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Preface

There’s a flood of interest in learning how to analyze streaming data
in large-scale systems, partly because there are situations in which
the time-value of data makes real-time analytics so attractive. But
gathering in-the-moment insights made possible by very low-
latency applications is just one of the benefits of high-performance
stream processing.

In this book, we offer an introduction to Apache Flink, a highly
innovative open source stream processor with a surprising range of
capabilities that help you take advantage of stream-based
approaches. Flink not only enables fault-tolerant, truly real-time
analytics, it can also analyze historical data and greatly simplify your
data pipeline. Perhaps most surprising is that Flink lets you do
streaming analytics as well as batch jobs, both with one technology.
Flink’s expressivity and robust performance make it easy to develop
applications, and Flink’s architecture makes those easy to maintain
in production.

Not only do we explain what Flink can do, we also describe how
people are using it, including in production. Flink has an active and
rapidly growing open international community of developers and
users. The first Flink-only conference, called Flink Forward, was
held in Berlin in October 2015, the second is scheduled for Septem‐
ber 2016, and there are Apache Flink meetups around the world,
with new use cases being widely reported.

v
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How to Use This Book
This book will be useful for both nontechnical and technical readers.
No specialized skills or previous experience with stream processing
are necessary to understand the explanations of underlying concepts
of Flink’s designs and capabilities, although a general familiarity
with big data systems is helpful. To be able to use sample code or the
tutorials referenced in the book, experience with Java or Scala is
needed, but the key concepts underlying these examples are
explained clearly in this book even without needing to understand
the code itself.

Chapters 1–3 provide a basic explanation of the needs that motiva‐
ted Flink’s development and how it meets them, the advantages of a
stream-first architecture, and an overview of Flink design. Chap‐
ter 4–Appendix A provide a deeper, technical explanation of Flink’s
capabilities.

Conventions Used in This Book
This icon indicates a general note.

This icon signifies a tip or suggestion.

This icon indicates a warning or caution.
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CHAPTER 1

Why Apache Flink?

Our best understanding comes when our conclusions fit evidence, and
that is most effectively done when our analyses fit the way life happens.

Many of the systems we need to understand—cars in motion emit‐
ting GPS signals, financial transactions, interchange of signals
between cell phone towers and people busy with their smartphones,
web traffic, machine logs, measurements from industrial sensors
and wearable devices—all proceed as a continuous flow of events. If
you have the ability to efficiently analyze streaming data at large
scale, you’re in a much better position to understand these systems
and to do so in a timely manner. In short, streaming data is a better
fit for the way we live.

It’s natural, therefore, to want to collect data as a stream of events
and to process data as a stream, but up until now, that has not been
the standard approach. Streaming isn’t entirely new, but it has been
considered as a specialized and often challenging approach. Instead,
enterprise data infrastructure has usually assumed that data is
organized as finite sets with beginnings and ends that at some point
become complete. It’s been done this way largely because this
assumption makes it easier to build systems that store and process
data, but it is in many ways a forced fit to the way life happens.

So there is an appeal to processing data as streams, but that’s been
difficult to do well, and the challenges of doing so are even greater
now as people have begun to work with data at very large scale
across a wide variety of sectors. It’s a matter of physics that with

1
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large-scale distributed systems, exact consistency and certain knowl‐
edge of the order of events are necessarily limited. But as our meth‐
ods and technologies evolve, we can strive to make these limitations
innocuous in so far as they affect our business and operational goals.

That’s where Apache Flink comes in. Built as open source software
by an open community, Flink provides stream processing for large-
volume data, and it also lets you handle batch analytics, with one
technology.

It’s been engineered to overcome certain tradeoffs that have limited
the effectiveness or ease-of-use of other approaches to processing
streaming data.

In this book, we’ll investigate potential advantages of working well
with data streams so that you can see if a stream-based approach is a
good fit for your particular business goals. Some of the sources of
streaming data and some of the situations that make this approach
useful may surprise you. In addition, the will book help you under‐
stand Flink’s technology and how it tackles the challenges of stream
processing.

In this chapter, we explore what people want to achieve by analyzing
streaming data and some of the challenges of doing so at large scale.
We also introduce you to Flink and take a first look at how people
are using it, including in production.

Consequences of Not Doing Streaming Well
Who needs to work with streaming data? Some of the first examples
that come to mind are people working with sensor measurements or
financial transactions, and those are certainly situations where
stream processing is useful. But there are much more widespread
sources of streaming data: clickstream data that reflects user behav‐
ior on websites and machine logs for your own data center are two
familiar examples. In fact, streaming data sources are essentially
ubiquitous—it’s just that there has generally been a disconnect
between data from continuous events and the consumption of that
data in batch-style computation. That’s now changing with the
development of new technologies to handle large-scale streaming
data.

Still, if it has historically been a challenge to work with streaming
data at very large scale, why now go to the trouble to do it, and to do
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it well? Before we look at what has changed—the new architecture
and emerging technologies that support working with streaming
data—let’s first look at the consequences of not doing streaming
well.

Retail and Marketing
In the modern retail world, sales are often represented by clicks
from a website, and this data may arrive at large scale, continuously
but not evenly. Handling it well at scale using older techniques can
be difficult. Even building batch systems to handle these dataflows is
challenging—the result can be an enormous and complicated work‐
flow. The result can be dropped data, delays, or misaggregated
results. How might that play out in business terms?

Imagine that you’re reporting sales figures for the past quarter to
your CEO. You don’t want to have to recant later because you over-
reported results based on inaccurate figures. If you don’t deal with
clickstream data well, you may end up with inaccurate counts of
website traffic—and that in turn means inaccurate billing for ad
placement and performance figures.

Airline passenger services face the similar challenge of handling
huge amounts of data from many sources that must be quickly and
accurately coordinated. For example, as passengers check in, data
must be checked against reservation information, luggage handling
and flight status, as well as billing. At this scale, it’s not easy to keep
up unless you have robust technology to handle streaming data. The
recent major service outages with three of the top four airlines can
be directly attributed to problems handling real-time data at scale.

Of course many related problems—such as the importance of not
double-booking hotel rooms or concert tickets—have traditionally
been handled effectively with databases, but often at considerable
expense and effort. The costs can begin to skyrocket as the scale of
data grows, and database response times are too slow for some situa‐
tions. Development speed may suffer from lack of flexibility and
come to a crawl in large and complex or evolving systems. Basically,
it is difficult to react in a way that lets you keep up with life as it hap‐
pens while maintaining consistency and affordability in large-scale
systems.

Fortunately, modern stream processors can often help address these
issues in new ways, working well at scale, in a timely manner, and

Consequences of Not Doing Streaming Well | 3

https://www.iteblog.com

hadoop
下划线
巨大的 庞大的 极大的

hadoop
下划线
复杂的 超复杂 超复杂

hadoop
下划线
错误的

hadoop
下划线
 行李；皮箱

hadoop
下划线
保留 预定 预订

hadoop
下划线
储运损耗；中断供应；运行中断

hadoop
下划线
费用 开销 花费

hadoop
下划线
音乐会 演奏会 演唱



less expensively. Stream processing also invites exploration into
doing new things, such as building real-time recommendation sys‐
tems to react to what people are buying right now, as part of decid‐
ing what else they are likely to want. It’s not that stream processors
replace databases—far from it; rather, they can in certain situations
address roles for which databases are not a great fit. This also frees
up databases to be used for locally specific views of current state of
business. This shift is explained more thoroughly in our discussion
of stream-first architecture in Chapter 2.

The Internet of Things
The Internet of Things (IoT) is an area where streaming data is
common and where low-latency data delivery and processing, along
with accuracy of data analysis, is often critical. Sensors in various
types of equipment take frequent measurements and stream those to
data centers where real-time or near real–time processing applica‐
tions will update dashboards, run machine learning models, issue
alerts, and provide feedback for many different services.

The transportation industry is another example where it’s important
to do streaming well. State-of-the-art train systems, for instance,
rely on sensor data communicated from tracks to trains and from
trains to sensors along the route; together, reports are also commu‐
nicated back to control centers. Measurements include train speed
and location, plus information from the surroundings for track con‐
ditions. If this streaming data is not processed correctly, adjustments
and alerts do not happen in time to adjust to dangerous conditions
and avoid accidents.

Another example from the transportation industry are “smart” or
connected cars, which are being designed to communicate data via
cell phone networks, back to manufacturers. In some countries (i.e.,
Nordic countries, France, the UK, and beginning in the US), con‐
nected cars even provide information to insurance companies and,
in the case of race cars, send information back to the pit via a radio
frequency (RF) link for analysis. Some smartphone applications also
provide real-time traffic updates shared by millions of drivers, as
suggested in Figure 1-1.
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Figure 1-1. The time-value of data comes into consideration in many
situations including IoT data used in transportation. Real-time traffic
information shared by millions of drivers relies on reasonably accurate
analysis of streaming data that is processed in a timely manner. (Image
credit © 2016 Friedman)

The IoT is also having an impact in utilities. Utility companies are
beginning to implement smart meters that send updates on usage
periodically (e.g., every 15 minutes), replacing the old meters that
are read manually once a month. In some cases, utility companies
are experimenting with making measurements every 30 seconds.
This change to smart meters results in a huge amount of streaming
data, and the potential benefits are large. The advantages include the
ability to use machine learning models to detect usage anomalies
caused by equipment problems or energy theft. Without efficient
ways to deliver and accurately process streaming data at high
throughput and with very low latencies, these new goals cannot be
met.

Other IoT projects also suffer if streaming is not done well. Large
equipment such as turbines in a wind farm, manufacturing equip‐
ment, or pumps in a drilling operation—these all rely on analysis of
sensor measurements to provide malfunction alerts. The conse‐
quences of not handling stream analysis well and with adequate
latency in these cases can be costly or even catastrophic.
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Telecom
The telecommunications industry is a special case of IoT data, with
its widespread use of streaming event data for a variety of purposes
across geo-distributed regions. If a telecommunications company
cannot process streaming data well, it will fail to preemptively
reroute usage surges to alternative cell towers or respond quickly to
outages. Anomaly detection to processes streaming data is impor‐
tant to this industry—in this case, to detect dropped calls or equip‐
ment malfunctions.

Banking and Financial Sector
The potential problems caused by not doing stream processing well
are particularly evident in banking and financial settings. A retail
bank would not want customer transactions to be delayed or to be
miscounted and therefore result in erroneous account balances. The
old-fashioned term “bankers’ hours” referred to the need to close up
a bank early in the afternoon in order to freeze activity so that an
accurate tally could be made before the next day’s business. That
batch style of business is long gone. Transactions and reporting
today must happen quickly and accurately; some new banks even
offer immediate, real-time push notifications and mobile banking
access anytime, anywhere. In a global economy, it’s increasingly
important to be able to meet the needs of a 24-hour business cycle.

What happens if a financial institution does not have applications
that can recognize anomalous behavior in user activity data with
sensitive detection in real time? Fraud detection for credit card
transactions requires timely monitoring and response. Being able to
detect unusual login patterns that signal an online phishing attack
can translate to huge savings by detecting problems in time to miti‐
gate loss.

The time-value of data in many situations makes
low-latency or real-time stream processing
highly desirable, as long as it’s also accurate and
efficient.

6 | Chapter 1: Why Apache Flink?

https://www.iteblog.com



Goals for Processing Continuous Event Data
Being able to process data with very low latency is not the only
advantage of effective stream processing. A wishlist for stream pro‐
cessing not only includes high throughput with low latency, but the
processing system also needs to be able to deal with interruptions. A
great streaming technology should be able to restart after a failure in
a manner that produces accurate results; in other words, there’s an
advantage to being fault-tolerant with exactly-once guarantees.

Furthermore, the method used to achieve this level of fault tolerance
preferably should not carry a lot of overhead cost in the absence of
failures. It’s useful to be able to recognize sessions based on when the
events occur rather than an arbitrary processing interval and to be
able to track events in the correct order. It’s also important for such a
system to be easy for developers to use, both in writing code and in
fixing bugs, and it should be easily maintained. Also important is
that these systems produce correct results with respect to the time
that events happen in the real world—for example, being able to
handle streams of events that arrive out of order (an unfortunate
reality), and being able to deterministically replace streams (e.g., for
auditing or debugging purposes).

Evolution of Stream Processing Technologies
The disconnect between continuous data production and data con‐
sumption in finite batches, while making the job of systems builders
easier, has shifted the complexity of managing this disconnect to the
users of the systems: the application developers and DevOps teams
that need to use and manage this infrastructure.

To manage this disconnect, some users have developed their own
stream processing systems. In the open source space, a pioneer in
stream processing is the Apache Storm project that started with
Nathan Marz and a team at startup BackType (later acquired by
Twitter) before being accepted into the Apache Software Founda‐
tion. Storm brought the possibility for stream processing with very
low latency, but this real-time processing involved tradeoffs: high
throughput was hard to achieve, and Storm did not provide the level
of correctness that is often needed. In other words, it did not have
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exactly-once guarantees for maintaining accurate state, and even the
guarantees that Storm could provide came at a high overhead.

Overview of Lambda Architecture: Advantages and
Limitations

The need for affordable scale drove people to distributed file sys‐
tems such as HDFS and batch-based computing (MapReduce jobs).
But that approach made it difficult to deal with low-latency
insights. Development of real-time stream processing technology
with Apache Storm helped address the latency issue, but not as a
complete solution. For one thing, Storm did not guarantee state
consistency with exactly-once processing and did not handle event-
time processing. People who had these needs were forced to imple‐
ment these features in their application code.

A hybrid view of data analytics that mixed these approaches offered
one way to deal with these challenges. This hybrid, called Lambda
architecture, provided delayed but accurate results via batch Map‐
Reduce jobs and an in-the-moment preliminary view of new results
via Storm’s processing.

The Lambda architecture is a helpful framework for building big
data applications, but it is not sufficient. For example, with a
Lambda system based on MapReduce and HDFS, there is a time
window, in hours, when inaccuracies due to failures are visible.
Lambda architectures need the same business logic to be coded
twice, in two different programming APIs: once for the batch sys‐
tem and once for the streaming system. This leads to two codebases
that represent the same business problem, but have different kinds
of bugs. In practice, this is very difficult to maintain.

To compute values that depend on multiple
streaming events, it is necessary to retain data
from one event to another. This retained data is
known as the state of the computation. Accurate
handling of state is essential for consistency in
computation. The ability to accurately update
state after a failure or interruption is a key to
fault tolerance.

