPassTotal=150 CapCargo=36900 Num1st=12
NumBus=. NumEcon=136
NumPassTotal=148 Rev1st=$1,524.00 RevBus=. RevEcon=$5,712.00
CargoRev=$1,460.00 RevTotal=$8,696
CargoWeight=7300 Distance=298 _ERROR_=1 _IORC_=1230015 _N_=2
FlightID=IA10702 RouteID=0000107 Origin=WLG Dest=AKL DestType=International
FltDate=01JAN2004
Cap1st=12 CapBus=. CapEcon=138 CapPassTotal=150 CapCargo=36900 Num1st=10
NumBus=. NumEcon=112
NumPassTotal=122 Rev1st=$1,270.00 RevBus=. RevEcon=$4,704.00
CargoRev=$2,500.00 RevTotal=$8,474
CargoWeight=12500 Distance=298 _ERROR_=1 _IORC_=1230015 _N_=3
. Lines omitted
ERROR: Limit set by ERRORS= option reached. Further errors of this type
will not be printed.
. Lines omitted

Partial Log Without the UNIQUE Option

64

Without the UNIQUE Option
Partial Output

Using the KEY= to Merge Data Sets

Flight
Obs ID RouteID FltDate Origin Dest Distance

1 IA10700 0000107 01JAN2004 WLG AKL 298
2 IA10701 0000107 01JAN2004 WLG AKL 298
3 IA10702 0000107 01JAN2004 WLG AKL 298
4 IA10703 0000107 01JAN2004 WLG AKL 298
5 IA10704 0000107 01JAN2004 WLG AKL 298
6 IA10705 0000107 01JAN2004 WLG AKL 298
7 IA06900 0000069 01JAN2004 LHR AMS 231
8 IA06901 0000069 01JAN2004 LHR AMS 231
9 IA06902 0000069 01JAN2004 LHR AMS 231
10 IA06903 0000069 01JAN2004 LHR AMS 231

6-44 Chapter 6 BY-Group Processing and Sorting

65

Using the NOTSORTED Option
The data set ia.lhr contains passenger count data
for flights leaving from London's Heathrow Airport on
January 1, 2005. The data set is sorted by destination,
but not by city. However, the data is grouped by city.

Destination City
BRU Brussels

CDG Paris

GLA Glasgow

GVA Geneva

Sorted by
Destination

Grouped by
City

 6.5 Alternatives to Sorting 6-45

66

Using the NOTSORTED Option
proc print data = ia.lhr;

by City notsorted;
run;

c06s5d3

The NOTSORTED option turns off sequence checking.
If your data is not grouped, it can produce

a very large amount of output.

The data set ia.lhr is not sorted or grouped by FlightID.

c06s3d3a
title 'Printing ia.lhr by FlightID';
proc print data = ia.lhr;
 by FlightID notsorted;
run;

6-46 Chapter 6 BY-Group Processing and Sorting

Partial Output
Printing ia.lhr by FlightID

------------------------ Flight Number=IA06900 -------------------------

 Num
 Num Num Pass
 Obs Dest FltDate Num1st Bus Econ Total City

 1 AMS 01JAN2005 13 . 102 115 Amsterdam

------------------------ Flight Number=IA06901 -------------------------

 Num
 Num Num Pass
 Obs Dest FltDate Num1st Bus Econ Total City

 2 AMS 01JAN2005 13 . 105 118 Amsterdam

------------------------ Flight Number=IA06902 -------------------------

 Num
 Num Num Pass
 Obs Dest FltDate Num1st Bus Econ Total City

 3 AMS 01JAN2005 12 . 95 107 Amsterdam

------------------------ Flight Number=IA06903 -------------------------

 Num
 Num Num Pass
 Obs Dest FltDate Num1st Bus Econ Total City

 4 AMS 01JAN2005 14 . 119 133 Amsterdam

------------------------ Flight Number=IA06904 -------------------------

 Num
 Num Num Pass
 Obs Dest FltDate Num1st Bus Econ Total City

 5 AMS 01JAN2005 14 . 103 117 Amsterdam

------------------------ Flight Number=IA06905 -------------------------

 Num
 Num Num Pass
 Obs Dest FltDate Num1st Bus Econ Total City

 6 AMS 01JAN2005 12 . 100 112 Amsterdam

 6.5 Alternatives to Sorting 6-47

67

Using the NOTSORTED Option
Partial Output

continued...

--------------------------City=Amsterdam---------------------------
Num

Flight Num Num Pass
Obs ID Dest FltDate Num1st Bus Econ Total

1 IA06900 AMS 01JAN2005 13 . 102 115
2 IA06901 AMS 01JAN2005 13 . 105 118
3 IA06902 AMS 01JAN2005 12 . 95 107
4 IA06903 AMS 01JAN2005 14 . 119 133
5 IA06904 AMS 01JAN2005 14 . 103 117
6 IA06905 AMS 01JAN2005 12 . 100 112

----------------------City=Brussels (Bruxelles)--------------------
Num

Flight Num Num Pass
Obs ID Dest FltDate Num1st Bus Econ Total

7 IA04900 BRU 01JAN2005 13 . 102 115
8 IA04901 BRU 01JAN2005 12 . 114 126
9 IA04902 BRU 01JAN2005 12 . 115 127
10 IA04903 BRU 01JAN2005 13 . 101 114
11 IA04904 BRU 01JAN2005 13 . 103 116
12 IA04905 BRU 01JAN2005 12 . 105 117

68

Using the NOTSORTED Option
--------------------------City=Paris--------------------------

Num
Flight Num Num Pass

Obs ID Dest FltDate Num1st Bus Econ Total

13 IA04300 CDG 01JAN2005 13 . 116 129
14 IA04301 CDG 01JAN2005 14 . 98 112
15 IA04302 CDG 01JAN2005 11 . 122 133
16 IA04303 CDG 01JAN2005 11 . 112 123
17 IA04304 CDG 01JAN2005 12 . 95 107
18 IA04305 CDG 01JAN2005 13 . 119 132

--------------------------City=Frankfurt--------------------------

Num
Flight Num Num Pass

Obs ID Dest FltDate Num1st Bus Econ Total

19 IA04700 FRA 01JAN2005 12 . 108 120
20 IA04701 FRA 01JAN2005 11 . 103 114
21 IA04702 FRA 01JAN2005 12 . 109 121
22 IA04703 FRA 01JAN2005 14 . 120 134

6-48 Chapter 6 BY-Group Processing and Sorting

69

NOTSORTED Option for the BY Statement
The NOTSORTED option for the BY statement works best
when observations with the same BY value are stored
together, but are not necessarily sorted in alphabetical or
numeric order.
General form of the NOTSORTED option:

BY variable-name NOTSORTED;BY variable-name NOTSORTED;

 6.5 Alternatives to Sorting 6-49

70

Tips for Using the NOTSORTED Option
The NOTSORTED option has the following features:

can appear anywhere in the BY statement
is useful if you have data that falls into other logical
groupings, such as chronological order or categories

can be used with First.variable and/or
Last.variable
cannot be used with the MERGE and UPDATE
statements

The BYSORTED SAS system option has the following characteristics:
• specifies that observations in a data set or data sets are sorted in alphabetic or numeric order
• should be used if the data set is ordered by the BY variable

OPTIONS BYSORTED;

If observations with the same BY value are grouped together but are not necessarily sorted in alphabetic
or numeric order, use the NOBYSORTED option.

OPTIONS NOBYSORTED;

The default is BYSORTED.

 When the NOBYSORTED option is specified, you do not have to specify NOTSORTED in every
BY statement to access the data set(s).

6-50 Chapter 6 BY-Group Processing and Sorting

71

GROUPFORMAT Option for the BY Statement

Month First
Obs SaleMon No Year Class Business Economy Cargo

1 JAN2000 1 2000 79065931 54229602 275767675 264931122
2 JAN2001 1 2001 80822951 55434704 281895846 270818480
3 JAN2002 1 2002 83458482 57242357 291088102 279649517
4 JAN2003 1 2003 85215503 58447460 297216272 285536876
5 JAN2004 1 2004 83667651 57385822 278553207 280350393
6 JAN2005 1 2005 87851034 60255113 306408528 294367913
7 FEB2000 2 2000 71641733 49018523 248842095 240029928
8 FEB2001 2 2001 73233772 50107824 254371920 245363926

Create a summary report that provides the total cargo
revenue for each quarter in 2000. The data for the report
is in the SAS data set ia.revhistory.
ia.revhistory (First Eight Observations)

72

proc format;
value $qtrfmt

'JAN2000', 'FEB2000', 'MAR2000' = '1'
'APR2000', 'MAY2000', 'JUN2000' = '2'
'JUL2000', 'AUG2000', 'SEP2000' = '3'
'OCT2000', 'NOV2000', 'DEC2000' = '4';

run;

data sum(keep = TotalCargo SaleMon
rename = (SaleMon = qtr));

set ia.revhistory;
format SaleMon $qtrfmt.;
by groupformat SaleMon notsorted;
where year = 2000;
if first.SaleMon then TotalCargo = 0;
TotalCargo + Cargo;
if last.SaleMon;

run;

Using the GROUPFORMAT Option

...c06s5d4

 The GROUPFORMAT option enables the BY statement to use the $QTRFMT format to create
FIRST.SALEMON and LAST.SALEMON. The NOTSORTED option is used because the data is
grouped by SaleMon but not sorted by SaleMon.

 6.5 Alternatives to Sorting 6-51

73

Using the GROUPFORMAT Option
Using the GROUPFORMAT Option

qtr TotalCargo

1 $770,915,528.00
2 $778,976,417.00
3 $788,588,795.00
4 $779,322,475.00

74

GROUPFORMAT Option for the BY Statement
The GROUPFORMAT option uses the formatted values,
not the stored values, of the variable when you reference
first.variable and last.variable in a
DATA step.
General form of the GROUPFORMAT option:

BY GROUPFORMAT variable-name <NOTSORTED>;BY GROUPFORMAT variable-name <NOTSORTED>;

First.variable and last.variable are temporary automatic variables in the PDV that identify
the first and last observations in each BY-group.

6-52 Chapter 6 BY-Group Processing and Sorting

75

Tips for Using the GROUPFORMAT Option
The GROUPFORMAT option has the following features:

is available only in the DATA step
is useful when you define formats for grouped data
enables the DATA step to process the same groups of
data as a summary procedure or PROC REPORT

76

Restrictions on the GROUPFORMAT Option
When the GROUPFORMAT option is used, the data set
must meet one of the following conditions:

be sorted by the GROUPFORMAT variable
or

be grouped by the formatted values of the
GROUPFORMAT variable

 6.5 Alternatives to Sorting 6-53

77

Advantages of NOTSORTED and
GROUPFORMAT
The NOTSORTED and GROUPFORMAT options have
the following advantages:

can be used to create ordered/grouped reports
without sorting the data
cause the DATA step to process formatted BY values
in the same way that SAS procedures do
frequently eliminate the need for another step

78

Disadvantages of NOTSORTED and
GROUPFORMAT

The NOTSORTED option cannot be used with
the MERGE or UPDATE statements.
The NOTSORTED option can generate an enormous
amount of output if the data is not grouped.
The GROUPFORMAT option can only be used in the
DATA step.

6-54 Chapter 6 BY-Group Processing and Sorting

79

Using the CLASS Statement
Instead of using a BY statement to group data, you can
use the CLASS statement to specify the variables whose
values define the subgroup combinations for an analysis
by a SAS procedure.
What are the differences between using a BY statement
and using a CLASS statement in a procedure?

The BY statement requires that you previously sorted
the data by the BY variables or have an index based
on the BY variables.
The CLASS statement does not have either
requirement.
Report layouts differ.

80

proc sort data = ia.sales(keep = FlightID
Rev1st--CargoRev)

out = sales;
by FlightID;

run;

proc means data = sales sum;
by FlightID;
var Rev1st--CargoRev;

run;

PROC MEANS with a BY Statement

c06s5d5 ...

 The data set ia.sales used for demonstrations and exercises contains fewer observations than
the data set ia.sales used for the course notes.

 6.5 Alternatives to Sorting 6-55

81

Partial Report
PROC MEANS with a BY Statement

------------------------------ Flight Number=IA00100 ----------------------------

The MEANS Procedure

Variable Label Sum
ƒƒƒ
Rev1st Revenue from First Class Passengers 14428800.00
RevBus Revenue from Business Passengers 21006480.00
RevEcon Revenue from Economy Passengers 55384362.00
CargoRev Revenue from Cargo 81998560.00
ƒƒƒ

------------------------------ Flight Number=IA00101 ----------------------------

Variable Label Sum
ƒƒƒ
Rev1st Revenue from First Class Passengers 14700800.00
RevBus Revenue from Business Passengers 21047900.00
RevEcon Revenue from Economy Passengers 55332324.00
CargoRev Revenue from Cargo 81944660.00
ƒƒƒ

82

PROC MEANS with a CLASS Statement
proc means data = ia.sales sum;

class FlightID;
var Rev1st--CargoRev;

run;

c06s5d6 ...

6-56 Chapter 6 BY-Group Processing and Sorting

83

Partial Report
PROC MEANS with a CLASS Statement

The MEANS Procedure

Flight
Number N Obs Variable Label Sum
ƒƒ
IA00100 728 Rev1st Revenue from First Class Passengers 14428800.00

RevBus Revenue from Business Passengers 21006480.00
RevEcon Revenue from Economy Passengers 55384362.00
CargoRev Revenue from Cargo 81998560.00

IA00101 728 Rev1st Revenue from First Class Passengers 14700800.00
RevBus Revenue from Business Passengers 21047900.00
RevEcon Revenue from Economy Passengers 55332324.00
CargoRev Revenue from Cargo 81944660.00

84

Using the CLASS Statement to Group Data
Values
General form of the CLASS statement:

CLASS variable(s) </ options>; CLASS variable(s) </ options>;

You can use the CLASS statement with the following
Base SAS procedures:

MEANS
TABULATE
SUMMARY
UNIVARIATE

 6.5 Alternatives to Sorting 6-57

Reference Information

Selected options for the CLASS statement are as follows:
• ORDER = INTERNAL | FORMATTED | DATA | FREQ

specifies the order in which to group the levels of the class variables in the
output, where the following conditions can occur:

INTERNAL orders values by ascending unformatted values. The INTERNAL order yields
the same order as the SORT procedure. The order depends on your operating
environment. This sort sequence is particularly useful for displaying dates
chronologically. INTERNAL is the default order. The term UNFORMATTED is
an alias for INTERNAL.

DATA orders values according to their order in the input data set.

FORMATTED orders values by the ascending formatted values. This order depends on your
operating environment.

FREQ orders values by descending frequency count.
• DESCENDING specifies to sort the class variable values in descending order.
• MISSING considers missing values as valid class variable levels. Special missing values

that represent numeric values (the letters A through Z and the underscore(_)
character) are each considered as a separate value.

• GROUPINTERNAL specifies not to apply formats to the class variables when the MEANS,
SUMMARY, or TABULATE procedures group the values to create
combinations of class variables.

6-58 Chapter 6 BY-Group Processing and Sorting

85

Using the SORTEDBY= Option
If the input data set is in sorted order, you can specify the
order by using the SORTEDBY= output data set option.
The SORTEDBY= option has the following attributes:

sets the sort flag on the data set
defines the sort flag as an asserted data order
requires that SAS check the order of the data
as it processes it

General form of the SORTEDBY option:

data-set-name(SORTEDBY = by-clause | _NULL_)data-set-name(SORTEDBY = by-clause | _NULL_)

by-clause indicates the data order. You can specify variables and options as you can in a BY statement.

NULL removes any existing sort information.

86

data invoices (sortedby = InvoiceID);
infile extdata;
input @1 InvoiceID $char4.

@5 Supplier $char15.
@30 Itemno $char4.
@34 Amount comma8. ;

run;

proc contents data = invoices;
run;

Using the SORTEDBY= Option

c06s5d7

Create a SAS data set from an external file containing
invoice information. The external file is in sorted order
by invoice number.

...

 6.5 Alternatives to Sorting 6-59

87

Using the SORTEDBY= Option
Partial Log

Data Set Name WORK.INVOICES Observations 9
Member Type DATA Variables 4
Engine V9 Indexes 0
Created Monday, June 06, 2005 01:48:38 PM Observation Length 32
Last Modified Monday, June 06, 2005 01:48:38 PM Deleted Observations 0
Protection Compressed NO
Data Set Type Sorted YES
Label
Data Representation WINDOWS_32
Encoding wlatin1 Western (Windows)

<lines removed>

Sort Information

Sortedby InvoiceID
Validated NO
Character Set ANSI

6-60 Chapter 6 BY-Group Processing and Sorting

88

Using the SORTEDBY= Option
Attempt to sort the data.

proc sort data = invoices;
by InvoiceID;

run;

Log
77 proc sort data = invoices;
78 by InvoiceID;
79 run;

NOTE: Input data set is already sorted, no sorting done.
NOTE: PROCEDURE SORT used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds

c06s5d7

If a CONTENTS procedure is run after the PROC SORT, the Validated flag is still set to NO.

Partial Log
Sort Information

 Sortedby InvoiceID
 Validated NO
 Character Set ANSI

To set the Validated flag to YES, use the FORCE option in the PROC SORT statement.
proc sort data = invoices force;
 by InvoiceID;
run;

proc contents data = invoices;
run;

Partial Log
Sort Information

 Sortedby InvoiceID
 Validated YES
 Character Set ANSI

 6.5 Alternatives to Sorting 6-61

Exercises

2. Using the MEANS Procedure

The data set ia.crew is sorted by JobCode but not by JobCat. Use the MEANS procedure to
calculate the total salary for each JobCat with the following conditions:

a. using a CLASS statement

b. using the BY statement without sorting the data

Desired Output for a.
Using the CLASS Statement

The MEANS Procedure

Analysis Variable : Salary

 N
 JobCat Obs Sum
 ƒƒƒ
 Flight Attendant 32 991000.00

 Navigator 8 556000.00

 Pilots 17 1520000.00

 Senior Flight Attendant 12 531000.00
 ƒƒƒ

6-62 Chapter 6 BY-Group Processing and Sorting

Desired Output for b.
Using the BY Statement

------------------- JobCat=Flight Attendant --------------------

The MEANS Procedure

Analysis Variable: Salary

 Sum
 ƒƒƒƒƒƒƒƒƒƒƒƒ
 991000.00
 ƒƒƒƒƒƒƒƒƒƒƒƒ

---------------- JobCat=Senior Flight Attendant ----------------

Analysis Variable: Salary

 Sum
 ƒƒƒƒƒƒƒƒƒƒƒƒ
 531000.00
 ƒƒƒƒƒƒƒƒƒƒƒƒ

----------------------- JobCat=Navigator -----------------------

Analysis Variable: Salary

 Sum
 ƒƒƒƒƒƒƒƒƒƒƒƒ
 556000.00
 ƒƒƒƒƒƒƒƒƒƒƒƒ

------------------------ JobCat=Pilots -------------------------

Analysis Variable: Salary

 Sum
 ƒƒƒƒƒƒƒƒƒƒƒƒ
 1520000.00
 ƒƒƒƒƒƒƒƒƒƒƒƒ

3. Creating a Sorted Data Set

Open the program, c06ex3Start, which contains the following INFILE and INPUT statements:
infile 'operate.dat'; *PC/UNIX;
*'.prog3.rawdata(operate)'; *z/OS;
input HireDate : date9. LastName : $32.
 FirstName : $32. EmpCountry : $25.
 EmpLocation : $16.
 EmpID $ JobCode $;

Create a SAS data set named oper from the comma-separated raw data file, operate, that is sorted
by JobCode. Print the data in sorted order without presorting the operations data.

 6.5 Alternatives to Sorting 6-63

Partial List of the Raw Data File operate
28DEC1986,KRISCHOCK,JENNIFER ANNE,AUSTRALIA,SYDNEY,E02912,BAGCLK
11JUN1991,LAHANE,SEAN,AUSTRALIA,SYDNEY,E00253,BAGCLK
19AUG1986,LAI,CRAIG NEIL,AUSTRALIA,SYDNEY,E02197,BAGCLK
19MAY1993,LAWS,MERIAN,AUSTRALIA,SYDNEY,E02314,BAGCLK
20JUL1980,LINDSAY,ROBERT,AUSTRALIA,SYDNEY,E03113,BAGCLK
23APR1987,LONG,CARMEN,AUSTRALIA,SYDNEY,E03179,BAGCLK
02AUG1989,LOWRIE,KERRIE,AUSTRALIA,SYDNEY,E03421,BAGCLK

Partial Output from the PRINT Procedure (page 3 of output if the OPTIONS PS=60 LS=120;
statement is submitted)

------------------------------------- JobCode=BAGCLK ------------------------------------
(continued)

 Hire Emp
 Obs Date LastName FirstName Country EmpLocation EmpID

 106 8082 HOWELL MARY B. USA DALLAS E01297
 107 7668 HUBBARD VELERIE USA DALLAS E00649
 108 11528 HURT SUSAN L. USA CARY E03548
 109 9886 JACKSON YIQUN USA DALLAS E03415
 110 10710 JACOBSON SANDRA L. USA CARY E04667
 111 9528 JENSEN OREN USA DALLAS E02872
 112 12464 JONES MARY B. USA CARY E02739
 113 9435 JONES MARY C. USA CARY E01527
 114 9390 JONES MICHAEL E. USA CARY E00062
 115 7683 JONES JR. THOMAS J. USA DALLAS E04640
 116 7521 JORDAN THOMAS F. USA DALLAS E04071
 117 7459 KERR BRADFORD E USA DALLAS E01481
 118 10360 KLEIN SUSANNE G. USA DALLAS E01263
 119 11876 KOELLING JAMES M. USA DALLAS E00932
 120 8538 LIN BARBARA J. USA NEW YORK E03405
 121 9171 LORENCE MATTHEW G. USA NEW YORK E03839
 122 8486 LUMSDEN TIMOTHY J. USA CARY E00971
 123 12461 LUTZ CATHRYN J. USA CARY E04514
 124 12701 MACCORMICK DAVID C. USA CARY E01455
 125 12054 MARSHALL MARY S. USA NEW YORK E02991
 126 12269 MATZ JACQUELYN USA NEW YORK E03395
 127 8851 MCCUE JIN-WHAN USA NEW YORK E03724
 128 8056 MCLEAN MICHAEL J. USA NEW YORK E04655
 129 8754 MULLIGAN STEPHEN A. USA NEW YORK E00260
 130 9927 NICHOLSON MARGARET F. USA NEW YORK E03311
 131 9725 ONG MICHELLE A. USA NEW YORK E00916
 132 8948 REDPATH CHERYL L. USA CARY E01745
 133 12745 RODGERS CONNIE S. USA SAN FRANCISCO E00957
 134 8746 ROGERS JASON W. USA CARY E01048
 135 7625 SMITH LINDA USA CARY E01382
 136 11738 SMITH MARTIN P. USA CARY E00201
 137 12165 VAUGHAN SHELLY USA CARY E00371
 138 8990 ZEID DOUGLAS H. USA SAN FRANCISCO E02213
 139 12086 ZHANG VIRGIL S. USA CARY E04713

(Continued on the next page.)

6-64 Chapter 6 BY-Group Processing and Sorting

---------------------------------- JobCode=BAGSUP ---------------------------------------

 Hire Emp
 Obs Date LastName FirstName EmpCountry Location EmpID

 140 9382 JONES MICHAEL A. AUSTRALIA SYDNEY E00368
 141 7318 HUGHES MONICA S. CANADA TORONTO E03523
 142 7887 TANG AARON CHINA HONG KONG E02786
 143 7788 KEJSER NIKOLAJ DENMARK COPENHAGEN E00642
 144 12254 LAFOSSE LOUIS FRANCE PARIS E02892
 145 7719 FENERTY WERNER GERMANY FRANKFURT E03513
 146 10920 FRITZ HORST GERMANY FRANKFURT E01591
 147 7347 GOLFIERI MARGHERITA ITALY ROME E03553
 148 8449 NAGASAWA KATSUMI JAPAN TOKYO E03139
 149 8933 POPP MATTHIAS SWITZERLAND GENEVA E01099
 150 10464 FITZPATRICK MICHAEL UNITED KINGDOM LONDON E01219

 6.6 Solutions to Exercises 6-65

6.6 Solutions to Exercises

1. Creating Data Sets with the SORT Procedure

The data set ia.retirees is a list of recent retirees from International Airlines and contains
duplicate observations. Create two data sets, one named retirees that contains unique rows of data
for each employee ID number and the other named duprets containing the duplicate observations.
proc sort data = ia.retirees out = retirees
 dupout = duprets nodupkey;
 by EmpID;
run;

/* alternative solution */
proc sort data = ia.retirees out = retirees;
 by EmpID;
run;

data retirees duprets;
 set retirees;
 by EmpID;
 if first.EmpID then output retirees;
 else output duprets;
run;

2. Using the MEANS Procedure

The data set ia.crew is sorted by JobCode but not by JobCat. Use the MEANS procedure to
calculate the total salary for each JobCat with the following conditions:

a. using a CLASS statement
proc means data=ia.crew sum;
 class JobCat;
 var Salary;
 title 'Using the CLASS Statement';
run;

b. using the BY statement without sorting the data.
proc means data = ia.crew sum;
 by JobCat notsorted;
 var Salary;
 title 'Using the BY Statement';
run;

6-66 Chapter 6 BY-Group Processing and Sorting

3. Creating a Sorted Data Set

Open the program, c06ex3Start, which contains the following INPUT and INFILE statements.
infile 'operate.dat'; *PC/UNIX;
*'.prog3.rawdata(operate)'; *z/OS;
input HireDate : date9. LastName : $32.
 FirstName : $32. EmpCountry : $25.
 EmpLocation : $16.
 EmpID $ JobCode $;

Create a SAS data set named oper from the comma-separated raw data file, operate, that is sorted
by JobCode. Print the data in sorted order without presorting the operations data.

Partial List of the Raw Data File operate
28DEC1986,KRISCHOCK,JENNIFER ANNE,AUSTRALIA,SYDNEY,E02912,BAGCLK
11JUN1991,LAHANE,SEAN,AUSTRALIA,SYDNEY,E00253,BAGCLK
19AUG1986,LAI,CRAIG NEIL,AUSTRALIA,SYDNEY,E02197,BAGCLK
19MAY1993,LAWS,MERIAN,AUSTRALIA,SYDNEY,E02314,BAGCLK
20JUL1980,LINDSAY,ROBERT,AUSTRALIA,SYDNEY,E03113,BAGCLK
23APR1987,LONG,CARMEN,AUSTRALIA,SYDNEY,E03179,BAGCLK
02AUG1989,LOWRIE,KERRIE,AUSTRALIA,SYDNEY,E03421,BAGCLK

data oper (sortedby = JobCode);
 infile 'operate.dat' dsd; * PC/UNIX;
 *infile '.prog3.rawdata(operate)'; * z/OS;
 input HireDate : date9. LastName : $32.
 FirstName : $32. EmpCountry : $25.
 EmpLocation : $16.
 EmpID $ JobCode $;
run;
proc print data = oper;
 by JobCode;
run;

Chapter 7 Controlling Data Storage
Space

7.1 Introduction...7-3

7.2 Reducing the Length of Numeric Variables ...7-6

7.3 Compressing Data Files...7-14

7.4 Creating a DATA Step View..7-28

7.5 Solutions to Exercises ...7-43

7-2 Chapter 7 Controlling Data Storage Space

 7.1 Introduction 7-3

7.1 Introduction

3

Objectives
Investigate how SAS data sets are stored.
Review the concept of a data set page.

This chapter addresses Base SAS data sets only. Scalable Performance Data Engine data is addressed in a
later chapter.

7-4 Chapter 7 Controlling Data Storage Space

4

Storage Required for Data Files
Descriptor

Portion

Index File
Index 1
Index 2

D
ata Portion

The total amount of storage required for a SAS data file is the sum of the space required for the following:
• the descriptor portion
• the observation length multiplied by the number of observations
• any associated indexes
• any operating-system-specific storage overhead

 7.1 Introduction 7-5

5

Review of the Data Set Page

is the unit of data transfer between the SAS storage
device and main memory
includes the bytes used by the descriptor portion,
the data values, and any overhead
is fixed in size when the data set is created.

A data set page

The total number of bytes occupied by a data set equals the data page size times the number of pages plus
the index page size times the number of pages.

6

Engine/Host Dependent Information

Data Set Page Size 16384
Number of Data Set Pages 3396
First Data Page 1
Max Obs per Page 97
Obs in First Data Page 76
Index File Page Size 4096
Number of Index File Pages 2552
Number of Data Set Repairs 0
File Name C:\workshop\winsas\prog3\sales.sas7bdat
Release Created 9.0101M3
Host Created XP_PRO

Partial Output

Determining Page Size with PROC CONTENTS
proc contents data = ia.sales;
run;

ia.sales contains
55,640,064 bytes of

data in the data portion
and 10,452,992 bytes
for the index file. The
total number of bytes

is 66,093,056.

c07s1d1

 The data set ia.sales used for demonstrations and exercises contains fewer observations than
the data set ia.sales used for the course notes.

7-6 Chapter 7 Controlling Data Storage Space

7.2 Reducing the Length of Numeric Variables

8

Objectives
Describe how SAS stores numeric values.
Determine how to safely reduce the space required
to store numeric values in SAS data sets.

9

Characteristics of Numeric Variables
Numeric variables

store multiple digits per byte
take eight bytes of storage per variable, by default
can be reduced in size
always have a length of eight bytes in the PDV
are stored as floating-point numbers in real-binary
representation
use a minimum of one byte to store the sign and
exponent of the value (depending on the operating
environment) and use the remaining bytes to store
the mantissa of the value.

 7.2 Reducing the Length of Numeric Variables 7-7

10

Default Length of Numeric Variables
The number 35298 can also be written as follows:

SAS stores numeric variables in floating point form:

+0.35298*(10**5)
Sign Mantissa Base Exponent

Exponent Sign Mantissa

SAS stores numeric values in native floating point representation. On UNIX, Linux, Windows, and Open
VMS/Alpha platforms, this form is "IEEE format" as defined in ISO standard IEC 60559. On z/OS, SAS
stores numeric values in IBM mainframe floating-point representation.

Summary of Floating-Point Numbers Stored in Eight Bytes

Representation Base Exponent Bits Maximum Mantissa Bits

IBM mainframe 16 7 56

IEEE 2 11 52

7-8 Chapter 7 Controlling Data Storage Space

11

Assigning the Length of Numeric Variables
You can use a LENGTH statement to assign a length
from two to eight bytes to numeric variables.
The minimum length of numeric variables depends
on the operating environment.

