CCF YOCSEF
Shanghai

Jason Dai
Engineering Director & Principal Engineer
Intel Software and Services Group

Agenda

Big Data beyond Hadoop

Introduction to Spark and Shark

Case study: real-time analytical processing (RTAP)

Big Data beyond Hadoop

Big Dta today

* The , is in the room
Q vl

Big Data beyond Hadoop

» Real-time analytical processing (RTAP)
— Discover and explore data iteratively and interactively for real-time insights

« Advanced machine leaning and data mining (MLDM)
— Graph-parallel predictive analytics (non-SQL)

» Distributed in-memory analytics
— Exploit available main memory in the entire cluster for >100x speedup

RTAP: Real-Time Analytical Processing

Real-Time Analytical Processing (RTAP)
« Data ingested & processed in a streaming fashion
» Real-time data queried and presented in an online fashion

« Real-time and history data combined and mined interactively

* Predominantly RAM-based processing

Advanced, Graph-Parallel MLDM

Advanced machine learning and data mining (MLDM)

 Information retrieval (e.g., page rank)

Recommendation engine (e.g., ALS)

Social network analysis (e.g., clustering)

Natural language processing (e.g., NER)

Graph parallel computations
» Asparse graph G(V, E)

« Avertex program P runs on each vertex in parallel
& repeatedly

» Vertices interact along edges

Advanced, Graph-Parallel MLDM

MLDM
Data-Para Graph-Parallel
MapReduce Pregel/GraphLab
* Independent data » (Sparse) data dependence
» Single-pass * |terative
* (Bulk) synchronous « Dynamically prioritized

10x~100x speedup

» Exploit graph structure to reduce
computation & communications

 Efficient graph partition to balance
computation/storage, and minimize
network transfer

Distributed In-Memory Analytics

Memory is king
* 64GB/node mainstream, 192GB not uncommon, fast cheap NVRAM on the horizon

Hadoop inherently disk-based architecture
* Full table scan in Hive from RAM only ~40% speedup

* Read all the main-memory DB literatures ©

Distributed in-memory analytics
 Efficient compute integrated with columnar compression

» Reliable RAM-oriented storage layer across the cluster

» Holistic allocation of memory in the cluster
— Inputs, intermediate results, temporary data, computation state, etc.

Agenda

Big Data beyond Hadoop

Introduction to Spark and Shark

Case study: real-time analytical processing (RTAP)

Project Overview

Research & open source projects initiated by AMPLab in UC Berkeley

» Leveraging existing SW stacks (e.g., HDFS, Hive, etc.) https://amplab.cs.berkeley.edu/

http://spark-project.org/
http://shark.cs.berkeley.edu/

* Moving beyond Hadoop w/ BDAS
— In-memory, real-time data analysis (Spark, Shark, Tachyon, etc.)

— Advanced, graph-parallel machine leaning (GraphX, MLBase, etc.)
 Intel China collaborating with AMPLab on joint open source development

» Active communities and early adopters evolving
— Spark Apache incubator proposal @ https://wiki.apache.org/incubator/SparkProposal

Spark Graph | ML BlinkDB Pig)
: t
Streaming X base BROPYN HIVE Storm | MPI Praofessing

D

Mgmnt.

Resource
[Released (BDAS) [___]in development (BDAS) [___]Existing open source stack
Berkeley Data Analytics Stack (BDAS)

https://wiki.apache.org/incubator/SparkProposal
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
http://spark-project.org/
http://spark-project.org/
http://spark-project.org/
http://spark-project.org/
http://shark.cs.berkeley.edu/

What is Spark?

A distributed, in-memory, real-time data processing framework

» A general, efficient, Dryad-like engine

— A superset of MapReduce, compatible with Hadoop’s storage APIs, but up to 40x faster
than Hadoop

— Avoid launching multiple chained MR jobs or storing intermediate results on HDFS

= RDD (resilient distributed
datasets)

i = partition in an RDD

i = cached data partition

- e e e e e e e o o e = = =

pmm—m——————

What is Spark?

A distributed, in-memory, real-time data processing framework

« Extremely low latency
— Optimized for tasks as short as 100s of milliseconds

— Speed of MPP and/or in-memory databases (i.e., interactive queries), but with finer-
grained fault recovery

 Efficient in-memory, real-time computing
— Allow working set to be cached in memory, with graceful degradation under low memory

— Efficient support for real-time and/or iterative data analysis
— Interactive, streaming, iterative, graph-parallel, etc.

What is Shark?

A Hive-compatible data warehouse on Spark

« Compatible with existing Hive data, metastores, and queries (HiveQL, UDFs,
etc.)

— Shark/Spark specific optimizations (hash- and memory-based shuffle, data co-
partitioning, etc.)