8 | Chapter 1: Why Apache Flink?
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It’s hard to maintain fault-tolerant stream processing that has high
throughput with very low latency, but the need for guarantees of
accurate state motivated a clever compromise: what if the stream of
data from continuous events were broken into a series of small,
atomic batch jobs? If the batches were cut small enough—so-called
“micro-batches”—your computation could approximate true
streaming. The latency could not quite reach real time, but latencies
of several seconds or even subseconds for very simple applications
would be possible. This is the approach taken by Apache Spark
Streaming, which runs on the Spark batch engine.

More important, with micro-batching, you can achieve exactly-once
guarantees of state consistency. If a micro-batch job fails, it can be
rerun. This is much easier than would be true for a continuous
stream-processing approach. An extension of Storm, called Storm
Trident, applies micro-batch computation on the underlying stream
processor to provide exactly-once guarantees, but at a substantial
cost to latency.

However, simulating streaming with periodic batch jobs leads to
very fragile pipelines that mix DevOps with application develop‐
ment concerns. The time that a periodic batch job takes to finish is
tightly coupled with the timing of data arrival, and any delays can
cause inconsistent (a.k.a. wrong) results. The underlying problem
with this approach is that time is only managed implicitly by the
part of the system that creates the small jobs. Frameworks like Spark
Streaming mitigate some of the fragility, but not entirely, and the
sensitivity to timing relative to batches still leads to poor latency and
a user experience where one needs to think a lot about performance
in the application code.

These tradeoffs between desired capabilities have motivated contin‐
ued attempts to improve existing processors (for example, the devel‐
opment of Storm Trident to try to overcome some of the limitations
of Storm). When existing processors fall short, the burden is placed
on the application developer to deal with any issues that result. An
example is the case of micro-batching, which does not provide an
excellent fit between the natural occurrence of sessions in event data
and the processor’s need to window data only as multiples of the
batch time (recovery interval). With less flexibility and expressivity,
development time is slower and operations take more effort to
maintain properly.
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This brings us to Apache Flink, a data processor that removes many
of these tradeoffs and combines many of the desired traits needed to
efficiently process data from continuous events. The combination of
some of Flink’s capabilities is illustrated in Figure 1-2.

Figure 1-2. One of the strengths of Apache Flink is the way it combines
many desirable capabilities that have previously required a tradeoff in
other projects. Apache Storm, in contrast, provides low latency, but at
present does not provide high throughput and does not support correct
handling of state when failures happen. The micro-batching approach
of Apache Spark Streaming achieves fault tolerance with high through‐
put, but at the cost of very low latency/real-time processing, inability to
fit windows to naturally occurring sessions, and some challenges with
expressiveness.

As is the case with Storm and Spark Streaming, other new technolo‐
gies in the field of stream processing offer some useful capabilities,
but it’s hard to find one with the combination of traits that Flink
offers. Apache Samza, for instance, is another early open source pro‐
cessor for streaming data, but it has also been limited to at-least-
once guarantees and a low-level API. Similarly, Apache Apex
provides some of the benefits of Flink, but not all (e.g., it is limited
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to a low-level programming API, it does not support event time, and
it does not have support for batch computations). And none of these
projects have been able to attract an open source community com‐
parable to the Flink community.

Now, let’s take a look at what Flink is and how the project came
about.

First Look at Apache Flink
The Apache Flink project home page starts with the tagline, “Apache
Flink is an open source platform for distributed stream and batch
data processing.” For many people, it’s a surprise to realize that Flink
not only provides real-time streaming with high throughput and
exactly-once guarantees, but it’s also an engine for batch data pro‐
cessing. You used to have to choose between these approaches, but
Flink lets you do both with one technology.

How did this top-level Apache project get started? Flink has its ori‐
gins in the Stratosphere project, a research project conducted by
three Berlin-based Universities as well as other European Universi‐
ties between 2010 and 2014. The project had already attracted a
broader community base, in part through presentations at several
public developer conferences including Berlin Buzzwords, NoSQL
Matters in Cologne, and others. This strong community base is one
reason the project was appropriate for incubation under the Apache
Software Foundation.

A fork of the Stratosphere code was donated in April 2014 to the
Apache Software Foundation as an incubating project, with an ini‐
tial set of committers consisting of the core developers of the sys‐
tem. Shortly thereafter, many of the founding committers left
university to start a company to commercialize Flink: data Artisans.
During incubation, the project name had to be changed from Strato‐
sphere because of potential confusion with an unrelated project. The
name Flink was selected to honor the style of this stream and batch
processor: in German, the word “flink” means fast or agile. A logo
showing a colorful squirrel was chosen because squirrels are fast,
agile and—in the case of squirrels in Berlin—an amazing shade of
reddish-brown, as you can see in Figure 1-3.

First Look at Apache Flink | 11

https://www.iteblog.com

hadoop
高亮

hadoop
高亮



Figure 1-3. Left: Red squirrel in Berlin with spectacular ears. Right:
Apache Flink logo with spectacular tail. Its colors reflect that of the
Apache Software Foundation logo. It’s an Apache-style squirrel!

The project completed incubation quickly, and in December 2014,
Flink graduated to become a top-level project of the Apache Soft‐
ware Foundation. Flink is one of the 5 largest big data projects of the
Apache Software Foundation, with a community of more than 200
developers across the globe and several production installations,
some in Fortune Global 500 companies. At the time of this writing,
34 Apache Flink meetups take place in cities around the world, with
approximately 12,000 members and Flink speakers participating at
big data conferences. In October 2015, the Flink project held its first
annual conference in Berlin: Flink Forward.

Batch and Stream Processing
How and why does Flink handle both batch and stream processing?
Flink treats batch processing—that is, processing of static and finite
data—as a special case of stream processing.

The core computational fabric of Flink, labeled “Flink runtime” in
Figure 1-4, is a distributed system that accepts streaming dataflow
programs and executes them in a fault-tolerant manner in one or
more machines. This runtime can run in a cluster, as an application
of YARN (Yet Another Resource Negotiator) or soon in a Mesos
cluster (under development), or within a single machine, which is
very useful for debugging Flink applications.
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Figure 1-4. This diagram depicts the key components of the Flink stack.
Notice that the user-facing layer includes APIs for both stream and
batch processing, making Flink a single tool to work with data in either
situation. Libraries include machine learning (FlinkML), complex
event processing (CEP), and graph processing (Gelly), as well as Table
API for stream or batch mode.

Programs accepted by the runtime are very powerful, but are ver‐
bose and difficult to program directly. For that reason, Flink offers
developer-friendly APIs that layer on top of the runtime and gener‐
ate these streaming dataflow programs. There is the DataStream API
for stream processing and a DataSet API for batch processing. It is
interesting to note that, although the runtime of Flink was always
based on streams, the DataSet API predates the DataStream API, as
the industry need for processing infinite streams was not as wide‐
spread in the first Flink years.

The DataStream API is a fluent API for defining analytics on possi‐
bly infinite data streams. The API is available in Java or Scala. Users
work with a data structure called DataStream, which represents dis‐
tributed, possibly infinite streams.

Flink is distributed in the sense that it can run on hundreds or thou‐
sands of machines, distributing a large computation in small
chunks, with each machine executing one chunk. The Flink frame‐
work automatically takes care of correctly restoring the computation
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in the event of machine and other failures, or intentional reprocess‐
ing, as in the case of bug fixes or version upgrades. This capability
alleviates the need for the programmer to worry about failures.
Flink internally uses fault-tolerant streaming data flows, allowing
developers to analyze never-ending streams of data that are continu‐
ously produced (stream processing).

Because Flink handles many issues of concern,
such as exactly-once guarantees and data win‐
dows based in event time, developers no longer
need to accommodate these in the application
layer. That style leads to fewer bugs.

Teams get the best out of their engineers’ time because they aren’t
burdened by having to take care of problems in their application
code. This benefit not only affects development time, it also
improves quality through flexibility and makes operations easier to
carry out efficiently. Flink provides a robust way for an application
to perform well in production. This is not just theory—despite
being a relatively new project, Flink software is already being used in
production, as we will see in the next section.

Flink in Production
This chapter raises the question, “Why Apache Flink?” One good
way to answer that is to hear what people using Flink in production
have to say about why they chose it and what they’re using it for.

Bouygues Telecom
Bouygues Telecom is the third-largest mobile provider in France
and is part of the Bouygues Group, which ranks in Fortune’s “Global
500.” Bouygues uses Flink for real-time event processing and analyt‐
ics for billions of messages per day in a system that is running 24/7.
In a June 2015 post by Mohamed Amine Abdessemed, on the data
Artisans blog, a representative from Bouygues described the compa‐
ny’s project goals and why it chose Flink to meet them.

Bouygues “...ended up with Flink because the system supports true
streaming—both at the API and at the runtime level, giving us the
programmability and low latency that we were looking for. In addi‐
tion, we were able to get our system up and running with Flink in a
fraction of the time compared to other solutions, which resulted in
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more available developer resources for expanding the business logic
in the system.”

This work was also reported at the Flink Forward conference in
October 2015. Bouygues wanted to give its engineers real-time
insights about customer experience, what is happening globally on
the network, and what is happening in terms of network evolutions
and operations.

To do this, its team built a system to analyze network equipment
logs to identify indicators of the quality of user experience. The sys‐
tem handles 2 billion events per day (500,000 events per second)
with a required end-to-end latency of less than 200 milliseconds
(including message publication by the transport layer and data pro‐
cessing in Flink). This was achieved on a small cluster reported to be
only 10 nodes with 1 gigabyte of memory each. Bouygues also
wanted other groups to be able to reuse partially processed data for a
variety of business intelligence (BI) purposes, without interfering
with one another.

The company’s plan was to use Flink’s stream processing to trans‐
form and enrich data. The derived stream data would then be
pushed back to the message transport system to make this data
available for analytics by multiple consumers.

This approach was chosen explicitly instead of other design options,
such as processing the data before it enters the message queue, or
delegating the processing to multiple applications that consume
from the message queue.

Flink’s stream processing capability allowed the Bouygues team to
complete the data processing and movement pipeline while meeting
the latency requirement and with high reliability, high availability,
and ease of use. The Flink framework, for instance, is ideal for
debugging, and it can be switched to local execution. Flink also sup‐
ports program visualization to help understand how programs are
running. Furthermore, the Flink APIs are attractive to both develop‐
ers and data scientists. In Mohamed Amine Abdessemed’s blog post,
Bouygues reported interest in Flink by other teams for different use
cases.
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Other Examples of Apache Flink in Production

King.com
It’s a pretty fair assumption that right now someone, in some place
in the world, is playing a King game online. This leading online
entertainment company states that it has developed more than 200
games, offered in more than 200 countries and regions.

As the King engineers describe: “With over 300 million monthly
unique users and over 30 billion events received every day from the
different games and systems, any stream analytics use case becomes
a real technical challenge. It is crucial for our business to develop
tools for our data analysts that can handle these massive data
streams while keeping maximal flexibility for their applications.”

The system that the company built using Apache Flink allows data
scientists at King to get access in these massive data streams in real
time. They state that they are impressed by Apache Flink’s level of
maturity. Even with such a complex application as this online game
case, Flink is able to address the solution almost out of the box.

Zalando
As a leading online fashion platform in Europe, Zalando has more
than 16 million customers worldwide. On its website, it describes
the company as working with “...small, agile, autonomous teams”
(another way to say this is that they employ a microservices style of
architecture).

A stream-based architecture nicely supports a microservices
approach, and Flink provides stream processing that is needed for
this type of work, in particular for business process monitoring and
continuous Extract, Transform and Load (ETL) in Zalando’s use
case.

Otto Group
The Otto Group is the world’s second-largest online retailer in the
end-consumer (B2C) business, and Europe’s largest online retailer in
the B2C fashion and lifestyle business.

The BI department of the Otto Group had resorted to developing its
own streaming engine, because when it first evaluated the open
source options, it could not find one that fit its requirements. After
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testing Flink, the department found it fit their needs for stream pro‐
cessing, which include crowd-sourced user-agent identification, and
a search session identifier.

ResearchGate
ResearchGate is the largest academic social network in terms of
active users. ResearchGate has adopted Flink in production since
2014, using it as one of its primary tools in the data infrastructure
for both batch and stream processing.

Alibaba Group
This huge ecommerce group works with buyers and suppliers via its
web portal. The company’s online recommendations are produced
by a variation of Flink (called Blink). One of the attractions of work‐
ing with a true streaming engine such as Flink is that purchases that
are being made during the day can be taken into account when rec‐
ommending products to users. This is particularly important on
special days (holidays) when the activity is unusually high. This is an
example of a use case where efficient stream processing is a big
advantage over batch processing.

Where Flink Fits
We began this chapter with the question, “Why Flink?” A larger
question, of course, is, “Why work with streaming data?” We’ve
touched on the answer to that—many of the situations we want to
observe and analyze involve data from continuous events. Rather
than being something special, streaming data is in many situations
what is natural—it’s just that in the past we’ve had to devise clever
compromises to work with it in a somewhat artificial way, as
batches, in order to meet the demands posed by handling data and
computation at very large scale. It’s not that working with streaming
data is entirely new; it’s that we have new technologies that enable us
to do this at larger scale, more flexibly, and in a natural and more
affordable way than before.

Flink isn’t the only technology available to work with stream pro‐
cessing. There are a number of emerging technologies being devel‐
oped and improved to address these needs. Obviously people choose
to work with a particular technology for a variety of reasons, includ‐
ing existing expertise within their teams. But the strengths of Flink,
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the ease of working with it, and the wide range of ways it can be
used to advantage make it an attractive option. That along with a
growing and energetic community says that it is probably worth
examination. You may find that the answer to “Why Flink?” turns
out to be, “Why not Flink?”

Before we look in more detail at how Flink works, in Chapter 2 we
will explore how to design data architecture to get the best advan‐
tage from stream processing and, indeed, how a stream-first archi‐
tecture provides more far-reaching benefits.
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CHAPTER 2

Stream-First Architecture

There is a revolution underway in how people design their data
architecture, not just for real-time or near real–time projects, but in
a larger sense as well. The change is to think of stream-based data
flow as the heart of the overall design, rather than the basis just for
specialized work. Understanding the motivations for this transfor‐
mation to a stream-first architecture helps put Apache Flink and its
role in modern data processing into context.