Example:

c07s2d1

data reducedsales;
length Cap1st CapBus CapEcon 3

CapCargo Num1st NumBus
NumEcon CargoWeight FltDate 4
Rev1st RevBus
RevEcon CargoRev 5;

<more SAS code>
run;

To decrease the length of all numeric variables, you can use the DEFAULT= option in the LENGTH
statement:
data reducedsales;
 length default = 4;
 ... more SAS code ...
run;

 7.2 Reducing the Length of Numeric Variables 7-9

12

Assigning the Length of Numeric Variables

37,134,336 bytes

Size of
reducedsales

33%55,640,064 bytes

% DifferenceSize of
ia.sales
(without index)

13

Comparing Data Sets

Partial Output

proc compare data = ia.sales
compare = reducedsales;

run;

Observation Summary

Observation Base Compare

First Obs 1 1
Last Obs 329264 329264

Number of Observations in Common: 329264.
Total Number of Observations Read from ia.sales: 329264.
Total Number of Observations Read from work.reducedsales: 329264.

Number of Observations with Some Compared Variables Unequal: 0.
Number of Observations with All Compared Variables Equal: 329264.

NOTE: No unequal values were found. All values compared are exactly equal.

c07s2d2

7-10 Chapter 7 Controlling Data Storage Space

14

Possible Storage Lengths for Integer Values
Windows and UNIX

Length (bytes) Largest Integer
Represented Exactly

3 8,192
4 2,097,152
5 536,870,912
6 137,438,953,472
7 35,184,372,088,832
8 9,007,199,254,740,992

15

Possible Storage Lengths for Integer Values
z/OS

Length (bytes) Largest Integer
Represented Exactly

2 256
3 65,536
4 16,777,216
5 4,294,967,296
6 1,099,511,627,776
7 281,474,946,710,656
8 72,057,594,037,927,936

Exceeding the number of integer digits recommended above or reducing the stored size of non-integer
data can result in a loss of precision due to the truncation of nonzero bytes. It is not recommended.

 7.2 Reducing the Length of Numeric Variables 7-11

16

The use of a numeric length less than 8 bytes
reduces the number of bytes available for the
mantissa, and thus reduces the precision of the largest
number that can be accurately stored
does not affect how numbers are stored in the PDV;
numbers are always eight bytes in length in the PDV
causes the number to be truncated to the specified
length when the value is written to the SAS data set
causes the number to be expanded to eight bytes
in the PDV when the data set is read by padding
the mantissa with binary zeros.

Assigning the Length of Numeric Variables

17

Reading Reduced-Length Numeric Variables
Reading reduced-length numeric variables

requires less I/O
uses additional CPU
can be dangerous for high precision values, including
non-integer and large integer values.

7-12 Chapter 7 Controlling Data Storage Space

18

It is not recommended that you change the length
of non-integer numeric variables.

data test;
length x 4;
x = 1/10;
y = 1/10;

run;

data _null_;
set test;
put x=;
put y=;

run;

Dangers of Reduced-Length Numeric Variables

c07s2d3

19

81 data test;
82 length x 4;
83 x = 1/10;
84 y = 1/10;
85 run;
NOTE: The data set WORK.TEST has 1 observations and 2 variables.

86
87 data _null_;
88 set test;
89 put x=;
90 put y=;
91 run;

x=0.0999999642
y=0.1
NOTE: There were 1 observations read from the data set WORK.TEST.

Partial Log
Dangers of Reduced-Length Numeric Variables

 Just as a decimal number system cannot store the fraction 1/3 exactly in a finite number of digits,
a binary number system (or multiple thereof, such as octal or hexadecimal) cannot store the
fraction 1/10 exactly in any finite number of digits.

Administrator
高亮

 7.2 Reducing the Length of Numeric Variables 7-13

20

Dangers of Reduced-Length Numeric Variables
It is not recommended that you change the length of
integer numeric variables inappropriately or that you
change the length of large integer numeric variables.

data test;
length x 3;
x = 8193;

run;

data _null_;
set test;
put x=;

run;

c07s2d4

This example illustrates the dangers of inappropriately reducing integer values.

21

Dangers of Reduced-Length Numeric Variables
Partial Log

192
193 data _null_;
194 set test;
195 put x=;
196 run;

x=8192
NOTE: There were 1 observations read from the
data set WORK.TEST.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds

7-14 Chapter 7 Controlling Data Storage Space

7.3 Compressing Data Files

23

Objectives
Define the structure of a compressed SAS data file.
Create a compressed SAS data file.
Examine the advantages and disadvantages of
compression.

SAS data files, but not views, can be stored in compressed form.

24

Uncompressed SAS Data File Structure
Features of uncompressed SAS data files:

Each variable occupies the same number of bytes in
every observation.
Each observation occupies the same number of bytes
as every other observation.
Character values are padded with blanks.
Numeric values are padded with binary zeros.
The descriptor portion of the data set is stored at the
end of the first data set page.

continued...

 7.3 Compressing Data Files 7-15

25

Uncompressed SAS Data File Structure
There is a 16-byte overhead at the beginning of each
page.
There is a 1-bit per observation overhead rounded up
to the nearest byte.
New observations are added at the end of the file. If a
new page is needed for a new observation, a whole
data set page is added.
Deleted observation space is never reused, unless the
entire data file is rebuilt.

In uncompressed SAS data files, each observation is a fixed-length record.

26

Compressed SAS Data File Structure
Features of compressed SAS data files:

Each observation is a single string of bytes. Variable
types and boundaries are ignored.
Each observation can have a different length.
Consecutive repeating characters and numbers are
collapsed into fewer bytes.
If an updated observation is larger than its original
size, it is stored on either the same data set page or a
different page with a pointer to the original page.
The descriptor portion of the data set is stored at the
end of the first data set page.

continued...

7-16 Chapter 7 Controlling Data Storage Space

27

Compressed SAS Data File Structure
There is a 28-byte overhead at the beginning of each
page.
There is a 12-byte-per-observation overhead on 32-bit
systems.
There is a 24-byte-per-observation overhead on 64-bit
systems.
Deleted observation space can be reused if the
REUSE=YES data set or system option was turned on
when the SAS data file was compressed.

Compressing a file reduces the number of bytes required to represent each observation. In a compressed
file, each observation is a variable-length record.

28

Compressing SAS Files
There are two different algorithms that can be used to
compress files:

the RLE (Run Length Encoding) compression
algorithm (compress = YES | CHAR)
the RDC (Ross Data Compression) algorithm
(COMPRESS = BINARY)

The optimal algorithm depends
on the characteristics of your data.

 7.3 Compressing Data Files 7-17

29

Creating an Uncompressed Data File
data sales;

infile 'Sales.dat';
input @1 FlightID $7. @8 RouteID $7.

@15 Origin $3. @18 Dest $3.
@21 DestType $13. @34 FltDate date9.
@43 Cap1st 3. @46 CapBus 3.
@49 CapEcon 3. @52 CapPassTotal 3.
@55 CapCargo 6. @61 Num1st 3.
@64 NumBus 3. @67 NumEcon 3.
@70 NumPassTotal 3. @73 Rev1st 7.
@80 RevBus 7. @87 RevEcon 7.
@94 CargoRev 8. @102 RevTotal 10.
@112 CargoWeight 5.;

run;

c07s3d1

30

Creating a Compressed Data File
data saleschar(compress = char);

infile 'Sales.dat';
input @1 FlightID $7. @8 RouteID $7.

@15 Origin $3. @18 Dest $3.
@21 DestType $13. @34 FltDate date9.
@43 Cap1st 3. @46 CapBus 3.
@49 CapEcon 3. @52 CapPassTotal 3.
@55 CapCargo 6. @61 Num1st 3.
@64 NumBus 3. @67 NumEcon 3.
@70 NumPassTotal 3. @73 Rev1st 7.
@80 RevBus 7. @87 RevEcon 7.
@94 CargoRev 8. @102 RevTotal 10.
@112 CargoWeight 5.;

run;

c07s3d2

 The external file sales used for demonstrations and exercises contains fewer records than the
external file sales used for the course notes.

7-18 Chapter 7 Controlling Data Storage Space

31

Partial Log
NOTE: The data set WORK.SALESCHAR has 329264 observations and 21
variables.
NOTE: Compressing data set WORK.SALESCHAR decreased size by 28.14
percent.

Compressed is 4930 pages; un-compressed would require 6861 pages.
NOTE: DATA statement used (Total process time):

real time 17.36 seconds
cpu time 3.25 seconds

32

Creating a Compressed Data File
data salesbin(compress = binary);

infile 'Sales.dat';
input @1 FlightID $7. @8 RouteID $7.

@15 Origin $3. @18 Dest $3.
@21 DestType $13. @34 FltDate date9.
@43 Cap1st 3. @46 CapBus 3.
@49 CapEcon 3. @52 CapPassTotal 3.
@55 CapCargo 6. @61 Num1st 3.
@64 NumBus 3. @67 NumEcon 3.
@70 NumPassTotal 3. @73 Rev1st 7.
@80 RevBus 7. @87 RevEcon 7.
@94 CargoRev 8. @102 RevTotal 10.
@112 CargoWeight 5.;

run;

c07s3d3

 7.3 Compressing Data Files 7-19

33

Partial Log
NOTE: The data set WORK.SALESBIN has 329264 observations and 21
variables.
NOTE: Compressing data set WORK.SALESBIN decreased size by 31.51
percent.

Compressed is 4699 pages; un-compressed would require 6861 pages.
NOTE: DATA statement used (Total process time):

real time 7.04 seconds
cpu time 3.62 seconds

34

Summary of Compression Results

salesbin
saleschar
sales

Data Set

BINARY
CHAR
none

Algorithm
Used

38,494,208
40,386,560
55,623,680

Number of
Bytes

31.51%
28.14%

Decreased
size

7-20 Chapter 7 Controlling Data Storage Space

35

Creating a Compressed Data File
To create a compressed data file, use the COMPRESS=
output data set option or system option.
General forms of the COMPRESS= options:

SAS-data-set(COMPRESS = NO | YES | CHAR | BINARY)

OPTIONS COMPRESS = NO | YES | CHAR | BINARY;

SAS-data-set(COMPRESS = NO | YES | CHAR | BINARY)

OPTIONS COMPRESS = NO | YES | CHAR | BINARY;

COMPRESS = Values Action

NO does not compress the data file (default).

CHAR | YES uses the Run Length Encoding (RLE) compression algorithm, which
compresses repeating consecutive bytes, such as trailing blanks or repeated
zeros.

BINARY uses Ross Data Compression (RDC), which combines run length encoding
and sliding window compression.

Not all engines support compression.

 The COMPRESS= data set option overrides the COMPRESS= system option.

The COMPRESS= options interact with two other system or data set options, POINTOBS= and
REUSE=. See "COMPRESS= Data Set Option" in the dictionary of SAS language elements in SAS
Language Reference: Dictionary in the Base SAS documentation for additional information on these
interactions.

 7.3 Compressing Data Files 7-21

36

Comparing Compression Methods
COMPRESS = YES | CHAR

is effective with character data that contains repeated
characters (such as blanks)

COMPRESS = BINARY
takes significantly more CPU time to uncompress
than COMPRESS=YES | CHAR
is more efficient with observations greater than
a thousand bytes in length
can be very effective with numeric data
can be effective with character data that contains
patterns, rather than simple repetitions

37

How SAS Compresses Data
A data file has these variables:

15CharacterFirstName
20CharacterLastName
LengthTypeName

In uncompressed form, all observations use 35 bytes
for these two variables.

A D A M S B I L L

LastName
0
1

FirstName
2
0… …

7-22 Chapter 7 Controlling Data Storage Space

38

COMPRESS = CHAR | YES
In run length encoding compressed form, the LastName
and FirstName values for this observation use only
13 bytes.

@ A D A M @ B I L L #S #

LastName
0
1

FirstName
1
3

0
8

39

COMPRESS = BINARY
Ross Data Compression uses both run-length encoding
and sliding window compression.
A data set has these variables:

...

8NumericAnswer200

8NumericAnswer1
LengthTypeName

In uncompressed form, the data file resembles this:
Obs answer1 answer2 answer3 answer4 answer5 answer200

1 1 2 1 2 1 . . . 2

2 1 1 1 1 1 . . . 1

3 2 2 2 2 2 . . . 2

...

 7.3 Compressing Data Files 7-23

40

COMPRESS = BINARY
In Ross data compressed form, the first observation in the
data file resembles the form below:

0
1
0
1

0
9

@ +
1 1 # @ +

1 2 # %

The @ indicates how many uncompressed characters
follow.
The # indicates the number of binary zeros repeated
at this point in the observation.
The % indicates how many times these values are
repeated.

+
1 Indicates the sign and exponent.

41

Compression Guidelines

Some data sets do not
compress well or at all.

7-24 Chapter 7 Controlling Data Storage Space

42

Compression Dependencies
Because there is higher overhead for each observation, a
data file can occupy more space in compressed form than
in uncompressed form if the file has the following:

few repeated characters
small physical size
few missing values
short text strings

43

Compression Guidelines

Partial Log

data capacity(compress = yes);
set ia.capacity;

run;

1175 data capacity(compress = yes);
1176 set ia.capacity;
1177 run;

NOTE: There were 108 observations read from the data set IA.CAPACITY.
NOTE: The data set WORK.CAPACITY has 108 observations and 7 variables.
NOTE: Compressing data set WORK.CAPACITY increased size by 50.00 percent.

Compressed is 3 pages; un-compressed would require 2 pages.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds
cpu time 0.01 seconds

c07s3d4

 7.3 Compressing Data Files 7-25

44

Compression Dependencies
When you use the COMPRESS= data set option or the
COMPRESS= system option, SAS knows the following:

size of the overhead introduced by compression
maximum size of an observation

If the maximum size of the observation is not larger than
the overhead introduced by compression, SAS disables
compression, creates an uncompressed data set, and
issues a note stating that the file was not compressed.

 This feature is available in SAS Release 8.2 and later.

45

Compression Dependencies
1 data test(compress = yes);
2 x = 1;
3 run;

NOTE: Compression was disabled for data set
WORK.TEST because compression overhead would increase
the size of the data set.
NOTE: The data set WORK.TEST has 1 observations and
1 variables.
NOTE: DATA statement used:

real time 0.51 seconds
cpu time 0.10 seconds

c07s3d5

7-26 Chapter 7 Controlling Data Storage Space

46

Compression Trade-Offs
Uncompressed Compressed

Usually requires more
disk storage.

Usually requires less
disk storage.

Requires less CPU time
to prepare observation
for I/O.

Requires more CPU
time to prepare
observation for I/O.

Uses more I/O
operations.

Uses fewer I/O
operations.

continued...

The savings in I/O operations
greatly outweighs the increase

in CPU time.

47

Compression Trade-Offs
Uncompressed Compressed

An updated observation
fits in its original
location.

An updated observation
might be moved from
its original location.

Deleted observation
space is never reused.

Deleted observation
space can be reused.

New observations are
always inserted at the
end of the data file.

When REUSE=YES, new
observations might not
be inserted at the end
of the data file.

 7.3 Compressing Data Files 7-27

Exercises

1. Creating Reduced-Length Numeric Variables and Compressed SAS Data Files

Use the program, c07ex1start, as a starting program for the following:

a. Submit the program and record the number of pages and the page size for the data set sales.

b. Edit the program to decrease the length of the numeric variables Cap1st, CapBus, and
CapEcon to 3; CapCargo, Num1st, NumBus, NumEcon, NumPassTotal,
CapPassTotal, CargoWeight and FltDate to 4; and Rev1st, RevBus, RevEcon,
RevCargo and RevTotal to 5.

Change the name of the output data set to salesnum. Resubmit it, and record the number of
pages and the page size for the data set salesnum.

c. Edit the original c07ex1start program to create a compressed data set using COMPRESS=CHAR.
Change the name of the output data set to saleschar. Be sure not to use the reduced length
numeric program to create saleschar. Submit the program, and record the number of pages
and the page size for the data set saleschar.

d. Edit the program to create a compressed data set using COMPRESS=BINARY. Change the name
of the output data set to salesbin. Resubmit it, and record the number of pages and the page
size for the data set salesbin.

2. Comparing CPU Time

Submit the program, c07ex2start, and compare the user CPU time for reading sales, salesnum,
saleschar, and salesbin.

 The external file sales used for demos and exercises contains fewer records than the external
file sales used for the course notes.

7-28 Chapter 7 Controlling Data Storage Space

7.4 Creating a DATA Step View

50

Objectives
Investigate types of SAS data sets.
Create and use DATA step views.
Determine the advantages of DATA step views.
Examine guidelines for using DATA step views.

51

Instead of creating a SAS data file that contains three
months of raw data, as discussed in a previous chapter,
you can create a DATA step view.

Creating a DATA Step View

The FILENAME statement and the FILEVAR option for the INFILE statement were discussed in an
earlier chapter.

 7.4 Creating a DATA Step View 7-29

52

SAS Data Sets

SAS Data File SAS Data View

Data stored
on disk

Instructions
stored
on disk

...

A DATA file… A DATA step view…

is a SAS file with a member type of DATA. is a SAS file with a member type of VIEW.

enables read or write capabilities. is read-only.

contains no data. contains data and a descriptor portion that
are stored on disk.

contains a partially compiled DATA step.

7-30 Chapter 7 Controlling Data Storage Space

53

A DATA File

External
File

proc print data = ia.newdata;
run;

data ia.newdata;
infile fileref;
DATA step statements;

run;

...

54

A DATA Step View
data ia.newview /

view = ia.newview;
infile fileref;
DATA step statements;

run;

External
File

CompileCompile ExecuteExecute

filename fileref 'ext-file';
proc print data = ia.newview;
run;

...

The name of a DATA view must be different from the name of an existing DATA file in the same SAS
library.

 7.4 Creating a DATA Step View 7-31

Creating a DATA Step View

c07s4d1

data ia.firstq / view = ia.firstq;
 infile Q1;
 input Flight $ Origin $ Dest $ Date : date9.
 RevCargo : comma15.2;
run;

Log
 data ia.firstq / view=ia.firstq;
 infile Q1;
 input Flight $ Origin $ Dest $ Date : date9.
 RevCargo : comma15.2;
 run;

NOTE: DATA STEP view saved on file IA.FIRSTQ.
NOTE: A stored DATA STEP view cannot run under a different operating system.
NOTE: DATA statement used:
 real time 0.00 seconds
 cpu time 0.01 seconds

filename Q1 ('month1.dat' 'month2.dat' 'month3.dat');

proc print data = ia.firstq;
 title 'ia.firstq DATA Step View';
 format Date date9.;
run;

Partial Output
ia.firstq DATA Step View

 Rev
 Obs Flight Origin Dest Date Cargo

 1 IA10200 SYD HKG 01JAN2000 191187
 2 IA10201 SYD HKG 01JAN2000 169653
 3 IA10300 SYD CBR 01JAN2000 850
 4 IA10301 SYD CBR 01JAN2000 970
 5 IA10302 SYD CBR 01JAN2000 1030
 6 IA10303 SYD CBR 01JAN2000 1410
 7 IA10304 SYD CBR 01JAN2000 870
 8 IA10305 SYD CBR 01JAN2000 730
 9 IA10400 CBR SYD 01JAN2000 1390
 10 IA10401 CBR SYD 01JAN2000 750

7-32 Chapter 7 Controlling Data Storage Space

Log
 filename Q1 ('month1.dat' 'month2.dat' 'month3.dat');

 proc print data=ia.firstq;
 title 'ia.firstq DATA Step View';
 format Date date9.;
 run;

NOTE: The infile Q1 is:
 File Name=c:\workshop\winsas\prog3\month1.dat,

 File List=('c:\workshop\winsas\prog3\month1.dat'
 'c:\workshop\winsas\prog3\month2.dat'
 'c:\workshop\winsas\prog3\month3.dat'),
 RECFM=V,LRECL=256

NOTE: The infile Q1 is:
 File Name=c:\workshop\winsas\prog3\month2.dat,

 File List=('c:\workshop\winsas\prog3\month1.dat'
 'c:\workshop\winsas\prog3\month2.dat'
 'c:\workshop\winsas\prog3\month3.dat'),
 RECFM=V,LRECL=256

NOTE: The infile Q1 is:
 File Name=c:\workshop\winsas\prog3\month3.dat,

 File List=('c:\workshop\winsas\prog3\month1.dat'
 'c:\workshop\winsas\prog3\month2.dat'
 'c:\workshop\winsas\prog3\month3.dat'),
 RECFM=V,LRECL=256

NOTE: 2299 records were read from the infile Q1.
 The minimum record length was 33.
 The maximum record length was 37.
NOTE: 2090 records were read from the infile Q1.
 The minimum record length was 33.
 The maximum record length was 37.
NOTE: 2297 records were read from the infile Q1.
 The minimum record length was 33.
 The maximum record length was 37.
NOTE: View IA.FIRSTQ.VIEW used:
 real time 0.15 seconds
 cpu time 0.16 seconds

NOTE: There were 6686 observations read from the data set IA.FIRSTQ.
NOTE: PROCEDURE PRINT used:
 real time 0.15 seconds
 cpu time 0.16 seconds

 7.4 Creating a DATA Step View 7-33

c07s4d2
/* The following program appends data from 3 months.
 The data selected is dependent on today's date. */

data ia.movingq / view = ia.movingq;
 drop MonNum MidMon LastMon I today;
 today = today();
 MonNum = month(today);
 MidMon = month(intnx('month',today,-1));
 LastMon = month(intnx('month',today,-2));
 do I = MonNum, MidMon, LastMon;
 NextFile = "month"||put(i,2.)||".dat";
 NextFile = compress(NextFile,' ');
 do until (LastObs);
 infile in filevar = NextFile end = LastObs;
 input Flight $ Origin $ Dest $ Date : date9.
 RevCargo : comma15.2;
 output;
 end;
 end;
 stop;
run;

Log
/* The following program appends data from 3 months.
 The data selected is dependent on today's date. */

 data ia.movingq / view=ia.movingq;
 drop MonNum MidMon LastMon I today;
 today = today();
 MonNum = month(today);
 MidMon = month(intnx('month',today,-1));
 LastMon = month(intnx('month',today,-2));
 do I = MonNum, MidMon, LastMon;
 NextFile = "month"||put(i,2.)||".dat";
 NextFile = compress(NextFile,' ');
 do until (LastObs);
 infile in filevar = NextFile end = LastObs;
 input Flight $ Origin $ Dest $ Date : date9.
 RevCargo : comma15.2;
 output;
 end;
 end;
 stop;
 run;

NOTE: DATA STEP view saved on file IA.MOVINGQ.
NOTE: A stored DATA STEP view cannot run under a different operating system.
NOTE: DATA statement used:
 real time 0.07 seconds
 cpu time 0.00 seconds

7-34 Chapter 7 Controlling Data Storage Space

data view = ia.movingq;
 describe;
run;

Log
 data view = ia.movingq;
 describe;
 run;

NOTE: DATA step view IA.MOVINGQ is defined as:

data ia.movingq / view = ia.movingq;
 drop MonNum MidMon LastMon I today;
 today = today();
 MonNum = month(today);
 MidMon = month(intnx('month',today,-1));
 LastMon = month(intnx('month',today,-2));
 do I = MonNum, MidMon, LastMon;
 NextFile = "month"||put(i,2.)||".dat";
 NextFile = compress(NextFile,' ');
 do until (LastObs);
 infile in filevar = NextFile end = LastObs;
 input Flight $ Origin $ Dest $ Date : date9. RevCargo : comma15.2;
 output;
 end;
 end;
 stop;
run;

options date;

proc print data = ia.movingq;
 title 'ia.movingq DATA Step View';
 var Flight Origin Date Dest RevCargo;
 format Date date9.;
run;

Partial Output
ia.movingq DATA Step View

12:41 Wednesday, February 4, 2004

 Rev
 Obs Flight Origin Date Dest Cargo

 1 IA10200 SYD 01FEB2000 HKG 177801
 2 IA10201 SYD 01FEB2000 HKG 174891
 3 IA10300 SYD 01FEB2000 CBR 1070
 4 IA10301 SYD 01FEB2000 CBR 1310
 5 IA10302 SYD 01FEB2000 CBR 850
 6 IA10303 SYD 01FEB2000 CBR 1030
 7 IA10304 SYD 01FEB2000 CBR 910
 8 IA10305 SYD 01FEB2000 CBR 1270
 9 IA10400 CBR 01FEB2000 SYD 1310
 10 IA10401 CBR 01FEB2000 SYD 1110

 7.4 Creating a DATA Step View 7-35

Log
 options date;

 proc print data = ia.movingq;
 title 'ia.movingq DATA Step View';
 var Flight Origin Date Dest RevCargo;
 format Date date9.;
 run;

NOTE: The infile IN is:
 File Name=c:\workshop\winsas\prog3\month2.dat,
 RECFM=V,LRECL=256

NOTE: The infile IN is:
 File Name=c:\workshop\winsas\prog3\month1.dat,
 RECFM=V,LRECL=256

NOTE: The infile IN is:
 File Name=c:\workshop\winsas\prog3\month12.dat,
 RECFM=V,LRECL=256

NOTE: 2090 records were read from the infile IN.
 The minimum record length was 33.
 The maximum record length was 37.
NOTE: 2299 records were read from the infile IN.
 The minimum record length was 33.
 The maximum record length was 37.
NOTE: 2190 records were read from the infile IN.
 The minimum record length was 33.
 The maximum record length was 37.
NOTE: View IA.MOVINGQ.VIEW used:
 real time 0.83 seconds
 cpu time 0.23 seconds

NOTE: There were 6579 observations read from the data set IA.MOVINGQ.
NOTE: PROCEDURE PRINT used:
 real time 0.83 seconds
 cpu time 0.23 seconds

7-36 Chapter 7 Controlling Data Storage Space

56

DATA Statement with VIEW= Option Syntax

VIEW = view-name
view-name specifies a name that the DATA step uses

to store the partially compiled DATA step.
The view-name must match one of the data
set names.

DATA data-set-name(s) / VIEW = view-name;
INFILE fileref;
INPUT variable(s);

RUN;

DATA data-set-name(s) / VIEW = view-name;
INFILE fileref;
INPUT variable(s);

RUN;

General form of the DATA statement with VIEW= option:

You can also create SAS data files in the DATA step that creates the view; but you can only create one
view per DATA step.

57

The DESCRIBE Statement

DATA VIEW = view-name;
DESCRIBE;

RUN;

DATA VIEW = view-name;
DESCRIBE;

RUN;

You can use the DESCRIBE statement to retrieve
program source code from a DATA step view. SAS
writes the source statements to the SAS log.
General form of the DESCRIBE statement:

 7.4 Creating a DATA Step View 7-37

58

Advantages of DATA Step Views
You can use DATA step views to do the following:

combine data from multiple sources
hide complex code from users
access the most current data in changing files
avoid storing a SAS copy of a large data file
avoid creating intermediate copies of data

59 ...

Guidelines for Creating and Using Views
If data is used many times in one program, it is more
efficient to create and reference a SAS data file than
to create and reference a view.

proc print data = ia.sview;
run;

proc freq data = ia.sview;
tables JobCode;

run;

proc means data = ia.sview;
run;

7-38 Chapter 7 Controlling Data Storage Space

63 ...

Guidelines for Creating and Using Views
If data is used many times in one program, it is more
efficient to create and reference a SAS data file than
to create and reference a view.

data staff;
set ia.sview;

run;

proc print data = staff;
run;

proc freq data = staff;
tables JobCode;

run;

proc means data = staff;
run;

64

Guidelines for Creating and Using Views
Expect a degradation in performance when you use
a SAS data view with a procedure that requires
multiple passes through the data.

proc print data = ia.sview uniform;
run;

...

The PRINT procedure with the UNIFORM option, the CLASS statement in the MEANS/SUMMARY,
TABULATE, and UNIVARIATE procedures, and many SAS/STAT procedures require multiple passes
through the data.

 7.4 Creating a DATA Step View 7-39

65

Guidelines for Creating and Using Views
Avoid creating views on files whose structures often
change.

...

FLTATEN1 23456
file1

23456 FLTATEN1

file2

LEVELI FLTATEN1
file3

filename rawdata 'file1';
proc print data = ia.sview;
run;
filename rawdata 'file2'
proc freq data = ia.sview;

tables JobCode;
run;
filename rawdata 'file3'
proc means data = ia.sview;
run;

7-40 Chapter 7 Controlling Data Storage Space

Reference Information

Creating a VIEW and a FILE

Only one view can be created in a DATA step.

In addition to the view name, you can specify other data set names in the DATA statement. The data sets
are not created until the view is processed.

c07ref1
data ia.movingq work.movingq / view = ia.movingq;
 drop MonNum MidMon LastMon I today;
 today = today();
 MonNum = month(today);
 MidMon = month(intnx('month',today,-1));
 LastMon = month(intnx('month',today,-2));
 do I = MonNum, MidMon, LastMon;
 NextFile = "month"||put(i,2.)||".dat"; * Windows/UNIX;
 Nextfile = ".prog3.rawdata(month"!!put(i,2.)!!")"; / z/OS */
 NextFile = compress(NextFile,' ');
 do until (LastObs);
 infile in filevar = NextFile end = LastObs;
 input Flight $ Origin $ Dest $ Date : date9.
 RevCargo : comma15.2;
 output;
 end;
 end;
 stop;
run;

proc print data = ia.movingq;
 title 'ia.movingq DATA Step View';
 title2 'triggers creation of work.movingq data set';
 var Flight Origin Date Dest RevCargo;
 format Date date9.;
run;

Partial Log
 proc print data = ia.movingq;
 title 'ia.movingq DATA Step View';
 title2 'triggers creation of work.movingq data set';
 var Flight Origin Date Dest RevCargo;
 format Date date9.;
 run;

NOTE: The data set WORK.MOVINGQ has 6684 observations and 5 variables.
NOTE: There were 6684 observations read from the data set IA.MOVINGQ.
NOTE: PROCEDURE PRINT used:
 real time 0.30 seconds
 cpu time 0.25 seconds

 7.4 Creating a DATA Step View 7-41

Using Macro Variables

Because SAS macro variables are resolved during compilation, any macro variables used in a DATA step
view are resolved when the view is created.

