

CCF YOCSEF Shanghai

Big Data Beyond Hadoop Real-Time Analytical Processing (RTAP) Using Spark and Shark

Jason Dai

Engineering Director & Principal Engineer Intel Software and Services Group

Big Data beyond Hadoop

Introduction to Spark and Shark

Case study: real-time analytical processing (RTAP)

Big Data beyond Hadoop

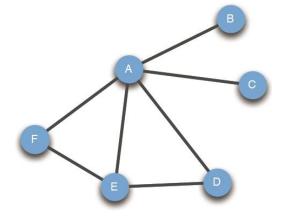
Big Data beyond Hadoop

- Real-time analytical processing (RTAP)
 - Discover and explore data iteratively and interactively for real-time insights
- Advanced machine leaning and data mining (MLDM)
 - **Graph-parallel** predictive analytics (non-SQL)
- Distributed in-memory analytics
 - Exploit available **main memory** in the entire cluster for >100x speedup

RTAP: Real-Time Analytical Processing

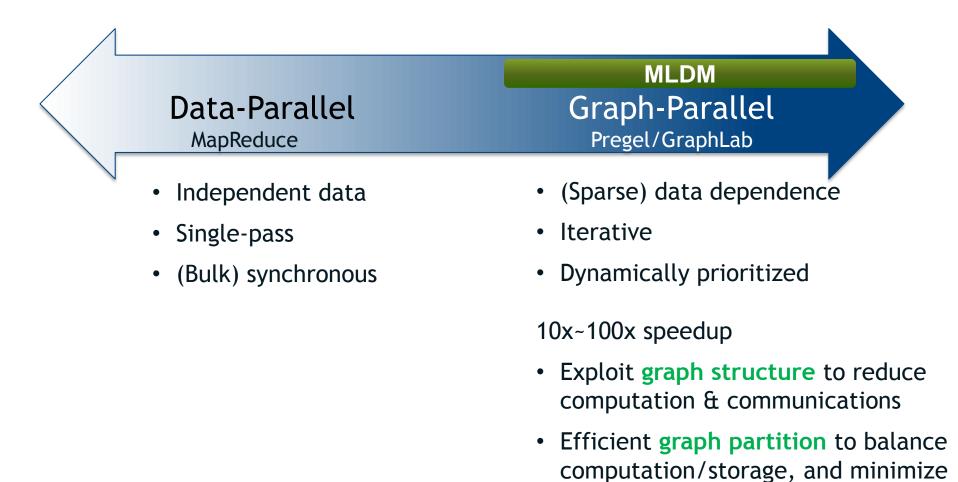
Real-Time Analytical Processing (RTAP)

- Data ingested & processed in a streaming fashion
- Real-time data queried and presented in an online fashion
- Real-time and history data combined and mined interactively
- Predominantly RAM-based processing


Advanced, Graph-Parallel MLDM

Advanced machine learning and data mining (MLDM)

- Information retrieval (e.g., page rank)
- Recommendation engine (e.g., ALS)
- Social network analysis (e.g., clustering)
- Natural language processing (e.g., NER)


Graph parallel computations

- A sparse graph G(V, E)
- A vertex program P runs on each vertex in parallel & repeatedly
- Vertices interact along edges

Advanced, Graph-Parallel MLDM

network transfer

Distributed In-Memory Analytics

Memory is king

• 64GB/node mainstream, 192GB not uncommon, fast cheap NVRAM on the horizon

Hadoop inherently disk-based architecture

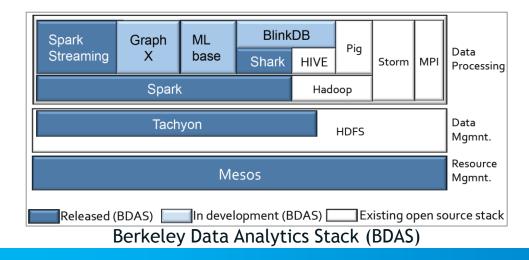
- Full table scan in Hive from RAM only ~40% speedup
- Read all the main-memory DB literatures $\ensuremath{\textcircled{\sc o}}$

Distributed in-memory analytics

- Efficient compute integrated with columnar compression
- Reliable RAM-oriented storage layer across the cluster
- Holistic allocation of memory in the cluster
 - Inputs, intermediate results, temporary data, computation state, etc.