Flink, as part of a newer breed of systems, does its part to broaden
the scope of the term “data streaming” way beyond real-time, low-
latency analytics to encompass a wide variety of data applications,
including what is now covered by stream processors, what is cov‐
ered by batch processors, and even some stateful applications that
are executed by transactional databases.

As it turns out, the data architecture needed to put Flink to work
effectively is also the basis for gaining broader advantages from
working with streaming data. To understand how this works, we will
take a closer look at how to build the pipeline to support Flink for
stream processing. But first, let’s address the question of what is to
be gained from working with a stream-focused architecture instead
of the more traditional approach.
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Traditional Architecture versus Streaming
Architecture
Traditionally, the typical architecture of a data backend has
employed a centralized database system to hold the transactional
data of the business. In other words, the database (be that a SQL or
NoSQL database) holds the “fresh” (another word for “accurate”)
data, which represents the state of the business right now. This
might, for example, mean how many users are logged in to your sys‐
tem, how many active users a website has, or what the current bal‐
ance of each user account is. Data applications that need fresh data
are implemented against the database. Other data stores such as dis‐
tributed file systems are used for data that need not be updated fre‐
quently and for which very large batch computations are needed.

This traditional architecture has served applications well for deca‐
des, but is now being strained under the burden of increasing com‐
plexity in very large-scale distributed systems. Some of the main
problems that companies have observed are:

• The pipeline from data ingestion to analytics is too complex and
slow for many projects.

• The traditional architecture is too monolithic: the database
backend acts as a single source of truth, and all applications
need to access this backend for their data needs.

• Systems built this way have very complex failure modes that can
make it hard to keep them running well.

Another problem of this traditional architecture stems from trying
to maintain the current “state of the world” consistently across a
large, distributed system. At scale, it becomes harder and harder to
maintain such precise synchronization; stream-first architectures
allow us to relax the requirements so that we only need to maintain
much more localized consistency.

A modern alternative approach, streaming architecture, solves many
of the problems that enterprises face when working with large-scale
systems. In a stream-based design, we take this a step further and let
data records continuously flow from data sources to applications
and between applications. There is no single database that holds the
global state of the world. Rather, the single source of truth is in
shared, ever-moving event streams—this is what represents the his‐
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tory of the business. In this stream-first architecture, applications
themselves build their local views of the world, stored in local data‐
bases, distributed files, or search documents, for instance.

Message Transport and Message Processing
What is needed to implement an effective stream-first architecture
and to gain the advantages of using Flink? A common pattern is to
implement a streaming architecture by using two main kinds of
components, described briefly here and represented in Figure 2-1:

1. A message transport to collect and deliver data from continu‐
ous events from a variety of sources (producers) and make this
data available to applications and services that subscribe to it
(consumers).

2. A stream processing system to (1) consistently move data
between applications and systems, (2) aggregate and process
events, and (3) maintain local application state (again consis‐
tently).

Figure 2-1. Flink projects have two main components of the architec‐
ture: the transport stage for delivery of messages from continuous
events and the processing stage, which Flink provides. Messaging tech‐
nologies with the needed capabilities include Apache Kafka and MapR
Streams, which is compatible with the Kafka API and is an integral
part of the MapR converged data platform.

The excitement around real-time applications tends to direct peo‐
ple’s attention to component number 2 in our list, the stream pro‐
cessing system, and how to choose a technology for stream
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processing that can meet the requirements of a particular project. In
addition to using Flink for data processing, there are other choices
that you can employ (e.g., Spark Streaming, Storm, Samza, Apex).
We use Apache Flink as the stream processor in the rest of the
examples in this book.

As it turns out, it isn’t just the choice of the stream processor that
makes a big difference to designing an efficient stream-based archi‐
tecture. The transport layer is also key. A big part of why modern
systems can more easily handle streaming data at large scale is
improvements in the way message-passing systems work and
changes to how the processing elements interact with those systems.

The message transport layer needs to have certain capabilities to
make streaming design work well. At present, two messaging tech‐
nologies offer a particularly good fit to the required capabilities:
Kafka and MapR Streams, which supports the Kafka API but is built
into the MapR converged data platform. In this book, we assume
that one or the other of these technologies provide the transport
layer in our examples.

The Transport Layer: Ideal Capabilities
What are the capabilities needed by the message transport system in
streaming architecture?

Performance with Persistence
One of the roles of the transport layer is to serve as a safety queue
upstream from the processing step—a buffer to hold event data as a
kind of short-term insurance against an interruption in processing
as data is ingested. Until recently, message-passing technologies
were limited by a tradeoff between performance and persistence. As
a result, people tended to think of streaming data going from the
transport layer to processing and then being discarded: a use it and
lose it approach.

The assumption that you can’t have both performance and persis‐
tence is one of key ideas that has changed in order to design a
modern streaming architecture. It’s important to have a message
transport that delivers high throughput with persistence; both Kafka
and MapR’s MapR Streams do just that.
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A key benefit of a persistent transport layer is that messages are
replayable. This key capability allows a data processor like Flink to
replay and recompute a specified part of the stream of events (dis‐
cussed in further detail in Chapter 5). For now, the key is to recog‐
nize that it is the interplay of transport and processing that allows a
system like Flink to provide guarantees about correct processing and
to do “time travel,” which refers to the ability to reprocess data.

Decoupling of Multiple Producers from Multiple
Consumers
An effective messaging technology enables collection of data from
many sources (producers) and makes it available to multiple serv‐
ices or applications (consumers), as depicted in Figure 2-2. With
Kafka and MapR Streams, data from producers is assigned to a
named topic. Data sources push data to the message queue, and
consumers (or consumer groups) pull data. Event data can only be
read forward from a given offset in the message queue. Producers
do not broadcast to all consumers automatically. This may sound
like a small detail, but this characteristic has an enormous impact on
how this architecture functions.

Figure 2-2. With message-transport tools such as Kafka and MapR
Streams, data producers and data consumers (of which Flink applica‐
tions would be included) are decoupled. Messages arrive ready for
immediate use or to be consumed later. Consumers subscribe to mes‐
sages from the queue instead of messages being broadcast. A consumer
need not be running at the time a message arrives.
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This style of delivery—with consumers subscribing to their topics of
interest—means that messages arrive immediately, but they don’t
need to be processed immediately. Consumers don’t need to be run‐
ning when the messages arrive; they can make use of the data any
time they like. New consumers or producers can also be added
easily. Having a message-transport system that decouples producers
from consumers is powerful because it can support a microservices
approach and allows processing steps to hide their implementations,
and thus provides them with the freedom to change those imple‐
mentations.

Streaming Data for a Microservices
Architecture
A microservices approach refers to breaking functions in large sys‐
tems into simple, generally single-purpose services that can be built
and maintained easily by small teams. This design enables agility
even in very large organizations. To work properly, the connections
that communicate between services need to be lightweight.

“The goal [of microservices] is to give each team
a job and a way to do it and to get out of their
way.”
From Chapter 3 of Streaming Architecture, Dun‐
ning and Friedman (O’Reilly, 2016)

Using a message-transport system that decouples producers and
consumers but delivers messages with high throughput, sufficient
for high-performance processors such as Flink, is a great way to
build a microservices organization. Streaming data is a relatively
new way to connect microservices, but it has considerable benefits,
as you’ll see in the next couple of sections.

Data Stream as the Centralized Source of Data
Now you can put together these ideas to envision how message-
transport queues interconnect various applications to become,
essentially, the heart of the streaming architecture. The stream pro‐
cessor (Flink, in our case) subscribes to data from the message
queues and processes it. The output can go to another message-
transport queue. That way other applications, including other Flink
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applications, have access to the shared streaming data. In some
cases, the output is stored in a local database. This approach is
depicted in Figure 2-3.

Figure 2-3. In a stream-first architecture, the message stream (repre‐
sented here as blank horizontal cylinder) connects applications and
serves as the new shared source of truth, taking the role that a huge
centralized database used to do. In our example, Flink is used for vari‐
ous applications. Localized views can be stored in files or databases as
needed for the requirements of microservices-based projects. An added
advantage to this streaming style of architecture is that the stream pro‐
cessor, such as Flink, can help maintain consistency.

In the streaming architecture, there need not be
a centralized database. Instead, the message
queues serve as a shared information source for
a variety of different consumers.

Fraud Detection Use Case: Better Design with Stream-
First Architecture
The power of the stream-based microservices architecture is seen in
the flexibility it adds, especially when the same data is used in multi‐
ple ways. Take the example of a fraud-detection project for a credit
card provider. The goal is to identify suspicious card behavior as
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quickly as possible in order to shut down a potential theft with mini‐
mal losses. The fraud detector might, for example, use card velocity
as one indicator of potential fraud: do sequential transactions take
place across too great a distance in too short a time to be legiti‐
mately possible? A real fraud detector will use many dozens or hun‐
dreds of such features, but we can understand a lot by dealing with
just this one.

The advantages of stream-based architecture for this use case are
shown in Figure 2-4. In this figure, many point-of-sale terminals
(POS1 through POSn) ask the fraud detector to make fraud deci‐
sions. These requests from the point-of-sale terminals need to be
answered immediately and form a call-and-response kind of inter‐
action with the fraud detector.

Figure 2-4. Fraud detection can benefit from a stream-based microser‐
vices approach. Flink would be useful in several components of this
data flow: the fraud-detector application, the updater, and even the
card analytics could all use Flink. Notice that by avoiding direct
updates to a local database, streaming data for card activity can be
used by other services, including card analytics without interference.
[Image credit: Streaming Architecture, Chapter 6, (O’Reilly, 2016).]
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In a traditional system, the fraud-detection model would store a
profile containing the last location for each credit card directly in
the database. But in such a centralized database design, other con‐
sumers cannot easily make use of the card activity data due to the
risk that their access might interfere with the essential function of
the fraud-detection system, and they certainly wouldn’t be allowed
to make changes to the schema or technology of that database
without very careful and arduous review. The result is a huge slow‐
ing of progress resulting from all of the due diligence that must be
applied to avoid breaking or compromising business-critical func‐
tions.

Compare that traditional approach to the streaming design illustra‐
ted in Figure 2-4. By sending the output of the fraud detector to an
external message-transport queue (Kafka or MapR Streams) instead
of directly to the database and then using a stream processor such as
Flink to update the database, the card activity data becomes available
to other applications such as card analytics via the message queue.
The database of last card use becomes a completely local source of
information, inaccessible to any other service. This design avoids
any risk of overload due to additional applications.

Flexibility for Developers
This stream-based microservices architecture also provides flexibil‐
ity for developers of the fraud-detection system. Suppose that this
team wants to develop and evaluate an improved model for fraud
detection? The card activity message stream makes this data avail‐
able for the new system without interfering with the existing detec‐
tor. Additional readers of the queue impose almost negligible load
on the queue, and each additional service is free to keep historical
information in any format or database technology that is appropri‐
ate. Moreover, if the messages in the card activity queue are
expressed as business-level events rather than, say, database table
updates, the exact form and content of the messages will tend to be
very stable. When changes are necessary, they can often be forward-
compatible to avoid changes to existing applications.

This credit card fraud detection use case is just one example of the
way a stream-based architecture with a proper message transport
(Kafka or MapR Streams) and a versatile and highly performant
stream processor (Flink) can support a variety of different projects
from a shared “source of truth”: the message stream.
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Beyond Real-Time Applications
As important as they are, low-latency use cases are just one class of
consumers for streaming data. Consider various ways that streaming
data can be used: Stream-processing applications might, for exam‐
ple, subscribe to streaming data in a message queue, to update a
real-time dashboard (see the Group A consumers in Figure 2-5).

Other users could take advantage of the fact that persisted messages
can be replayed (see the Group C consumers in Figure 2-5). In this
case, the message stream acts as an auditable log or long-term his‐
tory of events. Having a replayable history is useful, for example, for
security analytics, as a part of the input data for predictive mainte‐
nance models in industrial settings, or for retrospective studies as in
medical or environmental research.
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Figure 2-5. The consumers of streaming data are not limited to just
low-latency applications, although they are important examples. This
diagram illustrates several of the classes of consumers that benefit from
a streaming architecture. Group A consumers might be doing various
types of real-time analytics, including updating a real-time dashboard.
Group B consumers include various local representations of the current
state of some aspect of the data, perhaps stored in a database or search
document.

For other uses, the data queue is tapped for applications that update
a local database or search document (see the Group B use cases in
Figure 2-5). Data from the queue is not output directly to a data‐
base, by the way. Instead, it must be aggregated or otherwise ana‐
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lyzed and transformed by the stream processor first. This is another
situation in which Flink can be used to advantage.

Geo-Distributed Replication of Streams
Stream processing and a stream-first architecture are not experi‐
mental toys: these approaches are used in mission-critical applica‐
tions, and these applications need certain features from both the
stream processor and the message transport layer. A wide variety of
these critical business uses depend on consistency across data cen‐
ters, and as such, they not only require a highly effective stream pro‐
cessor, but also message transport with reliable geo-distributed
replication. Telecoms, for example, need to share data between cell
towers, users, and processing centers. Financial institutions need to
be able to replicate data quickly, accurately, and affordably across
distant offices. There are many other examples where it’s particularly
useful if this geo-distribution of data can be done with streaming
data.

In particular, to be most useful, this replication between data centers
needs to preserve message offsets to allow updates from any of the
data centers to be propagated to any of the other data centers and
allow bidirectional and cyclic replication of data. If message offsets
are not preserved, programs cannot be restarted reliably in another
data center. If updates are not allowed from any data center, some
sort of master must be designed reliably. And cyclic replication is
necessary to avoid single point of failure in replication.

These capabilities are currently supported in the MapR Streams
messaging system, but not in Kafka as of yet. The basic idea with
MapR Streams transport is that many streaming topics are collected
into first-class data structures known as streams that coexist with
files, tables, and directories in the MapR data platform. These
streams are then the basis for managing replication as well as time-
to-live and access control permissions (ACEs). Changes made to
topics in a stream are tagged with the source cluster ID to avoid
infinite cyclic replication, and these changes are propagated succes‐
sively to other clusters while maintaining all message offsets.