You can use the SYMGET function to postpone macro resolution until the view is executed.

c07ref2
data ia.movingq / view = ia.movingq;
 drop MonNum MidMon LastMon I today;
 today = today();
 MonNum = month(today);
 MidMon = month(intnx('month',today,-1));
 LastMon = month(intnx('month',today,-2));
 do I = MonNum, MidMon, LastMon;
 NextFile = "month"!!put(i,2.)!!".dat";* Windows/UNIX;
 Nextfile = ".prog3.rawdata(month"!!put(i,2.)!!")"; / z/OS */
 NextFile = compress(NextFile,' ');
 do until (LastObs);
 infile in filevar = NextFile end = LastObs;
 input Flight $ Origin $ Dest $ Date : date9.
 RevCargo : comma15.2;
 if Dest = symget('ThisDest') then output;
 end;
 end;
 stop;
run;

Use the %LET statement to provide a value for the macro variable ThisDest.
%let ThisDest = MCI;
proc print data = ia.movingq;
 title "Flight to &ThisDest";
 var Flight Origin Date Dest RevCargo;
 format Date date9.;
run;

Partial Output
Flights to MCI

 Rev
 Obs Flight Origin Date Dest Cargo

 1 IA03904 RDU 01JAN2000 MCI 4161
 2 IA03904 RDU 04JAN2000 MCI 7125
 3 IA03903 RDU 05JAN2000 MCI 7239
 4 IA03900 RDU 16JAN2000 MCI 4275
 5 IA03903 RDU 18JAN2000 MCI 7581
 6 IA03900 RDU 20JAN2000 MCI 5073
 7 IA03904 RDU 20JAN2000 MCI 5871

7-42 Chapter 7 Controlling Data Storage Space

Exercises

3. Creating a DATA Step View

Use the program, c07ex3start as a starting program. Write one DATA step to create both a view and a
file.

HINT: Investigate the Reference Information on Creating a VIEW and a FILE.

a. Name the DATA step view laircraft. The view should contain the aircraft where the
CapTotal value is over 200.

b. Name the data file saircraft. The file should contain the aircraft where the CapTotal value
is less than or equal to 200.

4. Printing the DATA Step File Unsuccessfully

Attempt to print the saircraft data.

5. Printing the DATA Step View

Print the laircraft data.

6. Printing the DATA Step File Successfully

Print the saircraft data.

7. Investigating the Results

Answer the following questions:

a. Why was the first attempt to print saircraft unsuccessful?

b. Why was the second attempt to print saircraft successful?

 7.5 Solutions to Exercises 7-43

7.5 Solutions to Exercises

1. Creating Reduced-Length Numeric Variables and Compressed SAS Data Files

Use the program, c07ex1start, as a starting program for the following:

a. Submit the program and record the number of pages and the page size for the data set sales.
data sales;
 infile 'sales.dat' missover; /* Windows and UNIX */
* infile '.prog3.rawdata(sales)'; /* Mainframe */
 input @1 FlightID $7. @8 RouteID $7.
 @15 Origin $3. @18 Dest $3.
 @21 DestType $13. @34 FltDate date9.
 @43 Cap1st 3. @46 CapBus 3.
 @49 CapEcon 3. @52 CapPassTotal 3.
 @55 CapCargo 6. @62 Num1st 3.
 @64 NumBus 3. @67 NumEcon 3.
 @70 NumPassTotal 3. @73 Rev1st 7.
 @80 RevBus 7. @87 RevEcon 7.
 @94 RevCargo 7. @102 RevTotal 10.
 @112 CargoWeight 5.;
run;

proc contents data = sales;
run;

b. Edit the program to the length of the numeric variables Cap1st, CapBus, CapEcon to 3;
CapCargo, Num1st, NumBus, NumEcon, NumPassTotal, CapPassTotal,
CargoWeight and FltDate to 4; and Rev1st, RevBus, RevEcon, RevCargo and
RevTotal to 5.

Change the name of the output data set to salesnum. Resubmit it, and record the number of
pages and the page size for the data set salesnum.

7-44 Chapter 7 Controlling Data Storage Space

data salesnum;
 length Cap1st CapBus CapEcon 3
 CapCargo Num1st NumBus NumEcon NumPassTotal
 CapPassTotal CargoWeight FltDate 4
 Rev1st RevBus RevEcon RevCargo RevTotal 5;

 infile 'sales.dat' missover; /* Windows and UNIX */
* infile '.prog3.rawdata(sales)'; /* Mainframe */

 input @1 FlightID $7. @8 RouteID $7.
 @15 Origin $3. @18 Dest $3.
 @21 DestType $13. @34 FltDate date9.
 @43 Cap1st 3. @46 CapBus 3.
 @49 CapEcon 3. @52 CapPassTotal 3.
 @55 CapCargo 6. @62 Num1st 3.
 @64 NumBus 3. @67 NumEcon 3.
 @70 NumPassTotal 3. @73 Rev1st 7.
 @80 RevBus 7. @87 RevEcon 7.
 @94 RevCargo 7. @102 RevTotal 10.
 @112 CargoWeight 5.;
run;

proc contents data = salesnum;
run;

c. Edit the original c07ex1start program to create a compressed data set using COMPRESS=CHAR.
Change the name of the output data set to saleschar. Be sure not to use the reduced length
numeric program to create saleschar. Submit the program, and record the number of pages
and the page size for the data set saleschar.
data saleschar (compress = char);
 infile 'sales.dat' missover; /* Windows and UNIX */
* infile '.prog3.rawdata(sales)'; /* Mainframe */
 input @1 FlightID $7. @8 RouteID $7.
 @15 Origin $3. @18 Dest $3.
 @21 DestType $13. @34 FltDate date9.
 @43 Cap1st 3. @46 CapBus 3.
 @49 CapEcon 3. @52 CapPassTotal 3.
 @55 CapCargo 6. @62 Num1st 3.
 @64 NumBus 3. @67 NumEcon 3.
 @70 NumPassTotal 3. @73 Rev1st 7.
 @80 RevBus 7. @87 RevEcon 7.
 @94 RevCargo 7. @102 RevTotal 10.
 @112 CargoWeight 5.;
run;

proc contents data = saleschar;
run;

 7.5 Solutions to Exercises 7-45

d. Edit the program to create a compressed data set using COMPRESS=BINARY. Change the name
of the output data set to salesbin. Resubmit it, and record the number of pages and page size
for the data set salesbin.
data salesbin (compress = binary);
 infile 'sales.dat' missover; /* Windows and UNIX */
* infile '.prog3.rawdata(sales)'; /* Mainframe */
 input @1 FlightID $7. @8 RouteID $7.
 @15 Origin $3. @18 Dest $3.
 @21 DestType $13. @34 FltDate date9.
 @43 Cap1st 3. @46 CapBus 3.
 @49 CapEcon 3. @52 CapPassTotal 3.
 @55 CapCargo 6. @62 Num1st 3.
 @64 NumBus 3. @67 NumEcon 3.
 @70 NumPassTotal 3. @73 Rev1st 7.
 @80 RevBus 7. @87 RevEcon 7.
 @94 RevCargo 7. @102 RevTotal 10.
 @112 CargoWeight 5.;
run;

proc contents data = salesbin;
run;

2. Comparing CPU Time

Submit the program, c07ex2start, and compare the user CPU time for reading sales, salesnum,
saleschar, and salesbin.

SAS Log
318 options fullstimer;
319
320 data _null_;
321 set sales;
322 run;

NOTE: There were 329264 observations read from the data set WORK.SALES.
NOTE: DATA statement used (Total process time):
 real time 0.11 seconds
 user cpu time 0.07 seconds
 system cpu time 0.04 seconds
 Memory 153k

323
324 data _null_;
325 set salesnum;
326 run;

NOTE: There were 329264 observations read from the data set WORK.SALESNUM.
NOTE: DATA statement used (Total process time):
 real time 0.09 seconds
 user cpu time 0.06 seconds
 system cpu time 0.04 seconds
 Memory 147k

(Continued on the next page.)

7-46 Chapter 7 Controlling Data Storage Space

327
328 data _null_;
329 set saleschar;
330 run;

NOTE: There were 329264 observations read from the data set WORK.SALESCHAR.
NOTE: DATA statement used (Total process time):
 real time 0.50 seconds
 user cpu time 0.40 seconds
 system cpu time 0.04 seconds
 Memory 153k

331
332 data _null_;
333 set salesbin;
334 run;

NOTE: There were 329264 observations read from the data set WORK.SALESBIN.
NOTE: DATA statement used (Total process time):
 real time 0.64 seconds
 user cpu time 0.60 seconds
 system cpu time 0.02 seconds
 Memory 153k

3. Creating a DATA Step View

Use the program, c07ex3start as a starting program. Write one DATA step to create both a view and a
file.

HINT: Investigate the Reference Information on Creating a VIEW and a FILE.

a. Name the DATA step view laircraft. The view should contain the aircraft where the
CapTotal value is over 200.

b. Name the data file saircraft. The file should contain the aircraft where the CapTotal value
is less than or equal to 200.
data laircraft saircraft / view = laircraft;
 infile air;
 input ModelType $15. Model $8. AircraftID $6.
 CapFirst 4. CapBusiness 4. CapEconomy 4.
 CapTotal 5. CapCargo 6. Range 6.
 InServiceDate Date9. LastMaintDate Date9.
 CruiseSpeed 6.;
 if CapTotal > 200 then output laircraft;
 else output saircraft;
run;

4. Printing the DATA Step File Unsuccessfully

Attempt to print the saircraft data.
filename air 'aircraft.dat'; *Windows/UNIX;
* filename air '.prog3.rawdata(aircraft)'; *z/OS;

proc print data = saircraft;
run;

 7.5 Solutions to Exercises 7-47

5. Printing the DATA Step View

Print the laircraft data.
filename air 'aircraft.dat'; *Windows/UNIX;
* filename air '.prog3.rawdata(aircraft)'; *z/OS;

proc print data = laircraft;
run;

6. Printing the DATA Step File Successfully

Print the saircraft data.
filename air 'aircraft.dat'; *Windows/UNIX;
* filename air '.prog3.rawdata(aircraft)'; *z/OS;

proc print data = saircraft;
run;

7. Investigating the Results

Answer the following questions:

a. Why was the first attempt to print saircraft unsuccessful?

The file saircraft is not created until the view is accessed.

b. Why was the second attempt to print saircraft unsuccessful?

Printing laircraft automatically executed the compiled code for laircraft. Therefore, the
saircraft file was created.

7-48 Chapter 7 Controlling Data Storage Space

Chapter 8 Utilizing Best Practices to
Improve Efficiency

8.1 Introduction...8-3

8.2 Executing Only Necessary Statements ..8-7

8.3 Eliminating Unnecessary Passes through the Data..8-14

8.4 Reading and Writing Only Essential Data ..8-20

8.5 Networking Efficiency Considerations (Self-Study)..8-34

8-2 Chapter 8 Utilizing Best Practices to Improve Efficiency

 8.1 Introduction 8-3

8.1 Introduction

3

Objectives
Review best practice techniques.

4

What Are Best Practices
Best practices reduce usage of five critical resources to
improve system performance:

CPU
I/O
disk space
memory
network traffic

Reducing one resource often increases another.

8-4 Chapter 8 Utilizing Best Practices to Improve Efficiency

5

Techniques for Conserving CPU
Execute only necessary statements.
Eliminate unnecessary passes of the data.
Read and write only the data that you require.
Do not reduce the length of numeric variables.
Do not compress SAS data sets.

6

Techniques for Reducing I/O Operations
Process only the necessary variables and
observations.
Reduce the number of times that data is processed.
Reduce the number of data accesses using the
appropriate BUFSIZE= and BUFNO= options for the
way that the data is accessed.
Create a SAS data set, if you process the same data
(other than SAS data) repeatedly. SAS can process
SAS data sets more efficiently than it can process raw
data files.
Create indexes on variables used for WHERE
processing.

Because the CPU performs all the processing that is needed to perform an I/O operation, an option or
technique that reduces the number of I/O operations can also reduce CPU usage.

 8.1 Introduction 8-5

7

Techniques for Reducing Disk Space
Process only the necessary variables.
Create reduced length numerics.
Compress SAS data files.

8

Reducing Memory Usage
Use KEEP= and DROP= so that only relevant
variables consume memory during processing.
Use small data set page sizes. This can also reduce
I/O for data sets that are accessed in a sparse random
pattern and can minimize wasted disk space for small
SAS data files.
Use a small value for BUFNO= when the data is
accessed randomly instead of sequentially.
Create a small copy of a large data file with only the
observations and variables that are used by
subsequent reporting or analysis steps.

The techniques that reduce CPU and I/O can increase memory usage.
Benchmark carefully to balance the need to conserve memory

with the need to reduce CPU and I/O.

8-6 Chapter 8 Utilizing Best Practices to Improve Efficiency

9

Techniques to Reduce Network Traffic
Manipulate the data as close to the source of the data
as possible.
Transfer subsets of data or summarized data.

10

Utilizing Best Practices
This chapter presents best practices
not discussed in previous chapters.

Execute only necessary statements.
Eliminate unnecessary passes of the data.
Read and write only the data that you require.
Utilize networking efficiently.

The data set ia.sales used for demonstrations and
exercises contains fewer observations than the data set

ia.sales used for the course notes.

 8.2 Executing Only Necessary Statements 8-7

8.2 Executing Only Necessary Statements

12

Objectives
Use the most efficient technique to perform the following
tasks:

Subset your data by using the subsetting IF statement.
Use IF-THEN/ELSE or SELECT statements to create
new variables.

13

Execute Only Necessary Statements
You minimize the CPU time that SAS uses when you
execute the minimum number of statements in the most
efficient order.
Techniques for executing only the statements that you
require include the following:

subsetting your data as soon as logically possible
processing your data conditionally by using the most
appropriate syntax for your data

8-8 Chapter 8 Utilizing Best Practices to Improve Efficiency

14

data totals;
set ia.sales;
PercentCap =

sum(Num1st,NumEcon,NumBus)/CapPassTotal;
NumNonEconomy = sum(Num1st,NumBus);
CargoKG = CargoWeight*0.454;
Month = month(FltDate);
if PercentCap < 0.8;

run;

Subsetting IF Statement at Bottom of Step
Create a new SAS data set from ia.sales. The new
SAS data set should contain four new variables and only
those flights filled to less than 80% capacity.

c08s2d1a

15

Subsetting IF Statement as High as Possible
data totals;

set ia.sales;
PercentCap =

sum(Num1st,NumEcon,NumBus)/CapPassTotal;
if PercentCap < 0.8;
NumNonEconomy = sum(Num1st,NumBus);
CargoKG = CargoWeight*0.454;
Month = month(FltDate);

run;

c08s2d1b

 8.2 Executing Only Necessary Statements 8-9

16

Comparing Techniques

0.00.042.8Percent Difference
265.01226.01.3II. Subsetting IF near Top
265.01226.02.3I. Subsetting IF at Bottom

MemoryI/OCPUTechnique

CPU I/O Memory

 All of the benchmarks were run on HP-UX 11 (64-bit) in SAS 9.1.3 SP2.

17

Using Conditional Logic
You can use conditional logic to alter the way that SAS
processes specific observations.

IF-THEN/ELSE
statement

executes a SAS statement for
observations that meet specific
conditions.

SELECT
statement

executes one of several
statements or groups
of statements.

8-10 Chapter 8 Utilizing Best Practices to Improve Efficiency

18

Using Parallel IF Statements

data month;
set ia.sales;
if month(FltDate) = 1 then Month = 'Jan';
if month(FltDate) = 2 then Month = 'Feb';
if month(FltDate) = 3 then Month = 'Mar';
if month(FltDate) = 4 then Month = 'Apr';
if month(FltDate) = 5 then Month = 'May';
if month(FltDate) = 6 then Month = 'Jun';
if month(FltDate) = 7 then Month = 'Jul';
if month(FltDate) = 8 then Month = 'Aug';
if month(FltDate) = 9 then Month = 'Sep';
if month(FltDate) = 10 then Month = 'Oct';
if month(FltDate) = 11 then Month = 'Nov';
if month(FltDate) = 12 then Month = 'Dec';

run;

For the data in ia.sales, create a variable named
Month, based on the existing variable FltDate.

c08s2d2a

19

Using ELSE-IF Statements
data month;

set ia.sales;
if month(FltDate) = 1 then Month = 'Jan';
else if month(FltDate) = 2 then Month = 'Feb';
else if month(FltDate) = 3 then Month = 'Mar';
else if month(FltDate) = 4 then Month = 'Apr';
else if month(FltDate) = 5 then Month = 'May';
else if month(FltDate) = 6 then Month = 'Jun';
else if month(FltDate) = 7 then Month = 'Jul';
else if month(FltDate) = 8 then Month = 'Aug';
else if month(FltDate) = 9 then Month = 'Sep';
else if month(FltDate) = 10 then Month = 'Oct';
else if month(FltDate) = 11 then Month = 'Nov';
else if month(FltDate) = 12 then Month = 'Dec';

run;

c08s2d2b

 8.2 Executing Only Necessary Statements 8-11

20

Using the Function Only Once
data month(drop=mon);

set ia.sales;
mon = month(FltDate);
if mon = 1 then Month = 'Jan';
else if mon = 2 then Month = 'Feb';
else if mon = 3 then Month = 'Mar';
else if mon = 4 then Month = 'Apr';
else if mon = 5 then Month = 'May';
else if mon = 6 then Month = 'Jun';
else if mon = 7 then Month = 'Jul';
else if mon = 8 then Month = 'Aug';
else if mon = 9 then Month = 'Sep';
else if mon = 10 then Month = 'Oct';
else if mon = 11 then Month = 'Nov';
else if mon = 12 then Month = 'Dec';

run;

c08s2d2c

21

Using a SELECT Block
data month;

set ia.sales;
select(month(FltDate));

when(1) Month = 'Jan'; when(2) Month = 'Feb';
when(3) Month = 'Mar'; when(4) Month = 'Apr';
when(5) Month = 'May'; when(6) Month = 'Jun';
when(7) Month = 'Jul'; when(8) Month = 'Aug';
when(9) Month = 'Sep'; when(10) Month = 'Oct';
when(11) Month = 'Nov'; when(12) Month = 'Dec';
otherwise;

end;
run;

c08s2d2d

8-12 Chapter 8 Utilizing Best Practices to Improve Efficiency

22

Comparing Techniques

263.06795.03.0IV. SELECT/WHEN Block
272.06797.03.0III. Using a Function Once
288.06797.09.7II. ELSE-IF Statements
280.06797.015.9I. ALL IF Statements

MemoryI/OCPUTechnique

The I/O for each technique is the same.

CPU Memory

23

Use IF-THEN/ELSE statements when the following
circumstances exist:
− There are few conditions to check.
− The data values are not uniformly distributed.
− The values are character or discrete numeric data.
− There are bounded ranges of data (for example,

1<x<2) .
For mutually exclusive conditions, use the ELSE-IF
statement rather than an IF statement for all conditions
except the first.
Check the most frequently occurring condition first.
When you execute multiple statements based on a
condition, put the statements into a DO group.

Guidelines for Writing Efficient IF/THEN Logic

To determine the distribution of your data values, use the following:
• FREQ procedure to examine the distribution of the data values
• GCHART or GPLOT procedure to display the distribution graphically
• UNIVARIATE procedure to examine distribution statistics and display the information graphically

 8.2 Executing Only Necessary Statements 8-13

24

Guideline for Using a SELECT Statement
Use a SELECT statement when you have a long series of
mutually exclusive conditions.

SELECT statements perform slightly better for a large selection of uniformly distributed numeric values.

8-14 Chapter 8 Utilizing Best Practices to Improve Efficiency

8.3 Eliminating Unnecessary Passes through the Data

26

Objectives
Use the most efficient technique to accomplish the
following tasks:

Create multiple subsets.
Create a sorted subset.
Modify variable attributes.

27

Eliminate Unnecessary Passes of the Data
Avoid reading or writing data more than necessary in
order to minimize I/O operations.
Techniques include the following:

creating multiple output data sets from one pass of
the input data, rather than processing the input data
each time that you create an output data set
creating sorted subsets with the SORT procedure

 8.3 Eliminating Unnecessary Passes through the Data 8-15

28

Multiple DATA Steps

data rdu;
set ia.sales;
if Dest = 'RDU';

run;
data bos;

set ia.sales;
if Dest = 'BOS';

run;

continued...

Create six subsets from ia.sales, one for each
destination on the East Coast.

c08s3d1a

29

Multiple DATA Steps
data iad;

set ia.sales;
if Dest = 'IAD';

run;
data jfk;

set ia.sales;
if Dest = 'JFK';

run;
data mia;

set ia.sales;
if Dest = 'MIA';

run;
data pwm;

set ia.sales;
if Dest = 'PWM';

run;

c08s3d1a

8-16 Chapter 8 Utilizing Best Practices to Improve Efficiency

30

Single DATA Step
data rdu bos iad jfk mia pwm;

set ia.sales;
if Dest = 'RDU' then output rdu;
else if Dest = 'BOS' then output bos;
else if Dest = 'IAD' then output iad;
else if Dest = 'JFK' then output jfk;
else if Dest = 'MIA' then output mia;
else if Dest = 'PWM' then output pwm;

run;

c08s3d1b

31

Comparing Techniques

-84.40.474.8Percent Difference
483.01774.01.3II. Single DATA Step
262.01781.05.2I. Multiple DATA Steps

MemoryI/OCPUTechnique

CPU I/O Memory

The memory increases for the single DATA step because multiple data sets are open in memory for
output.

 8.3 Eliminating Unnecessary Passes through the Data 8-17

32

DATA Step / PROC SORT Step

data east;
set ia.sales;
where Dest in

('RDU','BOS','IAD','JFK','MIA','PWM');
run;
proc sort data = east;

by Dest;
run;

Create a sorted subset of ia.sales that contains the
flights to the East Coast.

c08s3d2a

33

PROC SORT Step
proc sort data = ia.sales out = east;

by Dest;
where Dest in

('RDU','BOS','IAD','JFK','MIA','PWM');
run;

c08s3d2b

8-18 Chapter 8 Utilizing Best Practices to Improve Efficiency

34

Comparing Techniques

-0.950.023.4Percent Difference
183551745.01.4II. SORT with WHERE
181993490.01.8I. DATA/SORT

MemoryI/OCPUTechnique

CPU I/O Memory

35

Var Name Var Format
ia.sales FlightID $7.

FltDate DATE9.

ia.salesc FlightIDNumber $7.
FltDate MMDDYYP10.

Business Task
Change the variable attributes in ia.salesc to be
consistent with those in ia.sales.

 8.3 Eliminating Unnecessary Passes through the Data 8-19

36

DATA Step / PROC DATASETS
data ia.salesc;

set ia.salesc;
rename FlightIDNumber = FlightID;
format FltDate date9.;

run;

proc datasets library=ia nolist;
modify salesc;

rename FlightIDNumber=FlightID;
format FltDate date9.;

quit;

c08s3d3a

c08s3d3b

37

Comparing Techniques

34.5-11.197.1Percent Difference
173.010.00.1II. PROC DATASETS
264.09.01.8I. DATA Step

MemoryIOCPUTechnique

CPUCPUCPU I/OI/OI/O MemoryMemoryMemory

8-20 Chapter 8 Utilizing Best Practices to Improve Efficiency

8.4 Reading and Writing Only Essential Data

39

Objectives
Use the most efficient technique to select the following;

observations
variables

40

If you process fewer variables and observations,
CPU and/or I/O operations can be affected significantly.

Read and Write Data Selectively

 8.4 Reading and Writing Only Essential Data 8-21

41 ...

Selecting Observations

Destination Flight Number Route Number

BWI SE00007 0000206

ATL SE0003 0000202

GSP SE0001 0000200

BWI SE0006 0000206

WHERE Dest = "BWI"

42

Selecting Observations

Destination Flight Number Route Number

BWI SE00007 0000206

ATL SE0003 0000202

GSP SE0001 0000200

BWI SE0006 0000206

IF Dest = "BWI"

...

8-22 Chapter 8 Utilizing Best Practices to Improve Efficiency

43

Subsetting IF versus WHERE

data west;
set ia.sales;
if Dest in ('LAX','SEA','SFO');

run;

data west;
set ia.sales;
where Dest in ('LAX','SEA','SFO');

run;

Create a subset of the sales data that contains data for
West Coast destinations.

c08s4d1a

c08s4d1b

44

Comparing Techniques

-3.40.55.1Percent Difference
272.0427.00.9II. WHERE Statement
263.0429.01.0I. Subsetting IF

MemoryI/OCPUTechnique

CPU I/O Memory

 8.4 Reading and Writing Only Essential Data 8-23

45

The Subsetting IF and the WHERE Statements

ID Flight Route Dest

Buffers

PDV

BuffersI/O
measured

here

Output
Data
Set

Input
SAS
Data WHERE statement

selects observations.

memory

I/O
measured

here

Subsetting IF
selects observations.

46

The WHERE= Data Set Option

ID Flight Route Dest

Buffers

PDV

BuffersI/O
measured

here

Output
Data
Set

Input
SAS
Data WHERE= data set option

on the input side

memory

I/O
measured

here

WHERE= data set option
on the output side

 Input operations are not affected by the subsetting IF, the WHERE statement, or the WHERE=
data set options.

8-24 Chapter 8 Utilizing Best Practices to Improve Efficiency

Reference Information

The WHERE and subsetting IF statement are not equivalent. While both statements test a condition to
determine whether SAS should process an observation, there are differences:
• The WHERE statement selects observations before they are brought into the PDV. The subsetting IF

statement works on observations after they are read into the PDV.
• The WHERE statement can produce a different data set than the subsetting IF when a BY statement

accompanies a SET, MERGE, or UPDATE statement.
• When you use the subsetting IF statement with the MERGE statement, SAS selects observations after

the current observations are combined. When you use the WHERE statement, SAS applies the selection
criteria to each input data set before it combines observations.

• The WHERE statement can select observations only from SAS data sets. The subsetting IF statement
selects observations from SAS data sets, those created with an INPUT statement, or where the selection
criteria is based on computed variables.

• The WHERE statement cannot be executed conditionally as part of an IF statement, but the subsetting
IF statement can.

If you use the WHERE= data set option and the WHERE statement in the same DATA step, SAS ignores
the WHERE statement for data sets with the WHERE= data set option. There is no significant efficiency
difference between a WHERE statement and a WHERE= data set option on an input data set.

 8.4 Reading and Writing Only Essential Data 8-25

47

Subsetting an External File
Create a subset of data that contains only the flights
to the West Coast. The data is in an external file that
contains information about all flights.

48

data west;
infile rawdata ;
input FlightID $7. RouteID $7.

Origin $3. Dest $3.
DestType $13. FltDate date9.
Cap1st 8. CapBus 8.
CapEcon 8. CapPassTotal 8.
CapCargo 8. Num1st 8.
NumBus 8. NumEcon 8.
NumPassTotal 8. Rev1st 8.
RevBus 8. RevEcon 8.
CargoRev 8. RevTotal 8.
CargoWeight 8.;

if Dest in ('LAX','SEA','SFO');
run;

Reading All Variables and Subsetting

c08s4d2a

8-26 Chapter 8 Utilizing Best Practices to Improve Efficiency

49

data west;
infile rawdata ;
input @18 Dest $3. @;
if Dest in ('LAX','SEA','SFO');
input @1 FlightID $7. RouteID $7.

Origin $3.
@21 DestType $13. FltDate date9.
Cap1st 8. CapBus 8.
CapEcon 8. CapPassTotal 8.
CapCargo 8. Num1st 8.
NumBus 8. NumEcon 8.
NumPassTotal 8. Rev1st 8.
RevBus 8. RevEcon 8.
CargoRev 8. RevTotal 8.
CargoWeight 8.;

run;

Reading Selected Variable(s) and Subsetting

c08s4d2b

50

Comparing Techniques

-7.01.867.2Percent Difference
243.0425.01.4II. Subsetting higher up
227.0433.04.3I. Subsetting at bottom

MemoryI/OCPUTechnique

CPU I/O Memory

 8.4 Reading and Writing Only Essential Data 8-27

51

Reading External Files

ID Flight Route Dest

Buffers

PDV

BuffersI/O
measured

here

Output
Data
Set

Input
Raw
Data

memory

I/O
measured

here
Input BufferEntire

Record
Loaded

translation of
numerics

52

Subsetting Variables
To subset variables, you can use the following:

DROP and KEEP statements
DROP= and KEEP= data set options

DROP KEEP

FLIGHT HUB DATE

8-28 Chapter 8 Utilizing Best Practices to Improve Efficiency

53

Reading and Writing All Variables
Create a report that contains the average and median of
the total number of passengers on the flights for each
destination in ia.sales that has 21 variables.

data totals;
set ia.sales;
NonEconPass =

sum(Num1st,NumBus);
run;

proc means data = totals mean median;
title 'Non-Economy Passengers';
class Dest;
var NonEconPass;

run;

c08s4d3a

54

Reading All Variables/Writing Two Variables

data totals(keep = Dest NonEconPass);
set ia.sales;
NonEconPass =

sum(Num1st,NumBus);
run;

proc means data = totals mean median;
title 'Non-Economy Passengers';
class Dest;
var NonEconPass;

run;

c08s4d3b

 8.4 Reading and Writing Only Essential Data 8-29

55

Reading Three Variables

data totals;
set ia.sales(keep = Dest Num1st

NumBus);
NonEconPass =

sum(Num1st,NumBus);
run;

proc means data = totals mean median;
title 'Non-Economy Passengers';
class Dest;
var NonEconPass;

run;

c08s4d3c

56

Reading Three Variables/Writing Two
Variables
data totals(keep = Dest NonEconPass);

set ia.sales(keep = Dest Num1st
NumBus);

NonEconPass =
sum(Num1st,NumBus);

run;

proc means data = totals mean median;
title 'Non-Economy Passengers';
class Dest;
var NonEconPass;

run;

c08s4d3d

8-30 Chapter 8 Utilizing Best Practices to Improve Efficiency

57

Reading Three Variables/Reading Two
Variables
data totals;

set ia.sales(keep = Dest Num1st
NumBus);

NonEconPass =
sum(Num1st,NumBus);

run;

proc means data = totals
(keep = Dest NonEconPass)
mean median;

title 'Non-Economy Passengers';
class Dest;
var NonEconPass;

run;

c08s4d3e

58

Comparing Techniques

813916252.4V. KEEP on SET and PROC statements
81386622.2IV. KEEP on SET and DATA statements
813816252.4III. KEEP on SET statement
81386562.3II. KEEP on DATA statement
814071772.9I. KEEP not used

MemoryI/OCPUTechnique

V.

CPU

 8.4 Reading and Writing Only Essential Data 8-31

59

Comparing Techniques

V.

I/O

V.V.

Memory

60

Using the KEEP=/DROP= Options

ID Flight Route Dest

Buffers

PDV

BuffersI/O
measured

here

Output
Data
Set

Input
SAS
Data

memory

I/O
measured

here
KEEP=/DROP=
data set option

in the SET statement

D

KEEP=/DROP= data set option
in the DATA statement

(KEEP/DROP statement)

D

8-32 Chapter 8 Utilizing Best Practices to Improve Efficiency

61

Reading All Fields
data sales(keep = FlightID Num1st

NumBus NumEcon NumPassTotal);
infile rawdata ;
input FlightID $7. RouteID $7.