Big Data beyond Hadoop

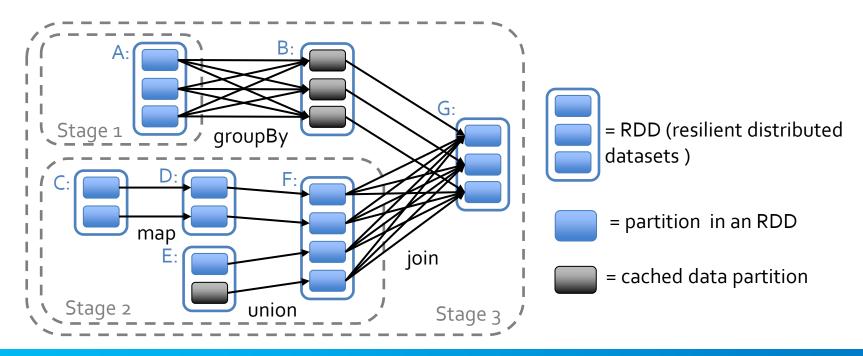
Introduction to Spark and Shark


Case study: real-time analytical processing (RTAP)

Project Overview

Research & open source projects initiated by AMPLab in UC Berkeley

- Leveraging existing SW stacks (e.g., HDFS, Hive, etc.)
- Moving beyond Hadoop w/ BDAS
 - In-memory, real-time data analysis (Spark, Shark, Tachyon, etc.)
 - Advanced, graph-parallel machine leaning (GraphX, MLBase, etc.)
- Intel China collaborating with AMPLab on joint open source development
- Active communities and early adopters evolving
 - Spark Apache incubator proposal @ <u>https://wiki.apache.org/incubator/SparkProposal</u>



https://amplab.cs.berkeley.edu/ http://spark-project.org/ http://shark.cs.berkeley.edu/

What is Spark?

A distributed, *in-memory*, *real-time* data processing framework

- A general, efficient, Dryad-like engine
 - A superset of MapReduce, compatible with Hadoop's storage APIs, but up to 40x faster than Hadoop
 - Avoid launching multiple chained MR jobs or storing intermediate results on HDFS

What is Spark?

A distributed, *in-memory*, *real-time* data processing framework

- Extremely low latency
 - Optimized for tasks as short as 100s of milliseconds
 - Speed of MPP and/or in-memory databases (i.e., interactive queries), but with finergrained fault recovery
- Efficient in-memory, real-time computing
 - Allow working set to be cached in memory, with graceful degradation under low memory
 - Efficient support for real-time and/or iterative data analysis
 - Interactive, streaming, iterative, graph-parallel, etc.

What is Shark?

A Hive-compatible data warehouse on Spark

- Compatible with existing Hive data, metastores, and queries (HiveQL, UDFs, etc.)
 - Shark/Spark specific optimizations (hash- and memory-based shuffle, data copartitioning, etc.)
 - Up to 40x faster than Hive, and support interactive queries
- Allow table to be cached in memory for online & iterative mining
- Integration with Spark to combine SQL and machine learning algorithms

Use Cases

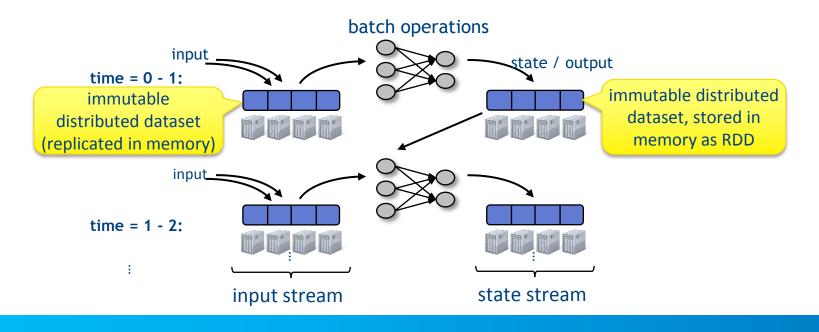
Ad-hoc & interactive queries

- Allow close-to sub-second latency
 - E.g., similar to Dremel & Implala (but with fine-grained fault-tolerance)