This ability to replicate streams across data centers extends the use‐
fulness of streaming data and stream processing. Take, for example,
a business that serves online ads. Streaming data analysis can be use‐
ful in such a business in multiple ways. If you think in terms of the

30 | Chapter 2: Stream-First Architecture

https://www.iteblog.com



use classes described previously in Figure 2-5, in ad-tech, the real-
time applications (Group A) might involve up-to-date inventory
control, the current-state view in a database (Group B) might be
cookie profiles, and replaying the stream (Group C) would be useful
in models to detect clickstream fraud.

In addition to these considerations, there’s the challenge that differ‐
ent data centers are handling different bids for the same ads, but
they are all drawing from the same pool of ad inventory. In a busi‐
ness where accuracy and speed are important, how do the different
centers coordinate availability of inventory? With the message
stream as the centrally shared “source of truth,” it’s particularly pow‐
erful in this use case to be able to replicate the stream across differ‐
ent data centers, which MapR Streams can do. This situation is
shown in Figure 2-6.
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Figure 2-6. Ad-tech industry example analyzes streaming data in dif‐
ferent data centers with various model-based applications for which
Flink could be useful. Each local data center needs to keep its own cur‐
rent state of transactions, but they are all drawing from a common
inventory. Another requirement is to share data with a central data
center where Flink could be used for global analytics. This use case
calls for efficient and accurate geo-distributed replication, something
that can be done with the messaging system MapR Streams, but not
currently with Kafka.

In addition to keeping the different parts of the business up to date
with regard to shared inventory (a situation that would apply to
many other sectors as well), the ability to replicate data streams
across data centers has other advantages. Having more than one
data center helps spread the load for high volume and decreases
propagation delay by moving computation close to end users during
bidding and ad placement. Multiple data centers also serve as back‐
ups in case of disaster.
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In the first two chapters, we’ve seen that handling and processing
data as streams is a good fit for the way data from continuous events
naturally occurs. We’ve also explored the advantages of a stream-
based architecture that combines effective message-transport tech‐
nology, such as Kafka or MapR Streams, with Apache Flink as the
stream processor.

In the next chapter, we will examine the key features of Flink and
provide an overview of what Flink can do before diving deeper in
later chapters into how Flink functions.
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CHAPTER 3

What Flink Does

Apache Flink brings a fresh approach to the role of stream pro‐
cessor, completing the streaming architecture described in Chap‐
ter 2. One of the strengths of a technology like this is the way it lets
you build applications that are a good fit for real life. In order to
understand what Flink does and how you might want to use it, con‐
sider here some of the key aspects of what makes it versatile, and in
particular what makes it able to address “correctness” in several
important ways.

Different Types of Correctness
In Chapter 1, we saw the consequences of not doing streaming well.
Here, we look at how Flink helps do streaming correctly and what
this means. In the simplest sense, people think of correctness as
accuracy—if you are counting, for example, have you counted cor‐
rectly? That’s a good point, but there are really a number of issues
that affect “correct,” especially if you think of it in the slightly larger
terms of how well your computation fits the world you are trying to
model and analyze. Another way to put this is: for your data pro‐
cessing, you want “what you want, what you expect, when you want
it.”

Natural Fit for Sessions
One way in which streaming in general and Flink in particular offers
correctness is through a more natural fit between the way computa‐
tional windows are defined and how data naturally occurs. Think of
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the situation of tracking the activity of three users (A, B, and C in
Figure 3-1) on a website monitored through clickstream data. For
each user, web activity is sporadic. There are periods of website
activity in which event data is collected, separated by periods with a
gap in data, when the user goes off for a cup of coffee or switches
back to their workscreen when their manager walks by. How well
does your processing framework enable you to fit your computa‐
tional window for web activity analytics to the actual behavior of the
users? In other words, what’s the match between naturally occurring
web sessions and your computational window?

First let’s look at what happens in this example when the analysis of
web behavior is done with micro-batching or fixed computational
windows, as depicted in Figure 3-1.

Figure 3-1. With micro-batching, it’s difficult to define computation
windows (marked by dashed lines) such that they do not overlap natu‐
rally occurring sessions of activity (shown here as rectangles) for the
users A, B, and C.

The micro-batch window is an externally defined interval that may
make it difficult to align with actual sessions of activity. The situa‐
tion is different when you can define windows more flexibly, as you
can do in Flink’s stream processing API. A developer can, for exam‐
ple, use a configurable threshold of inactivity to mark the end of a
session—perhaps, say, every time there is a gap of more than five
minutes, close a session. This style of windowing is shown in
Figure 3-2.
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Figure 3-2. Flink’s stream processing lets you define windows such that
they have a better fit to how sessions naturally occur. Here the diagram
indicates that windows can be triggered by a defined gap between ses‐
sions of activity. In this example, all of these sessions had a gap
between the time of sequential events greater than the defined thresh‐
old, hence marking the end of each session.

The key idea here is that Flink can denote computational windows
that reflect actual sessions of activity.

Event Time versus Processing Time
As a side note, there’s more than one way to designate time as you
program. For the purpose of assigning events to a particular session
window, such as the case depicted in Figure 3-2, it’s likely the devel‐
oper would have chosen event time, which is the time clock that is
based on when an event actually happened. Another approach is to
use processing time, which reflects an internal clock in the system
and denotes a particular point at which a streaming event is han‐
dled by the program. The notions of time, what they mean in terms
of working with Flink, and details of windowing are explained in
depth in Chapter 4.

Event Time
It’s generally unusual for streaming frameworks to handle event
time, although this is gaining a lot of popularity. Flink can do so,
which is powerful in terms of correctness of calculations. For best
results, you want to have the option of a clock for your system that
can look at the data to figure out what time events occurred, rather
than only being able to use an internal clock (processing time).
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The greater accuracy this choice allows was demonstrated recently
at an OSCON workshop presented by Jamie Grier. He generated
data to simulate sensor measurements of pressure and wrote a Flink
program to compute the sum of sine waves over a one-second inter‐
val for sine waves with a total period of one second. The correct
answer should be zero. He compared what happens when the com‐
putation is done over windows defined by processing time or when
event time is used. With processing time, there was lots of noise
around the correct response of zero, but when he switched to defin‐
ing computation windows by event time, the results smoothed out
to an accurate “zero” as the consistent response. This comparison is
shown in Figure 3-3.

Figure 3-3. Switching from using processing time to using event time
makes many computations work better. Using processing time (red cir‐
cle) on data that should sum to zero results in errors. Using event time
instead (yellow circle) results in correct results. (From demonstration
by Jamie Grier at OSCON, May 2016.)
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The separation of different types of time in Flink is part of what
makes it able to do more than older streaming systems.

Accuracy Under Failures: Keeping Track of State
To maintain accuracy, a computation must keep track of state. If it’s
not done by the computational framework, the task falls to the
developer and application to do it. To do this is especially hard with
continuous stream processing—there’s no end point at which you
stop and tally up. Instead, you have to keep updating state as you go.

Flink has addressed several of the issues that could potentially
impair correctness, including stateful computations even after a fail‐
ure.

The underlying technology that Flink uses to address this challenge
is called checkpoints, and how this works is described in detail in
Chapter 5. Checkpoints enable fault tolerance by keeping track of
intermediate conditions of state such that the system can be accu‐
rately reset if there is a failure. And it does this with relatively low
and configurable overhead. Flink’s approach has very little impact
when the system is running smoothly (without failing).

Keep in mind that checkpoints are also what support Flink’s ability
to reprocess data when you choose to do so, not just in the case of a
failure. For example, you may want to replay and reprocess the
steam of event data because you want to run a new model or do a
bug fix. Flink makes this possible.

Flink’s checkpoint feature that enables it to accu‐
rately maintain state and reprocess data effi‐
ciently is unique among stream processors.

Answers When They Matter
It may seem surprising to include Flink’s capability for very low-
latency applications in the idea of “correctness.” Think of it this way:
some answers may be accurate, such as a sum or average, but if they
aren’t achieved fast enough to meet your needs, it’s hard to think of
the results as being correct. To get the idea, think about a crowd‐
sourced traffic and navigation application for smartphones. If you as
a driver are on your way to work and you want to know which of
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two major freeways is less congested, it’s not much of a help if your
application calculates an accurate assessment of traffic conditions
for your commute but provides the results two hours after your
drive. Even a five-second delay after you have taken the wrong turn
at an intersection would be problematic.

There are real situations where very low latency truly matters so that
the system can return results on demand, and not only when they
have been computed to completion. Flink’s ability to provide real-
time, fault-tolerant stream processing addresses that aspect of cor‐
rectness.

Ease of Development and Operations
A final way in which Flink’s design contributes to overall correctness
is in its human interface. Flink’s expressivity makes the developer’s
job easier, and that in turn makes it less likely for mistakes to occur
and persist. In addition, the fact that the Flink framework takes the
burden of maintaining state, which would otherwise be up to the
developer to build into the application, also makes programming
easier and the application more likely to succeed. Being able to use
one technology for stream processing as well as for batch jobs also
simplifies both development and operations.

Hierarchical Use Cases: Adopting Flink in
Stages
While Flink offers a wide range of capabilities, including some very
sophisticated ways of handling data, it’s not necessary to plunge into
it all at once. The move to a stream-first architecture can be done in
steps. We see some enterprises adopting streaming by first imple‐
menting simple applications in a streaming architecture and then
moving on to other applications. Although the type of applications
depend highly on the company’s needs, we have observed a typical
“value chain” of streaming use cases that many companies move up
to.

Now, take the opportunity to dive in deeper into what Flink does,
and how it does it; many of its fundamental capabilities are
explained in Chapters 4–6.
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CHAPTER 4

Handling Time

One crucial difference between programming applications for a
stream processor and a batch processor is the need to explicitly han‐
dle time. Let us take a very simple application: counting. We have a
never-ending stream of events coming in (e.g., tweets, clicks, trans‐
actions), and we want to group the events by a key, and periodically
(say, every hour) output the count of the distinct events for each key.
This is the proverbial application for “big data” that is analogous to
the infamous word-counting example for MapReduce.

Counting with Batch and Lambda
Architectures
Even if this seems simple, counting is surprisingly difficult at scale
and in practice, and, of course, appears everywhere. Other analytics,
such as aggregations or operations on Online Analytical Processing
(OLAP) cubes, are simple generalizations of counting. Using a tradi‐
tional batch-processing architecture, we would implement this as
shown in Figure 4-1.
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Figure 4-1. Implementing continuous applications using periodic batch
jobs. Data is continuously sliced into files, possibly on an hourly basis,
and batch jobs are run with these files as input, giving an impression of
a continuous processing of incoming data.

In this architecture, a continuous data ingestion pipeline creates files
(typically stored in a distributed file store such as Hadoop Dis‐
tributed File System [HDFS] or MapR-FS) every hour. This can be
done by using a tool like Apache Flume. A batch job (using Map‐
Reduce or some alternative) is scheduled by a scheduler to analyze
the last file produced—grouping the events in the file by key, and
counting distinct events per key—to output the last counts. Every
company that is using Hadoop has several pipelines like this run‐
ning in their clusters.

Although this architecture can certainly be made to work, there are
several problems with it:

• Too many moving parts: We are using a lot of systems to count
events in our incoming data. All of these come with their learn‐
ing and administration costs as well as bugs in all of the differ‐
ent programs.

• Implicit treatment of time: Let’s assume that we want to count
every 30 minutes rather than every hour. This logic is part of the
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workflow scheduling (and not the application code) logic,
which mixes DevOps concerns with business requirements.

• Early alerts: Let’s say that we want to get early count alerts as
soon as possible (when receiving, say, at least 10 events), in
addition to counting every one hour. For that, we can use Storm
to ingest the message stream (Kafka or MapR Streams) in addi‐
tion to the periodic batch jobs. Storm provides early approxi‐
mate counts, and the periodic jobs provide the accurate hourly
counts. We just added yet another system to the mix, along with
a new programming model. This is called the Lambda architec‐
ture, described briefly in Chapter 1 and shown here in
Figure 4-2.

Figure 4-2. Implementing continuous applications using periodic
batch jobs and early results using a stream processor (Lambda
architecture). The stream processor is used to provide approximate
but real-time results, which are eventually corrected by the batch
layer.

• Out of order events: In most real-world streams, events can
arrive out of order; that is, the order that the events occur in the
real world (as indicated by the timestamps attached to the
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events when they are produced [e.g., the time measured by the
smartphone when a user logs in an application]) is different
from the order in which the events are observed in the data cen‐
ter. This means that an event that belongs to the previous hourly
batch may be wrongly counted in the current batch. There is
really no straightforward way to resolve this using this architec‐
ture—most people choose simply to ignore that this reality
exists.

• Unclear batch boundaries: The meaning of “hourly” is kind of
ambiguous in this architecture, as it really depends on the inter‐
action between different systems. The hourly batches are, at
best, approximate, with events at the edges of batches ending up
in either the current or the next batch, with few guarantees.
Cutting the data stream into hourly batches is actually the sim‐
plest possible way to divide time. Assume that we would like to
produce aggregates, not for simple hourly batches, but instead
for sessions of activity (e.g., from login until logout or inactiv‐
ity). There is no straightforward way to do this with the archi‐
tecture shown in Figure 4-1 and Figure 4-2.

Counting with Streaming Architecture
There surely must be a better way to produce counts from a stream
of events. As you might have suspected already, this is a streaming
use case in which we use periodic batch jobs to simulate streaming.
In addition, we must glue together a variety of systems. Using a
streaming architecture, the application would follow the model in
Figure 4-3.
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Figure 4-3. Implementing continuous applications using a streaming
architecture. The message transport (Kafka, MapR Streams) is shown
here as a horizontal cylinder. It supplies streaming data to the stream
processor (in our case, Flink) that is used for all data processing, pro‐
viding both real-time results and correct results.