Origin $3. Dest $3.
DestType $13. FltDate date9.
Cap1st 8. CapBus 8.
CapEcon 8. CapPassTotal 8.
CapCargo 8. Num1st 8.
NumBus 8. NumEcon 8.
NumPassTotal 8. Rev1st 8.
RevBus 8. RevEcon 8.
CargoRev 8. RevTotal 8.
CargoWeight 8.;

run;
c09s4d4a

62

Reading Required Fields
data sales;

infile rawdata ;
input FlightID $7. @85 Num1st 8.

NumBus 8. NumEcon 8.
NumPassTotal 8. ;

run;

c09s4d4b

 8.4 Reading and Writing Only Essential Data 8-33

63

Comparing Techniques

1.80.160.7Percent Difference
215.01625.01.7II. Read required fields
219.01627.04.4I. Read all fields

MemoryI/OCPUTechnique

CPU I/O Memory

64

Conclusions
If the variable is already in a SAS data set, you can use
the following to minimize the volume of data processed:

WHERE statements in DATA and PROC steps
KEEP and DROP statements in the DATA step
WHERE=, KEEP=, and DROP= data set options
in DATA and PROC steps

If the data is not in a SAS data set or the variable is a
calculated variable, you can use the following to minimize
the volume of data processed:

subsetting IF statements
selective INPUT statements

8-34 Chapter 8 Utilizing Best Practices to Improve Efficiency

8.5 Networking Efficiency Considerations (Self-Study)

66

Objectives
Examine available efficiency techniques to do the
following tasks:

access database data
perform remote SAS processing

67

Accessing Database Data
When you access database (DBMS) data, the
performance of your SAS job can be influenced by the
following:

technique chosen to access the data
number of columns and rows returned
ordering of the rows
choice of SAS procedures or DATA steps

 8.5 Networking Efficiency Considerations (Self-Study) 8-35

68

Choosing a DBMS Access Technique
Access your DBMS data with the following primary
techniques:

SAS/ACCESS LIBNAME engine
SQL Pass-Through Facility

The SAS/ACCESS LIBNAME engine writes native DBMS SQL statements from your SAS statements
and sends them to the DBMS for processing.

The SQL Pass-Through Facility enables you to write native DBMS SQL statements from within the SQL
procedure and pass them directly to the DBMS for processing.

69

LIBNAME Engine Advantages
DATA and PROC step features:

You can take advantage of threaded reads.
The WHERE clause can be passed to DBMS.
Sort requests can be passed to DBMS.
Transparent access to DBMS data occurs.
DATA and PROC step syntax is unchanged.
Knowledge of DBMS-specific SQL is unnecessary.
Data retrieval results can be saved as a SAS table or
a view.

8-36 Chapter 8 Utilizing Best Practices to Improve Efficiency

70

LIBNAME Engine Advantages
Additional SQL procedure features:

Joins can be passed to DBMS.
GROUP BY criteria can be passed to DBMS.
Aggregate functions are passed to DBMS.

The list of aggregate functions that are passed varies by database. See the documentation for the
SAS/ACCESS Interface to your database for a list of aggregate functions that are passed to your database
for processing.

71

Using SASTRACE and SASTRACELOC
Behind the scenes, when SAS sees that the code
references a DBMS table, SAS sends an SQL query
directly to the DBMS.
To display this query in the log, you can use the
SASTRACE= and the SASTRACELOC= options.

The SASTRACE= and SASTRACELOC= system
options are typically turned on for debugging

and off for production jobs.

 8.5 Networking Efficiency Considerations (Self-Study) 8-37

72

Using SASTRACE and SASTRACELOC
General form of the SASTRACE= option:

General form of the SASTRACELOC= option:

Example:

SASTRACE=',,,d'SASTRACE=',,,d'

SASTRACELOC = stdout | SASLOGSASTRACELOC = stdout | SASLOG

options sastrace= ',,,d' sastraceloc = saslog;

STDOUT is the file reference that can be assigned
at invocation for the standard output files.

',,,d' specifies that all SQL statements sent to the DBMS are sent to the log. These statements include
the following:
• SELECT
• DELETE
• CREATE
• SYSTEM CATALOG
• DROP
• COMMIT
• INSERT
• ROLLBACK
• UPDATE

 There are four possible positional arguments to SASTRACE. The commas in the value for the
SASTRACE option are placeholders for other debugging options. For other values, please see the
SAS documentation.

8-38 Chapter 8 Utilizing Best Practices to Improve Efficiency

73

Threaded Reads
A threaded read retrieves the result set from the database
on multiple connections between SAS and the DBMS.
Threaded reads are accomplished by doing the following:

using the LIBNAME engine
establishing a read connection between the DBMS
and each SAS thread
partitioning the result set across the connections
passing the rows to SAS simultaneously (in parallel)
across the connections

 Most, but not all, SAS/ACCESS interfaces support threaded reads in SAS 9.1.

74

Scope of Threaded Reads
SAS steps, named threaded applications, are
automatically eligible for a threaded read.

Base SAS procedures
− MEANS, REPORT, SORT, SQL,

SUMMARY, TABULATE
SAS/STAT procedures
− GLM, LOESS, REG, ROBUSTREG

SAS/SHARE procedure
− SERVER (with the experimental

THREADEDTCP option)
SAS Enterprise Miner procedures
− DMINE, DMREG

 8.5 Networking Efficiency Considerations (Self-Study) 8-39

75

Performance Impact of Threaded Reads
Optimal performance of threaded reads requires the
following:

SAS running on a fast uniprocessor or a
multiprocessor machine
the database running on a high-end symmetric
multiprocessor (SMP) machine
partitioned database table(s)
similar size partitions
large DBMS result set

76

Reading Columns
Techniques for limiting the number of columns returned
from the DBMS include the following:

DROP= SAS data set option
KEEP= SAS data set option
VAR statement in the PRINT procedure
SELECT clause in the SQL procedure

Examples:
data temp;

set mylib.table(keep = name age state);
run;
proc sql;

select name, age, state
from mylib.table;

quit;

8-40 Chapter 8 Utilizing Best Practices to Improve Efficiency

77

Reading Columns
Q DROP=
Q KEEP=
Q VAR statement
Q SAS SELECT

clause

SAS SystemSAS System

DBMSDBMS

Results

DBMS SELECT
clause

78

Subsetting Using WHERE Criteria
Subset the rows returned from a query to potentially
reduce the following:

processing time
network traffic
memory requirements

data temp;
set mylib.table;
where state in ('NC', 'SC');

run;
proc sql;

select *
from mylib.table

where state in ('NC', 'SC');
quit;

Examples:

 8.5 Networking Efficiency Considerations (Self-Study) 8-41

79

Subsetting Using WHERE Criteria
If the SAS/ACCESS engine can do so, the WHERE
criteria is passed directly to the database to gain
efficiency in processing.

WHEREWHERE
CriteriaCriteriaSAS SystemSAS System DBMS

Results

80

Splitting the WHERE Criteria
If the WHERE clause or statement contains SAS
enhancements not known to the database, the following
events occur:

The WHERE clause or statement is split up, which
enables the DBMS to process as much of the WHERE
criteria as possible.
Rows that satisfy those criteria are sent back to SAS,
and then checked to see if they meet the remaining
WHERE clause or statement conditions.

SAS enhancements include functions or operators that are not a part of the native database SQL. The
SASTRACE= system option can help you determine what is passed to the database to process.

8-42 Chapter 8 Utilizing Best Practices to Improve Efficiency

81

Sorting the Rows Returned
If sorting is required, you can perform it by doing the
following:

Using a BY statement in a DATA or PROC step forces
the DBMS to sort the data in the order specified by the
BY variable(s) before returning the results to SAS.
If you use an ORDER BY clause in PROC SQL, the
ORDER BY clause is passed to the DBMS.

data temp;
set mylib.table;
by state;

run;

proc sql;
select * from mylib.table

order by state;
quit;

 Be aware that SAS sorts null values low; most DBMSs sort null values high.

If you specify a BY statement in a DATA or PROC step that references a DBMS data source, it is
recommended for performance reasons that you associate the BY variable (in a DATA or PROC step) with
an indexed DBMS column. If you reference DBMS data in a SAS program and the program includes a
BY statement for a variable that corresponds to a column in the DBMS table, the SAS/ACCESS
LIBNAME engine automatically generates an ORDER BY clause for that variable. The ORDER BY
clause causes the DBMS to sort the data before the DATA or PROC step uses the data in a SAS program.
If the DBMS table is very large, this sorting can adversely affect your performance. Use a BY variable
that is based on an indexed DBMS column in order to reduce this negative impact.

 8.5 Networking Efficiency Considerations (Self-Study) 8-43

82

SQL Procedure Pass-Through Facility
DBMS

SAS Session

Execute
Query

proc sql...

. . .RESULTS

Query
Request

1

2

3

DBMSDBMS
TableTable

DBMS DBMS
TableTable

Query
Results

83

SQL Pass-Through Advantages
DBMS can optimize all table joins.
Results of a query can be saved as a SAS data file.
A SAS SQL view can contain a pass-through query.

8-44 Chapter 8 Utilizing Best Practices to Improve Efficiency

84

SQL Pass-Through Example
proc sql;

connect to DBMS (DBMS-specific connection
options);

select *
from connection to DBMS

(select flightnumber, flightdate,
dayofweek, delay

from DBMS-table-name
where substr(destination, 1, 1)

= 'C');
disconnect from DBMS;

quit;

85

The Embedded LIBNAME Statement
An alternative to coding the LIBNAME statement or
using the SQL Pass-Through Facility when you create a
PROC SQL view is the embedded LIBNAME statement.
The embedded LIBNAME statement has these
characteristics:

is defined in a USING clause within the PROC SQL
view
is assigned when the view begins to execute
can contain connection information
uses the LIBNAME engine to access the DBMS
can store label, format, and alias information
is de-assigned when the view completes executing

 8.5 Networking Efficiency Considerations (Self-Study) 8-45

86

The Embedded LIBNAME Statement

proc sql;
create view sasuser.joinview as
select m.FlightNumber, m.FlightDate,

Deplaned, DayOfWeek, Delay
from oralib.marchflights as m,

oralib.flightdelays as f
where m.flightnumber = f.flightnumber

and m.flightdate = f.flightdate
and delay > 0

using libname oralib engine
engine-connection-options;

select * from sasuser.joinview;
quit;

Example:

87

SAS/ACCESS Summary
The SAS/ACCESS LIBNAME engine enables transparent
access to your DBMS tables. As much code as possible is
passed behind the scenes by SAS to the DBMS for
processing in order to optimize performance.
The SQL Pass-Through Facility enables the programmer
to control the native DBMS SQL queries that are passed
to the database to execute.

8-46 Chapter 8 Utilizing Best Practices to Improve Efficiency

88

Distributed Processing
Distributed processing can be defined as any one of the
following:

one process (a client or local host) requesting services
or data from another process (a server or remote host)
executing on a different machine
the distribution of computing resources to enable
utilization of data files, hardware resources, and
software resources between different computers
the division of applications into tasks to be performed
on the most appropriate machine, thereby maximizing
all computing resources

89

Parallel Processing
Parallel processing is the dividing of an application into
subunits of work that can be executed simultaneously.
This parallel processing can occur on the same machine
or different machines.
The purposes of parallel processing (also known as
multiprocessing or asynchronous processing) are to do
the following:

execute independent tasks in parallel (SAS Version 8)
execute select dependent tasks in parallel (SAS®9)
take advantage of multiple processors on a symmetric
multiprocessing (SMP) single machine

continued...

 8.5 Networking Efficiency Considerations (Self-Study) 8-47

90

Parallel Processing
take advantage of each processor on a network of
machines
complete a job in less total elapsed time than it would
take to execute the same job serially
increase usage of underutilized CPUs
– exploit current investment
– prevent further monetary outlay for hardware

91

Grid Computing
A computing grid is a collection of multiple computers
that solve one application problem.
The concept of grid computing is to tap into the unused
processor cycles of computers hooked up to a network
to solve problems that require a massive amount of
processing power and deal with vast amounts of data.
The idea of grid computing is that any device or computer
could hook into a network and make use of the collective
unused power of every device on the network or grid.

continued...

8-48 Chapter 8 Utilizing Best Practices to Improve Efficiency

92

Grid Computing
The goal is to use the processing cycles of all computers
in a network for solving problems too intensive for any
stand-alone machine.
Grid computing is not a new concept, but one that has
gained renewed interest recently for at least two reasons:

IT budgets were cut, and grid computing offers
a less expensive alternative to purchasing new, larger
server platforms.
Computing problems in several industries involve
processing large volumes of data and/or performing
repetitive computations to the extent that the workload
requirements exceed existing server platform
capabilities.

93

Distributed Processing Solutions
A distributed processing solution is implemented when an
application requires a service from another computer or
itself.
Services include the following:

compute services
data transfer services
remote library services (RLS)

 Distributed processing using SAS software requires a license for SAS/CONNECT, SAS/SHARE,
or SAS Integration Technologies.

 8.5 Networking Efficiency Considerations (Self-Study) 8-49

94 ...

Compute Services
Compute services enable you to move any or all
segments of an application to other processors to take
advantage of hardware, software, and data resources.

Client (Local)

Report

Request

Result

Server
(Remote)

Data

Report

SAS Program

95

Compute Services Benefits
Compute services are useful when the following
conditions exist:

Processing remote data files that have these
attributes:
– are too large to transfer
– are frequently updated
– must remain on the remote platform for security

reasons
The remote machine has necessary hardware or
software resources that the local machine does not
have.
A remote CPU is underutilized.

8-50 Chapter 8 Utilizing Best Practices to Improve Efficiency

96

Compute Services Considerations
Compute services are less appropriate when these
circumstances occur:

Data files are small.
A remote CPU is near 100% utilization.
The remote computer's I/O subsystem is heavily
loaded.
The remote computer has little memory available.

97

Requirements for Compute Services
To use compute services, you need to do the following:

have SAS/CONNECT on both machines
sign on to the remote machine to begin a remote
SAS session
submit an RSUBMIT block

 8.5 Networking Efficiency Considerations (Self-Study) 8-51

98

Using Compute Services
Before you use compute services, a connection to the
remote machine must be established. You can do either
of the following:

Sign on directly with a SIGNON statement.
Use the AUTOSIGNON=YES option to specify to sign
on when compute services needs to start a task on the
remote machine.

99

Using Compute Services
The AUTOSIGNON option enables the local SAS session
to automatically invoke a new SAS session when a
request is made.
General form of the AUTOSIGNON option:

The default is NO.
Example:

OPTIONS AUTOSIGNON = NO|YES;OPTIONS AUTOSIGNON = NO|YES;

options autosignon = yes;

8-52 Chapter 8 Utilizing Best Practices to Improve Efficiency

100

Using Compute Services
After a connection to a remote machine is established,
you can send code to execute on that machine by
enclosing the code in an RSUBMIT block.
General form of the RSUBMIT block:

Example:

RSUBMIT <remote-machine-name>;
code to be processed on the remote machine

ENDRSUBMIT;

RSUBMIT <remote-machine-name>;
code to be processed on the remote machine

ENDRSUBMIT;

local SAS session
rsubmit bcom1;

SAS code to run on remote machine
endrsubmit;

101 ...

Data Transfer Services
Using data transfer services, you can transfer a copy of a
remote data file to your local computer for processing, or
copy data from your local computer to the remote
computer.

Client (Local)

Server
(Remote)

Remote
Copy

Remote
Data

Local
Copy

Local
Data

Download

Upload

 You can transfer SAS files, flat files, and extracts of DBMS tables.

 8.5 Networking Efficiency Considerations (Self-Study) 8-53

102

The UPLOAD and DOWNLOAD Procedures
To perform data transfer, use the UPLOAD and
DOWNLOAD procedures. The UPLOAD and
DOWNLOAD procedures enable you to do the following:

transfer an entire SAS library or selected members
of a SAS library in a single step
transfer an entire SAS catalog or selected entries
in a catalog in a single step
transfer external files

continued...

103

The UPLOAD and DOWNLOAD Procedures
enable WHERE processing to subset the data before
the transfer occurs
enable data set options (for example, DROP= or
KEEP=) when transferring individual SAS data sets
replicate certain data set attributes, including indexes
and constraints

8-54 Chapter 8 Utilizing Best Practices to Improve Efficiency

104

UPLOAD and DOWNLOAD Procedure Benefits
Benefits of using the UPLOAD and DOWNLOAD
procedures over other data transfer applications are as
follows:

control over variables and observations transferred
transparent translation of SAS files across operating
system types (for example, EBCDIC to ASCII)
transparent translation of SAS files across differing
releases of SAS

105

Transferring a SAS Data Library
Example: Transfer the entire SAS data library on the

remote machine to the local machine.

libname orionwin 'directory-on-Windows';
rsubmit bcom1;
libname orionunx 'directory-on-UNIX';
proc download inlib = orionunx

outlib = orionwin;
run;
endrsubmit;

 8.5 Networking Efficiency Considerations (Self-Study) 8-55

106 ...

Remote Library Services
Remote library services (RLS) provide transparent access
to remote data libraries as if they were stored locally.

Client (Local)

Server
(Remote)

Remote
Data

Request for
Records

SAS Program
Processing

Data Records

 Remote data can be SAS files or external database tables or views.

107

Benefits of RLS
A single copy of the data can be maintained while
processing is performed on the local machine.
The data appears to be local.
RLS enables updates to remote data as a result of
local processing.
RLS permits a user interface to reside on the local
system while the data is on a remote system.

8-56 Chapter 8 Utilizing Best Practices to Improve Efficiency

108

Considerations for RLS
Multiple passes of the data require the same data
to go across the network multiple times. Examples
include the following:
– statistical procedures
– multiple PROC steps on the same data

Network traffic might significantly increase.

109

Requirements for RLS
To use RLS, you need to do one of the following:

to have SAS/CONNECT on both machines or
SAS/CONNECT on the local machine and
SAS/SHARE on the remote machine
to sign on to the remote machine to begin a remote
SAS session, if SAS/CONNECT is used on the remote
machine
to issue a LIBNAME statement in your local session
with the SERVER= option

 8.5 Networking Efficiency Considerations (Self-Study) 8-57

110

SERVER= Option
General form of the SERVER= option in the LIBNAME
statement:

Examples:
Access a library stored on your user ID on UNIX:

Access the Work library on z/OS:

LIBNAME libref 'SAS-data-library' | SLIBREF=server-libref
SERVER=remote-host;

LIBNAME libref 'SAS-data-library' | SLIBREF=server-libref
SERVER=remote-host;

libname rmtunx '/orion/sasdata' server = sdcunx;

libname rmtwork slibref = work server = sdcmvs;

libref is a libref defined to your local session referencing a remote SAS library.

SAS-data library is the physical location of the remote SAS library.

server-libref is an existing libref in the server’s session, for example, Work.

remote-host is the same name previously specified with OPTIONS REMOTE=id or the value of
server-ID on the SIGNON statement.

8-58 Chapter 8 Utilizing Best Practices to Improve Efficiency

111

Decisions, Decisions, Decisions
When deciding which strategy is most appropriate for your
application, you must determine the following:

computing needs of your application
computing capacity and load of each computer
charge-backs for use of mainframe or UNIX time and
data storage
amount of data to be processed
load on your network
output needs
– printers
– tape drives
– GUI display continued...

112

Decisions, Decisions, Decisions
appropriateness of the data location
– the frequency of data updates
– available disk space
– the increased speed of the application if the data is

on the same computer
– problems related to storing multiple copies of the

data

Chapter 9 Using the Scalable
Performance Data Engine
(Self-Study)

9.1 Introduction to the Scalable Performance Data Engine..9-3

9.2 Creating SPD Engine Tables ...9-10

9.3 Using the SPD Engine Efficiently..9-23

9.4 SPD Engine LIBNAME Statement Options List..9-28

9-2 Chapter 9 Using the Scalable Performance Data Engine (Self-Study)

 9.1 Introduction to the Scalable Performance Data Engine 9-3

9.1 Introduction to the Scalable Performance Data Engine

3

Objectives
Define the Scalable Performance Data Engine
(SPDE).
Discuss symmetric multiprocessing (SMP) machines.
Compare SPDE tables with Base SAS tables.

9-4 Chapter 9 Using the Scalable Performance Data Engine (Self-Study)

4

What Is the Scalable Performance Data
Engine?
The Scalable Performance Data (SPD) Engine can be
defined as follows:

is a high-speed alternative to the Base SAS engine
for processing very large data sets
can take advantage of the following:
− SMP machines
− multiple I/O channels

 The SPD Engine is part of Base SAS software and runs on UNIX, Windows, z/OS (zFS file
system only), and OpenVMS Alpha (on ODS-5 file systems only).

An SMP machine is a Symmetric MultiProcessor machine, which has more than one CPU and a thread-
enabled operating system.

5

Advantages of the SPD Engine
The SPD Engine provides the following:

optimization for the storage and sequential access of
large and very large data sets (millions of rows, many
gigabytes of data)
scalability on symmetric multiprocessor (SMP)
machines
parallel WHERE selections
parallel loads
parallel index creation
parallel I/O data delivery to applications
implicit sorting on BY statements

 9.1 Introduction to the Scalable Performance Data Engine 9-5

6

Using an SMP Machine
A symmetric multiprocessing (SMP) machine can be
described as follows:

has multiple central processing units (CPUs) and an
operating system that supports threads
is usually configured with multiple I/O controllers and
multiple disk drives per I/O controller

CPUCPUCPUCPU

HDD

HDD

HDD

HDDOperating system

Application ApplicationApplication

RAM

I/O
controller

I/O
controller

The SPD Engine running on an SMP machine provides the capability to read and deliver much more data
to an application in a given elapsed time. When the SPD Engine reads a data file, it launches one or more
threads for each CPU. These threads read data in parallel from multiple disk drives, driven by one or more
controllers.

The exact number of CPUs on an SMP machine varies by manufacturer and model. The operating system
of the machine is also specialized; it must be capable of scheduling code segments so that they execute in
parallel. If the operating system kernel is threaded, performance is further enhanced because it prevents
contention between the executing threads. While threads run on the SMP machine, managed by a threaded
operating system, the available CPUs work together. The synergy between the CPUs and threads enables
the software to scale processing performance.

 Although it is not necessary to utilize an SMP machine for SPD Engine data files, it is highly
recommended to achieve maximum performance.

9-6 Chapter 9 Using the Scalable Performance Data Engine (Self-Study)

7

SPD Engine Data Organization
The SPD Engine creates separate component files for the
following:

data
data descriptor
two index files, if the data set is indexed

The advantage of the separate component files
is the speed of data retrieval.

Each of these components can comprise one or more physical files so that the components can span
volumes, but are referenced as one logical file.

 9.1 Introduction to the Scalable Performance Data Engine 9-7

8

SPD Engine Data Structure

Data

Descriptor
Data Metadata

Data

Base SAS Data Storage SPD Engine Data Storage

*.sas7bdat

*.MDF

*.1.DPF
*.2.DPF

*.3.DPF
*.4.DPF

• When a SAS data file is copied from a base engine library to SPD Engine data storage, the file is split

into a metadata file (*.mdf) and at least one data file (*.dpf). Because of the particular way data is
stored with SPD Engine, several data files (*.1.dpf, *.2.dpf) might also be generated, which splits the
data file into several file segments.

• On UNIX file systems, you can use standard commands, such as ls, to see these files. On Windows
platforms, you can use Windows Explorer to see these files.

 It is not recommended that you move SPD Engine data files using operating system commands
because of disk file segmentation.

9-8 Chapter 9 Using the Scalable Performance Data Engine (Self-Study)

9

SPD Engine Index Structure
SPD Engine Index Storage

Index Index

Index Storage

Navigational Component

Record Identifier Component

*.HBX

*.IDX
*.sas7bndx

SPD Engine creates a separate index file for each index. For example, if five indexes are defined, the SAS
base engine stores them all in one index file. There would be at least ten files in SPD Engine data storage,
and each would contain the values of the appropriate index variable(s).

The navigational component file (.HBX) has each unique value for an index and the data partitions in
which that value can be found. The record identifier component file (.IDX) has pointers to each row in the
table containing the value of the index variable(s).

 9.1 Introduction to the Scalable Performance Data Engine 9-9

10

Storing Data with SPD Engine
The SPD Engine usually uses four different areas to
store the various components that make up an
SPD Engine data set:

metadata area
data area
index area
work area

For information on disk set-up requirements,
consult the Appendix to the SPDE Reference.

9-10 Chapter 9 Using the Scalable Performance Data Engine (Self-Study)

9.2 Creating SPD Engine Tables

12

Objectives
Discuss the LIBNAME statement and the LIBNAME
options.
Create SPDE tables.
Create SPDE indexes.

13

Using the SPDE LIBNAME Engine

libname mylib spde '/disk/data';

For speed of data retrieval, it is highly recommended
that metadata, data, and index files be stored

in separate, unique locations.

libname mylib spde 'c:\workshop\winsas\prog3\meta';

UNIX

Windows

 In this example, the index and data components are stored in the same location.

 9.2 Creating SPD Engine Tables 9-11

14

Using the SPDE LIBNAME Engine
General form of the SPDE LIBNAME engine:

LIBNAME libref SPDE 'full-primary-path' <options> ; LIBNAME libref SPDE 'full-primary-path' <options> ;

full-primary-path
is the fully qualified pathname of the primary path for
the SPD Engine library
must be recognized by the operating environment
must be unique for each library
is where the metadata is stored

 The metadata for the library must start in the primary path. It can continue in secondary paths
using the METADATA= option.

15

DATAPATH= LIBNAME Statement Option
General form of the DATAPATH= LIBNAME statement
option:

DATAPATH = ('path1' 'path2'... 'pathn') DATAPATH = ('path1' 'path2'... 'pathn')

libname mylib spde '/disk/meta'
datapath = ('/disk1/data'

'/disk2/data'
'/disk3/data');

UNIX

Windows
libname mylib spde 'c:\workshop\winsas\prog3\meta'

datapath = ('c:\workshop\winsas\prog3\data1'
'c:\workshop\winsas\prog3\data2'
'c:\workshop\winsas\prog3\data3');

9-12 Chapter 9 Using the Scalable Performance Data Engine (Self-Study)

16

Data Set File Storage

...

50 GB50 GB 100 GB100 GB 100 GB100 GB 100 GB100 GB

/disk/meta

dpf1dpf1

dpf4dpf4

dpf2dpf2 dpf3dpf3

dpf5dpf5

metameta

/disk1/data /disk2/data /disk3/data

The SPD Engine creates as many partitions as are
needed to store all the data. The partitions are created
in the paths specified using the DATAPATH= option in
a round-robin fashion.

 9.2 Creating SPD Engine Tables 9-13

17

INDEXPATH= LIBNAME Statement Option

libname mylib spde '/disk/meta'
datapath = ('/disk1/data'

'/disk2/data'
'/disk3/data')

indexpath = ('/disk4/index'
'/disk5/index');

libname mylib spde 'c:\workshop\winsas\prog3\meta'
datapath = ('c:\workshop\winsas\prog3\data1'

'c:\workshop\winsas\prog3\data2'
'c:\workshop\winsas\prog3\data3')

indexpath = ('c:\workshop\winsas\prog3\index1'
'c:\workshop\winsas\prog3\index2');

UNIX

Windows

For UNIX:
• The metadata is stored in '/disk/meta'.
• The data is stored in '/disk1/data', '/disk2/data', and '/disk3/data'.
• The index is stored in '/disk4/index' and '/disk5/index'.

For Windows:
• The metadata is stored in 'c:\workshop\winsas\prog3\meta'.
• The data is stored in 'c:\workshop\winsas\prog3\data1',
'c:\workshop\winsas\prog3\data2', and 'c:\workshop\winsas\prog3\data3'.

• The index is stored in 'c:\workshop\winsas\prog3\index1' and
'c:\workshop\winsas\prog3\index2'.

9-14 Chapter 9 Using the Scalable Performance Data Engine (Self-Study)

18

INDEXPATH= LIBNAME Statement Option
General form of the INDEXPATH= LIBNAME statement
option:

INDEXPATH = ('path1' 'path2'... 'pathn') INDEXPATH = ('path1' 'path2'... 'pathn')

The SPD Engine creates the two index component files
(HBX and IBX) in the location specified. When there is
not enough space, the index component files overflow
into the second specified file path.

19

Creating SPD Engine Tables
Base SAS engine data sets must be converted to the
SPD Engine format in order for the SPD Engine to access
them.
You can convert the Base SAS engine data sets easily
using the following:

COPY procedure
APPEND procedure

 9.2 Creating SPD Engine Tables 9-15

20

Using the COPY Procedure

libname ia '.';

libname mylib spde '/disk/meta'
datapath = ('/disk1/data'

'/disk2/data'
'/disk3/data')

indexpath = ('/disk4/index'
'/disk5/index');

proc copy in = ia out = mylib;
select sales international revenue;

run;

c09s2d1_unix

UNIX

 The data sets ia.sales, ia.international, and ia.revenue are used as examples.
They are too small to partition well. The data set ia.sales used for demonstrations and
exercises contains fewer observations than the data set ia.sales used for the course notes.

9-16 Chapter 9 Using the Scalable Performance Data Engine (Self-Study)

21

Using the COPY Procedure

c09s2d1_win

libname ia '.';

libname mylib spde 'c:\workshop\winsas\prog3\meta'
datapath = ('c:\workshop\winsas\prog3\data1'

'c:\workshop\winsas\prog3\data2'
'c:\workshop\winsas\prog3\data3')

indexpath = ('c:\workshop\winsas\prog3\index1'
'c:\workshop\winsas\prog3\index2');

proc copy in = ia out = mylib;
select sales international revenue;

run;

Windows

 The data sets ia.sales, ia.international, and ia.revenue are used as examples.
They are too small to partition well. The data set ia.sales used for demos and exercises
contains fewer observations than the data set ia.sales used for the course notes.

22

SPD Engine Component Files
Data Set Component Files (UNIX)

segmented index
for variable Originsales.idxorigin._disk_meta.0.1.spds9

global index
for variable Originsales.hbxorigin._disk_meta.0.1.spds9

data file partition #4 sales.dpf._disk_meta.3.1.spds9

data file partition #3 sales.dpf._disk_meta.2.1.spds9

data file partition #2 sales.dpf._disk_meta.1.1.spds9

data file partition #1 sales.dpf._disk_meta.0.1.spds9

All the data and index files are tied back to the location of the
metadata files by the 3rd segment of the component file name.