— Up to 40x faster than Hive, and support interactive queries

« Allow table to be cached in memory for online & iterative mining

 Integration with Spark to combine SQL and machine learning algorithms

Use Cases

Ad-hoc & interactive queries

» Allow close-to sub-second latency
— E.g., similar to Dremel & Implala (but with fine-grained fault-tolerance)

In-memory, real-time analysis

» Load data (reliably) in distributed memory for online analysis
— E.g., similar to PowerDrill

lterative, graph-parallel analysis (esp. machine learning)

« Cache intermediate results in memory for iterative machine learning

» Graph-parallel computing (e.g., Pregrel and GraphLab models) on Spark

Use Cases

Stream processing

» Spark streaming

— Run streaming computation as a series of very small, deterministic batch jobs
— As frequent as ~1/2 second

— Better fault tolerance, straggler handling & state consistency
— Potentially combine batch, interactive & streaming workloads

batch operations
lnput

tate / output
tme=0-1: <
immutable . _ CT T 13 immutable distributed
distributed dataset el el e ‘(//,,//"’ Jpe dataset, stored in
(replicated in memory) s U lis s memory as RDD ‘

mpu\ /->
time=1-2: _
5 L0 0s Uplslsls

input stream state stream

Agenda

Big Data beyond Hadoop

Introduction to Spark and Shark

Case study: real-time analytical processing (RTAP)

RTAP Architecture

data latency: 5~10 seconds

Lightweight

Denormlized, queries

aggregated
results

data
stream Stream

Processi

real-time

online query
Low latency: —3
Latency sub-second
Query
Engine

Messagin
g / Queue

table Ad-hoc

queries Interactive
Query / Bl
Interactive
<€— query latency: —y
<5 seconds

We are partnering with several web sites
on building the RTAP framework using Spark & Shark

RTAP Use Cases

Online dashboard

» Pages/Ads/Videos/ltems — time base aggregations — break-down by categories/demography

Top 10 Viewed Category | /vehicle/car View Count

A

Sports 500002 —¢=Sports

_o
% —@—Jeep
Jeep 430045 —_ —aFamily

30s Minute Hour

Interactive BI

» Combined with history & dimension data when necessary
— E.g., top 100 viewed videos under each category in the last month

RTAP Framework using Spark & Shark

Messaging Stream
/ Queue Processing RAM Store Query

Spark In-Memory
Streamin Shark
Table

Shark Tables Interactive
(HDFS) Query / Bl

Persistent Storage

A work in progress

Real-Time Data Stream Processing

Messaging
/ Queue

Logs streamed into Spark Streaming through
Kafka in real-time

Incoming logs processed by Spark Streaming
in small batches (e.g., 5 seconds)

« Compute multiple aggregations over logs
received in the last window

» Join logs and history tables when necessary

Plan to add the Streaming support directly in Shark

Stream
Processing

RAM Store

Spark

.4 Streamin

Persistent
Storage

SUEGEES
(HDFS)

Raw click stream

— 0.6.38.68 - - BAF42487E0C7076CE576FAABOE1852EC [14/Dec/2012
8:21:16 -0] "GET ?video=8745 HTTP/1.1" 101 1345
http://www.foo.com/bar/?ivideo=8745
"Mozilla/4.0 (compatible; MSIE 5.5; Windows 98; Win 9x 4.90)“

Compute page view in the last minute

— E.g., www.foo.com/bar/?video=8745, www.foo.com/bar,
www.foo.com, etc.

Compute category view count in the last minute

— E.g., join logs and the video table (assuming video 8745
belongs to /vehicle/car/sports) for /vehicle, /vehicle/car,
/vehicle/car/sports, etc.

i

Real-Time Data Store and Query Engine

L

Analysis /

St
Procr::sTng RAM Store Query Engine Dashboar
Spark In-Memory
Streamin Shark
1zle Interactive
Query / Bl
Shark Tables
(HDFS)
Persistent Aggregation results written to Shark table cached in memory
Storage

» Currently output as cached RDD by Spark Streaming
— Require Spark Streaming embedded in the Shark server JVM

« Plan to move to Tachyon for better sharing and fault tolerance

Both real-time aggregations and history data queried through Shark

» History data loaded into memory for iterative mining

» Working on query optimizations & standard SQl-92 support

Online and Interactive Queries

RAM Store .
In-Memory Query Engine I-
Persistent Shark
Storage Table II
Shark Tables -
(HDFS)

Online analysis

+ Alightweight Ul frontending Shark for online dashboard

* Mostly time-based lightweight queries (filtering, ordering, TopN, aggregations, etc.) with sub-second
latency

Interactive query / Bl

* Ad-hoc, (more) complex SQL queries (with <5 seconds latency)

* Heavily denormalized to eliminate join as much as possible

Summary

@ Big Data beyond Hadoop

Real-Time Analytical
Processing

Distributed In-Memory
Analysis

Ina collaborating
with UC Berkeley & web early adopters evolving
(e.g., Spark Apache

@ Call to action

Work with us on next-gen Big Data beyond Hadoop using Spark/Shark

2013557 /R® B

FEERIERE

2013RHFF/R" MEFRIRIZE

BHERKIZES
BARRSR

RIFR F8E
HITERFIRIT

ETBRA™ TR
Windows 8 NAA

SN — BFRRR &
AR EZERIEVGRIZ RO

e

Sh — ETND
B

ETRFR 689
Android” WA A

P — BRETIERITH
TR saT

DR — FHIREER

HTMLS 2R A&

BERATVT AR RN

BTN 2™ F¥6

ZA5/R" Apache Hadoop —
%ﬁgﬁmm§§ B
eyl ‘
T 5 R Apache W#quﬂ
Hadoop® #f& TRRENA -
HIBRIRTTA TS SRR
EFER F5 o ﬁWA
BRI AR T L W

BEF AR FO8IDMh
IVSIERIRITSIEN

ez ﬁ:F % /@ 1= E_ZIS

ST E-REHERA
N FFEAL

SRR R BT

TR VERIT 9 A 2 KEHE IR ES), MBS 5HZITFRA:

hai.shen@intel.com