The event stream is again served by the message transport and sim‐
ply consumed by a single Flink job that produces hourly counts and
(optional) early alerts. This approach solves all the previous prob‐
lems in a straightforward way. Slowdowns in the Flink job or
throughput spikes simply pile up in the message-transport tool. The
logic to divide events into timely batches (called windows) is embed‐
ded entirely in the application logic of the Flink program. Early
alerts are produced by the same program. Out-of-order events are
transparently handled by Flink. Grouping by session instead of a
fixed time means simply changing the window definition in the
Flink program. Additionally, replaying the application with changed
code means simply replaying the Kafka topic. By adopting a stream‐
ing architecture, we have vastly reduced the number of systems to
learn, administer, and create code in. The Flink application code to
do this counting is straightforward:

DataStream<LogEvent> stream = env
  // create stream from Kafka
  .addSource(new FlinkKafkaConsumer(...))
  // group by country
  .keyBy("country")
  // window of size 1 hour
  .timeWindow(Time.minutes(60))
  // do operations per window
  .apply(new CountPerWindowFunction());

There are two main differences between the two approaches: 1) we
are treating the never-ending stream of incoming events as what it
actually is—a stream—rather than trying to artificially cut it into
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files, and 2) we are explicitly encoding the definition of time (to
divide the stream into groups) in the application code (the time win‐
dow above) instead of implicitly spreading its definition to inges‐
tion, computation, and scheduling.

Batching in Stream Processing Systems
The term “micro-batching,” as we discussed in Chapter 1, has been
used to refer to something in between batch and streaming. In real‐
ity, micro-batching can mean widely different things depending on
the context. In some sense, the batch architecture we saw in
Figure 4-1 is a micro-batch architecture if the files are sufficiently
small.

Storm Trident implements micro-batching by creating a large Storm
event that contains a fixed number of events and processing the
aggregated events with a continuously running Storm topology.
Spark Streaming implements micro-batching as essentially the batch
architecture we saw, but hiding the first two steps (ingestion and
storage) from the user and storing the mini-batches internally in
memory, in a write-ahead log instead of in files. Finally, every
modern stream processor, including Flink, uses a form of micro-
batches internally by sending buffers that contain many events over
the network in shuffle phases instead of individual events. All of
these forms of micro-batching are widely different.

To be clear, batching in stream processing systems should satisfy the
following requirements:

• Batching should be used only as a mechanism to improve per‐
formance. The larger the batches, the larger the throughput a
system can scale to.

• Batching for performance should be completely independent of
buffering for defining windows, or commits for fault tolerance,
and should not be part of the API. Coupling these leads to sys‐
tems that are limited, hard to use, and fragile.

In the end, as an application developer and user of data processing
systems, you should not be concerned about whether a system
implements micro-batching and how. Instead, you should worry
about whether the system can handle out-of-order streams and ses‐
sions and other misaligned windows, whether it can provide early
alerts in addition to accurate aggregates, and whether it can deter‐
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1 Many of the ideas in this chapter were pioneered by the work of the Google Dataflow
team (now Apache Beam [incubating]), including Tyler Akidau, Frances Perry, and
others. Tyler Akidau’s articles Streaming 101 and Streaming 102 are excellent reads if
you’d like to dig further into the Dataflow model. Flink’s mechanisms for handling time
and windows are in large part rooted in the broad concepts of the Dataflow paper in
VLDB 2015.

ministically replay past data, as well as the performance characteris‐
tics of the system (latency and throughput) and the guarantees of
the system in cases of failures.

Notions of Time
In stream processing, we generally speak about two main notions of
time:1

• Event time is the time that an event actually happened in the real
world. More accurately, each event is usually associated with a
timestamp that is part of the data record itself (e.g., as measured
by a mobile phone or a server that emits logs). The event time
of an event is simply a timestamp.

• Processing time is the time that the event is observed by the
machine that is processing it. The processing time of an event is
simply the time measured by the clock of the machine that is
processing the event.

Figure 4-4 illustrates the difference between event time and process‐
ing time.

Figure 4-4. An example of an out-of-order stream of events where pro‐
cessing time order is different from event time order.
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Consider the Star Wars series of movies: the first movies that
appeared in the theaters in 1977, 1980, and 1983 (this is the process‐
ing time) were movies 4, 5, and 6 in the plot of the series (which is
the event time). Then, the movies that appeared in 1999, 2002, 2005,
and 2015 in processing time refer to movies 1, 2, 3, and 7 in event
time. Hence, streams can arrive out of order (although typically not
years out of order).

Often, a third notion of time called ingestion time or ingress time is
used, referring to the time that the event enters the stream process‐
ing framework. Data that lacks a true event time may be assigned a
time, but these timestamps are simply assigned by the stream pro‐
cessor when it first sees the event (in the source function, the first
operator of the program).

Due to various real-world factors (e.g., temporary lack of connectiv‐
ity, varying delays of the network, clocks in distributed systems, data
rate spikes, physics, or just bad luck), event time and processing
time always have a time-varying lag (called event time skew). The
order of events based on event time is often not the same as the
order based on processing time; that is, events arrive at the stream
processor out of order.

Both notions of time are useful depending on the application. Some
applications (e.g., some alerting applications) need results as fast as
possible and are happy if these results are slightly inaccurate. In such
cases, it is not necessary to wait for late events, and processing time
semantics is a great choice. Other applications (e.g., fraud detection
or billing) need accuracy: an event should be accounted for in the
time window that it actually happened. For these applications, event
time semantics is usually the right choice. And there are also appli‐
cations that need both, perhaps to produce accurate counts, but also
to provide an early alert if an anomaly is detected.

Flink allows the user to define windows in pro‐
cessing time, ingestion time, or event time,
depending on the desired semantics and accu‐
racy needs of the application.

When a window is defined in event time, the application can handle
out-of-order events and varying event-time skew. It will compute
meaningful results with respect to the time inherent to the events.
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Windows
In the first section of this chapter, we reviewed an example of defin‐
ing a time window in Flink, to aggregate the results of the last hour.
Windows are the mechanism to group and collect a bunch of events
by time or some other characteristic in order to do some analysis on
these events as a whole (e.g., to sum them up).

Time Windows
The simplest and most useful form of windows are those based on
time. Time windows can be tumbling or sliding. For example, assume
that we are counting the values emitted by a sensor and compare
these choices:

A tumbling window of 1 minute collects the values of the last
minute, and emits their sum at the end of the minute, as shown in
Figure 4-5.

Figure 4-5. A tumbling time window of 1 minute that sums the last
minute’s worth of values.

A sliding window of 1 minute that slides every half minute counts
the values of the last minute, emitting the count every half minute,
as shown in Figure 4-6.

Windows | 49

https://www.iteblog.com

hadoop
高亮

hadoop
高亮

hadoop
高亮



Figure 4-6. A sliding time window that computes the sum of the last
minute’s values every half minute.

In the first sliding window, the values 9, 6, 8, and 4 are summed up,
yielding the result 27. Next, the window slides by a half minute (say,
2 values in our example), and the values 8, 4, 7, 3 are summed up,
yielding the result 22, etc. A tumbling time window of 1 minute can
be defined in Flink simply as:

stream.timeWindow(Time.minutes(1))

And a sliding time window of 1 minute that slides every 30 seconds
can be defined as simply as:

stream.timeWindow(Time.minutes(1), Time.seconds(30))

Count Windows
Another common type of window supported by Flink is the count
window. Here, we are grouping elements based on their counts
instead of timestamps. For example, the sliding window in
Figure 4-6 can also be interpreted as a count window of size 4 ele‐
ments that slides every 2 elements. Tumbling and sliding count win‐
dows can be defined as simply as:

stream.countWindow(4)
stream.countWindow(4, 2)

Count windows, while useful, are less rigorously defined than time
windows and should be used with care. Because time always goes
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on, a time window will always eventually “close.” However, with a
count window of, say, 100 elements, you might have a situation
where there are never 100 elements for this key, which will lead to
the window never closing, and the memory occupied by the window
will remain garbage. One way to mitigate that is to couple a time
window with a timeout using a trigger, which we will describe later
in the section “Triggers”.

Session Windows
Another very useful type of window provided by Flink is the session
window. As mentioned briefly in Chapter 3, a session is a period of
activity that is preceded and followed by a period of inactivity; for
example, a series of interactions of a user on a website, followed by
the user closing the browser tab or simply becoming inactive. Ses‐
sions need their own mechanism because they typically do not have
a set duration (some sessions can be 30 seconds and another 1
hour), or a set number of interactions (some sessions can be 3 clicks
followed by a purchase and another can be 40 clicks without a pur‐
chase).

Flink is currently the only open source stream
processing engine that supports sessions.

Session windows in Flink are specified using a timeout. This basi‐
cally specifies how long we want to wait until we believe that a ses‐
sion has ended. For example, here we expire a session when the user
is inactive for five minutes:

stream.window(SessionWindows.withGap(Time.minutes(5))

Triggers
In addition to windows, Flink also provides an optional mechanism
to define triggers. Triggers control when the results are made avail‐
able—in other words, when the contents of a window will be aggre‐
gated and returned to the user. Every default window comes coupled
with a trigger. For example, a time window on event time is trig‐
gered when a watermark arrives. But as a user, you can also imple‐
ment a custom trigger (for example, providing approximate early
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results of the window every 1 second) in addition to the complete
and accurate results when the watermark arrives.

Implementation of Windows
Internally in Flink, all of these types of windows are implemented
using the same mechanism. Although the internals of the mecha‐
nism are not important for basic users, it is important to note that:

• The windowing mechanism is completely separate from the
checkpointing mechanism (discussed in detail in Chapter 5).
This means that the window duration has no dependency on
the checkpointing interval, and, indeed, one can define win‐
dows without a “duration” (e.g., the count and session windows
we saw above).

• Advanced users can directly use the underlying mechanism to
define more elaborate forms of windows (e.g., time windows
that also produce an intermediate result based on count, or even
a value of a specific record).

Time Travel
An aspect central to the streaming architecture is time travel. If all
data processing is done by the stream processor, then how do we
evolve applications, how do we process historical data, and how do
we reprocess the data (say, for debugging or auditing purposes)?
This idea is presented in Figure 4-7.
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Figure 4-7. Time travel for data reprocessing. Support for event time by
the stream processor means that rerunning the same program on the
same data by rewinding the stream will yield the same results.

As shown in Figure 4-7, time travel means rewinding the stream to
some time in the past and restarting the processing from there,
eventually catching up with the present. Modern transport layers
like Apache Kafka and MapR Streams support this functionality, set‐
ting them apart from older solutions. Whereas real-time stream pro‐
cessing always processes the last data (the “now”) in the figure,
historical stream processing starts from the past and (optionally)
catches up with the present.

To be able to travel back in time and reprocess
the data correctly, the stream processor needs to
support event time.

If windows are defined based on wall-clock time instead of the time‐
stamps embedded in the records themselves, every time we run the
same application, we will get a different result. Event time makes
processing deterministic by guaranteeing that running the same
application on the same stream will yield the same results.

Watermarks
We saw that support for event time is central to the streaming archi‐
tecture, providing accuracy and the ability to reprocess data. When
computation is based on event time, how do we know that all events
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have arrived, and that we can compute and output the result of a
window? In other words, how do we keep track of event time and
know that a certain event time has been reached in the input
stream? To keep track of event time, we need some sort of clock that
is driven by the data instead of the wall clocks of the machines per‐
forming the computation.

Consider the 1-minute tumbling windows of Figure 4-5. Assume
that the first window starts at 10:00:00 (meaning 10 hours, 0
minutes, 0 seconds) and needs to sum up all values from 10:00:00
until 10:01:00. How do we know that the time is 10:01:00 when time
is part of the records themselves? In other words, how do we know
that an element with timestamp 10:00:59 will not arrive?

Flink achieves this via watermarks, a mechanism to advance event
time. Watermarks are regular records embedded in the stream that,
based on event time, inform computations that a certain time has
been reached. When the aforementioned window receives a water‐
mark with a time marker greater than 10:01:00 (for example, both a
watermark with time marker 10:01:00 and a watermark with time
marker 10:03:43 would work the same), it knows that no further
records with a timestamp greater than the marker will occur; all
events with time less than or equal to the timestamp have already
occurred. It can then safely compute and emit the result of the win‐
dow (the sum). With watermarks, event time progresses completely
independently from processing time. For example, if a watermark is
late (“late” being measured in processing time), this will not affect
the correctness of the results, only the speed in which we get the
results.

How Watermarks Are Generated
In Flink, the application developer generates watermarks, as doing
so usually requires some knowledge of the domain. A perfect water‐
mark is a watermark that can never be wrong; that is, no event will
ever arrive after a watermark with an event time from before the
watermark. Under special circumstances, the timestamp from the
latest event might even be a perfect watermark. This could happen,
for example, if our input is perfectly ordered. A heuristic watermark,
in contrast, is just an estimate of the time progress, but can some‐
times be wrong, meaning that some late events can come after the
watermark that promised they would not come. Flink provides
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mechanisms to deal with late elements when watermarks are heuris‐
tic.

Domain knowledge is often used to specify a watermark. For exam‐
ple, we may know that our events might be late, but cannot possibly
be more than five seconds late, which means that we can emit a
watermark of the largest timestamp seen, minus five seconds. Or, a
different Flink job may monitor the stream and construct a model
for generating watermarks, learning from the lateness of the events
as they arrive.

Watermarks provide a (possibly heuristic)
mechanism to specify the completeness of our
input in event time.

If watermarks are too slow, we might see a slowdown in the speed
with which we are getting output, but we can remedy that by emit‐
ting approximate results even before the watermark (Flink provides
mechanisms for doing so). If watermarks are too fast, we might get a
result that we think is correct but is not, and we can remedy that by
using Flink’s mechanisms for late data. If all of this seems compli‐
cated, remember that most event streams in the real world are out of
order and that there is no such thing (usually) as perfect knowledge
about how out of order they are. (In theory, we would have to look
at the future for that.) Watermarks are the only mechanism that
require us to deal with out-of-order data and to bound the correct‐
ness of our results; the alternative would be ignoring reality and pre‐
tending that our results are correct when they are not, without any
bounds on their correctness.

A Real-World Example: Kappa Architecture at
Ericsson
Motivated by the scale of data that a typical Ericsson-powered oper‐
ator needs to process (10 to 100 terabytes per day, or 100,000 to
1,000,000 events per second), a team at Ericsson sought to imple‐
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2 This section is based on the work by Nicolas Seyvet and Ignacio Mulas Viela, presented
at Flink Forward 2015 and at Strata/Hadoop World London 2016.

ment a so-called “Kappa architecture.”2 This term was coined (some‐
what tongue-in-cheek) by Jay Kreps, one of the creators of Apache
Kafka in an O’Reilly Radar article in 2014, as a critique to the so-
called Lambda architecture. This is just another name for exactly the
streaming architecture that we discussed in Chapter 2: the data
stream is at the heart of the design; data sources are immutable; and
a single-stream analytics framework, such as Apache Flink, is used
to process both the fresh data as well as the historical data via stream
replay.