 9.2 Creating SPD Engine Tables 9-17

23

SPD Engine Component Files
Data Set Component Files (Windows)

segmented index
for variable Originsales.idxorigin.c_workshop_winsas_prog3_meta.0.1.spds9

global index
for variable Originsales.hbxorigin.c_workshop_winsas_prog3_meta.0.1.spds9

data file partition #4 sales.dpf.c_workshop_winsas_prog3_meta.3.1.spds9

data file partition #3 sales.dpf.c_workshop_winsas_prog3_meta.2.1.spds9

data file partition #2 sales.dpf.c_workshop_winsas_prog3_meta.1.1.spds9

data file partition #1 sales.dpf.c_workshop_winsas_prog3_meta.0.1.spds9

All the data and index files are tied back to the location of the
metadata files by the 3rd segment of the component file name.

When you create an SPD Engine data set, many component files can result. SPD Engine component files
are stored with the following naming conventions:

Metadata files filename.mdf.0.p#.v#.spds9

Data files filename.dpf.fuid.p#.v#.spds9

Index files filename.idxsuffix.fuid.p#.v#.spds9

 filename.hbxsuffix.fuid.p#.v#.spds9

where

filename is a valid SAS file name.

mdf identifies the metadata component file.

dpf identifies the partitioned data component files.

p# is the partition number.

v# is the version number.

fuid is the unique file ID, which is set to the primary (metadata) path.

idxsuffix identifies the segmented view of an index, where suffix is the name of the index.

hbxsuffix identifies the global view of an index, where suffix is the name of the index.

spds9 denotes a SAS®9 SPD Engine component file.

Only the filename portion of the data component names and the suffix portion of the index component
names are user-controllable. SPDE uses these names and the metadata path, partition number, and version
number to build the individual file names.

9-18 Chapter 9 Using the Scalable Performance Data Engine (Self-Study)

24

Controlling the Partition Size
The data partition size should be chosen in a way so
that three or four partitions of each data set reside in
each data path.
The number of partitions per data path should not
exceed ten.

Too many partitions cause too many physical files
to be opened when the data set is opened. This has
a negative impact on operating system resources and
on other applications that execute at the same time.

25

Using the PARTSIZE= Data Set Option
You can control the partition size by using the
PARTSIZE= data set option. The PARTSIZE= data set
option does the following:

specifies the largest size (in megabytes) that the data
component partitions must be
is fixed when an SPD Engine data set is created
applies only to the data component files

 9.2 Creating SPD Engine Tables 9-19

26

Using the PARTSIZE= Data Set Option
General form for the PARTSIZE= data set option:

Example:

PARTSIZE = nPARTSIZE = n

libname mylib spde '/disk/meta'
datapath = ('/disk1/data'

'/disk2/data'
'/disk3/data');

data mylib.data (partsize = 512);
data-step syntax;

run;

c09s2d2

n is the size of the partition in megabytes. The default is 128. The maximum value is 2047.

27

Using the PARTSIZE= Data Set Option
To determine an adequate partition size for a new SPD
Engine data set, you should be aware of the following:

the types of applications that will run against the data
how much data you have
how many CPUs will be available to the applications
which disks are available for storing the partitions
the relationship of these disks to the CPUs

See the SPD Engine documentation for additional information on setting an adequate value for the
PARTSIZE= data set option.

9-20 Chapter 9 Using the Scalable Performance Data Engine (Self-Study)

28

Creating SPD Engine Indexes
You can create indexes on your SPD Engine data in
parallel (asynchronously). To enable asynchronous index
creation, use the ASYNCINDEX= data set option.
Use this option with the following:

the DATA step INDEX= option
the PROC DATASETS INDEX CREATE statement
on the PROC APPEND statement when you create an
SPD Engine data set from a Base SAS engine data
set that has an index

Each method enables all of the declared indexes
to be populated from a single scan of the data set.

 9.2 Creating SPD Engine Tables 9-21

29

Using the ASYNCINDEX= Data Set Option
General form of the ASYNCINDEX= data set option:

ASYNCINDEX = NO | YES ASYNCINDEX = NO | YES

proc append base = mylib.sales(asyncindex = yes)
data = ia.sales;

run;

c09s2d3

The SPD Engine spawns a single thread for each index created, and then processes the threads
simultaneously. Although creating indexes in parallel is much faster than creating one index at a time, the
default for this option is NO because parallel creation requires additional utility work space and additional
memory, which might not be available. If the index creation fails due to insufficient resources, set the
system option to MEMSIZE=0 or increase the size of the utility file space using the SPDEUTILLOC=
system option.

See the SPDE documentation in the SAS OnlineDoc for information about the SPDEUTILLOC= system
option.

9-22 Chapter 9 Using the Scalable Performance Data Engine (Self-Study)

30

Creating Indexes Asynchronously
The DATASETS procedure has the flexibility to enable
batched parallel index creation by using multiple MODIFY
groups. Instead of creating all of the indexes at once, you
can create the indexes in groups.

proc datasets lib = mylib;
modify International(asyncindex = yes);

index create FltDate=(FlightID FltDate);
index create Origin;

run;
modify Revenue(asyncindex = yes);

index create Origin Dest;
run;

quit;

c09s2d4

 9.3 Using the SPD Engine Efficiently 9-23

9.3 Using the SPD Engine Efficiently

32

Objectives
Investigate the efficiencies of the SPD Engine.

33

Efficiently Processing Data

Partition Data Files

Where List Filter

Sort Collation Process

Final Result

Partial Sort Files

9-24 Chapter 9 Using the Scalable Performance Data Engine (Self-Study)

34

Using BY-Group Processing
When sort order is relevant, eliminating the SORT
procedure and using the BY statement in the PROC step
eliminates extra data transfer.

When you use a BY statement, the SPD Engine
automatically sorts the data without affecting the
permanent data set or producing a new output data set.

proc print data = mylib.sales;
by RouteID;
where Dest = 'ANC';
var FlightID FltDate Dest;

run;

c09s3d1

35

Using BY-Group Processing
SPD Engine performs the following tasks:

attempts to use an index for BY-Group processing
looks for an index that has variables in the order
specified by the BY statement
reads the keys in order from the index and return
the rows based on the index

 9.3 Using the SPD Engine Efficiently 9-25

36

Using BY-Group Processing
If the data is in random order and no suitable index exists,
SPD engine uses a parallel table scan sort that keeps the
rows intact with the sort key.

The time required to access the data in sorted order
through a parallel table scan can be more than the time
to sort the rows with the SORT procedure.

 You can suppress the use of indexes for BY-group processing by using the SPDSNIDX=YES
macro variable or the NOINDEX = YES data set option.

 All SPD Engine macro variables values of NO|YES must be typed in uppercase.

37

Using BY-Group Processing
If several DATA or PROC steps are going to process
the same data set using the same BY statement,
precede those steps with a PROC SORT that includes
WHERE= and/or KEEP= data set options to accomplish
the following:

do the sort once
minimize the size of the sorted data
consume fewer resources

The SPD Engine's automatic sorting is good
when only a single pass through the data is expected.

9-26 Chapter 9 Using the Scalable Performance Data Engine (Self-Study)

38

Using a WHERE Statement
The SPD Engine automatically determines the optimal
process to use to evaluate observations for qualifying
criteria specified in a WHERE statement.
WHERE statement efficiency depends on such factors
as whether the variables in the expression are
indexed.

 These efficiencies apply to both WHERE statements and WHERE= data set options.

The WHERE evaluation planner included in the SPD Engine chooses the best method to use to evaluate
WHERE expressions that use indexes.

 9.3 Using the SPD Engine Efficiently 9-27

39

Subsetting WHERE Statement
Example:

column_a column_b column_c
Segment 1

Segment 2

Segment 4

Segment 3

Segment 2

Segment 3

Segment 4

Segment 5

Segment 1

Segment 5

Segment 6 Segment 6

Segment 7 Segment 7

Segment 8 Segment 8

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

Segment 6

Segment 8

Segment 7

…….. More Segments ……...

Index
Meta-
data

Segment 1

Segment 2

Segment 1

Segment 6

Segment 8

Segment 1

Segment 3

Segment 4

Segment 5

Segment 7

…….. More Segments ……...

Segment 4

Segment 5

Segment 6

Segment 7

Segment 8

Segment 3

Segment 2

Segment 3

Segment 4

Segment 5

Segment 7

Segment 8

Segment 6

Segment 2

Three Simple Indexes

where column_a
in ('A','B','C')
and column_b in
('R','S','T')
and column_c in
(1,2,5,7,8) ;

...

The SPD Engine can return some query results without reading the data. An example of such a query is
shown below:
proc sql;
 select origin, count(*)
 from mylib.sales
 group by origin;
quit;

The SPD Engine checks the HBX index component to locate the distinct values of origin. It then goes to
the IDX index component to count the rows for each value of origin. The actual mylib.sales data set
never has to be opened; only the index files for the mylib.sales data set are opened.

The Base SAS Engine would need to read the entire mylib.sales data set to find the count for each
value of origin.

9-28 Chapter 9 Using the Scalable Performance Data Engine (Self-Study)

9.4 SPD Engine LIBNAME Statement Options List

Reference Information

BYSORT= specifies for the SPD Engine to perform an automatic implicit sort when it encounters
a BY statement.

DATAPATH= specifies a list of paths in which to store data partitions (.dpf) for an SPD Engine data
set.

ENDOBS= specifies the end observation number in a user-defined range of observations to be
processed.

INDEXPATH= specifies a path or list of paths in which to store the two index component files (.hbx
and .idx) associated with an SPD Engine data set.

METAPATH= specifies a list of overflow paths to store metadata (.mdf) component files for an SPD
Engine data set.

PARTSIZE= specifies, when an SPD Engine data set is created, the size (in megabytes) that the data
component partitions must be. This is a fixed-length size. This specification applies
only to partitions in the data component files.

STARTOBS= specifies the starting observation number in a user-defined range of observations to be
processed.

TEMP= specifies to store the library in a temporary subdirectory of the primary directory.

Chapter 10 Additional Topics
(Self-Study)

10.1 Modifying SAS Data Sets in Place ..10-3

10.2 Creating Generation Data Sets..10-29

10.3 Creating Integrity Constraints ...10-50

10.4 Creating and Using Audit Trails ..10-69

10.5 Working with Perl Regular Expressions...10-81

10.6 Solutions to Exercises ...10-97

10-2 Chapter 10 Additional Topics (Self-Study)

 10.1 Modifying SAS Data Sets in Place 10-3

10.1 Modifying SAS Data Sets in Place

3

Objectives
Use the MODIFY statement in a DATA step
to update a data set in place.
Use a transaction data set to make modifications
to a SAS data set.
Use the KEY= option with the MODIFY statement
to make modifications to a SAS data set.

4

Business Task
International Airlines decided to give passengers more
leg room, so they want to decrease the number of seats
for business and economy classes.

First Capacity Capacity
Class Business Economy

14 30 16327 154

...c10s1d1

data ia.capacity;
set ia.capacity;

*or modify ia.capacity;
CapEcon = int(CapEcon * .95);
CapBusiness = int(CapBusiness * .90);

run;

10-4 Chapter 10 Additional Topics (Self-Study)

5

data ia.capacity;
set ia.capacity;
CapEcon = int(CapEcon * .95);
CapBusiness = int(CapBusiness * .90);

run;

Using the SET Statement

...

Implied Output

capacity
ia

capacity

The SET statement requires enough space in the data
library for two copies of the data set. When the DATA
step is complete, the original copy of the data is
removed from the data library.

6

If every observation in a SAS data set requires the same
modification, you can specify the modification using an
assignment statement.

DATA SAS-data-set;
MODIFY SAS-data-set;
existing-variable = expression;

RUN;

DATA SAS-data-set;
MODIFY SAS-data-set;
existing-variable = expression;

RUN;

Updating a Data Set in Place

 The name of the data set on the DATA and MODIFY statements must match.

 10.1 Modifying SAS Data Sets in Place 10-5

7

data ia.capacity;
modify ia.capacity;
CapEcon = int(CapEcon * .95);
CapBusiness = int(CapBusiness * .90);

run;

Additional storage space is not required
with the MODIFY statement.

Using the MODIFY Statement

...

Implied Replace

capacity
ia

 The name of the data set on the DATA and MODIFY statements must match.

8

Using the MODIFY Statement
Using the MODIFY statement, you can modify the
following:

every observation in a data set
observations using a transaction data set and a
BY statement
observations located using an index

10-6 Chapter 10 Additional Topics (Self-Study)

9

During compilation, new variables can be added to the
PDV, but are not written to the SAS data set.

Var1 Var2 NewVar

continued...

How MODIFY Affects DATA Step Processing

10

When a MODIFY statement is used in a DATA step
without an OUTPUT, REPLACE, or REMOVE
statement, an implied REPLACE statement is executed
at the bottom of the DATA step loop.
This is different from the SET statement that, in the
absence of an explicit OUTPUT statement, executes
an implied OUTPUT statement at the bottom of the
DATA step loop.

How MODIFY Affects DATA Step Processing

IA00100 0000001 RDU LHR
IA00201 0000002 LHR RDU
IA00300 0000003 RDU FRA
IA00400 0000004 FRA RDU

Var1 Var2 NewVar

 10.1 Modifying SAS Data Sets in Place 10-7

11

data ia.capacity;
modify ia.capacity;
CapEcon = int(CapEcon * .95);
CapBusiness = int(CapBusiness * .90);

run;

c10s1d1

Updating a Data Set in Place
Reduce the number of economy and business seats in
the data set ia.capacity.

If the system terminates abnormally while a DATA step that is using the MODIFY statement is
processing, you can lose data and possibly damage your master data set. You can recover from the failure
by doing the one of the following:
• restoring the master file from a backup and restarting the step
• keeping an audit file and using this file to determine which master observations were updated
• creating generations of SAS data sets

10-8 Chapter 10 Additional Topics (Self-Study)

12

FlightID RouteID Origin Dest Cap1st CapBusiness CapEcon

IA00100 0000001 RDU LHR 14 30 163
IA00201 0000002 LHR RDU 14 30 163
IA00300 0000003 RDU FRA 14 30 163
IA00400 0000004 FRA RDU 14 30 163
IA00500 0000005 RDU JFK 16 . 251

IA00100 0000001 RDU LHR 14 30 163

data ia.capacity;
modify ia.capacity;
CapEcon = int(CapEcon * .95);
CapBusiness = int(CapBusiness* .90);

run;

Dest Cap1st CapBusinessOriginRouteIDFlightID CapEcon

X

...

 Reads an observation.

13

IA00100 0000001 RDU LHR 14 30 163

FlightID RouteID Origin Dest Cap1st CapBusiness CapEcon

IA00100 0000001 RDU LHR 14 30 163
IA00201 0000002 LHR RDU 14 30 163
IA00300 0000003 RDU FRA 14 30 163
IA00400 0000004 FRA RDU 14 30 163
IA00500 0000005 RDU JFK 16 . 251data ia.capacity;

modify ia.capacity;
CapEcon = int(CapEcon * .95);
CapBusiness = int(CapBusiness* .90);

run;

Dest Cap1st CapBusinessOriginRouteIDFlightID CapEcon

27 154

Y

...

 Updates the PDV using an assignment statement.

 10.1 Modifying SAS Data Sets in Place 10-9

14

IA00100 0000001 RDU LHR 14 30 163

FlightID RouteID Origin Dest Cap1st CapBusiness CapEcon

IA00100 0000001 RDU LHR 14 30 163
IA00201 0000002 LHR RDU 14 30 163
IA00300 0000003 RDU FRA 14 30 163
IA00400 0000004 FRA RDU 14 30 163
IA00500 0000005 RDU JFK 16 . 251data ia.capacity;

modify ia.capacity;
CapEcon = int(CapEcon * .95);
CapBusiness = int(CapBusiness* .90);

run;

27 154

27 154

Z

Implied Replace

Dest Cap1st CapBusinessOriginRouteIDFlightID CapEcon

...

 Rewrites the updated observation (same location).

15

Using the MODIFY Statement
You can use the MODIFY statement to modify
observations by applying changes from a transaction
data set.
Some of the route ID numbers changed. The changes
are stored in a SAS data set.

ia.newrtnum

FlightID RouteID Origin Dest

IA00500 0000035 RDU JFK
IA02000 0000080 BOS RDU
IA03500 0000045 RDU BNA
IA05000 0000120 BRU LHR
IA06700 0000067 LHR PRG

10-10 Chapter 10 Additional Topics (Self-Study)

16

Using a Transaction Data Set to Update
You need to apply these changes to the data set,
ia.capacity.

ia.capacity
Flight Cap

Obs ID RouteID Origin Dest Cap1st Business CapEcon

1 IA00100 0000001 RDU LHR 14 27 154
2 IA00201 0000002 LHR RDU 14 27 154
3 IA00300 0000003 RDU FRA 14 27 154
4 IA00400 0000004 FRA RDU 14 27 154
5 IA00500 0000005 RDU JFK 16 . 238
6 IA00600 0000006 JFK RDU 16 . 238

 10.1 Modifying SAS Data Sets in Place 10-11

17
c10s1d2

Using a Transaction Data Set to Update

data ia.capacity;
modify ia.capacity

ia.newrtnum;
by FlightID;

run;

The MODIFY statement is used with a BY statement to
apply updates to a master data set from a transaction
data set.

DATA SAS-data-set;
MODIFY SAS-data-set

transaction data set;
BY key-variable;

RUN;

DATA SAS-data-set;
MODIFY SAS-data-set

transaction data set;
BY key-variable;

RUN;

When you use the MODIFY statement to update a data set, the following conditions might occur:
• If a variable has a missing value in the transaction data set, the corresponding master value is not

changed by default.
• If duplicate values of the BY variable exist in the master data set, only the first observation of the group

is updated.
• If multiple transactions exist for one master observation, all transactions are applied in order.

The MODIFY statement locates the matching observation in the master data set by using dynamic
WHERE processing.

 Neither data set requires sorting.

10-12 Chapter 10 Additional Topics (Self-Study)

18

FlightID RouteID Origin Dest Cap1st CapBusiness CapEcon

IA00100 0000001 RDU LHR 14 27 154
IA00201 0000002 LHR RDU 14 27 154
IA00300 0000003 RDU FRA 14 27 154
IA00400 0000004 FRA RDU 14 27 154
IA00500 0000005 RDU JFK 16 . 238

ia.capacity

DestOriginRouteIDFlightID

IA00500 0000035 RDU JFK

data ia.capacity;
modify ia.capacity

ia.newrtnum;
by FlightID;

run;

First Observation of
Transaction Data Set
in a Memory Buffer

Transaction

Dest Cap1st CapBusinessOriginRouteIDFlightID CapEcon
Master PDV

...

 Reads the transaction observation into a memory buffer.

19

FlightID RouteID Origin Dest Cap1st CapBusiness CapEcon

IA00100 0000001 RDU LHR 14 27 154
IA00201 0000002 LHR RDU 14 27 154
IA00300 0000003 RDU FRA 14 27 154
IA00400 0000004 FRA RDU 14 27 154
IA00500 0000005 RDU JFK 16 . 238

where FlightID = 'IA00500';

IA00500 0000035 RDU JFK

data ia.capacity;
modify ia.capacity

ia.newrtnum;
by FlightID;

run;

Transaction

ia.capacity

...

DestOriginRouteIDFlightID

Dest Cap1st CapBusinessOriginRouteIDFlightID CapEcon
Master PDV

Y

 Builds a dynamic WHERE statement.

 10.1 Modifying SAS Data Sets in Place 10-13

20

FlightID RouteID Origin Dest Cap1st CapBusiness CapEcon

IA00100 0000001 RDU LHR 14 27 154
IA00201 0000002 LHR RDU 14 27 154
IA00300 0000003 RDU FRA 14 27 154
IA00400 0000004 FRA RDU 14 27 154
IA00500 0000005 RDU JFK 16 . 238

where FlightID = 'IA00500';

Z

IA00500 0000035 RDU JFK

data ia.capacity;
modify ia.capacity

ia.newrtnum;
by FlightID;

run;

IA00500 0000005 RDU JFK 16 . 238

Transaction

ia.capacity

...

DestOriginRouteIDFlightID

Dest Cap1st CapBusinessOriginRouteIDFlightID CapEcon
Master PDV

 Applies a dynamic WHERE statement to the master data set. Reads an observation from the master
data set into the PDV.

21

FlightID RouteID Origin Dest Cap1st CapBusiness CapEcon

IA00100 0000001 RDU LHR 14 27 154
IA00201 0000002 LHR RDU 14 27 154
IA00300 0000003 RDU FRA 14 27 154
IA00400 0000004 FRA RDU 14 27 154
IA00500 0000005 RDU JFK 16 . 238

Dest Cap1st CapBusinessOriginRouteIDFlightID CapEcon

[

IA00500 0000035 RDU JFK

data ia.capacity;
modify ia.capacity

ia.newrtnum;
by FlightID;

run;

IA00500 0000005 RDU JFK 16 . 238

Transaction

Master PDV

ia.capacity

0000035 RDU JFK

...

DestOriginRouteIDFlightID

 Overlays common variables in the PDV.

10-14 Chapter 10 Additional Topics (Self-Study)

22 ...

FlightID RouteID Origin Dest Cap1st CapBusiness CapEcon

IA00100 0000001 RDU LHR 14 27 154
IA00201 0000002 LHR RDU 14 27 154
IA00300 0000003 RDU FRA 14 27 154
IA00400 0000004 FRA RDU 14 27 154
IA00500 0000005 RDU JFK 16 . 238

Dest Cap1st CapBusinessOriginRouteIDFlightID CapEcon

\

IA00500 0000035 RDU JFK

data ia.capacity;
modify ia.capacity

ia.newrtnum;
by FlightID;

run;

IA00500 0000005 RDU JFK 16 . 238

Transaction

Master PDV

ia.capacity

0000035 RDU JFK

DestOriginRouteIDFlightID

0000035 RDU JFK

 Rewrites the observation back to the master data set in the same location.

23
c10s1d2

proc print data = ia.capacity(obs = 5);
title 'Using a Transaction Data Set for Modifications';

run;

Partial Output

Using a Transaction Data Set for Modifications

Obs FlightID RouteID Origin Dest Cap1st CapBusiness CapEcon

1 IA00100 0000001 RDU LHR 14 27 154
2 IA00201 0000002 LHR RDU 14 27 154
3 IA00300 0000003 RDU FRA 14 27 154
4 IA00400 0000004 FRA RDU 14 27 154
5 IA00500 0000035 RDU JFK 16 . 238

 10.1 Modifying SAS Data Sets in Place 10-15

24

Business Task
The cargo figures for 1999 are stored in ia.cargo99,
which has a composite index named FlghtDte
consisting of FlightID and Date.

ia.cargo99

Flight Cargo
ID RouteID Origin Dest CapCargo Date Wgt CargoRev

IA00100 0000001 RDU LHR 82400 01JAN1999 45600 $111,720.00
IA00100 0000001 RDU LHR 82400 01AUG1999 44600 $109,270.00
IA00100 0000001 RDU LHR 82400 20AUG1999 44600 $109,270.00
IA00100 0000001 RDU LHR 82400 02SEP1999 47400 $116,130.00
IA00100 0000001 RDU LHR 82400 29DEC1999 44200 $108,290.00
IA00101 0000001 RDU LHR 82400 01JAN1999 48000 $117,600.00
IA00101 0000001 RDU LHR 82400 18MAR1999 45400 $111,230.00

25

Business Task
An accountant discovered that some of the figures are
incorrect. You must modify the cargo data to correct the
figures. The correct cargo numbers are stored in
ia.newcgnum.

ia.newcgnum
Flight Cap Cargo
ID RouteID Origin Dest Cargo Date Wgt CargoRev

IA00101 0000001 RDU LHR 82400 01JAN1999 . 121879.9
IA01400 0000014 IAD RDU 35055 07JUL1999 14190 2322.0
IA01503 0000015 RDU SEA 73530 27AUG1999 35860 58288.8
IA01700 0000017 SEA SFO 35055 20MAR1999 . 3973.2
IA01704 0000017 SEA SFO 35055 01MAY1999 11770 5521.2

10-16 Chapter 10 Additional Topics (Self-Study)

26

When you have an indexed data set, you can use the
following:

a SET statement to read a transaction data set
the MODIFY statement with the KEY= option to locate
the observations for updating

Updating Selected Observations

27

data ia.cargo99;
set ia.newcgnum (rename =

(CapCargo = newCapCargo
CargoWgt = newCargoWgt
CargoRev = newCargoRev));

modify ia.cargo99 key = FlghtDte;
CapCargo = newCapCargo;
CargoWgt = newCargoWgt;
CargoRev = newCargoRev;

run;

c10s1d3

Updating Selected Observations

 10.1 Modifying SAS Data Sets in Place 10-17

28

DATA SAS-data-set;
SET transaction data set;
MODIFY SAS-data-set

KEY = key-variable;
old-variable = new-variable;

RUN;

DATA SAS-data-set;
SET transaction data set;
MODIFY SAS-data-set

KEY = key-variable;
old-variable = new-variable;

RUN;

Updating Selected Observations

When you use an index with the MODIFY statement, these situations occur:
• The index named in the KEY= option can be a simple or composite index.
• You must explicitly specify the update you want to occur. No automatic overlay of nonmissing

transaction values occurs as it does with the MODIFY/BY method.
• The data set you are updating must have an index on the key variable. (Data views or sequential

libraries, for example, cannot be processed.)
• Each transaction must have a matching observation in the master data set. If you have multiple

transactions for one master observation, only the first transaction is applied. The others generate
runtime errors and terminate the DATA step (unless you use the UNIQUE option, which is discussed in
this section).

10-18 Chapter 10 Additional Topics (Self-Study)

29

Flight Cargo
ID RouteID Origin Dest CapCargo Date Wgt CargoRev

IA00100 0000001 RDU LHR 82400 01JAN1999 45600 $111,720.00
IA00100 0000001 RDU LHR 82400 01AUG1999 44600 $109,270.00
IA00100 0000001 RDU LHR 82400 20AUG1999 44600 $109,270.00
IA00100 0000001 RDU LHR 82400 02SEP1999 47400 $116,130.00
IA00100 0000001 RDU LHR 82400 29DEC1999 44200 $108,290.00
IA00101 0000001 RDU LHR 82400 01JAN1999 48000 $117,600.00
IA00101 0000001 RDU LHR 82400 18MAR1999 45400 $111,230.00

...

ia.cargo99

82400 121879.9

RouteID CapCargo Flight
DateFlightID CargoWgt CargoRev

NewCapCargo NewCargoWgt NewCargoRev

FlightID RouteID Origin Dest CapCargo FlightDate CargWgt CargoRev

IA00101 0000001 RDU LHR 82400 01JAN1999 . $121,879.90
IA01400 0000014 IAD RDU 35055 07JUL1999 14190 $2,322.00
IA01503 0000015 RDU SEA 73530 27AUG1999 35860 $58,288.80
IA01700 0000017 SEA SFO 35055 20MAR1999 . $3,973.20
IA01704 0000017 SEA SFO 35055 01MAY1999 11770 $5,521.20

82400 121879.9.

data ia.cargo99;
set ia.newcgnum (rename =

(CapCargo = newCapCargo
CargoWgt = newCargoWgt
CargoRev = newCargoRev));

modify ia.cargo99 key = FlghtDte;
CapCargo = newCapCargo;
CargoWgt = newCargoWgt;
CargoRev = newCargoRev;

run;

PDV

X

IA00101 01JAN1999...

...

 The SET statement reads an observation from the transaction data set into the PDV.

30

Flight Cargo
ID RouteID Origin Dest CapCargo Date Wgt CargoRev

IA00100 0000001 RDU LHR 82400 01JAN1999 45600 $111,720.00
IA00100 0000001 RDU LHR 82400 01AUG1999 44600 $109,270.00
IA00100 0000001 RDU LHR 82400 20AUG1999 44600 $109,270.00
IA00100 0000001 RDU LHR 82400 02SEP1999 47400 $116,130.00
IA00100 0000001 RDU LHR 82400 29DEC1999 44200 $108,290.00
IA00101 0000001 RDU LHR 82400 01JAN1999 48000 $117,600.00
IA00101 0000001 RDU LHR 82400 18MAR1999 45400 $111,230.00

FlightID RouteID Origin Dest CapCargo FlightDate CargWgt CargoRev

IA00101 0000001 RDU LHR 82400 01JAN1999 . $121,879.90
IA01400 0000014 IAD RDU 35055 07JUL1999 14190 $2,322.00
IA01503 0000015 RDU SEA 73530 27AUG1999 35860 $58,288.80
IA01700 0000017 SEA SFO 35055 20MAR1999 . $3,973.20
IA01704 0000017 SEA SFO 35055 01MAY1999 11770 $5,521.20

...

82400 121879.982400 121879.9.

data ia.cargo99;
set ia.newcgnum (rename =

(CapCargo = newCapCargo
CargoWgt = newCargoWgt
CargoRev = newCargoRev));

modify ia.cargo99 key = FlghtDte;
CapCargo = newCapCargo;
CargoWgt = newCargoWgt;
CargoRev = newCargoRev;

run;

PDV

IA00101 01JAN1999

Y

...

...

RouteID CapCargo Flight
DateFlightID CargoWgt CargoRev

NewCapCargo NewCargoWgt NewCargoRev

ia.cargo99Use the index to access
the observation.

 The KEY= option uses the FlghtDte index to locate an observation in the master data set.

 10.1 Modifying SAS Data Sets in Place 10-19

31

Flight Cargo
ID RouteID Origin Dest CapCargo Date Wgt CargoRev

IA00100 0000001 RDU LHR 82400 01JAN1999 45600 $111,720.00
IA00100 0000001 RDU LHR 82400 01AUG1999 44600 $109,270.00
IA00100 0000001 RDU LHR 82400 20AUG1999 44600 $109,270.00
IA00100 0000001 RDU LHR 82400 02SEP1999 47400 $116,130.00
IA00100 0000001 RDU LHR 82400 29DEC1999 44200 $108,290.00
IA00101 0000001 RDU LHR 82400 01JAN1999 48000 $117,600.00
IA00101 0000001 RDU LHR 82400 18MAR1999 45400 $111,230.00

FlightID RouteID Origin Dest CapCargo FlightDate CargWgt CargoRev

IA00101 0000001 RDU LHR 82400 01JAN1999 . $121,879.90
IA01400 0000014 IAD RDU 35055 07JUL1999 14190 $2,322.00
IA01503 0000015 RDU SEA 73530 27AUG1999 35860 $58,288.80
IA01700 0000017 SEA SFO 35055 20MAR1999 . $3,973.20
IA01704 0000017 SEA SFO 35055 01MAY1999 11770 $5,521.20

...

82400 121879.982400 121879.9.