In-memory, real-time analysis

- Load data (reliably) in distributed memory for online analysis
 - E.g., similar to PowerDrill

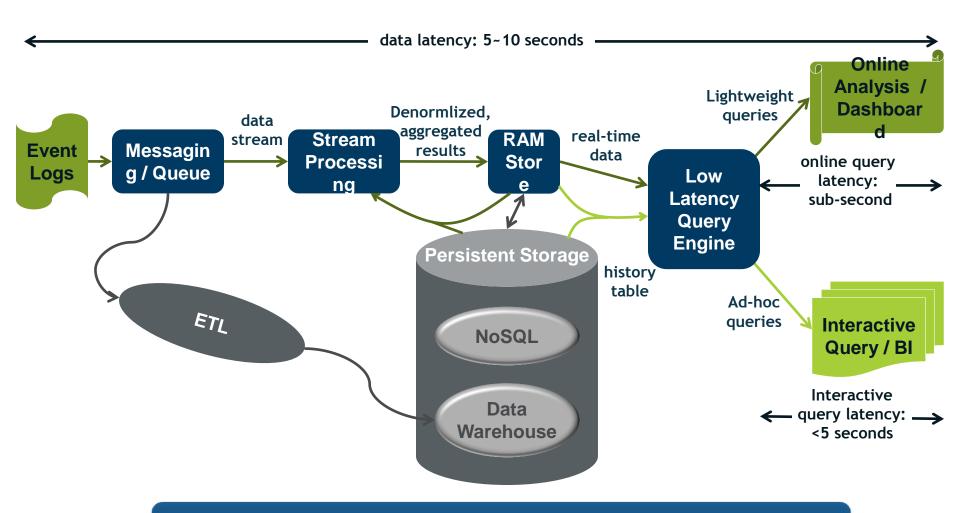
Iterative, graph-parallel analysis (esp. machine learning)


- Cache intermediate results in memory for iterative machine learning
- Graph-parallel computing (e.g., Pregrel and GraphLab models) on Spark

Use Cases

Stream processing

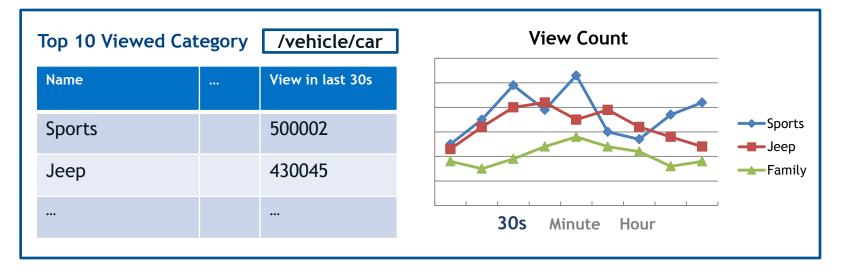
- Spark streaming
 - Run streaming computation as a series of very small, deterministic batch jobs
 As frequent as ~1/2 second
 - Better fault tolerance, straggler handling & state consistency
 - Potentially combine batch, interactive & streaming workloads


Big Data beyond Hadoop

Introduction to Spark and Shark

Case study: real-time analytical processing (RTAP)