The use case is real-time analysis of logs and system performance
metrics of a live cloud infrastructure, to continuously monitor
whether the cloud is behaving normally or showing a “novelty.” A
novelty can be either an anomalous behavior, or a change of the
state in the system; for example, the addition of new virtual
machines. The approach they took was to apply a Bayesian online
learning model to a stream of various metrics (telemetry and log
events) of a telco cloud monitoring system. In the words of Ericsson
researchers Nicolas Seyvet and Ignacio Mulas Viela:

The proposed method quickly detects anomalies with high accu‐
racy while adapting (learning) over time to new system normals,
making it a desirable tool for considerably reducing maintenance
costs associated with operability of large computing infrastructures.

The data pipeline that the Ericsson team built is shown in
Figure 4-8.

Figure 4-8. Streaming architecture using Apache Flink at Ericsson.

The raw data pushed to Kafka is telemetry and log events from all
physical and virtual machines in the cloud. Then, different Flink
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jobs consume this data and write them back to Kafka topics, from
which they are pushed to Elastic Search and Kibana, a search index
and visualization system, respectively. This architecture allows each
Flink job to perform a well-defined task, as the output of one job
can be used as input of another. For example, the pipeline to detect
anomalies in the equipment is shown in Figure 4-9, where every
intermediate stream is a Kafka topic (named for the data assigned to
it), and every rectangle is a Flink job.

Figure 4-9. The data processing pipeline at Ericsson for anomaly detec‐
tion uses Flink for the statistical extractor application and for anomaly
detection.

So, why is Flink’s support for event time important for this applica‐
tion? There are two reasons:

1. Correctly classifying anomalies: Timing is crucial for deciding
upon an anomaly. For example, lots of logging events being gen‐
erated at the same time is often a predictor of something being
wrong. In order to group and classify those events correctly, it is
important to take into account the time at which these events
were actually generated (rather than the time we see them in the
processing pipeline).

2. Using stream-first architecture: In the streaming architecture, the
stream processor is used for all computations. The way to evolve
applications is to repeat their execution in the stream processor;
running the same data twice through a computation must pro‐
duce the same result, and this is only possible when operating
on event time.
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CHAPTER 5

Stateful Computation

Streaming computation can be either stateless or stateful. A stateless
program looks at each individual event and creates some output
based on that last event. For example, a streaming program might
receive temperature readings from a sensor and raise an alert if the
temperature goes beyond 90 degrees. A stateful program creates out‐
put based on multiple events taken together. Examples of stateful
programs include:

• All types of windows that we discussed in Chapter 4. For exam‐
ple, getting the average temperature reported by a sensor over
the last hour is a stateful computation.

• All kinds of state machines used for complex event processing
(CEP). For example, creating an alert after receiving 2 tempera‐
ture readings that differ by more than 20 degrees within 1
minute is a stateful computation.

• All kinds of joins between streams as well as joins between
streams, and static or slowly changing tables.

Figure 5-1 exemplifies the main difference between stateless and
stateful stream processing. A stateless program (a transformation of
black records to white records in the figure) receives each record
separately (black input) and produces each output record based on
the last input record alone (white records). A stateful program
maintains state that is updated based on every input and produces
output (gray records) based on the last input and the current value
of the state.
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Figure 5-1. Stateless and stateful processing are compared here. Input
records are shown as black bars. The left diagram shows how a stateless
operation transforms each input record at a time and outputs each
result based solely on that last record or event (white bar). The dia‐
gram on the right shows that a stateful program maintains the value of
state for all of the records processed so far and updates it with each
new input, such that the output (gray bar) reflects results that take into
account more than one event.

While stateless computation is important by itself, the most interest‐
ing applications of stream processing as was just described are state‐
ful. It also turns out that stateful computation is a lot more
challenging to implement correctly than stateless computation.
Whereas older stream processing systems did not provide support
for stateful computations, the newer group of stream processors are
all about state and guaranteeing the existence and correctness of that
state under various failure scenarios.

Notions of Consistency
When we include state in a distributed system, naturally the ques‐
tion of consistency is raised. Consistency is, really, a different word
for “level of correctness”; that is, how correct are my results after a
failure and a successful recovery compared to what I would have
gotten without any failures? For example, assume that we are simply
counting user logins within the last hour. What is the count (the
state) if the system experiences a failure? In the terminology of the
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stream processing world, people distinguish between three different
levels of consistency:

• At most once: At most once is really a euphemism for no cor‐
rectness guarantees whatsoever—the count may be lost after a
failure.

• At least once: At least once, in our setting, means that the
counter value may be bigger than but never smaller than the
correct count. So, our program may over-count (in a failure sce‐
nario) but guarantees that it will never under-count.

• Exactly once: Exactly once means that the system guarantees
that the count will be exactly the same as it would be in the
failure-free scenario.

It used to be that at least once was very popular in the industry, with
the first stream processors (Apache Storm, Apache Samza) guaran‐
teeing only at least once when they first came out. This was the case
for two reasons:

1. It is trickier to implement systems that guarantee exactly once.
Exactly once is challenging at both the fundamental level (to
decide what correct means exactly, and what is the scope of
exactly once), and at the implementation level.

2. Early adopters of stream processing were willing to work
around the framework limitations at the application level (e.g.,
by making their applications idempotent or simply redoing all
calculations using a batch compute layer).

The first solutions that provided exactly once (Trident, Spark
Streaming) came at a substantial cost in terms of performance and
expressiveness. In order to guarantee exactly once behavior, these
systems do not apply the application logic to each record separately,
but instead process several (a batch of) records at a time, guarantee‐
ing that either the processing of each batch will succeed as a whole
or not at all. This situation implies that you have to wait for a batch
to complete before getting any results. For this reason, users were
often left having to use two stream processing frameworks together
(one for exactly once and one for per-element, low-latency process‐
ing), resulting in even more complexity in the infrastructure. Guar‐
anteeing exactly once and having low latency and efficiency used to
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be a tradeoff that users had to navigate. In contrast, Apache Flink
does away with that tradeoff.

One significant value that Flink has brought to
the industry is that it is able to provide exactly
once guarantees, low-latency processing, and
high throughput all at once.

Essentially, Flink eliminates these tradeoffs by allowing a single
framework to handle all requirements, a meaningful technological
leap in the industry, which, like all such leaps, seems magical from
the outside but makes a lot of sense when explained.

Flink Checkpoints: Guaranteeing Exactly Once
How does Flink guarantee exactly once processing? Flink makes use
of a feature known as “checkpoints” as a way to reset to the correct
state in the case of a failure. Consider this simple analogy to under‐
stand the role of checkpoints.

Suppose that you and a couple of friends are manually counting
beads strung on circular necklaces, as depicted in Figure 5-2. You
start at the clasp and slide the beads across through your fingers as
you count, adding to the sum each time you slide a bead. Your
friends are doing the same thing, each on their own string of beads.
But what happens when you are momentarily distracted and lose
count? If there are a lot of beads, you don’t want to have to go back
and start over, particularly if all three of you count at different
speeds and are trying to coordinate your counts, for example, or if
you want to write down how many beads all of you have counted
during the last minute. (Remember tumbling time windows from
Chapter 4.)
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Figure 5-2. Counting beads in a circular string may seem a futile task,
(even a bit Sisyphean because the counting never stops) but it serves as
a good analogy to processing a never-ending stream of events, and is
still a favorite activity to pass the time in some cultures (“worry
beads”).

So you devise a better system: you loosely tie colored ribbons at vari‐
ous intervals along each necklace, between the beads, such that these
ribbon markers can be slid along with the beads. You get a helper to
act as a central authority to keep track of the sums that you and your
friends call out each time you reach a ribbon marker. That way, if
someone messes up and needs to restart, it doesn’t cause everyone to
have to go all the way back to the clasp and start over. Instead, you
alert the others to the problem and all of you go back to the last col‐
ored ribbon marker, and then the helper (central authority) tells
each of you your count “as of the pink ribbon,” for instance, and you
start incrementing your count from that sum.

Flink checkpoints behave in a manner analogous to the ribbon
markers. The key idea in this analogy is that each bead clearly sits
either before or after a particular ribbon along the string; that makes
the ribbon a reference point for a reset of the count (current state) if
needed. The overall state (sum of beads) is updated with each bead
that is counted, and the central authority saves the checkpoint state
related to each ribbon. In other words, how many beads were coun‐
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ted when you hit the pink ribbon? The orange ribbon? That makes it
easy to restart the count if a problem occurs.

Checkpoints are one of the most valuable inno‐
vations in Flink because they are the key to pro‐
viding exactly once guarantees without trading
off performance.

Essentially, the role of Flink checkpoints is to guarantee correct
state, even after a program interruption. With this basic concept in
mind, let’s look under the covers at an example of how Flink check‐
points operate. Flink offers the user facilities to define state. For
example, the following Scala program maintains the count of the
second field of the input, grouping by the first field of the input (a
string):

val stream: DataStream[(String, Int)] = ...

val counts: DataStream[(String, Int)] = stream
  .keyBy(record => record._1)
  .mapWithState((in: (String, Int), count: Option[Int]) =>
    count match {
      case Some(c) => ( (in._1, c + in._2), Some(c + in._2) )
      case None => ( (in._1, in._2), Some(in._2) )
    })

There are two operators in the program: the keyBy operator groups
the incoming records by the first element (a string), repartitions the
data based on that key, and forwards the records to the next opera‐
tor: the stateful map operator. The map operator receives each ele‐
ment, advances the count by adding up the second field of the input
record to the current count, and emits the element with the updated
now count. Figure 5-3 shows the starting condition with all of the
six records in the input stream intercepted by checkpoint barriers
and the state of all map operators being zero (nothing counted yet).
All the records with key “a” will be processed by the top map opera‐
tor, all records with key “b” will be processed by the middle map
operator, and all records with key “c” will be processed by the bot‐
tom map operator.

Consider the program above and think about how checkpoints can
provide guarantees as you process six records in the input with exe‐
cution that is spread across three parallel instances (nodes, cores,
etc.).
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Figure 5-3. Starting condition for the program. Note that initial state
for record groups a, b, and c is zero in each case, shown as values on
the three cylinders. Checkpoint barriers are shown as black “ckpt”
records. Each record is strictly before or after a checkpoint in sequence
of processing; e.g., (“b”,2) is to be processed before the top checkpoint
and (“a”,2) after it.

Checkpoint barriers are just like regular records. They are processed
by the operators, but instead of contributing to the result of the
computation (as do the records that carry data), checkpoint barriers
trigger actions related to checkpointing. When a data source that is
reading from the input stream (inlined with the keyBy operator in
our example) sees a checkpoint barrier, it saves the position of this
record. This would be the offset, when the input stream is served
from the message transport (either Apache Kafka or MapR
Streams), to a stable storage mechanism. The storage mechanism
can be pluggable in Flink and might be a distributed file system like
HDFS, S3, or MapR-FS, for example. This situation is depicted in
Figure 5-4.
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Figure 5-4. When a Flink data source (here inlined with the keyBy
operator) encounters a checkpoint barrier, it records the position of the
barrier in the input stream to stable storage. This step will allow Flink
to later restart the input from that position.

Checkpoint barriers flow through the edges between operators like
regular records. When the map operators receive the checkpoint
barriers after they have processed the first three records, they will
write out their state asynchronously to stable storage. This action is
depicted in Figure 5-5.
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Figure 5-5. Condition of the program after all records prior to the
checkpoint (records [“b”,2], [b,“3”], and [“c”,1]) have been processed by
the stateful map operators. At this point, the positions of the check‐
point barriers in the input stream have already been backed up in sta‐
ble storage—this backup occurred when the checkpoint barriers were
processed by the source operators. The map operators are now process‐
ing the checkpoint barriers, triggering an asynchronous backup of their
state in stable storage.

Once the backup of the states of the map operators and the positions
of the barriers in the input streams has been acknowledged, the
checkpoint can be marked as successful, as depicted in Figure 5-6.
What we achieved was to take a snapshot of the state of the compu‐
tation at a logical time (the time denoted by the positions of the bar‐
riers in the input streams), without ever stopping or blocking the
computation. By making sure that the backed-up states and posi‐
tions refer to the same logical time, we will later see how—by restor‐
ing the computation from that backup—we can achieve exactly once
state guarantees. Note that when there is no failure, the overhead of
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Flink checkpointing is minimal, and the speed of checkpointing is
driven by the available bandwidth to stable storage. Recall the string
of beads example: the ribbons just pass by unless someone loses
count and needs to use them. (There is work underway in Flink to
save only changes to the state rather than the value of the state,
which makes this overhead even smaller.)

Figure 5-6. The checkpoint has been marked as successful with all
states, and input stream positions have been backed up to stable stor‐
age. All records in the input have been processed. Note that the state
values in backup and the actual state values are different. Those in the
backup reflect the state as of the checkpoint.

If writing the checkpoint fails for some reason, Flink will discard
that checkpoint and continue execution as normal because one of
the later checkpoints may succeed. The guarantees for the state
remain just as strong, although recovery may take a bit longer. Only
if a number of consecutive checkpoints fail will Flink register an
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error, as this is usually an indication of something going seriously
and persistently wrong.

Consider now the situation in Figure 5-7, with the checkpoint hav‐
ing successfully completed and a failure occurring right after the
checkpoint.

Figure 5-7. A failure occurs after the checkpoint, with the bottommost
instance being lost.

Flink will then restart the topology (possibly acquiring new execu‐
tion resources), rewind the input stream to the positions registered
in the last checkpoint, and restore the state values and continue exe‐
cution from there. In our example, this means that records ("a",2),
("a",2), and ("c",2) will be replayed.

This reprocessing is depicted in Figure 5-8. Starting the computa‐
tion again from that point will guarantee that the value of the map
operator states will be as if no failure had ever occurred after the
remaining records have been processed. Note, however, that the out‐
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put stream will contain duplicates. In particular, the records ("a",
2), ("a",4) and ("c",3) will appear twice. This problem can be
avoided when Flink writes the output stream to specific output sys‐
tems (e.g., file systems or databases), as discussed later in this chap‐
ter.