IA00101 01JAN1999

data ia.cargo99;
set ia.newcgnum (rename =

(CapCargo = newCapCargo
CargoWgt = newCargoWgt
CargoRev = newCargoRev));

modify ia.cargo99 key = FlghtDte;
CapCargo = newCapCargo;
CargoWgt = newCargoWgt;
CargoRev = newCargoRev;

run;

PDV

Z

IA00101 0000001 01JAN199982400 11760048000...

...

RouteID CapCargo Flight
DateFlightID CargoWgt CargoRev

NewCapCargo NewCargoWgt NewCargoRev

ia.cargo99

 The MODIFY statement reads the observation in the master data set using the index and writes values
to the PDV.

10-20 Chapter 10 Additional Topics (Self-Study)

32

Flight Cargo
ID RouteID Origin Dest CapCargo Date Wgt CargoRev

IA00100 0000001 RDU LHR 82400 01JAN1999 45600 $111,720.00
IA00100 0000001 RDU LHR 82400 01AUG1999 44600 $109,270.00
IA00100 0000001 RDU LHR 82400 20AUG1999 44600 $109,270.00
IA00100 0000001 RDU LHR 82400 02SEP1999 47400 $116,130.00
IA00100 0000001 RDU LHR 82400 29DEC1999 44200 $108,290.00
IA00101 0000001 RDU LHR 82400 01JAN1999 48000 $117,600.00
IA00101 0000001 RDU LHR 82400 18MAR1999 45400 $111,230.00

FlightID RouteID Origin Dest CapCargo FlightDate CargWgt CargoRev

IA00101 0000001 RDU LHR 82400 01JAN1999 . $121,879.90
IA01400 0000014 IAD RDU 35055 07JUL1999 14190 $2,322.00
IA01503 0000015 RDU SEA 73530 27AUG1999 35860 $58,288.80
IA01700 0000017 SEA SFO 35055 20MAR1999 . $3,973.20
IA01704 0000017 SEA SFO 35055 01MAY1999 11770 $5,521.20

ia.cargo99

...

82400 121879.982400 121879.9.

IA00101 0000001 01JAN1999

data ia.cargo99;
set ia.newcgnum (rename =

(CapCargo = newCapCargo
CargoWgt = newCargoWgt
CargoRev = newCargoRev));

modify ia.cargo99 key = FlghtDte;
CapCargo = newCapCargo;
CargoWgt = newCargoWgt;
CargoRev = newCargoRev;

run;

PDV

IA00101 0000001 01JAN199982400 11760048000IA00101 0000001 01JAN199982400 11760048000... 82400 121879.9.

...

RouteID CapCargo Flight
DateFlightID CargoWgt CargoRev

NewCapCargo NewCargoWgt NewCargoRev

[

 Assignment statements update CapCargo, CargoWgt, and CargoRev.

 Because CargoWgt was assigned a missing value using an assignment statement, the missing
value replaces the original data in the master data set.

33

Flight Cargo
ID RouteID Origin Dest CapCargo Date Wgt CargoRev

IA00100 0000001 RDU LHR 82400 01JAN1999 45600 $111,720.00
IA00100 0000001 RDU LHR 82400 01AUG1999 44600 $109,270.00
IA00100 0000001 RDU LHR 82400 20AUG1999 44600 $109,270.00
IA00100 0000001 RDU LHR 82400 02SEP1999 47400 $116,130.00
IA00100 0000001 RDU LHR 82400 29DEC1999 44200 $108,290.00
IA00101 0000001 RDU LHR 82400 01JAN1999 48000 $117,600.00
IA00101 0000001 RDU LHR 82400 18MAR1999 45400 $111,230.00

FlightID RouteID Origin Dest CapCargo FlightDate CargWgt CargoRev

IA00101 0000001 RDU LHR 82400 01JAN1999 . $121,879.90
IA01400 0000014 IAD RDU 35055 07JUL1999 14190 $2,322.00
IA01503 0000015 RDU SEA 73530 27AUG1999 35860 $58,288.80
IA01700 0000017 SEA SFO 35055 20MAR1999 . $3,973.20
IA01704 0000017 SEA SFO 35055 01MAY1999 11770 $5,521.20

ia.cargo99

...

82400 121879.982400 121879.9.

IA00101 0000001 01JAN1999

data ia.cargo99;
set ia.newcgnum (rename =

(CapCargo = newCapCargo
CargoWgt = newCargoWgt
CargoRev = newCargoRev));

modify ia.cargo99 key = FlghtDte;
CapCargo = newCapCargo;
CargoWgt = newCargoWgt;
CargoRev = newCargoRev;

run;

IA00101 0000001 01JAN199982400 117600.82400 121879.9

Implied Replace
\

...

...

RouteID CapCargo Flight
DateFlightID CargoWgt CargoRev

NewCapCargo NewCargoWgt NewCargoRev

PDV

 The updated observation is written back to the master data set.

 10.1 Modifying SAS Data Sets in Place 10-21

Exercises

1. Setting Up the Files for Exercises

Copy the ia.empdata SAS data set into the Work library using PROC COPY:
proc copy in = ia out = work;
 select empdata;
run;

 This is a backup copy of the data in case your program must be submitted multiple times as
you test and debug.

2. Modifying All Observations in a SAS Data Set

Give all the employees in the empdata SAS data set a 5% salary increase using the MODIFY
statement. Print the data before and after the increase.

Partial Output
Original Data

 Last
 Obs Division HireDate Name FirstName

 1 FLIGHT OPERATIONS 11MAR1992 MILLS DOROTHY E
 2 FINANCE & IT 19DEC1983 BOWER EILEEN A.
 3 HUMAN RESOURCES & FACILITIES 12MAR1985 READING TONY R.
 4 HUMAN RESOURCES & FACILITIES 16OCT1989 JUDD CAROL A.
 5 AIRPORT OPERATIONS 19DEC1981 WONSILD HANNA

 Job
 Obs Country Location Phone EmpID Code Salary

 1 USA CARY 2380 E00001 FLTAT3 $25,000
 2 USA CARY 1214 E00002 FINCLK $27,000
 3 USA CARY 1428 E00003 VICEPR $120,000
 4 USA CARY 2061 E00004 FACMNT $42,000
 5 DENMARK COPENHAGEN 1086 E00005 GRCREW $19,000

10-22 Chapter 10 Additional Topics (Self-Study)

Partial Output
Modified Data

 Last
 Obs Division HireDate Name FirstName

 1 FLIGHT OPERATIONS 11MAR1992 MILLS DOROTHY E
 2 FINANCE & IT 19DEC1983 BOWER EILEEN A.
 3 HUMAN RESOURCES & FACILITIES 12MAR1985 READING TONY R.
 4 HUMAN RESOURCES & FACILITIES 16OCT1989 JUDD CAROL A.
 5 AIRPORT OPERATIONS 19DEC1981 WONSILD HANNA

 Job
 Obs Country Location Phone EmpID Code Salary

 1 USA CARY 2380 E00001 FLTAT3 $26,250
 2 USA CARY 1214 E00002 FINCLK $28,350
 3 USA CARY 1428 E00003 VICEPR $126,000
 4 USA CARY 2061 E00004 FACMNT $44,100
 5 DENMARK COPENHAGEN 1086 E00005 GRCREW $19,950

3. Modifying a SAS Data Set with Values in a Transaction Data Set

Use the transaction data set ia.empdatu to modify the empdata SAS data set by the employee
ID. Do not use an index. Print the EmpID, Phone, JobCode, Division, and Salary variables
before and after the updates to verify the changes.

Partial Output
Modified Data

 Job
 Obs EmpID Phone Code Division Salary

 11 E00011 2594 FLTAT3 FLIGHT OPERATIONS $28,350
 12 E00012 2207 MKTCLK SALES & MARKETING $34,650
 13 E00013 1002 RECEPT HUMAN RESOURCES & FACILITIES $23,100
 14 E00014 2075 MECH03 FLIGHT OPERATIONS $20,950
 15 E00015 1263 GRCSUP AIRPORT OPERATIONS $43,050
 16 E00017 2821 RESCLK HUMAN RESOURCES & FACILITIES $37,800
 17 E00018 1459 FACMNT HUMAN RESOURCES & FACILITIES $34,650
 18 E00019 1005 SALCLK SALES & MARKETING $30,450
 19 E00020 1256 FACCLK HUMAN RESOURCES & FACILITIES $22,050
 20 E00021 1001 ITMGR FINANCE & IT $46,150
 21 E00022 1255 FACCLK HUMAN RESOURCES & FACILITIES $28,350
 22 E00023 1172 FLTAT2 FLIGHT OPERATIONS $32,550
 23 E00024 1395 FLTAT3 FLIGHT OPERATIONS $22,050
 24 E00025 1248 BAGCLK AIRPORT OPERATIONS $24,150
 25 E00026 1516 ITSUPT FINANCE & IT $25,200
 26 E00027 1215 FINACT FINANCE & IT $32,550
 27 E00028 0001 ITCLK FINANCE & IT $40,900
 28 E00029 1325 FLSCHD AIRPORT OPERATIONS $17,850

 10.1 Modifying SAS Data Sets in Place 10-23

4. Modifying a SAS Data Set Using a Transaction Data Set and an Index

Use the transaction data set ia.empdatu2 to modify the empdata SAS data set by the employee
ID number. Use the index on the empdata SAS data set. Modify the variables LastName,
Location, and Salary. Print the data set before and after the changes.

Partial Output
Modified Data

 Obs EmpID LastName Location Salary

 1 E00001 MILLS CARY $26,250
 2 E00002 SMITH CARY $29,350
 3 E00003 READING CARY $126,000
 4 E00004 JUDD CARY $44,100
 5 E00005 WONSILD COPENHAGEN $22,950
 6 E00006 ANDERSON CARY $32,550
 7 E00007 MASSENGILL CARY $30,450
 8 E00008 BADINE TORONTO $89,250
 9 E00009 DEMENT CHICAGO $36,700
 10 E00010 FOSKEY CARY $30,450

10-24 Chapter 10 Additional Topics (Self-Study)

Reference Information

Missing Values

The MODIFY statement with a BY statement enables you to specify how missing values in the
transaction data set are handled by using the UPDATEMODE= option in the MODIFY statement.

MODIFY SAS-data-set1 SAS-data-set2
 <UPDATEMODE=
 MISSINGCHECK |
 NOMISSINGCHECK>;
 BY by-expression;

The default is MISSINGCHECK. When MISSINGCHECK is in effect, SAS checks for missing data in
the transaction data set and does not replace the data in the master data set with missing values unless
they are special missing values.

NOMISSINGCHECK does not check for missing values in the transaction data set and enables missing
values in the transaction data set to replace the values in the master data set. Special missing values in the
transaction data set still replace values in the master data set.

Example:
modify sasdata.payroll sasdata.update1
 updatemode = nomissingcheck;

Duplicate Values

If there are duplicates in either MASTER or TRANSACTION:
data master;
 set transaction;
 modify master key = id;
 x = y;
run;

 10.1 Modifying SAS Data Sets in Place 10-25

35

Duplicate Key Values
Example 1: Contiguous duplications in transaction

transaction master
A A
A A
A A

transaction master
A A
A A
A A

Example 2: Contiguous duplications in transaction

transaction master
A A
A A
A B (no match)

transaction master
A A
A A
A B (no match) Run-time error

EXAMPLE 1: If there are contiguous duplications in transaction, each of which has a match in
master, then SAS performs a one-to-one update.

EXAMPLE 2: If there are contiguous duplications in transaction, some of which do not have a
match in master, then SAS performs a one-to-one update until it finds a non-match. At
that time, SAS encounters a run-time error.

10-26 Chapter 10 Additional Topics (Self-Study)

36

Duplicate Key Values
Example 3: Noncontiguous duplications in transaction

transaction master
A A
B A
A A

transaction master
A A
B A
A A

Example 4: Contiguous duplications in transaction
with the UNIQUE option

transaction master
A A
A A
A A

transaction master
A A
A A
A A

You can specify the UNIQUE argument with the KEY= option in the MODIFY statement to perform the
following tasks:
• apply multiple transactions to one master observation
• identify that each observation in the master data set contains a unique value of the index variable(s)

For example:
data master;
 set transaction;
 modify master key = id/unique;
 x = y;
run;

EXAMPLE 3: If there are noncontiguous duplications in transaction, then SAS updates the first
observation in master. This is the same action as if the UNIQUE option were used.

EXAMPLE 4: If there are contiguous duplications in transaction and the UNIQUE option is used,
then SAS updates the first observation in master.

 10.1 Modifying SAS Data Sets in Place 10-27

Controlling the Update Process

You can further control processing.

REPLACE specifies that the current observation is rewritten to the master data set. An implied
REPLACE statement is added to the end of the DATA step by default if a REPLACE,
OUTPUT, or REMOVE statement is not specified.

REMOVE specifies that the current observation is deleted from the master data set.

OUTPUT specifies that the current observation is written to the end of the master data set.

 If you use an OUTPUT statement in conjunction with a REMOVE or REPLACE statement, be
sure the OUTPUT statement is executed after any REMOVE or REPLACE statements to ensure
the integrity of the index position.

If the SAS data set transaction has a variable named code having values of 'yes', 'no', and
'new', you can submit the following program to accomplish the following:
• delete the rows for the code value of 'no'
• update the rows with the code value of 'yes'
• append the rows for the code value of 'new'
data master;
 set transaction;
 modify master key = id;
 a = b;
 if code = 'no' then remove;
 else if code = 'yes' then replace;
 else if code = 'new' then output;
run;

If you do not have a variable that indicates how to process the data, you can use the automatic variable
IORC, which is assigned a value after a MODIFY statement KEY= option is executed, indicating
abnormal I/O conditions.

An _IORC_ = 0 indicates that the MODIFY statement was successful, and that the observation was
located in the data set.

For example:
data master;
 set transaction;
 modify master key = id;
 a = b;
 if _IORC_ = 0 then replace;
 else do;
 output;
 ERROR = 0; /* prevents PDV being printed */
 /* when there is no match. */
 end;
run;

10-28 Chapter 10 Additional Topics (Self-Study)

Monitoring I/O Error Conditions

You can use the automatic variable _IORC_ with the %SYSRC autocall macro to test for specific I/O
error conditions that are created when you use the KEY= option in the MODIFY or SET statements or use
the BY statement with the MODIFY statement.

General form for using %SYSRC with _IORC_:

IF _IORC_ = %SYSRC(mnemonic) THEN…

MNEMONIC MEANING

_DSENMR The observation in the transaction data set does not exist in the
master data set. Used with the MODIFY statement with a BY
statement.

_DSEMTR Multiple transaction data set observations do not exist in the
master data set. Used with the MODIFY statement with a BY
statement.

_DSENOM No matching observation. Used with the KEY= option.

_SOK The observation was located. _SOK has a value of 0.

To test for error conditions, use the mnemonics above.

The %SYSRC macro is in the AUTOCALL library. You must have the MACRO system option in effect
to use this macro. You can view the source code for the %SYSRC macro in sas/core/sasmacro.

For example:
data master;
 set transaction;
 modify master key = id;
 select (_IORC_);
 when (%sysrc(_sok)) do;
 a = b;
 replace;
 end;
 when (%sysrc(_dsenom)) do;
 output;
 ERROR = 0;
 end;
 otherwise;
 end;
run;

 10.2 Creating Generation Data Sets 10-29

10.2 Creating Generation Data Sets

38

Objectives
Introduce the terminology for generation data sets.
Create generations of a SAS data set.
Process generations of a SAS data set.

39

Using Generation Data Sets
Quarterly, detail cargo revenue values are stored in a
SAS data set. At the end of each quarter, the quarterly
data set is appended to a year-to-date data set.

Quarter 1 Quarter 2 Quarter 3 Quarter 4

10-30 Chapter 10 Additional Topics (Self-Study)

40

Creating Generation Data Sets
As you append data onto the data set ia.year2005,
the generations of the data are kept.

(Quarter 1)
ia.year2005#001

(Quarter 1 and
Quarter 2)

ia.year2005#002

(Quarter 1,
Quarter 2,
Quarter 3, and
Quarter 4)

ia.year2005

(Quarter 1,
Quarter 2, and
Quarter 3)

ia.year2005#003

...

Generation data sets are historical versions of SAS data files.

41

Uses of Generation Data Sets
You can use generation data sets to do the following:

have multiple copies of either SAS data files or
SAS data views
archive data without having to age the data manually

 The SAS Scalable Performance Data Engine and OpenVMS do not support generation data sets.

 10.2 Creating Generation Data Sets 10-31

42

No Generations (Default)

a

a

data a;
set a;

run;

...

By default, as the SAS data set a is replaced, there are two copies of a in the SAS data library.

43

No Generations (Default)

data a;
set a;

run;

a

When the DATA step completes execution, SAS removes the original copy of the data set a from the data
library.

10-32 Chapter 10 Additional Topics (Self-Study)

44

Generation Data Sets

data a;
set a;

run;

a

a

...

By default, as the SAS data set a is replaced, there are two copies of a in the SAS data library.

45

Generation Data Sets

data a;
set a;

run;

a#001

a
Current Version
(base version)

Historical Version

When the DATA step completes execution, SAS keeps the original copy of the SAS data set a in the data
library and renames it.

 New versions are created only when a data set is replaced; not when it is modified in place.

 10.2 Creating Generation Data Sets 10-33

46

Generation group
the group of files that represents a series of
replacement data sets. The generation group consists
of the base version and a set of historical versions of
a file.

Version
any one of the files in a generation group

Base version
the most recently created version of a file

Terms to Know

continued...

47

Terms to Know
Historical versions

all the versions of a file in the generation group except
the base version

Youngest version
the version that is chronologically closest to the base
version

Oldest version
the oldest version in a generation group

 When the number of created generations exceeds the value of the GENMAX= option, the oldest
versions age off. When this happens, the oldest version is not the first version that was created.

10-34 Chapter 10 Additional Topics (Self-Study)

48

When generations are in effect, SAS filenames are limited
to 28 characters.

The last four characters are reserved for the version
numbers.

Names for Generation Data Sets

Current Version
(base version)

Historical Version
a#001

a

...

 This internal version number is not used in programs.

49

The Explorer window displays the base name followed by
all of the historical names.

The CONTENTS and DATASETS procedures include
generation information.

Documentation of Generation Data Sets

The dictionary.tables file does not include information about generation data sets.

 10.2 Creating Generation Data Sets 10-35

50

GENMAX=
an output data set option that establishes how
many generations to keep.

A GENMAX value
=0 No historical versions are kept. (This is the

default.)
>0 how many versions of the file will be kept. For

example, GENMAX=2 keeps the base version
and one historical version.

Data Set Option to Create Generations

51

Create a SAS data set with a maximum of four versions.
Example

proc datasets lib = ia nolist;
modify year2005 (genmax = 4);

run;
quit;

c10s2d1

The GENMAX= option can be specified in the same way as a regular data set option.
data ia.year2005(genmax = 4);
 data-step-syntax
run;

10-36 Chapter 10 Additional Topics (Self-Study)

52

Generation Data Sets: Time 1
Data Set Name Absolute

Generation
Number

Relative
Generation

Number

ia.year2005 1 0

...

53

Creating New Generations
To create new generations, use the following:

a DATA step with a SET, MERGE, or UPDATE
statement
PROC SORT
PROC SQL with a CREATE TABLE statement

 These are all replacement techniques; not updating techniques.

 10.2 Creating Generation Data Sets 10-37

54

Replace the data set.
Generation Data Sets: Time 2

data ia.year2005;
set ia.year2005

ia.quarter2;
run;

c10s2d1

55

Generation Data Sets: Time 2

0#001 - 1

Absolute
Generation

Number

Relative
Generation

Number

ia.year2005 2 0

Data Set Name

1ia.year2005

...

The original data set is renamed as ia.year2005#001. The relative generation number is reassigned
as –1.

The absolute generation number is a permanent attribute of the data set, stored in the descriptor portion.

10-38 Chapter 10 Additional Topics (Self-Study)

56

Replace the data set.
Generation Data Sets: Time 3

data ia.year2005;
set ia.year2005

ia.quarter3;
run;

c10s2d1

57

Generation Data Sets: Time 3

0ia.Year2005 -1#002

ia.Year2005#001 1 -1-2

Absolute
Generation

Number

Relative
Generation

Number

ia.Year2005 3 0

2

Data Set Name

...

The second version of ia.year2005 is renamed as ia.year2005#002 and is assigned a new
relative generation number of –1.

The first version of ia.year2005, named ia.year2005#001, is reassigned a relative generation
number of –2.

 10.2 Creating Generation Data Sets 10-39

58

Replace the data set.
Generation Data Sets: Time 4

data ia.year2005;
set ia.year2005

ia.quarter4;
run;

c10s2d1

59

Generation Data Sets: Time 4

-1

ia.Year2005#001 1 -2ia.year2005#001 1 -3

0#003 -1

Absolute
Generation

Number

Relative
Generation

Number

ia.year2005 4 0

ia.year2005#002 2

ia.year2005 3

-2

Data Set Name

...

The third copy of ia.year2005 [ia.year2005#003] is assigned a relative generation number of –1.

The second copy of ia.year2005 [ia.year2005#002] is assigned a relative generation number of
–2.

The first copy of ia.year2005 [ia.year2005#001] is reassigned a relative generation number of –3.

10-40 Chapter 10 Additional Topics (Self-Study)

60

Sort the data set.
Generation Data Sets: Time 5

proc sort data = ia.year2005;
by Date;

run;

c10s2d1

61

Generation Data Sets: Time 5

0#004 -1

ia.year2005#002 2 -2

Absolute
Generation

Number

Relative
Generation

Number

ia.year2005 5 0

ia.year2005#003

2

-13

ia.year2005 4

-2

Data Set Name

ia.Year2005#001 1 -3

-3

ia.year2005#001 1

Deleted

...

The fourth copy of ia.year2005 [ia.year2005#004] is assigned a relative generation number of –1.

The third copy of ia.year2005 [ia.year2005#003] is assigned a relative generation number of –2.

The second copy of ia.year2005 [ia.year2005#002] is assigned a relative generation number of –3.

The first version of ia.year2005 [ia.year2005#001] is deleted.

 10.2 Creating Generation Data Sets 10-41

Generation Data Sets

c10s2d2
proc datasets library = ia nolist;
 title 'All data sets in the ia library';
 contents data = _all_ nods;
 title 'Contents of the Current Version of ia.year2005';
 contents data = year2005;
run;
quit;

 The NODS option suppresses printing the contents of individual files when you specify _ALL_ in
the DATA= option. The CONTENTS statement prints only the SAS data library directory.

Partial Output
Contents of the Current Version of ia.year2005

The DATASETS Procedure

 Gen Member File
 # Name Num Type Size Last Modified

 53 YEAR2005 DATA 25600 19Jan04:17:43:12
 54 YEAR2005 2 DATA 17408 19Jan04:17:43:12
 55 YEAR2005 3 DATA 25600 19Jan04:17:43:12
 56 YEAR2005 4 DATA 25600 19Jan04:17:43:12

10-42 Chapter 10 Additional Topics (Self-Study)

Partial Output
Contents of the Current Version of ia.year2005

The DATASETS Procedure

Data Set Name IA.YEAR2005 Observations 364
Member Type DATA Variables 7
Engine V9 Indexes 0
Created Monday, January 19, Observation Length 56
 2004 05:43:12 PM
Last Modified Monday, January 19, Deleted Observations 0
 2004 05:43:12 PM
Protection Compressed NO
Data Set Type Sorted YES
Max Generations 4
Next Generation Num 5
Label
Data Representation WINDOWS_32
Encoding wlatin1 Western (Windows)

Engine/Host Dependent Information

 Data Set Page Size 8192
 Number of Data Set Pages 3
 First Data Page 1
 Max Obs per Page 145
 Obs in First Data Page 113
 Number of Data Set Repairs 0
 File Name c:\workshop\winsas\prog3\year2005.sas7bdat
 Release Created 9.0101M0
 Host Created WIN_PRO

Alphabetic List of Variables and Attributes

 # Variable Type Len Format Informat

 1 CrgoRev1 Num 8 DOLLAR12. COMMA12.
 2 CrgoRev2 Num 8 DOLLAR12. COMMA12.
 3 CrgoRev3 Num 8 DOLLAR12. COMMA12.
 4 CrgoRev4 Num 8 DOLLAR12. COMMA12.
 5 CrgoRev5 Num 8 DOLLAR12. COMMA12.
 6 CrgoRev6 Num 8 DOLLAR12. COMMA12.
 7 Date Num 8 DATE9.

Sort Information

 Sortedby Date
 Validated YES
 Character Set ANSI

 10.2 Creating Generation Data Sets 10-43

63

GENNUM =
an input/update data set option that
identifies which generation to open

A GENNUM value

>0 absolute reference to a historical
version by its generation number

<0 relative reference to historical versions

=0 current version

Processing Generation Data Sets

64

For example,

GENNUM = -1 refers to the youngest version.

GENNUM = 0 refers to the current version.

GENNUM = 1 refers to the first version created.

As new generations are created, the absolute generation
number increases sequentially.

As older generations are deleted, the absolute generation
numbers are retired.

GENNUM= Option

10-44 Chapter 10 Additional Topics (Self-Study)

65

Examples

Print the current version:

Print the youngest version:

or

Processing Generation Data Sets

proc print data = ia.year2005;
run;

proc print data = ia.year2005(gennum = 4);
run;

proc print data = ia.year2005(gennum = -1);
run;

 10.2 Creating Generation Data Sets 10-45

Printing Generation Data Sets

c10s2d3

Example 1 – Absolute Reference
proc print data = ia.year2005(gennum = 4 obs = 5);
 title 'The Youngest Generation of ia.year2005';
run;

Output
The Youngest Generation of ia.year2005

 Obs CrgoRev1 CrgoRev2 CrgoRev3 CrgoRev4

 1 $3,280,638 $561,692 $2,128,545 $1,817,984
 2 $3,275,164 $534,184 $1,878,010 $1,860,242
 3 $3,258,884 $552,088 $2,123,491 $1,840,034
 4 $3,330,580 $552,294 $2,357,934 $1,812,278
 5 $3,301,534 $564,340 $2,145,639 $1,819,898

 Obs CrgoRev5 CrgoRev6 Date

 1 $223,134 . 01JAN2005
 2 $214,236 $969,241 02JAN2005
 3 $213,864 $942,459 03JAN2005
 4 $226,276 $958,295 04JAN2005
 5 $227,258 $982,329 05JAN2005

Example 2 – Relative Reference
proc print data = ia.year2005(gennum = -1 obs = 5);
 title 'The Youngest Generation of ia.year2005';
run;

Output
The Youngest Generation of ia.year2005

 Obs CrgoRev1 CrgoRev2 CrgoRev3 CrgoRev4

 1 $3,280,638 $561,692 $2,128,545 $1,817,984
 2 $3,275,164 $534,184 $1,878,010 $1,860,242
 3 $3,258,884 $552,088 $2,123,491 $1,840,034
 4 $3,330,580 $552,294 $2,357,934 $1,812,278
 5 $3,301,534 $564,340 $2,145,639 $1,819,898

 Obs CrgoRev5 CrgoRev6 Date

 1 $223,134 . 01JAN2005
 2 $214,236 $969,241 02JAN2005
 3 $213,864 $942,459 03JAN2005
 4 $226,276 $958,295 04JAN2005
 5 $227,258 $982,329 05JAN2005

10-46 Chapter 10 Additional Topics (Self-Study)

Reference Information

Maintenance of Generation Data Sets

You can do the following:
• browse or update an historical version
• transfer generations with PROC COPY
• use PROC DATASETS to perform these tasks:

− delete all or some of the generations
− rename an entire generation or any member of the group to a new base name
− increase or decrease the GENMAX value

You cannot do the following:
• retain the version number when renaming a member
• open an historical version for output

Examples:

To change the number of historical versions (all the generations) created:
proc datasets library = ia;
 modify sales (genmax = 10);
run;

To rename historical versions (all the generations):
proc datasets library = ia;
 change sales = sales2005;
run;

To rename only the second historical data set:
proc datasets library = ia;
 change sales2005(gennum = 2) = sales2005Q2;
run;

To delete one historical version: (This might leave a hole in the generation group.)
proc datasets library = ia;
 delete sales2005(gennum = -1);
run;

 10.2 Creating Generation Data Sets 10-47

To delete all of the historical versions:
proc datasets library = ia;
 delete sales2005(gennum = HIST);
run;

 HIST is a keyword for the GENNUM= option in the PROC DATASETS DELETE statement that
refers to all generations (excludes the base name).

To delete all of the SAS data sets in a generation group:
proc datasets library = ia;
 delete sales2005(gennum = ALL);
run;

 ALL is a keyword for the GENNUM= option in the PROC DATASETS DELETE statement that
refers to the base name and all generations.

10-48 Chapter 10 Additional Topics (Self-Study)

Exercises

5. Creating Generation Data Sets

Modify the data set ia.jobhstry by adding a maximum of three generations.

a. Use the ia.y200061 and ia.y200062 data sets to concatenate to ia.jobhstry and test
your program.

b. Use PROC DATASETS to look at the generation information for ia.jobhstry.