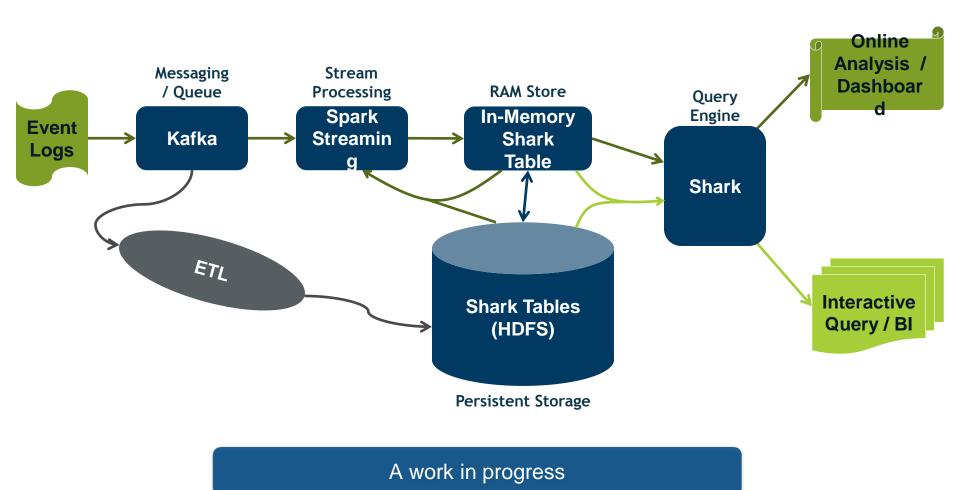
RTAP Architecture


We are partnering with several web sites on building the *RTAP* framework using Spark & Shark

RTAP Use Cases

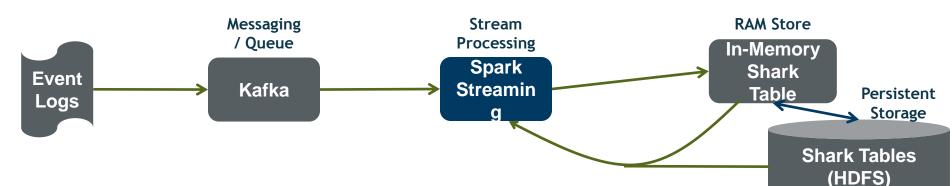
Online dashboard

• Pages/Ads/Videos/Items - time base aggregations - break-down by categories/demography



Interactive BI

- Combined with history & dimension data when necessary
 - E.g., top 100 viewed videos under each category in the last month



RTAP Framework using Spark & Shark

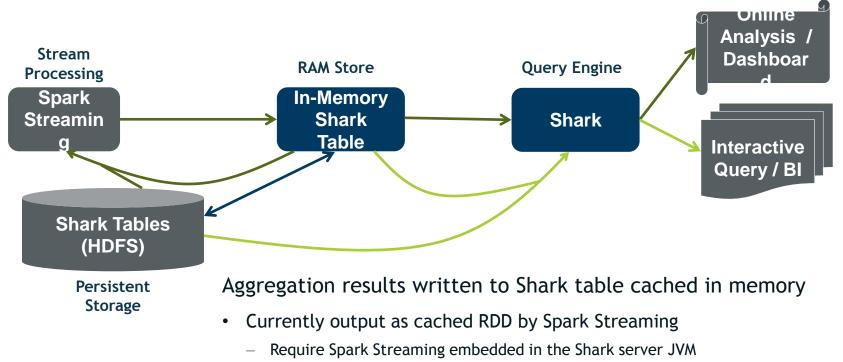
(intel)

Real-Time Data Stream Processing

Logs streamed into Spark Streaming through Kafka in real-time

Incoming logs processed by Spark Streaming in small batches (e.g., 5 seconds)

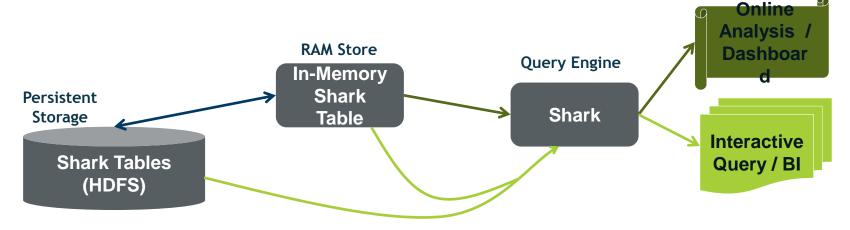
- Compute multiple aggregations over logs received in the last window
- Join logs and history tables when necessary


- Raw click stream
 - 0.6.38.68 BAF42487E0C7076CE576FAAB0E1852EC [14/Dec/2012 8:21:16 -0] "GET ?video=8745 HTTP/1.1" 101 1345 http://www.foo.com/bar/?ivideo=8745 "Mozilla/4.0 (compatible; MSIE 5.5; Windows 98; Win 9x 4.90)"

- Compute page view in the last minute
 - E.g., www.foo.com/bar/?video=8745, www.foo.com/bar, www.foo.com, etc.
- · Compute category view count in the last minute
 - E.g., join logs and the video table (assuming video 8745 belongs to /vehicle/car/sports) for /vehicle, /vehicle/car, /vehicle/car/sports, etc.