Figure 5-8. Flink rewinds the input stream to the positions of the last
barriers, as recorded in the checkpoint, and restores the states of the
map operators to the ones that had been recorded in the last check‐
point. Flink then simply restarts the processing from here. This guaran‐
tees that after the records have been processed, the state of the map
operators will be as if no failure had ever occurred.

The algorithm used for checkpointing in Flink is formally called
Asynchronous Barrier Snapshotting. The algorithm is loosely based
on the seminal Chandy-Lamport algorithm for distributed snap‐
shots.
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Savepoints: Versioning State
Previously, we saw that checkpoints are automatically generated by
Flink to provide a way to reprocess records while correcting state in
case of a failure. But Flink users also have a way to consciously man‐
age versions of state through a feature called savepoints.
A savepoint is taken in exactly the same way as a checkpoint but is
triggered manually by the user (using the Flink command-line tools
or the web console) instead of by Flink itself. Like checkpoints, save‐
points are also stored in stable storage and give the user the ability
to start a new version of the job or to restart the job from a save‐
point rather than from a beginning in time. You can think of save‐
points as snapshots of a job at a certain time (the time that the
savepoint was taken).

Another way to think about savepoints is saving versions of the
application state at well-defined times. This is similar to saving ver‐
sions of applications themselves using version control systems. The
simplest example is taking snapshots at regular intervals without
changing the code of the application—that is, keeping the applica‐
tion version as is. This situation is depicted in Figure 5-9.

Figure 5-9. Savepoints (represented by circles) are triggered manually
to capture the state of a running Flink application at different
times.AU

Here, we have a running version of an application (version 0) and
took a savepoint of our application at time t1 and a savepoint at t2.
At any given time, we could go back and restart the program from
these times. Even more significant, we are able to start a modified
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version of a program from a savepoint. For example, we can change
the code of the application (let’s call it version 0.1) and start it from
the savepoint taken at t1. In this way, we have both version 0 and
version 0.1 of the programs running at the same time while taking
subsequent savepoints to both versions at later times, as shown in
Figure 5-10.

Figure 5-10. Using savepoints to advance the version of a Flink appli‐
cation. The new version can be started from a savepoint created by an
older version.

You can use savepoints to solve a variety of production issues for
streaming jobs:

1. Application code upgrades: Assume that you have found a bug in
an already running application and you want the future events
to be processed by the updated code with the bug fixed. By tak‐
ing a savepoint of the job and restarting from that savepoint
using the new code, downstream applications will not see the
difference (except for the update of course).

2. Flink version upgrades: Upgrading Flink itself also becomes easy
because you can take savepoints of running pipelines and replay
them from the savepoints using an upgraded Flink version.

3. Maintenance and migration: Using savepoints, you can easily
“pause and resume” an application. This is especially useful for
cluster maintenance as well as migrating jobs consistently to a
new cluster. In addition, this is useful for developing, testing,

72 | Chapter 5: Stateful Computation

https://www.iteblog.com



and debugging applications, as you do not need to replay the
complete event stream.

4. What-if simulations (reinstatements): Many times, it is very use‐
ful to run an alternative application logic to model “what-if ”
scenarios from controllable points in the past.

5. A/B testing: By running two different versions of application
code in parallel from the exact same savepoint, you can model
A/B testing scenarios.

All of these issues occur in the real world. Flink’s internal check‐
pointing mechanism surfaces as savepoints, solving issues like the
ones described here. This reflects that concept that Flink’s check‐
point feature is essentially a programmable mechanism to consis‐
tently upgrade state versions, much like a database system with
multiversion concurrency control. This fundamental characteristic
of the checkpoint mechanism will surface again when we look at
how to provide end-to-end consistency in the next section.

End-to-End Consistency and the Stream
Processor as a Database
We have seen how Flink can guarantee that state is kept consistent
(exactly once) in a simple application that counts or aggregates data.
Let us now look at this application end-to-end, as it might be
deployed in production (depicted in Figure 5-11).
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Figure 5-11. Application architecture consisting of a stateful Flink
application consuming data from a message queue and writing data to
an output system used for querying. The callout shows what goes on
inside the Flink application.

A partitioned storage system (e.g., a message queue such as Kafka or
MapR Streams) serves as the data input. The Flink topology, shown
as a callout in Figure 5-11, consists of three operators: the data
source reads data from the input, partitions it by key, and routes
records to instances of the stateful operators, which can be a map
WithState as we saw in the previous section, a window aggregation,
etc. This operator writes the contents of the state (the counts in our
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previous example) or some derivative results to a sink, which trans‐
fers these to a partitioned storage system (e.g., a file system or a
database) that serves as output storage. A query service (e.g., the
database’s query API) then allows users to query the state (in the
simplest case, the counts) as they were written in the output storage.
Note that the figure depicts the contents of the state written to the
output.

Keep in mind that, in this case, the output
reflects the contents of the state in the Flink
application as of the time it was last written out.

The first question is, how can we transfer the contents of the state to
the output with exactly once guarantees? (This is called end-to-end
exactly once.) There are essentially two ways to do that, and the
right way depends on the nature of the system used for output and
the application requirements:

1. The first way is to buffer all output at the sink and commit this
atomically when the sink receives a checkpoint record. This
method ensures that the output storage system only contains
results that are guaranteed to be consistent and that duplicates
will never be visible. Essentially, the output storage takes part in
Flink’s checkpointing. For this to work, the output storage sys‐
tem needs to provide the ability to atomically commit.

2. The second way is to eagerly write data to the output, keeping in
mind that some of this data might be “dirty” and replayed after a
failure. If there is a failure, then we need to roll back the output,
in addition to the input and the Flink job, thus overwriting the
dirty data and effectively deleting dirty data that has already
been written to the output. Note that even with this way, in
many cases there will be no deletions. For example, if new
records are only overwriting old records (and not adding to the
output), then the dirty values will be transient only between
checkpoints and eventually overridden by new and refined val‐
ues.

Note that these two alternatives correspond exactly to two well-
known levels of isolation in relational database systems: read com‐
mitted and read uncommitted. Read committed guarantees that all
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reads (queries to the output) will read committed data and no inter‐
mediate, in-flight, or dirty data. Subsequent reads may return differ‐
ent results because the data may have changed. Read uncommitted
does allow dirty reads; in other words, the queries always see the lat‐
est version of data as it is being processed.

For some applications, weaker semantics may be acceptable, so Flink
provides several build-in sinks with multiple semantics; for example,
a distributed filesink with read uncommitted semantics (for a full
list, visit the current Flink documentation). Depending on the capa‐
bilities of the output system and the application requirements, the
user can choose the right semantics.

We saw that, depending on the type of output, Flink together with
the corresponding connector can provide exactly once guarantees
end-to- end with a variety of isolation levels.

Now, recall the application architecture shown in Figure 5-11. One
reason for the output storage system here is that the state inside
Flink is not accessible to the outside world in this example, so the
output storage is the target of the query. If, however, we would be
able to query the state in the stateful operator (the counts in this
case), we might not even need to have an output system in certain
situations where the state contains all the information needed for
the query. This is true for a variety of applications, and in these
cases, querying the state directly can lead to the vastly simplified
architecture shown in Figure 5-12 as well as to vastly improved per‐
formance.
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Figure 5-12. Simplified application architecture using Flink’s queryable
state. For those cases when the state is all the information that is
needed, querying the state directly can improve performance.

Queryable state is currently a work in progress by the Flink commu‐
nity. With queryable state, Flink offers a query API to issue read
requests to Flink and get the current value of the state. In some
sense, in a limited number of scenarios, Flink becomes a replace‐
ment for a database system, offering both a write path (the input
stream that changes the state) as well as a read path (queryable
state). Although this makes sense for a lot of applications, queryable
state is definitely more limited than a general-purpose database.

Flink Performance: the Yahoo! Streaming
Benchmark
Apache Flink performance was tested in several different ways
through a sequence of variations using the Yahoo! Streaming Bench‐
mark.

Flink Performance: the Yahoo! Streaming Benchmark | 77

https://www.iteblog.com



Original Application with the Yahoo! Streaming
Benchmark
In December 2015, the Storm team at Yahoo! published a blog post
benchmarking Apache Storm, Apache Flink, and Apache Spark.
This was a very valuable contribution to the industry, as it was the
first benchmark in the field that was based on a real-world applica‐
tion.

The application consumes ad impressions from Apache Kafka, looks
up which ad campaign the ad corresponds to (from Redis), and
computes the number of ad views in each 10-second window, grou‐
ped by campaign. The final results of the 10-second windows are
written to Redis for storage, and the statuses of those windows are
also written to Redis every second in order for users to be able to
query them in real time. In the initial benchmark, because Storm
was a stateless stream processor (i.e., it did not provide facilities to
define and maintain state), the Flink job was also written in a state‐
less fashion, with all state being stored in Redis, as depicted in
Figure 5-13.

Figure 5-13. The job used in the Yahoo! streaming benchmark. The
data processors being tested were Spark Streaming, Storm, and Flink
(although we’ve included only the Flink logo in our graphic of the data
architecture).

The results of that experiment are summarized in the simplified
graph in Figure 5-14.
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Figure 5-14. Results from the original Yahoo! streaming benchmark.
The x-axis is throughput in thousands of events per second, and the y-
axis is the 99th percentile end-to-end latency (meaning that 99% of
events arrive within this latency) in seconds for the given throughput.
See the Yahoo! team’s blog post for a more detailed graph and addi‐
tional results.

As Figure 5-14 shows, in this benchmark, Spark Streaming suffered
from a throughput-latency tradeoff. As batches increase in size,
latency also increases. If batches are kept small to improve latency,
throughput decreases. Storm and Flink can both sustain low latency
as throughput increases.

In order to further test Flink performance in terms of velocity, a
number of different conditions were set up and tested step by step.

First Modification: Using Flink State
The original benchmark focused on measuring end-to-end latency
at relatively low throughput, even at the maximum, and did not
focus on implementing these applications in a fault-tolerant manner.
Additionally, the application had a very small key cardinality (in the
100s), which does not extend to applications with many users, or to
a key space that grows over time (e.g., tweets). An extension of this
benchmark, published on February 2, 2016 at the data Artisans blog,
focused on addressing these points. With Spark out of the game as
an unacceptable solution by the original benchmark, the extension
focused on Storm and Flink, which showed seemingly similar
behavior in the original benchmark.
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The first change was to reimplement the Flink application to use the
facilities that are provided by Flink for state fault tolerance, as
shown in Figure 5-15. These changes made the application exactly
once.

Figure 5-15. The benchmark application rewritten to use Flink’s built-
in state. With this change, the application can sustain a throughput of
3 million events per second and has exactly once guarantees. The
application is now bottlenecked on the connection between the Flink
cluster and the Kafka cluster (red arrow).

Second Modification: Increase Volume Through
Improved Data Generator
The second step in extending the benchmark to test velocity was to
scale up the volume of the input stream by writing a data generator
that can produce millions of events per second. The results for this
modification are shown in Figure 5-16.
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Figure 5-16. Results using the higher-volume data generator: (A)
When using Storm with Kafka, the benchmark application can sustain
400,000 events per second and is CPU-bound, whereas in the case of
Flink with Kafka, the application can sustain 3 million events per sec‐
ond and is network-bound. (B) By removing the streaming component
to avoid the network bottleneck, the Flink application can sustain 15
million events per second. (C) An additional test was done with the
streaming transport component provided by MapR Streams and 10
high-performance nodes (different hardware from A and B); the Flink
application can sustain 10 million events per second.

Storm could keep up with the load until about 400,000 events per
second, at which point the system became CPU-bound. Flink could
keep up until 3 million events per second (a 7.5x difference), at
which point the system became network-bound between the Kafka
cluster and the Flink cluster.

Flink Performance: the Yahoo! Streaming Benchmark | 81

https://www.iteblog.com



Third Modification: Dealing with Network Bottleneck
In order to see what Flink performance could be without the issue of
the network bottleneck. the data generator was moved into the Flink
job. This workflow is illustrated in the diagram in Figure 5-17.
Under these conditions, Flink was able to sustain a volume of 15
million events per second (a 37.5x difference) as shown in
Figure 5-16 (B). Having the data generator integrated into the Flink
application allows the limits of performance to be tested, but this is
not an entirely realistic configuration since real-world data would
have to be streamed into an application from outside the applica‐
tion.

We note that this is definitely not a Kafka limitation—Kafka can
sustain such throughput and more—but merely a limitation of the
hardware setup used for these experiments, where the network con‐
nection between the Kafka cluster and Flink cluster was slow.

Figure 5-17. Eliminating the network bottleneck by making the data
generator part of the Flink program makes the system able to sustain a
throughput of 15 million events per second. After increasing the key
cardinality, the bottleneck becomes the writes to Redis every 1 second.
This is not a production configuration, but it is intended to test the
limits of what Flink can do.
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Fourth Modification: Using MapR Streams
A different way to avoid a network bottleneck and test Flink perfor‐
mance at scale was to run the benchmark by using MapR Streams
for streaming transport. In a separate benchmark, the same applica‐
tion was run with a separate data generator, but configured to send
the generated data through MapR Streams to the Flink application.

With MapR, streaming is integrated into the platform, which allows
Flink to run colocated with the data generator tasks and with all data
transport and thus avoiding most of the issue of network connectiv‐
ity between a Kafka cluster and a Flink cluster. In this high-
performance configuration and on hardware with faster networking,
Flink was able to sustain a processing rate of 10 million events per
second. These results are shown in Figure 5-16(C).

Fifth Modification: Increased Cardinality and Direct
Query
The final extension of the benchmark was to increase the key car‐
dinality (number of ad campaigns). The original benchmark had
only 100 distinct keys, which were flushed every second to Redis so
that they could be made queryable. When the key cardinality is
increased to 1 million, the overall system throughput reduces to
280,000 events per second, as the bottleneck of the system becomes
the transfer of this data to Redis. Using an early prototype of Flink’s
queryable state (as in Figure 5-18), this bottleneck disappears, and
the system can again sustain 15 million events per second, with mil‐
lions of keys being available for querying, as depicted in Figure 5-19.
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Figure 5-18. Eliminating the key-value store bottleneck for high key
cardinalities.
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Figure 5-19. By moving the querying inside a prototype of Flink’s
queryable state, the system can sustain a throughput of 15 million
events per second even when key cardinality is very high.