Partial Output
Directory

 Libref IA
 Engine V9
 Physical Name c:\workshop\winsas\prog3
 File Name c:\workshop\winsas\prog3

 Gen Member File
 # Name Num Type Size Last Modified

 1 ACITIES DATA 13312 26Nov03:11:34:24
 2 AIRPORTS DATA 1364992 21Feb01:17:17:52
 3 ALLEMPS DATA 41984 24Oct01:14:23:44
 4 APORTS VIEW 5120 21Jan04:13:07:33
 5 CAP2000 DATA 123904 06Apr01:09:54:20
 6 CAPACITY DATA 9216 27Mar01:12:58:06
 7 CAPINFO DATA 13312 19Jan04:17:43:20
 CAPINFO INDEX 9216 19Jan04:17:43:20
 8 CARGO99 DATA 132096 02Nov01:12:17:54
 CARGO99 INDEX 119808 02Nov01:12:17:54
 9 CARGOREV DATA 37888 26Nov03:10:28:54
 10 COMPETE DATA 5120 19Sep01:14:14:24
 11 CONTRIB DATA 9216 09Mar01:12:48:00
 12 CTARGETS DATA 13312 20Sep01:12:17:12
 13 DNUNDER DATA 33792 12Mar01:21:38:18
 14 ECONTRIB DATA 5120 16Mar01:10:48:10
 15 EMPDATA DATA 115712 19Jan04:17:43:42
 EMPDATA INDEX 17408 19Jan04:17:43:42
 16 EMPDATU DATA 17408 17Oct01:12:36:52
 17 EMPDATU2 DATA 17408 12Apr01:18:11:02
 18 EXERFMTS CATALOG 21504 03Jan02:10:29:06
 19 EXPENSES DATA 50176 21Feb01:15:27:42
 20 FIRSTQ VIEW 5120 21Jan04:12:26:37
 21 FLIGHTS DATA 5120 14Sep01:14:22:48
 22 FLIGHTS2 DATA 5120 26Sep01:13:48:30
 23 FORMATS CATALOG 21504 21Jan04:13:07:34
 24 JCODEDAT DATA 9216 07Mar01:09:49:42
 25 JOBHSTRY DATA 5120 19Jan04:17:43:39
 26 JOBHSTRY 1 DATA 5120 19Jan04:17:43:39
 27 JOBHSTRY 2 DATA 5120 19Jan04:17:43:39

 10.2 Creating Generation Data Sets 10-49

Output
The DATASETS Procedure

Data Set Name IA.JOBHSTRY Observations 40
Member Type DATA Variables 4
Engine V9 Indexes 0
Created Monday, January 19, Observation Length 45
 2004 05:43:39 PM
Last Modified Monday, January 19, Deleted Observations 0
 2004 05:43:39 PM
Protection Compressed NO
Data Set Type Sorted NO
Max Generations 3
Next Generation Num 3
Label
Data Representation WINDOWS_32
Encoding wlatin1 Western (Windows)

Engine/Host Dependent Information

 Data Set Page Size 4096
 Number of Data Set Pages 1
 First Data Page 1
 Max Obs per Page 90
 Obs in First Data Page 40
 Number of Data Set Repairs 0
 File Name c:\workshop\winsas\prog3\jobhstry.sas7bdat
 Release Created 9.0101M0
 Host Created WIN_PRO

Alphabetic List of Variables and Attributes

 # Variable Type Len

 2 Job1 Char 6
 3 Job2 Char 6
 4 Job3 Char 8
 1 LastName Char 25

10-50 Chapter 10 Additional Topics (Self-Study)

10.3 Creating Integrity Constraints

69

Objectives
Define integrity constraints.
Determine the available types of integrity constraints.
Describe the benefits of integrity constraints.
Create integrity constraints.

70

Business Task
The data set ia.capinfo is updated frequently and
data errors are prevalent.

 10.3 Creating Integrity Constraints 10-51

71

Integrity Constraints
You can create integrity constraints on the data to
accomplish the following:

preserve the consistency and correctness of data
validate data when inserting or updating the values
of a column for which integrity constraints are defined

Integrity constraints are rules that SAS data set modifications must follow to guarantee the validity of
data. Integrity constraints apply only when data values are modified in place; not when the table is
replaced.

Techniques for modifying data in place include the following:
• Viewtable window
• FSVIEW window
• FSEDIT window
• DATA step with the MODIFY statement
• PROC SQL with the INSERT INTO, DELETE FROM, or UPDATE statements or the SET statement
• PROC APPEND

10-52 Chapter 10 Additional Topics (Self-Study)

72

Two Categories of Integrity Constraints
General constraints

enable you to restrict the data values accepted for a
column.

Referential constraints
enable you to link the data values for a column in one
table to the values of columns in another table.

 10.3 Creating Integrity Constraints 10-53

73

General
NOT NULL
CHECK
UNIQUE
PRIMARY KEY

Referential
FOREIGN KEY

Five Integrity Constraints

You can create integrity constraints for tables containing no rows, one row, or many rows.

NOT NULL guarantees that corresponding columns have non-missing values in each row.

CHECK insures that a specific set or range of values is the only value in a column. It can
also check the validity of a value in one column based on another value in another
column within the same row.

UNIQUE enforces uniqueness for the value of a column. DISTINCT is an alias for UNIQUE.

PRIMARY KEY uniquely defines a row within a table. There can be at most one primary key based
on one column or a set of columns. The primary key includes the NOT NULL and
UNIQUE attributes.

FOREIGN KEY links one or more rows in a table to a specific row in another table by matching a
column or set of columns in one table with the primary key in another table. This
parent/child relationship limits modifications made to both primary and foreign
keys. The only acceptable values for a foreign key are values of the primary key or
missing values.

 If the table contains data, all data values are checked to determine whether they satisfy the
constraint before the constraint is added.

10-54 Chapter 10 Additional Topics (Self-Study)

74

Business Task
You must put integrity constraints on the data so that the
following conditions are met:

The route ID number is both unique and required.

Capacity for first class passengers is less than
capacity for business passengers.

PRIMARY KEYPRIMARY KEY

CHECKCHECK

...

For the UNIQUE constraint and the PRIMARY KEY constraint, SAS builds unique indexes on the
column(s) involved if an appropriate index does not already exist. Any index created by an integrity
constraint can be used for other purposes, such as WHERE processing or the KEY= option in a SET
statement.

Such an index cannot be removed through ordinary index deletion methods, because it is owned by the
constraint.

 10.3 Creating Integrity Constraints 10-55

75
ia.capinfo

CHECK Constraint

Constraint:
Cap1st <

CapBusiness or
CapBusiness = .;

Edit Cap1st for
these selected
rows.

First Class Capacity must be less than Business Capacity.

0000001 14 30

0000005 16 .

0000029 14 30

0000077 19 56

3838

18

15

RouteID Cap1st CapBusiness

...

76

Methods for Creating Integrity Constraints
PROC SQL
PROC DATASETS
SCL (SAS Component Language) ICCREATE function

PROC SQL can assign constraints in the CREATE TABLE and ALTER TABLE statements.

PROC DATASETS can only assign constraints to an existing table.

10-56 Chapter 10 Additional Topics (Self-Study)

Creating Integrity Constraints

c10s3d1
/* Execute one PROC only. They do the same thing. */

proc datasets lib = ia nolist;
 modify capinfo;
 ic create PKIDInfo = Primary Key (RouteId)
 message = 'You must supply a Route ID Number';
 ic create Class1 = check
 (where = (Cap1st < CapBusiness or
 CapBusiness = .))
message = 'First Class Capacity must be less than Business Capacity';
 contents data = capinfo;
run;
quit;

 PROC DATASETS uses a WHERE= data set option for the CHECK constraint.

Output
The DATASETS Procedure

Data Set Name IA.CAPINFO Observations 108
Member Type DATA Variables 7
Engine V9 Indexes 1
Created Thursday, August 03, Integrity Constraints 2
 2000 11:37:38 AM
Last Modified Wed, Jan 21, 2004 05:15:19 PM Observation Length 48
Protection Deleted Observations 0
Data Set Type Compressed NO
Label Sorted NO
Data Representation WINDOWS_32
Encoding Default

Engine/Host Dependent Information

 Data Set Page Size 4096
 Number of Data Set Pages 3
 First Data Page 1
 Max Obs per Page 84
 Obs in First Data Page 44
 Index File Page Size 4096
 Number of Index File Pages 2
 Number of Data Set Repairs 0
 File Name c:\workshop\winsas\prog3\capinfo.sas7bdat
 Release Created 8.0101M0
 Host Created WIN_NT

(Continued on the next page.)

 10.3 Creating Integrity Constraints 10-57

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

5 Cap1st Num 8 8. 8. Aircraft Capacity - First Class Passengers
6 Cap Num 8 8. 8. Aircraft Capacity - Business Class Passengers
7 CapEcon Num 8 8. 8. Aircraft Capacity - Economy Class Passengers
4 Dest Char 3 Dest
1 FlightID Char 7 Flight Number
3 Origin Char 3 Start Point
2 RouteID Char 7 Route Number

Alphabetic List of Integrity Constraints

 Integrity Where
 # Constraint Type Variables Clause

 1 Class1 Check (Cap1st<CapBusiness) or (CapBusiness=.)
 2 PKIDInfo Primary Key RouteID

 User
 # Message

 1 First Class Capacity must be less than Business Capacity
 2 You must supply a Route ID Number

Alphabetic List of Indexes and Attributes

 # of
 Unique Owned Unique
 # Index Option by IC Values

 1 RouteID YES YES 108

proc sql;
 alter table ia.capinfo
 add constraint PKIDInfo Primary Key (RouteID)
 message = 'You must supply a Route ID Number'
 add constraint Class1 check
 (Cap1st < CapBusiness or
 CapBusiness = .)
 message = 'First Class Capacity must be less than
 Business Capacity';
 describe table constraints ia.capinfo;
quit;

 PROC SQL uses a WHERE clause for a CHECK constraint.

10-58 Chapter 10 Additional Topics (Self-Study)

Log
53 proc sql;
54 alter table capinfo
55 add constraint PKIDInfo Primary Key (RouteID)
66 message = 'You must supply a Route ID Number'
57 add constraint Class1 check
58 (Cap1st < CapBusiness or
59 CapBusiness = .)
70 message = 'First Class Capacity must be less than Business
70 ! Capacity';
NOTE: Table WORK.CAPINFO has been modified, with 7 columns.
60 describe table constraints capinfo;
NOTE: SQL table WORK.CAPINFO (bufsize=4096) has the following
 integrity constraint(s):

-----Alphabetic List of Integrity Constraints-----

 Integrity Where
Constraint Type Variables Clause
ƒƒ
1 Class1 Check (Cap1st<CapBusiness)
 or (CapBusiness=.)
2 PKIDInfo Primary Key RouteID

-----Alphabetic List of Integrity Constraints-----

 User
Message
ƒƒƒ
1 First Class Capacity must be less than Business Capacity
2 You must supply a Route ID Number

61 quit;
NOTE: PROCEDURE SQL used (Total process time):
 real time 0.55 seconds
 cpu time 0.07 seconds

 10.3 Creating Integrity Constraints 10-59

78

Integrity Constraints and PROC DATASETS

PROC DATASETS LIB = libref;
MODIFY member;

INTEGRITY CONSTRAINT CREATE
constraint-name = constraint
MESSAGE = 'New Error Message';

INTEGRITY CONSTRAINT DELETE
constraint-name;

PROC DATASETS LIB = libref;
MODIFY member;

INTEGRITY CONSTRAINT CREATE
constraint-name = constraint
MESSAGE = 'New Error Message';

INTEGRITY CONSTRAINT DELETE
constraint-name;

You can abbreviate INTEGRITY CONSTRAINT as IC.

For additional information about maintaining integrity constraints using PROC DATASETS, see the IC
CREATE, IC DELETE, and IC REACTIVATE statements of PROC DATASETS in the Procedures
chapter of the Base SAS Procedures Guide in the Base SAS documentation.

79

PROC SQL;
ALTER TABLE table-name
<constraint-clause-1>,…
<constraint-clause-n>;

PROC SQL;
ALTER TABLE table-name
<constraint-clause-1>,…
<constraint-clause-n>;

PROC SQL and Integrity Constraints

10-60 Chapter 10 Additional Topics (Self-Study)

80

PROC SQL;
CREATE TABLE table-name

(column-definition <column-attribute>,
<CONSTRAINT constraint-name

constraint>);

PROC SQL;
CREATE TABLE table-name

(column-definition <column-attribute>,
<CONSTRAINT constraint-name

constraint>);

PROC SQL and Integrity Constraints

See the SAS documentation for additional information about maintaining integrity constraints using
PROC SQL.

81

Documenting Integrity Constraints
General form of the PROC SQL with the DESCRIBE
statement:

General form of the PROC CONTENTS statement:

PROC SQL;
DESCRIBE TABLE CONSTRAINTS table-name;

PROC SQL;
DESCRIBE TABLE CONSTRAINTS table-name;

PROC CONTENTS DATA=libref.dataname;
RUN;
PROC CONTENTS DATA=libref.dataname;
RUN;

The DESCRIBE statement in PROC SQL prints the report in the Log window.

 10.3 Creating Integrity Constraints 10-61

82

Business Task
The data set ia.cap2000 contains information about
every flight in 2000.
You need to ensure that
an added route ID number
is valid and that it is one
of the route ID numbers
in the data set
ia.capinfo.

0000045

0000001

0000145

000077

83

Primary Keys and Foreign Keys

RouteIDNumber
is Foreign Key.

RouteIDNumber
is Foreign Key.

RouteIDNumber
is Primary Key.

RouteIDNumber
is Primary Key.

LinkedLinked ia.cap2000
(child table)

ia.capinfo
(parent table)

Route
IDNumber

Weight Of
Cargo

Revenue
Cargo

0000001 45600 111720

0000045 14500 3190

0000077 67500 128250

0000112 55700 181582

Route
ID Number
0000001

0000045

0000077

0000112

10-62 Chapter 10 Additional Topics (Self-Study)

84

Primary Keys and Foreign Keys
When you use the primary keys and foreign keys,
specify the following:

the primary key on a parent table
the foreign key on the child tables and identify these
items:

— the name of the parent table
— what happens when you add data to the child table
— what happens when you delete data from the

parent table

 10.3 Creating Integrity Constraints 10-63

85

If you update or delete an observation in the parent table,
you must specify the action you want to take.

Primary Keys and Foreign Keys

enables the data values in the primary key variables to
be updated, and additionally updates matching data
values in the foreign key data files to the same value.

CASCADE

enables the data values of the primary key variables to
be updated or deleted, but matching data values in the
foreign key data files are changed to null (missing)
values.

SET NULL

prevents the data values of the primary key variables
from being updated or deleted if there is a matching
value in one of the foreign key data file's
corresponding foreign key variables.

RESTRICT

ActionUPDATE/
DELETE

 ON UPDATE RESTRICT and ON DELETE RESTRICT are the defaults for foreign keys.

Referential constraints are defined in the child tables.

The requirements for establishing a referential relationship are as follows:
• The primary key and foreign key must reference the same number of variables, and the variables must

be in the same order.
• The variables must be of the same type (character or numeric) and length.
• If the foreign key is added to a data file that already contains data, the data values in the foreign key

data file must match existing values in the primary key data file or be null.

The foreign key data file can exist in the same SAS library as the referenced primary key data file (intra-
libref) or in different SAS libraries (inter-libref). However, if the library that contains the foreign key data
file is temporary, then the library containing the primary key data file must be temporary as well. In
addition, referential integrity constraints cannot be assigned to data files in concatenated libraries.

There is no limit to the number of foreign keys that can reference a primary key. However, additional
foreign keys can adversely impact the performance of update and delete operations.

10-64 Chapter 10 Additional Topics (Self-Study)

Creating Integrity Constraints

c10s3d2

1. Create the foreign key constraint on the child table.
proc sql;
 alter table ia.cap2000
 add Constraint FKRoute Foreign Key (RouteID)
 references ia.capinfo
 on update restrict
 on delete restrict;
quit;

2. Add an invalid observation.
proc sql;
 insert into ia.cap2000
 set FlightID = 'IA00101',
 RouteID = '0000145',
 Origin = 'RDU',
 Dest = 'LHR',
 Cap1st = 15,
 CapBusiness = 29,
 CapEcon = 200;
quit;

Log
proc sql;
 insert into ia.cap2000
 set FlightID = 'IA00101',
 RouteID = '0000145',
 Origin = 'RDU',
 Dest = 'LHR',
 Cap1st = 15,
 CapBusiness = 29,
 CapEcon = 200;
ERROR: Observation was not added/updated because a matching primary key value
 was not found for foreign key FKRoute.
NOTE: Deleting the successful inserts before error noted above to restore table
 to a consistent state.
 quit;
NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE SQL used:
 real time 0.33 seconds
 cpu time 0.02 seconds

 10.3 Creating Integrity Constraints 10-65

87

Adding a Row to the Child Table

ia.cap2000
(child table)

ia.capinfo
(parent table)

Route
IDNumber

Weight Of
Cargo

Revenue
Cargo

0000001 45600 111720

0000045 14500 3190

0000077 67500 128250

0000112 55700 181582

Route
ID Number
0000001

0000045

0000077

0000112

...

88

Route
IDNumber

Weight Of
Cargo

Revenue
Cargo

0000001 45600 111720

0000045 14500 3190

0000077 67500 128250

0000112 55700 181582

0000145 23987 176000

?
0000145

Adding a Row to the Child Table

ia.cap2000
(child table)

ia.capinfo
(parent table)

...

Route
ID Number
0000001

0000045

0000077

0000112

You want to add the route number 0000145 to the child table, ia.cap2000. The parent table,
ia.capinfo, is checked to see if route number 0000145 exists.

10-66 Chapter 10 Additional Topics (Self-Study)

89

Adding a Row to the Child Table

ia.cap2000
(child table)

ia.capinfo
(parent table)

Route
IDNumber

Weight Of
Cargo

Revenue
Cargo

0000001 45600 111720

0000045 14500 3190

0000077 67500 128250

0000112 55700 181582

Route
ID Number
0000001

0000045

0000077

0000112

...

If route number 0000145 does not exist in ia.capinfo, 0000145 is not added to the data set
ia.cap2000.

90

Route
ID Number
0000001

0000045

0000077

0000112

0000145

Adding a Row to the Child Table

ia.cap2000
(child table)

ia.capinfo
(parent table)

Route
IDNumber

Weight Of
Cargo

Revenue
Cargo

0000001 45600 111720

0000045 14500 3190

0000077 67500 128250

0000112 55700 181582

...

In order to add 0000145 to the data set ia.cap2000, the value 0000145 must first be added to
ia.capinfo.

 10.3 Creating Integrity Constraints 10-67

91

Adding a Row to the Child Table

ia.cap2000
(child table)

ia.capinfo
(parent table)

Route
ID Number
0000001

0000045

0000077

0000112

0000145

Route
IDNumber

Weight Of
Cargo

Revenue
Cargo

0000001 45600 111720

0000045 14500 3190

0000077 67500 128250

0000112 55700 181582

0000145 23987 176000

After 0000145 is added to ia.capinfo, 0000145 can be added to ia.cap2000.

Reference Information

To drop a constraint, use the DROP CONSTRAINT clause of the ALTER TABLE statement in PROC
SQL or the IC DELETE statement in PROC DATASETS.

c10ref1
proc sql;
 alter table ia.cap2000
 drop constraint FKRoute;
 alter table ia.capinfo
 drop constraint PKIDInfo
 drop constraint Class1;
quit;

proc datasets lib = ia;
 modify cap2000;
 ic delete FKRoute;
 modify capinfo;
 ic delete PKIDInfo Class1;
run;
quit;

10-68 Chapter 10 Additional Topics (Self-Study)

Exercises

6. Creating Integrity Constraints

Create integrity constraints with PROC DATASETS for ia.empdata.
• Place a primary key on the variable EmpID and add a custom message.
• Do not allow missing values for the LastName variable and add a custom message.
• Use PROC FSEDIT or Viewtable to test the constraints.

(Hint for Viewtable: Select Edit Mode on the View pull-down menu.)

7. Creating a Foreign Key

Create a foreign key on the data set ia.pilots on the variable EmpID using PROC SQL.
The parent table is ia.empdata.
• Restrict the update and deletion of the EmpID value.
• Test the constraints by trying to add the employee number E01724 to the ia.pilots data set

using the PROC SQL INSERT statement.

 10.4 Creating and Using Audit Trails 10-69

10.4 Creating and Using Audit Trails

94

Objectives
Determine what an audit trail file is.
Examine the columns in an audit trail file.
Initiate an audit trail file.
Add values to the audit trail file.
Report on an audit trail file.
Manage an audit trail file.

95

Business Task
You must monitor the updates for the data set
ia.capinfo.
Creating an audit trail file enables you to document the
following:

Who?

What?

When?

10-70 Chapter 10 Additional Topics (Self-Study)

96

Audit Trail
The audit trail is an optional SAS file that logs
modifications to a SAS table.
For each addition, deletion, and update to the data,
the audit file stores information about the following:

who made the modification
what was modified
when the modification was made

The MODIFY statement is one method with which to modify a SAS table. When a MODIFY statement is
used, integrity constraints are checked and edits are recorded in an audit trail.

 10.4 Creating and Using Audit Trails 10-71

97

The Audit Trail File
The audit trail file is defined as follows:

a SAS file with the same name as the data file it is
monitoring, but with a member type of AUDIT
created by PROC DATASETS
read-only
read by any SAS procedure that accepts the
TYPE= data set option

• The audit trail file must reside in the same SAS data library as the data file associated with it.
• A SAS table can have, at most, one audit file.
• Procedures such as PRINT, TABULATE, and FREQ can read audit trail files using the TYPE= data set

option.

10-72 Chapter 10 Additional Topics (Self-Study)

98

Audit Trail File Variables
The audit trail file can contain three types of columns:

data file variables
– copies of the columns in the audited SAS data file

AT* variables
– store information about the data modifications

USER_VAR variables
– user-defined special columns that enable you

to enter information into the audit file

For the _AT*_ variables, the asterisk is replaced by a specific string, such as DATETIME.

USER_VAR variables are optional. They supplement the information automatically recorded in the
AT* variables.

 10.4 Creating and Using Audit Trails 10-73

99

 AT* Variable Description

ATDATETIME Date and time of a modification

ATUSERID
Log-on user ID associated with a
modification

ATOBSNO
Observation number affected by the
modification unless REUSE=YES

ATRETURNCODE Event return code

ATMESSAGE
SAS log message at the time of the
modification

ATOPCODE Code describing the type of operation

AT* Variables

By default, SAS logs all _ATOPTCODE_ codes. You can change this behavior when you initiate an audit
trail.

10-74 Chapter 10 Additional Topics (Self-Study)

100

Code Event

DA Added data record image

DD Deleted data record image

DR Before-update record image

DW After-update record image

EA Observation add failed

ED Observation delete failed

EU Observation update failed

ATOPTCODE Values

An image can be one of the following:
• an edited data value
• an added row
• a deleted row

101

User Variables
User variables have the following characteristics:

defined as part of the audit trail specification
displayed when the associated data file is opened
for update
edited as you would edit data values
written to the audit trail as each row is saved
not available when the associated data file is opened
for browsing

 10.4 Creating and Using Audit Trails 10-75

Creating and Viewing an Audit Trail

c10s4d1
proc datasets library = ia nolist;
 audit cap2000;
 initiate;
 user_var who $20 label = 'Who made the change'
 why $20 label = 'Why the change was made';
run;
quit;

proc sql;
 insert into ia.cap2000
 set FlightID = 'IA00040',
 RouteID = '0000100',
 Origin = 'CDG',
 Dest = 'LHR',
 Cap1st = 12,
 CapBusiness = 20,
 CapEcon = 120,
 Date = '03JUN2000'd,
 who = 'Administrator',
 why = 'New Flight';
quit;

proc print data = ia.cap2000 (type = audit);
 title 'Audit Trail for ia.cap2000';
run;

/* To terminate the audit trail */

proc datasets library = ia nolist;
 audit cap2000;
 terminate;
run;
quit;

• The TERMINATE statement deletes the audit file. Do not delete the audit file using operating system
methods because this can damage the SAS data file.

• To stop auditing without deleting the audit file, use the SUSPEND statement.
• To resume auditing after a suspension, use the RESUME statement.

10-76 Chapter 10 Additional Topics (Self-Study)

Output
Audit Trail for ia.cap2000

 Flight Cap
 Obs ID RouteID Origin Dest Cap1st Business CapEcon

 1 IA00040 0000100 CDG LHR 12 20 120

 Obs Date who why _ATDATETIME_

 1 03JUN2000 Administrator New Flight 19JAN2004:16:55:39

 Obs _ATOBSNO_ _ATRETURNCODE_ _ATUSERID_ _ATOPCODE_ _ATMESSAGE_

 1 2001 . saswjr DA

103

Initiating an Audit Trail
proc datasets lib = ia;

audit cap2000;
initiate;
user_var who $20 label = 'Who made the change'

why $20 label = 'Why the change was made';
run;

quit;

c10s4d1

 10.4 Creating and Using Audit Trails 10-77

104

Initiating an Audit Trail with PROC DATASETS
PROC DATASETS LIB = libname;

AUDIT SAS-file <SAS-password>;
INITIATE;

<LOG <BEFORE_IMAGE = YES|NO>
<DATA_IMAGE = YES|NO>
<ERROR_IMAGE = YES|NO>>;

<USER_VAR specification-1
<specification-n>>;

RUN;
QUIT;

PROC DATASETS LIB = libname;
AUDIT SAS-file <SAS-password>;
INITIATE;

<LOG <BEFORE_IMAGE = YES|NO>
<DATA_IMAGE = YES|NO>
<ERROR_IMAGE = YES|NO>>;

<USER_VAR specification-1
<specification-n>>;

RUN;
QUIT;

libname is the library where the table to be audited resides.

SAS-file states the name of the table to be audited.

SAS-password provides the SAS data file password, if one exists.

INITIATE creates the audit file.

LOG specifies the images (events) to be logged on the audit file.
If you omit the LOG statement, all images are recorded.

BEFORE_IMAGE=YES|NO
controls storage of before-update record images (for example, the 'DR'
operation).

DATA_IMAGE=YES|NO
controls storage of after-update record images (for example, other operations
starting with 'D').

ERROR_IMAGE=YES|NO
controls storage of unsuccessful update record images (for example,
operations starting with 'E').

The audit file uses the SAS password that is assigned to the parent data file; therefore, it is recommended
that you alter the password for the parent data file. Use the ALTER= data set option to assign an alter-
password to a SAS file or to access a read-, write-, or alter-protected SAS file. If another password is used
or no password is used, then the audit file is still created, but is not protected.

10-78 Chapter 10 Additional Topics (Self-Study)

105

USER_VAR variable-name <$><length>
<LABEL = 'variable-label'>
<variable-name-n …>;

USER_VAR variable-name <$><length>
<LABEL = 'variable-label'>
<variable-name-n …>;

PROC DATASETS USER_VAR Statement

USER_VAR variables are unique in SAS in that they are stored in one file (for example, the audit file)
and opened for update in another (for example, the data file).

When the data file is opened for update, the USER_VAR variables appear, and you can edit them as
though they were part of the data file.

106

After you initiate the audit trail, use PROC DATASETS to
do the following:

suspend logging
resume logging
terminate (delete) the audit file

Controlling the Audit Trail

 10.4 Creating and Using Audit Trails 10-79

107

Suspending and Resuming Audit Trails
To suspend an audit:

proc datasets lib = ia;
audit cap2000;

suspend;
run;

quit;

To resume an audit:

proc datasets lib = ia;
audit cap2000;

resume;
run;

quit;

c10s4d2

108

Terminating an Audit Trail
To terminate and delete an audit trail:

proc datasets lib = ia;
audit cap2000;

terminate;
run;

quit;

c10s4d2

10-80 Chapter 10 Additional Topics (Self-Study)

Exercises

8. Creating an Audit Trail

Create an audit trail for the data set ia.pilots.
• Add user variables to track who edited the data set and why it was edited.
• Use PROC FSEDIT to give a pilot a salary increase. Be sure to include who edited the data set and

give a reason for the increase.
• Use PROC PRINT to look at the audit trail.
• Terminate the audit trail.

 10.5 Working with Perl Regular Expressions 10-81

10.5 Working with Perl Regular Expressions

111

Objectives
Describe Perl regular expressions and
metacharacters.
Use pattern matching to validate data.
Use pattern matching to replace text.

 Perl regular expressions are new in SAS®9.

10-82 Chapter 10 Additional Topics (Self-Study)

112

Perl Regular Expressions
Perl has the following features:

is an open source language useful for scripting,
reporting, manipulating text, and other general-
purpose programming
uses character patterns for search and replacement
is documented at www.perldoc.com

Perl stands for Practical Extraction and Reporting Language.

113

Perl Regular Expressions
A Perl regular expression specifies a character pattern to
be searched (matched) or replaced (substituted).
Examples:
m/boat/

match the substring boat.
s/boat/ship/

substitute the string ship for the substring boat.

The m (match) directive is optional.

 10.5 Working with Perl Regular Expressions 10-83

114

Perl Regular Expressions
A set of metacharacters is used to specify the following:

wildcard characters
special characters
number of matches
capture buffers

Forward slashes (/) are required to enclose a regular
expression.

115

Perl Regular Expressions
Selected Perl metacharacters (symbols):

[abc] a, b, or cset of characters[]

\d 1 digitescape character\
a-z, A-Z, 0-9, $%&-+:any character.
a-z, A-Z, _, 0-9any word character\w
0-9any digit\d
space, tab, carriage returnwhite-space character\s

\d* 0 or more digitsmatch 0 or more times*

ExamplesMeaningSymbol

continued...

10-84 Chapter 10 Additional Topics (Self-Study)

116

Perl Regular Expressions
Selected Perl metacharacters (symbols):

(\d{2}) store two-digit match
in a capture buffer

capture buffer()

/^ start match in
position 1

start match at 1st

character
^

$/ end match at
last character

end match at last
character

$

\d+ 1 or more digitsmatch 1 or more times+
\d? 0 or 1digitmatch 0 or 1 times?
\d{2} two digitsmatch n times{n}

ExamplesMeaningSymbol

117

SAS PRX Functions
Selected SAS PRX functions:

PRXPARSE parses (compiles) a Perl regular
expression and returns an identifier.
PRXMATCH searches for a substring and returns the
position when found.
PRXCHANGE replaces a substring with another
string.

 10.5 Working with Perl Regular Expressions 10-85

118

The PRXPARSE Function
The PRXPARSE function compiles a Perl regular
expression for use in a search or replace operation.

PRXPARSE(Perl-regular-expression)PRXPARSE(Perl-regular-expression)

Examples:

re=prxparse('m/boat/');

re=prxparse('s/boat/ship/');

The variable re is written to the output data set.

The argument to the PRXPARSE function is a character value or character expression.

The PRXPARSE function returns a numeric identifier representing the parsed expression. This identifier
can be used with the following:
• the PRXMATCH function to search for a pattern match and return the position at which the pattern

is found
• the PRXCHANGE function to perform a pattern-matching replacement
• the PRXPOSN function to return the value in a capture buffer
• the PRXNEXT routine to find the next occurrence of the search pattern
• the PRXPAREN function to return the last capture buffer

If Perl regular expression is a constant or if it uses the /o option, the Perl regular expression is compiled
only once. Successive calls to PRXPARSE do not cause a recompile, but return the identifier that was
already compiled. This behavior simplifies the code because you do not need to use an initialization block
(IF _N_ =1) to initialize Perl regular expressions.

10-86 Chapter 10 Additional Topics (Self-Study)

119

The PRXMATCH Function
The PRXMATCH function uses a Perl regular expression
to search for a pattern and returns the starting position
at which the pattern is found.
If the pattern is not found, 0 is returned.

PRXMATCH(Perl-regular-expression, source)PRXMATCH(Perl-regular-expression, source)

Perl-regular-expression
specifies for which a character pattern to search.

source
specifies the string to be searched.