Plan to add the Streaming support directly in Shark

Real-Time Data Store and Query Engine

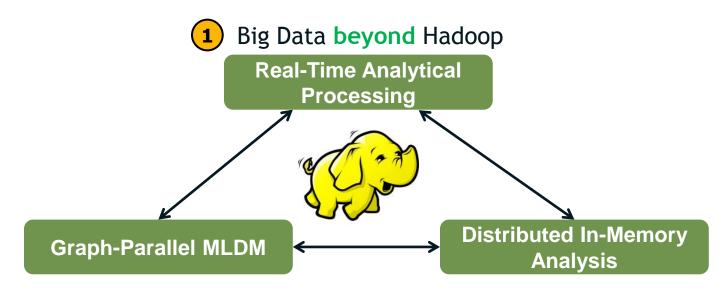

• Plan to move to Tachyon for better sharing and fault tolerance

Both real-time aggregations and history data queried through Shark

- History data loaded into memory for iterative mining
- Working on query optimizations & standard SQI-92 support

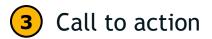
Online and Interactive Queries

Online analysis


- A lightweight UI frontending Shark for online dashboard
- Mostly time-based lightweight queries (filtering, ordering, TopN, aggregations, etc.) with sub-second latency

Interactive query / BI

- Ad-hoc, (more) complex SQL queries (with <5 seconds latency)
- Heavily denormalized to eliminate join as much as possible

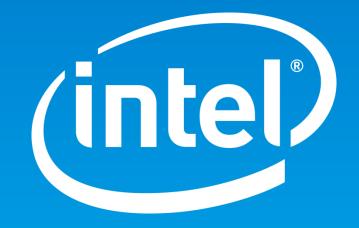


Summary

2 BDAS: one stack to **rule** them all!

Intel China collaborating with UC Berkeley & web sites on production deployment Active communities and early adopters evolving (e.g., Spark Apache incubator proposal)

Work with us on next-gen Big Data beyond Hadoop using Spark/Shark



2013英特尔[®] 软件学院课程概览

2013英特尔 [®] 软件学院课程图				
英特尔 [◎] 平台 并行程序设计	移动互联设备与 嵌入式系统	数据中心与云计算	英特尔 [◎] 平台技术	管理与软技能
高级 — 基于英特尔 [®] 集成众核架构的编程和优化	基于超极本™ 和平板的 Windows [*] 8 应用开发	英特尔 [®] Apache Hadoop* 软件发行版的安装,运营	英特尔 [®] 可视化 计算应用开发和调优	软件质量控制
		和管理 基于英特尔 [®] Apache Hadoop [*] 软件发行版的大 数据应用开发		软件产品测试
高级 – 针对多核微架构 的优化	基于英特尔 [*] 平台的 Android [*] 应用开发		针对英特尔 [*] 核芯显 卡优化3D游戏客户端 性能	软件项目管理基础
		基于英特尔 [®] 平台 的企业云计算架构设计		建立战略合作伙伴
中级 — 使用工具进行并 行程序优化设计	HTML5 移动应用开发	的正亚厶川昇朱彻反川	英特尔》功耗	
		基于英特尔 [®] 平台的分布 式存储架构设计与调优	优化策略和工具	销售基础
				演讲与沟通技巧
初级 — 并行编程基础	基于英特尔 [®] 凌动™平台 的嵌入式开发应用	高性能计算−集群搭建和 应用调试	基于英特尔 [®] 平台的 感知计算应用开发	
				问题解决技巧

英特尔计划于9月举办大数据师资研讨活动,有兴趣参与的老师请联系: hai.shen@intel.com