So, what does this use case teach us? By avoiding streaming bottle‐
necks and by using Flink’s stateful stream processing abilities, we
were able to get almost a 30x increase in throughput compared to
Storm while still guaranteeing exactly once processing with high
availability. Roughly speaking, this means that we can pay for 30
times less hardware or cloud credits, or that we can handle problems
that are 30 times the size, with the same hardware.

Conclusion
In this chapter, we saw how stateful stream processing changes the
rules of the game. By having checkpointed state as a first-class citi‐
zen inside the stream processor, we can get correct results after fail‐
ures, very high throughput, and low latency all at the same time,
completely eliminating past tradeoffs that people thought of as fun‐
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damental (but are not). This is one of the most important advan‐
tages of Flink.

Another advantage of Flink is its ability to handle streaming and
batch using a single technology, completely eliminating the need for
a dedicated batch layer. Chapter 6 provides a brief overview of how
batch processing with Flink is possible.

86 | Chapter 5: Stateful Computation

https://www.iteblog.com



CHAPTER 6

Batch Is a Special Case of
Streaming

So far in this book, we have been talking about unbounded stream
processing—that is, processing data from some time continuously
and forever. This condition is depicted in Figure 6-1.

Figure 6-1. Unbounded stream processing: the input does not have an
end, and data processing starts from the present or some point in the
past and continues indefinitely.

A different style of processing is bounded stream processing, or pro‐
cessing data from some starting time until some end time, as depic‐
ted in Figure 6-2. The input data might be naturally bounded
(meaning that it is a data set that does not grow over time), or it can
be artificially bounded for analysis purposes (meaning that we are
only interested in events within some time bounds).
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Figure 6-2. Bounded stream processing: the input has a beginning and
an end, and data processing stops after some time.

Bounded stream processing is clearly a special case of unbounded
stream processing; data processing just happens to stop at some
point. In addition, when the results of the computation are not pro‐
duced continuously during execution, but only once at the end, we
have the case called batch processing (data is processed “as a batch”).

Batch processing is a very special case of stream processing; instead
of defining a sliding or tumbling window over the data and produc‐
ing results every time the window slides, we define a global window,
with all records belonging to the same window. For example, a sim‐
ple Flink program that counts visitors in a website every hour, grou‐
ped by region continuously, is the following:

val counts = visits
  .keyBy("region")
  .timeWindow(Time.hours(1))
  .sum("visits")

If we know that our input data set was already bounded, we can get
the equivalent “batch” program by writing:

val counts = visits
  .keyBy("region")
  .window(GlobalWindows.create)
  .trigger(EndOfTimeTrigger.create)
  .sum("visits")

Flink is unusual in that it can process data as a continuous stream or
as bounded streams (batch). With Flink, you process bounded data
streams also by using Flink’s DataSet API, which is made for exactly
that purpose. The above program in Flink’s DataSet API would look
like this:
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val counts = visits
  .groupBy("region")
  .sum("visits")

This program will produce the same results when we know that the
input is bounded, but it looks friendlier to a programmer accus‐
tomed to using batch processors.

Batch Processing Technology
In principle, batch processing is a special case of stream processing:
when the input is bounded and we want only the final result at the
end, it suffices to define a global window over the complete data set
and perform the computation on that window. But how efficient is
it?

Traditionally, dedicated batch processors are used to process boun‐
ded data streams, and there are cases where this approach is more
efficient than using the stream processor naively as described above.
However, it is possible to integrate most optimizations necessary for
efficient large-scale batch processing in a stream processor. This
approach is what Flink does, and it works very efficiently (as shown
in Figure 6-3).
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Figure 6-3. Flink’s architecture supports both stream and batch process‐
ing styles, with one underlying engine.

The same backend (the stream processing engine) is used for both
bounded and unbounded data processing. On top of the stream pro‐
cessing engine, Flink overlays the following mechanisms:

• A checkpointing mechanism and state mechanism to ensure
fault-tolerant, stateful processing

• The watermark mechanism to ensure event-time clock
• Available windows and triggers to bound the computation and

define when to make results available

A different code path in Flink overlays different mechanisms on top
of the same stream processing engine to ensure efficient batch pro‐
cessing. Although reviewing these in detail are beyond the scope of
this book, the most important mechanisms are:

• Backtracking for scheduling and recovery: the mechanism
introduced by Microsoft Dryad and now used by almost every
batch processor
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1 See the slides and video of the talk at http://2015.flink-forward.org/?session=a-
comparative-performance-evaluation-of-flink.

• Special memory data structures for hashing and sorting that can
partially spill data from memory to disk when needed

• An optimizer that tries to transform the user program to an
equivalent one that minimizes the time to result

At the time of writing, these two code paths result in two different
APIs (the DataStream API and the DataSet API), and one cannot
create a Flink job that mixes the two and takes advantage of all of
Flink’s capabilities. However, this need not be the case; in fact, the
Flink community is discussing a unified API that includes the capa‐
bilities of both APIs. And the Apache Beam (incubating) commu‐
nity has created exactly that: an API for both batch and stream
processing that generates Flink programs for execution.

Case Study: Flink as a Batch Processor
At the Flink Forward 2015 conference, Dongwon Kim (then a post‐
doctoral researcher at POSTECH in South Korea) presented a
benchmarking study that he conducted comparing MapReduce, Tez,
Spark, and Flink at pure batch processing tasks: TeraSort and a dis‐
tributed hash join.1

The first task, TeraSort, comes from the annual terabyte sort compe‐
tition, which measures the elapsed time to sort 1 terabyte of data. In
the context of these systems, TeraSort is essentially a distributed sort
problem, consisting of the following phases, depicted in Figure 6-4:

1. A read phase reads the data partitions from files on HDFS
2. A local sort partially sorts these partitions
3. A shuffle phase redistributes the data by key to the processing

nodes
4. A final sort phase produces the sorted output
5. A write phase writes out the sorted partitions to files on HDFS
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Figure 6-4. Processing phases for distributed sort.

A TeraSort implementation is included with the Apache Hadoop
distribution, and you can use the same implementation unchanged
with Apache Tez, given that Tez can execute programs written in the
MapReduce API. The Spark and Flink implementations were pro‐
vided by the author of that presentation and are available at https://
github.com/eastcirclek/terasort. The cluster that was used for the
measurements consisted of 42 machines with 12 cores, 24 GB of
memory, and 6 hard disk drives each.

The results of the benchmark, depicted in Figure 6-5, show that
Flink performs the sorting task in less time than all other systems.
MapReduce took 2,157 seconds, Tez took 1,887 seconds, Spark took
2,171 seconds, and Flink took 1,480 seconds.

Figure 6-5. TeraSort results for MapReduce, Tez, Spark, and Flink.
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The second task was a distributed join between a large (240 GB) and
a small (256 MB) data set. There, Flink was also the fastest system,
outperforming Tez by 2x and Spark by 4x. These results are shown
in Figure 6-6.

Figure 6-6. HashJoin results for Tez, Spark, and Flink.

The overall reason for these results is that Flink execution is stream-
based, which means that the processing stages that we described
above overlap more, and shuffling is pipelined, which leads to much
fewer disk accesses. In contrast, execution with MapReduce, Tez,
and Spark is batch-based, which means that data is written to disk
before it’s sent over the network. In the end, this means less idle time
and fewer disk accesses when using Flink.

We note that as with all benchmarks, the raw numbers might be
quite different in different cluster setups, configurations, and soft‐
ware versions. While the numbers themselves might be different
now compared to when that benchmark was conducted (indeed, the
software versions used for that benchmark were Hadoop 2.7.1, Tez
0.7.0, Spark 1.5.1, and Flink 0.9.1, which have all been superseded
with newer releases), the main point is that with the right optimiza‐
tions, a stream processor (Flink) can perform equally as well as, or
better than, even batch processors (MapReduce, Tez, Spark) in tasks
that are on the home turf of batch processors. Consequently, with
Flink, it is possible to cover processing of both unbounded data
streams and bounded data streams with one data processing frame‐
work without sacrificing performance.
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APPENDIX A

Additional Resources

Going Further with Apache Flink
By now, we hope that we have whet your appetite and you are ready
to get started with Apache Flink. What’s the best way to do that? The
Flink open source project website is https://flink.apache.org/. This
website maintains a “quickstart” guide. In just a few minutes, you
will be able to write your first stream processing program. The site
even includes an example that allows you to ingest and analyze all
edits being made around the world to Wikipedia.org.

If you prefer something more visual, a post on the MapR blog shows
you how to use Flink to ingest a data stream of taxi routes in New
York City and how to visualize them by using Kibana: The Essential
Guide to Streaming-first Processing with Apache Flink.

To dig further, data Artisans maintains a free, comprehensive Flink
training resource, with all slides, exercises, and solutions as open
source. You can find that at http://dataartisans.github.io/flink-
training/.

More on Time and Windows
A large part of this book has discussed various aspects of time and
windows with regard to how Flink works and your choices in using
it. Aspects of these topics have also been discussed in a series of blog
posts. If you are curious to know more about how Flink windows
work, visit http://flink.apache.org/news/2015/12/04/Introducing-
windows.html, and for more details on session windows, go to
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http://data-artisans.com/session-windowing-in-flink/. If you really
want to dig deep into Flink’s window and watermark mechanism as
well as get an idea of what applications event time is good for, visit
http://data-artisans.com/how-apache-flink-enables-new-streaming-
applications-part-1/.

More on Flink’s State and Checkpointing
For Flink’s checkpointing and how it compares with older mecha‐
nisms to ensure fault-tolerant stream processing, visit http://data-
artisans.com/high-throughput-low-latency-and-exactly-once-stream-
processing-with-apache-flink/.
To learn more about Flink’s savepoints, watch this short “White‐
board Walkthrough” video in which Stephan Ewen describes how to
use savepoints to replay streaming data. Savepoints are useful to let
you reprocess data, do bug fixes, and do updates. You can watch the
video at https://www.mapr.com/blog/savepoints-apache-flink-stream-
processing-whiteboard-walkthrough.

For additional information about savepoints, head to http://data-
artisans.com/how-apache-flink-enables-new-streaming-applications/.
Also, to view a Whiteboard Walkthrough that presents the benefits
and applications of Flink’s savepoints, go to https://www.mapr.com/
blog/savepoints-apache-flink-stream-processing-whiteboard-
walkthrough.

To see all these in action in the extension of the Yahoo! benchmark,
visit http://data-artisans.com/extending-the-yahoo-streaming-
benchmark/.

Handling Batch Processing with Flink
To get an idea of how a stream processor can handle batch process‐
ing as well, visit http://data-artisans.com/batch-is-a-special-case-of-
streaming.

There is a lot of information at the Flink blog on the specific mecha‐
nisms that Flink uses to optimize batch processing. If you’d like to
dig deep into this, we recommend the following:

• http://flink.apache.org/news/2015/05/11/Juggling-with-Bits-and-
Bytes.html
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• http://flink.apache.org/news/2015/03/13/peeking-into-Apache-
Flinks-Engine-Room.html

• http://data-artisans.com/computing-recommendations-at-
extreme-scale-with-apache-flink/

Flink Use Cases and User Stories
Companies that are using Flink on a regular basis publish articles on
what they achieve with the system and how they are using it. Below
is a small selection of links of such user stories:

• https://techblog.king.com/rbea-scalable-real-time-analytics-king/
• https://tech.zalando.de/blog/apache-showdown-flink-vs.-spark/
• http://data-artisans.com/flink-at-bouygues-html/
• http://data-artisans.com/how-we-selected-apache-flink-at-otto-

group/

The Flink Forward conference series publishes most videos and
slides of its talks online, which is a great resource to learn more
about what companies are doing with Flink:

• Flink Forward 2015: http://2015.flink-forward.org/
• Flink Forward 2016: http://2016.flink-forward.org/

Stream-First Architecture
A good place to get more information about stream-based architec‐
ture and the message-transport technologies Apache Kafka and
MapR Streams is in the book Streaming Architecture by Ted Dun‐
ning and Ellen Friedman (O’Reilly, 2016).

These two short Whiteboard Walkthrough videos explain the
advantages of stream-first architecture to support a microservices
approach:

• “Key Requirement for Streaming Platforms: A Micro-Services
Advantage”: http://bit.ly/2bMkaNk
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• “Streaming Data: How to Move from State to Flow”: https://
www.mapr.com/blog/streaming-data-how-move-state-flow-
whiteboard-walkthrough-part-2

Message Transport: Apache Kafka
If you’d like to experiment with Kafka, you can find sample pro‐
grams in a blog post on the MapR website: “Getting Started with
Sample Programs for Apache Kafka 0.9”: https://www.mapr.com/
blog/getting-started-sample-programs-apache-kafka-09
At this time, several chapters of an early release of a book on Kafka,
Kafka: the Definitive Guide by Neha Narkhede, Gwen Shapira, and
Todd Palino are available at http://oreil.ly/2aEtzFH.

Message Transport: MapR Streams
To learn more about the message-transport technology that is an
integral part of the MapR Converged Data Platform, see the follow‐
ing resources:

• For an overview of MapR Streams’ capabilities, including man‐
agement at the stream level and geo-distributed stream replica‐
tion, go to https://www.mapr.com/products/mapr-streams.

• For sample programs with MapR Streams (which uses the Kafka
API), see “Getting Started with MapR Streams”: https://
www.mapr.com/blog/getting-started-sample-programs-mapr-
streams.

• For a brief comparison of transport options, see “Apache Kafka
and MapR Streams: Terms, Techniques and New Designs”:
https://www.mapr.com/blog/apache-kafka-and-mapr-streams-
terms-techniques-and-new-designs.
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Selected O’Reilly Publications by Ted Dunning
and Ellen Friedman

• Streaming Architecture: New Designs Using Apache Kafka and
MapR Streams (O’Reilly, 2016): http://oreil.ly/1Tj5QEW

• Sharing Big Data Safely: Managing Data Security (O’Reilly,
2015): http://oreil.ly/1L5XDGv

• Real-World Hadoop (O’Reilly, 2015): http://oreil.ly/1U4U2fN
• Time Series Databases: New Ways to Store and Access Data

(O’Reilly, 2014): http://oreil.ly/1ulZnOf
• Practical Machine Learning: A New Look at Anomaly Detection

(O’Reilly, 2014): http://oreil.ly/1qNqKm2
• Practical Machine Learning: Innovations in Recommendation

(O’Reilly, 2014): http://oreil.ly/1qt7riC
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