120

The PRXMATCH Function
Find all the names that do not have a valid Social Security
number pattern of ddd-dd-dddd.
ia.Staff (Partial Listing)

Name SSN

O'REILY, MARY 897-37-4135
PYLES, JANE 42-8321-982
HOFFMAN, VALERIE 171-32-8038
DAWN, JENNIFER
VAN HUSEN, JEFF 801-5A-3640
SIM-SMITH, ANGELA 219-68-2436abc
TIMMONS, DAVID hello219-68-1098
BENJAMIN, CATHERINE 236-73-7392

 10.5 Working with Perl Regular Expressions 10-87

121

The PRXMATCH Function

data Invalidssn;
retain re;
set ia.Staff;
if _n_ = 1 then

re = prxparse('/\d{3}-\d{2}-\d{4}/');
if prxmatch(re, ssn) = 0;

run;
proc print data=Invalidssn;

title 'Invalid Social Security Numbers';
var Name SSN;

run;

c10s5d1

Equivalent code:

where ssn like '___-__-___' and verify(ssn,'0123456789') = 0;

The LIKE operator would select 364-9A-7412 as a valid SSN because it cannot distinguish letters
from digits. The VERIFY function validates that the characters were digits.

The roles of the items in the regular expression:

/ Start regular expression.

\d{3} Match three digits

- followed by a dash

\d{2} followed by two digits

- followed by a dash

\d{4} followed by four digits.

/ End the regular expression.

10-88 Chapter 10 Additional Topics (Self-Study)

129

The PRXMATCH Function
Output

Invalid Social Security Numbers

Obs Name SSN

1 PYLES, JANE 42-8321-982
2 DAWN, JENNIFER
3 VAN HUSEN, JEFF 801-5A-3640

What happened
to Angela and David?

c10s5d1
...

130

The PRXMATCH Function
The number pattern is ddd-dd-dddd.
ia.Staff (Partial Listing)

Name SSN

SIM-SMITH, ANGELA 219-68-2436abc
TIMMONS, DAVID hello219-68-1098

 10.5 Working with Perl Regular Expressions 10-89

131

The PRXMATCH Function
The PRXMATCH function performs a sliding window
search. For character strings longer than the 11 specified
characters, invalid strings could be considered a match.

SIM-SMITH, ANGELA 219-68-2436abc

Pos. 1 Pos. 11

TIMMONS, DAVID hello219-68-1098

Pos. 6 Pos. 16

10-90 Chapter 10 Additional Topics (Self-Study)

132

The PRXMATCH Function

data Invalidssn;
set ia.Staff;
re = prxparse('/^\d{3}-\d{2}-\d{4}$/');
if prxmatch(re, trim(ssn)) = 0;

run;
proc print data=Invalidssn;

title 'Invalid Social Security Numbers';
var Name SSN;

run;

c10s5d2

Adding the caret (^) and the dollar sign ($) to the
PRXPARSE function will start in position 1 for 11:

 Be sure to trim the blanks from the end of the SSN variable. In Perl expressions, blanks have
significance.

If the Perl regular expression is a constant or if it uses the /o option, then the Perl regular
expression is compiled once and each use of PRXMATCH reuses the compiled expression.

If the Perl regular expression is not a constant and if it does not use the /o option, then the Perl
regular expression is recompiled for each call to PRXMATCH.

 The compile-once behavior occurs when you use PRXMATCH in a DATA step, in a
WHERE clause, or in PROC SQL. For all other uses, the Perl regular expression is
recompiled for each call to PRXMATCH.

 10.5 Working with Perl Regular Expressions 10-91

133

The PRXMATCH Function
Output

c10s5d2

Invalid Social Security Numbers

Obs Name SSN

1 PYLES, JANE 42-8321-982
2 DAWN, JENNIFER
3 VAN HUSEN, JEFF 801-5A-3640
4 SIM-SMITH, ANGELA 219-68-2436abc
5 TIMMONS, DAVID hello219-68-1098

134

The PRXMATCH Function
The PRXPARSE function is not required to compile the
regular expression. A regular expression can be used in
the PRXMATCH function.

data Invalidssn;
set ia.Staff;
if

prxmatch('/^\d{3}-\d{2}-\d{4}$/',trim(ssn))=0;
run;
proc print data = Invalidssn;

title 'Invalid Social Security Numbers';
var Name SSN;

run;

c10s5d3

10-92 Chapter 10 Additional Topics (Self-Study)

135

The PRXCHANGE Function
The PRXCHANGE function uses a Perl regular
expression to perform a pattern-match replacement.

PRXCHANGE(Perl-regular-expression, times, source)PRXCHANGE(Perl-regular-expression, times, source)

Perl-regular-expression
specifies a pattern to search for and a string
to replace with.

times
specifies number of times to perform the
replacement.

source
specifies the string to be searched.

Use the value -1 for the times argument to replace all occurrences.

136

The PRXCHANGE Function
Create a variable NewName with Firstname Lastname.

Name

O'REILY, MARY
PYLES, JANE
HOFFMAN, VALERIE
DAWN, JENNIFER
VAN HUSEN, JEFF
SIM-SMITH, ANGELA
TIMMONS, DAVID
BENJAMIN, CATHERINE

ia.Staff (Partial Listing)

 10.5 Working with Perl Regular Expressions 10-93

137

The PRXCHANGE Function
data Namechange;

set ia.Staff;
re = prxparse('s/([^,]+), (\w+(\s+\w+)?)/$2 $1/');
NewName = prxchange(re,1,Name);

run;
proc print data=Namechange;

title 'Rearranged Names';
var Name NewName;

run;

c10s5d4

The roles of the items in the regular expression:

s Perform a substitution.

/ Start regular expression.

(Start capture buffer #1 to store the last name.

[^,]+
[]
^
,
+

Match one or more non-comma characters.
Specify a set of characters.
NOT.
Match a comma.
One or more times.

) End capture buffer #1.

, Match a comma.

 Match a space.

(Start capture buffer #2 to store the first name.

\w+ Match a word character one or more times.

(Continued on the next page.)

10-94 Chapter 10 Additional Topics (Self-Study)

(Start capture buffer #3 to store an optional middle name.

\s+ Match a white space (space, tab, carriage return) one or more times.

\w+ Match a word character one or more times.

) End capture buffer #3. It is part of capture buffer #2.

? Match zero or one time. (Person may not have a middle name.)

) End capture buffer #2; holds first name and middle name.

/ End regular expression and start replacement text.

$2 Insert capture buffer #2, which contains first name and middle name.

 Insert a space.

$1 Insert capture buffer #1, which contains the last name.

/ End replacement text.

Equivalent code:

data Namechange;
 set ia.Staff;
 First=scan(name, 2, ' ,');
 Middle=scan(name, 3, ' ,');
 Last = scan(name,1, ' ,');
 if middle ne ' '
 then NewName=trim(first) || ' ' ||
 trim(middle) || ' ' || last;
 else NewName=trim(first) || ' ' || last;
run;

 10.5 Working with Perl Regular Expressions 10-95

160

The PRXCHANGE Function

Firstname Lastname

Obs Name NewName

1 O'REILY, MARY MARY O'REILY
2 PYLES, JANE JANE PYLES
3 HOFFMAN, VALERIE VALERIE HOFFMAN
4 DAWN, JENNIFER JENNIFER DAWN
5 VAN HUSEN, JEFF JEFF VAN HUSEN
6 SIM-SMITH, ANGELA ANGELA SIM-SMITH
7 TIMMONS, DAVID DAVID TIMMONS
8 BENJAMIN, CATHERINE CATHERINE BENJAMIN
9 WINDSOR, STEPHEN STEPHEN WINDSOR
10 RICHARDSON, LARRY LARRY RICHARDSON

Partial Output

c10s5d4

161

The PRXCHANGE Function

data Namechange;
set ia.Staff;
NewName = prxchange('s/([^,]+), (\w+(\s+\w+)?)/$2 $1/',

1,Name);
run;
proc print data = Namechange;

title 'Rearranged Names';
var Name NewName;

run;

The PRXPARSE function is not required to compile the
regular expression. The regular expression can be used
in the PRXCHANGE function.

c10s5d5

10-96 Chapter 10 Additional Topics (Self-Study)

Exercises

9. Using Perl Expressions

Create a report showing all employees in the ia.staff data set with invalid telephone numbers.
Valid numbers are of the form ddd-ddd-dddd.

Partial Listing
ia.staff

 Obs Name PhoneNumber

 1 O'REILY, MARY 203-781-1255
 2 PYLES, JANE 203-675-7715
 3 HOFFMAN, VALERIE 212-586-0808
 4 DAWN, JENNIFER 718-383-1549
 5 VAN HUSEN, JEFF 201-732-8787
 6 SIM-SMITH, ANGELA 201-812-5665
 7 TIMMONS, DAVID 586-806
 8 BENJAMIN, CATHERINE 203-781-1777
 9 WINDSOR, STEPHEN 718-384-2849
 10 RICHARDSON, LARRY 718-384-8816
 11 BELLUM, SARAH 203-675-3434
 12 GARCIA, TRACY 212-587-1247
 13 MONTGOMERY, ADAM 212-587-3622
 14 GEORGE, CLARA 203-781-1212
 15 SABATINI, ANTHONY 203-781-0019

Use the PRINT procedure with a WHERE statement to create the report.

Output
Employees with Invalid Phone Numbers

 Phone
Obs Name Number

7 TIMMONS, DAVID 586-806

 10.6 Solutions to Exercises 10-97

10.6 Solutions to Exercises

1. Setting Up the Files for Exercises

Copy the ia.empdata SAS data set into the Work library using PROC COPY:
proc copy in = ia out = work;
select empdata;
run;

 This is a backup copy of the data in case your program must be submitted multiple times as
you test and debug.

2. Modifying All Observations in a SAS Data Set

Give all the employees in the empdata SAS data set a 5% salary increase using the MODIFY
statement. Print the data set before and after the increase.
proc print data = empdata (obs = 5);
 title 'Original Data';
run;

data empdata;
 modify empdata;
 salary = salary * 1.05;
run;

proc print data = empdata (obs = 5);
 title 'Modified Data';
run;

3. Modifying a SAS Data Set with Values in a Transaction Data Set

Use the transaction data set ia.empdatu to modify the empdata SAS data set by the employee ID
number. Do not use an index. Print the EmpID, Phone, JobCode, Division, and Salary
variables before and after the updates to verify the changes.
proc print data = empdata;
 var EmpID Phone JobCode Division Salary;
 title 'Original Data';
run;

data empdata;
 modify empdata ia.empdatu;
 by EmpID;
run;

proc print data = empdata;
 var EmpID Phone JobCode Division Salary;
 title 'Modified Data';
run;

10-98 Chapter 10 Additional Topics (Self-Study)

4. Modifying a SAS Data Set Using a Transaction Data Set and an Index

Use the transaction data set ia.empdatu2 to modify the empdata SAS data set by the employee
ID number. Use the index on the empdata SAS data set. Modify the variables LastName,
Location, and Salary. Print the data set before and after the changes.
proc print data = empdata;
 var EmpID LastName Location Salary;
 title 'Original Data';
run;

data empdata;
 set ia.empdatu2 (rename = (LastName = NewLastName
 Location = NewLocation
 Salary = NewSalary));
 modify empdata key = EmpID;
 LastName = NewLastName;
 Location = NewLocation;
 Salary = NewSalary;
run;

proc print data = empdata;
 var EmpID LastName Location Salary;
 title 'Modified Data';
run;

5. Creating Generation Data Sets

Modify the data set ia.jobhstry by adding a maximum of three generations.

a. Use the ia.y200061 and ia.y200062 data sets to concatenate to ia.jobhstry and test
your program.

b. Use PROC DATASETS to look at the generation information for ia.jobhstry.
proc datasets lib = ia nolist;
 modify jobhstry (genmax = 3);
run;
quit;

data ia.jobhstry;
 set ia.jobhstry ia.y200061;
run;

data ia.jobhstry;
 set ia.jobhstry ia.y200062;
run;

proc datasets library = ia nolist;
 contents data = _all_ nods;
 contents data = Jobhstry;
run;
quit;

 10.6 Solutions to Exercises 10-99

6. Creating Integrity Constraints

Create integrity constraints with PROC DATASETS for ia.empdata.
• Place a primary key on the variable EmpID and add a custom message.
• Do not allow missing values for the LastName variable and add a custom message.
• Use PROC FSEDIT to test the constraints.
proc datasets lib = ia nolist;
 modify empdata;
 ic create PKEmpID = Primary Key (EmpID)
 message = 'You must supply an employee ID number';
 ic create LName = Not Null (LastName)
 message = 'You must supply a last name for the employee';
 contents data = empdata;
run;
quit;

proc fsedit data = ia.empdata;
run;

7. Creating a Foreign Key

Create a foreign key on the data set ia.pilots on the variable EmpID using PROC SQL.
The parent table is ia.empdata.
• Restrict the update and deletion of the EmpID value.
• Test the constraints by trying to add the employee number E01724 to the ia.pilots data set

using the PROC SQL INSERT statement.
proc sql;
 alter table ia.pilots
 add constraint FKEmpID Foreign Key (EmpID)
 references ia.empdata
 on update restrict
 on delete restrict;
 describe table constraints ia.pilots;
quit;

proc sql;
 insert into ia.pilots
 set EmpID = 'E01724';
quit;

Log
434 proc sql;
435 insert into IA.Pilots
436 set EmpID = 'E01724';
ERROR: Observation was not added/updated because a matching primary key value
 was not found for foreign key FKEmpID.
NOTE: Deleting the successful inserts before error noted above to restore table
 to a consistent state.
437 quit;
NOTE: The SAS System stopped processing this step because of errors.

10-100 Chapter 10 Additional Topics (Self-Study)

8. Creating an Audit Trail

Create an audit trail for the data set ia.pilots.
• Add user variables to track who edited the data set and why it was edited.
• Use PROC FSEDIT to give a pilot a salary increase. Be sure to include who edited the data set and

give a reason for the increase.
• Use PROC PRINT to look at the audit trail.
• Terminate the audit trail.
proc datasets library = ia nolist;
 audit pilots;
 initiate;
 user_var who $20 label = 'Who made the change'
 why $20 label = 'Why the change was made';
run;
quit;

proc fsedit data = ia.pilots;
run;

proc print data = ia.pilots(type = audit);
 title 'Audit Trail for ia.pilots';
run;

proc datasets library = ia nolist;
 audit pilots;
 terminate;
run;
quit;

 10.6 Solutions to Exercises 10-101

9. Using Perl Expressions

Create a report showing all employees in the ia.Staff data set with invalid telephone numbers.
Valid numbers are of the form ddd-ddd-dddd.

Partial Listing
ia.Staff

 Obs Name PhoneNumber

 1 O'REILY, MARY 203-781-1255
 2 PYLES, JANE 203-675-7715
 3 HOFFMAN, VALERIE 212-586-0808
 4 DAWN, JENNIFER 718-383-1549
 5 VAN HUSEN, JEFF 201-732-8787
 6 SIM-SMITH, ANGELA 201-812-5665
 7 TIMMONS, DAVID 586-806
 8 BENJAMIN, CATHERINE 203-781-1777
 9 WINDSOR, STEPHEN 718-384-2849
 10 RICHARDSON, LARRY 718-384-8816
 11 BELLUM, SARAH 203-675-3434
 12 GARCIA, TRACY 212-587-1247
 13 MONTGOMERY, ADAM 212-587-3622
 14 GEORGE, CLARA 203-781-1212
 15 SABATINI, ANTHONY 203-781-0019

Use the PRINT procedure with a WHERE statement to create the report.

Output
Employees with Invalid Phone Numbers

 Phone
 Obs Name Number

 7 TIMMONS, DAVID 586-806

proc print data=ia.Staff;
 where prxmatch('/\d{3}-\d{3}-\d{4}/', PhoneNumber) = 0;
 var Name PhoneNumber;
 title "Employees with Invalid Phone Numbers";
run;

10-102 Chapter 10 Additional Topics (Self-Study)

Appendix A Index

_
ATOPTCODE values

audit trails, 10-74
IORC automatic variable, 3-65
N automatic variable, 3-44
TEMPORARY keyword, 4-25

A
APPEND procedure, 9-14

advantages, 5-16
disadvantages, 5-17
FORCE option, 5-7–5-11
syntax, 5-4–5-5

ARRAY statement
multidimensional syntax, 4-18
one-dimensional syntax, 4-8

arrays
advantages, 4-40
definition, 4-7
disadvantages, 4-40
loading from a SAS data set,

multidimensional, 4-32
loading from a SAS data set, one-

dimensional, 4-13
multidimensional syntax, 4-18
one-dimensional syntax, 4-8
storing values in a SAS data set, 4-12
using multidimensional, 4-17–4-20

ASYNCINDEX= data set option, 9-20–9-22
audit trails

AT* variables, 10-72
ATOPTCODE values, 10-74
controlling, 10-78
creating, 10-69–10-79
data file variables, 10-72
definition, 10-71
initiating with DATASETS procedure, 10-

77
terminating, 10-79
user variables, 10-69–10-79
USER_VAR variables, 10-78
using, 10-69–10-79

AUTOSIGNON option, 8-51

B
benchmarking guidelines, 1-7–1-8
best practices, 8-3, 8-6
BUFNO= option, 1-24–1-27
BUFSIZE= option, 1-24–1-27
BY statement

CLASS statement comparison, 6-54–6-56
DATA step, 8-42
GROUPFORMAT option, 6-50–6-53
NOTSORTED option, 6-44–6-49
TRANSPOSE procedure, 4-112

BY variable
DATA step, 8-42

BY-group processing, 6-4, 9-24–9-25
using indexes for, 6-38

BYSORT= option
LIBNAME statement, 9-28

C
CATALOG procedure, 4-88
CEIL function, 2-21
centiles, 2-61
CHECK integrity constraint, 10-53–10-54
CLASS statement

BY statement comparison, 6-54–6-56
syntax, 6-56

CNTLIN= option
FORMAT procedure, 4-98

CNTLOUT= option
FORMAT procedure, 4-103
syntax, 4-103

COMPARE procedure, 7-9
COMPRESS function, 5-35
COMPRESS= data set option, 7-17–7-22

comparing CHAR and BINARY, 7-21
compression

dependencies, 7-24–7-25
guidelines, 7-24
trade-offs, 7-26

compute services, 8-49–8-51
conditional logic, 8-9
control data set

creating a format, 4-95

A-2 Index

controlling memory and I/O resources, 1-24–
1-31

controlling page size, 1-28–1-29
CPU

conserving, 8-4
CPUCOUNT= option, 6-21

D
data file structure

compressed, 7-15–7-16
compressed, overhead, 7-16
uncompressed, 7-14–7-15

data file variables
audit trails, 10-72

data set page
definition, 1-19

DATA step
BY statement, 8-42
BY variable, 8-42
combining data conditionally, 3-23–3-35
combining summary and detail data, 3-44
creating multiples, 8-15
creating summary statistics, 3-105
DATASETS procedure, 8-19
DESCRIBE statement, 7-36
DROP statement, 8-33
FIRST. processing, 6-8
KEEP statement, 8-33
KEY= option, 3-58
MERGE statement, 3-23–3-35
multiple SET statements, 3-25, 3-42
SORT procedure, 8-17
WHERE statement, 8-33

DATA step view
advantages, 7-37
creating, 7-31
definition, 7-29
guidelines, 7-37–7-38
syntax, 7-36

data transfer services, 8-52–8-54
database data

accessing efficiently, 8-34
DATAPATH= option

LIBNAME statement, 9-11, 9-28
DATASETS procedure, 9-22

DATA step, 8-19
INDEX CREATE statement, 9-20
managing indexes, Error! Not a valid

bookmark in entry on page 2-48
syntax, 2-48

syntax for initiating an audit trail, 10-77
TERMINATE statement, 10-75, 10-79
USER_VAR statement, 10-78

DBMS, 8-42
access techniques, 8-35

DECLARE statement, 4-57–4-58
DESCRIBE statement

DATA step, 7-36
direct access methods, 2-6
DO loops

multidimensional arrays, 4-20
DOWNLOAD procedure, 8-52–8-53
DROP statement, 8-27, 8-31, 8-33
DROP= data set option, 8-27, 8-31, 8-33, 8-

39
duplicate key values, 10-26
DUPOUT option

SORT procedure, 6-9

E
efficiency trade-offs, 1-7–1-11
eliminating unnecessary data passes, 8-14
ENDOBS= option

LIBNAME statement, 9-28
ENDRSUBMIT statement, 8-52
EQUALS option

SORT procedure, 6-11–6-12
EXCLUDE statement

FORMAT procedure, 4-103
executing only necessary statements, 8-7
external files

reading, 1-21
subsetting and reading, 8-25–8-26

F
FILENAME statement, 5-28

syntax, 5-30
FILEVAR= option

INFILE statement, 5-33–5-34
FIND method, 4-61
FIRST. processing

DATA step, 6-8
FMTERR system option, 4-94
FMTLIB option

FORMAT procedure, 4-89
FMTSEARCH= system option, 4-92–4-93
FORCE option

APPEND procedure, 5-7–5-11
FOREIGN KEY constraint, 10-53
foreign keys, 10-61–10-62

 Index A-3

FORMAT procedure
advantages, 4-104
CNTLIN= option, 4-98
CNTLOUT= option, 4-103
disadvantages, 4-104
documenting, 4-89
EXCLUDE statement, 4-103
FMTLIB option, 4-89
maintaining permanent formats, 4-99, 4-

103
SELECT statement, 4-103
syntax, 4-86
using permanent formats, 4-90

FULLSTIMER option, 1-15

G
generation data sets

creating, 10-36
definition, 10-30
GENMAX= option, 10-35
GENNUM= option, 10-43
maintaining, 10-46
processing, 10-43
terms, 10-33
uses, 10-31

GENMAX= option
generation data sets, 10-35

GENNUM= option
processing generation data sets, 10-43

grid computing, 8-47
GROUPFORMAT option

BY statement, 6-50–6-53

H
hash objects

advantages, 4-74
argument tags, 4-58
attributes, 4-56
creating, 4-47
creating from a SAS data set, 4-65
data variables, 4-61
DECLARE statement, 4-57–4-58
FIND method, 4-61
key variables, 4-60
methods, 4-56
MISSING routine, 4-65
object dot syntax, 4-59
SET statement, 4-65
using as table lookups, 4-46

host sort, 6-32

I
IDXNAME= option, 2-63
IDXWHERE= option, 2-63
IF/THEN logic

guidelines for efficiency, 8-12
INDEX CREATE statement

DATASETS procedure, 9-20
index files, 2-49
index values

multidimensional arrays, 4-20
INDEX= data set option, 9-20

indexes, 2-45
indexes

centiles, 2-61
definition, 2-37
documenting, 2-49–2-52
INDEX= data set option, 2-45
maintaining, 2-66–2-68
managing with the DATASETS

procedure, Error! Not a valid bookmark
in entry on page 2-48

managing with the SQL procedure, 2-49
purpose, 2-38
terminology, 2-41
usage, 2-54–2-60

INDEXPATH= option
LIBNAME statement, 9-13–9-14, 9-28

INFILE statement
FILEVAR= option, 5-33–5-34

INPUT statement, 8-33
INSERT INTO statement

advantages, 5-22
disadvantages, 5-22
syntax, 5-18–5-21

integers
storage lengths, 7-10

integrity constraints
CHECK, 10-53–10-54
creating, 10-55–10-60
documenting, 10-60
FOREIGN KEY, 10-53
general constraints, 10-52–10-53
NOT NULL, 10-53
PRIMARY KEY, 10-53–10-54, 10-61–10-

63
referential constraints, 10-52–10-53
UNIQUE, 10-53–10-54
uses, 10-51

INTNX function, 5-41–5-43

A-4 Index

K
KEEP statement, 8-27, 8-31, 8-33
KEEP= data set option, 8-27, 8-31, 8-33, 8-

39
KEY= option

DATA step, 3-58

L
LENGTH statement, 7-8
LIBNAME engine, 8-35–8-36
LIBNAME statement

BYSORT= option, 9-28
DATAPATH= option, 9-11, 9-28
embedded with SQL Pass-Through

Facility, 8-44
ENDOBS= option, 9-28
INDEXPATH= option, 9-13–9-14, 9-28
METAPATH= option, 9-28
PARTSIZE= data set option, 9-18–9-19, 9-

28
SERVER= option, 8-57
STARTOBS= option, 9-28
TEMP= option, 9-28

M
MEANS procedure

creating a summary data set, 3-40
description, 3-40
OUTPUT statement, 3-41

memory and I/O resources
controlling, 1-24–1-31

MEMRPT option, 1-15
MERGE statement

advantages, 3-7
comparison with the SQL procedure, 3-

13–3-21
disadvantages, 3-8
syntax, 3-4

METAPATH= option
LIBNAME statement, 9-28

MISSING routine
hash objects, 4-65

missing values, 3-87–3-90, 10-24
MODIFY statement

affecting DATA step processing, 10-7
modifying SAS data sets, 10-3–10-20, 10-

70
UPDATEMODE= option, 10-24

modifying SAS data sets
MODIFY statement, 10-3–10-20, 10-70

MSGLEVEL= option, 2-46
multidimensional arrays

DO loop, 4-20
index values, 4-20

multi-threaded processing, 6-20

N
NAME= option

TRANSPOSE procedure, 4-111
NOBS= option, 2-12
NODUPKEY option, 6-5
NODUPRECS option, 6-6–6-7
NOEQUALS option

SORT procedure, 6-11–6-12
NOFMTERR system option, 4-94
NOSORTEQUALS global option, 6-11
NOT NULL integrity constraint, 10-53
NOTHREADS option, 6-20
NOTSORTED option

BY statement, 6-44–6-49
numeric variables

characteristics, 7-6
dangers of reduced-length, 7-12–7-13
default length, 7-7
reading reduced-length, 7-11

O
observations, selected

updating, 10-15–10-20
ORDER BY clause

SQL procedure, 8-42
OUT= option

TRANSPOSE procedure, 4-110
OUTPUT statement

MEANS procedure, 3-41

P
page size

controlling, 1-28–1-29
PARTSIZE= data set option

LIBNAME statement, 9-18–9-19, 9-28
Perl regular expressions, 10-81–10-94
POINT= option, 2-9
primary keys, 10-53–10-54, 10-61–10-62
PRINT procedure

VAR statement, 8-39
processing

distributed, 8-46, 8-48
parallel, 8-46

processing generation data sets

 Index A-5

GENNUM= option, 10-43
program resources, 1-7
PRX functions, 10-84–10-94
PRXCHANGE function, 10-92–10-94
PRXMATCH function, 10-84–10-91
PRXPARSE function, 10-83–10-85

R
random sample

with replacement, 2-22–2-24
without replacement, 2-24–2-26

RANUNI function, 2-19
reading

external files, 1-21
SAS data sets, 1-22

reducing
disk space, 8-5
I/O, 8-4
memory usage, 8-5
network traffic, 8-6

Remote Library Services (RLS), 8-55–8-56
REMOTE= option, 8-57
RESUME statement, 10-75
RSUBMIT statement, 8-52
running a SAS program

actions, 1-6

S
SAS data sets

modifying in place, 10-3–10-20
reading, 1-22
updating selected observations, 10-15–10-

20
SAS sort, 6-31
SAS/ACCESS

LIBNAME engine, 8-35–8-36, 8-45
tracking resources, 1-17–1-18

SASFILE statement, 1-31–1-33
SASTRACE= system option, 8-36–8-37, 8-41
SASTRACELOC= system option, 8-36–8-37
Scalable Performance Data Engine. See

SPDE
SELECT clause

SQL procedure, 8-39
SELECT statement

FORMAT procedure, 4-103
guidelines for using, 8-13

selecting observations, 8-21
sequential processing, 2-3–2-5
SERVER= option

LIBNAME statement, 8-57
SET statement

non-executing, 4-65
SGIO system option (Windows), 1-34–1-35
SIGNON statement, 8-51, 8-57
SMP (symmetric multiprocessing

environment), 6-18
SMP machine, 9-4–9-6
SORT procedure

DATA step, 8-17
DUPOUT option, 6-9
EQUALS option, 6-11–6-12
NOEQUALS option, 6-11–6-12

sort space
allocating sort workspace, 6-28
estimating, 6-24–6-27
requirements, 6-22

SORTCUTP= option, 6-35
SORTEDBY data set option, 6-58–6-60
SORTEQUALS global option, 6-11
sorting data

alternatives, 6-4
reasons, 6-3

SORTNAME= option, 6-36
SORTPGM= option, 6-34
SORTSIZE= option, 6-28–6-29
SPDE, 9-4–9-27

advantages, 9-4
data organization, 9-6–9-8
definition, 9-4
index organization, 9-8

special missing values, 3-87–3-90
SQL Pass-Through Facility, 8-43

embedded LIBNAME statement, 8-44
SQL procedure

combining summary and detail data, 3-51
comparison with the DATA step, 3-13–3-

21
DESCRIBE statement syntax, 10-60
INSERT INTO statement, advantages, 5-

22
INSERT INTO statement, disadvantages,

5-22
INSERT INTO statement, syntax, 5-18–5-

21
joining data, advantages, 3-12
joining data, disadvantages, 3-12
joining data, syntax, 3-9
managing indexes, 2-49
ORDER BY clause, 8-42
remerging data, 3-52

A-6 Index

SELECT clause, 8-39
syntax, 2-50

STARTOBS= option
LIBNAME statement, 9-28

STATS option, 1-15
STIMER option, 1-15
STOP statement, 2-9
storage space for data files, 7-4
subsetting IF statement, 8-8, 8-22–8-24, 8-

33
SURVEY SELECT procedure, 2-27–2-33
SUSPEND statement, 10-75
symmetric multiprocessing machine. See

SMP machine
systematic samples

creating, 2-8

T
TEMP= option

LIBNAME statement, 9-28
TERMINATE statement

DATASETS procedure, 10-75, 10-79
threaded reads, 8-38–8-39
threading, 6-16
THREADS option, 6-20
TRANSPOSE procedure, 4-108

advantages, 4-114
BY statement, 4-112
NAME= option, 4-111
OUT= option, 4-110
syntax, 4-114

U
UNIQUE index option, 2-42

UNIQUE integrity constraint, 10-53–10-54
UNIQUE option

with KEY=, 6-42
UPDATE statement

comparison with MERGE, 3-91
missing values, 3-86
purpose, 3-72
syntax, 3-85
UPDATEMODE= option, 3-87
using a transaction data set, 3-74

UPDATEMODE= option
MODIFY statement, 10-24

updating selected observations
SAS data sets, 10-15–10-20

UPLOAD procedure, 8-52–8-53
user variables

audit trails, 10-69–10-79
USER_VAR statement

DATASETS procedure, 10-78

V
VAR statement

PRINT procedure, 8-39

W
WHERE clause, 8-41
WHERE criteria

subsetting and splitting, 8-40–8-41
WHERE statement, 8-22–8-24, 8-41, 9-26–

9-27
DATA step, 8-33

WHERE= data set option, 8-23, 8-33

