项目作者: shawnngtq

项目描述 :
Machine learning notes
高级语言: Jupyter Notebook
项目地址: git://github.com/shawnngtq/machine-learning.git
创建时间: 2017-09-15T15:28:31Z
项目社区:https://github.com/shawnngtq/machine-learning

开源协议:BSD 2-Clause "Simplified" License

下载


datacamp-scikit_1650539097052.pdf
verticaMachineLearningCheatSheetV9.0-1_1650539097089.pdf
Chapter-5---Stochastic-Gradient-Descent--The-LMS-Algorithm_2015_Machine-Lear_1650539095918.pdf
Chapter-6---The-Least-Squares-Family_2015_Machine-Learning_1650539096080.pdf
Chapter-7---Classification--A-Tour-of-the-Classics_2015_Machine-Learning_1650539096176.pdf
Chapter-8---Parameter-Learning--A-Convex-Analytic-Path_2015_Machine-Learning_1650539096299.pdf
Chapter-9---Sparsity-Aware-Learning--Concepts-and-Theoreti_2015_Machine-Lear_1650539096441.pdf
Copyright_2015_Machine-Learning_1650539096515.pdf
Dedication_2015_Machine-Learning_1650539096529.pdf
Front-Matter_2015_Machine-Learning_1650539096608.pdf
Index_2015_Machine-Learning_1650539096689.pdf
Notation_2015_Machine-Learning_1650539096766.pdf
Preface_2015_Machine-Learning_1650539096829.pdf
Chapter-18---Neural-Networks-and-Deep-Learning_2015_Machine-Learning_1650539095037.pdf
Chapter-19---Dimensionality-Reduction-and-Latent-Variable_2015_Machine-Learn_1650539095233.pdf
Chapter-2---Probability-and-Stochastic-Processes_2015_Machine-Learning_1650539095354.pdf
Chapter-3---Learning-in-Parametric-Modeling--Basic-Concept_2015_Machine-Lear_1650539095591.pdf
Chapter-4---Mean-Square-Error-Linear-Estimation_2015_Machine-Learning_1650539095715.pdf
Chapter-12---Bayesian-Learning--Inference-and-the-EM-Alg_2015_Machine-Learni_1650539093932.pdf
Chapter-13---Bayesian-Learning--Approximate-Inference-and-N_2015_Machine-Lea_1650539094147.pdf
Chapter-14---Monte-Carlo-Methods_2015_Machine-Learning_1650539094499.pdf
Chapter-15---Probabilistic-Graphical-Models--Part-I_2015_Machine-Learning_1650539094646.pdf
Chapter-16---Probabilistic-Graphical-Models--Part-II_2015_Machine-Learning_1650539094751.pdf
Chapter-17---Particle-Filtering_2015_Machine-Learning_1650539094905.pdf
STATISTICS-AND-PROBABILITY_2016_Introduction-to-Statistical-Machine-Learning_1650539092981.pdf
Table-of-Contents_2016_Introduction-to-Statistical-Machine-Learning_1650539093067.pdf
Title-Page_2016_Introduction-to-Statistical-Machine-Learning_1650539093194.pdf
Acknowledgments_2015_Machine-Learning_1650539093257.pdf
Appendix-A---Linear-Algebra_2015_Machine-Learning_1650539093337.pdf
Appendix-B---Probability-Theory-and-Statistics_2015_Machine-Learning_1650539093383.pdf
Appendix-C---Hints-on-Constrained-Optimization_2015_Machine-Learning_1650539093470.pdf
Chapter-1---Introduction_2015_Machine-Learning_1650539093515.pdf
Chapter-10---Sparsity-Aware-Learning--Algorithms-and-Appl_2015_Machine-Learn_1650539093584.pdf
Chapter-11---Learning-in-Reproducing-Kernel-Hilbert-Spa_2015_Machine-Learnin_1650539093819.pdf
Chapter-5-Multidimensional-Probability-Distributions_2016_Introduction-to-Statistical-Machine-Learning_1650539091985.pdf
Chapter-6---Examples-of-Multidimensional-P_2016_Introduction-to-Statistical-_1650539092081.pdf
Chapter-6-Examples-of-Multidimensional-Probability-Distributions_2016_Introduction-to-Statistical-Machine-Learning_1650539092254.pdf
Chapter-7---Sum-of-Independent-Random_2016_Introduction-to-Statistical-Machi_1650539092296.pdf
Chapter-7-Sum-of-Independent-Random-Variables_2016_Introduction-to-Statistical-Machine-Learning_1650539092309.pdf
Chapter-8---Probability-Inequali_2016_Introduction-to-Statistical-Machine-Le_1650539092327.pdf
Chapter-8-Probability-Inequalities_2016_Introduction-to-Statistical-Machine-Learning_1650539092418.pdf
Chapter-9---Statistical-Estimat_2016_Introduction-to-Statistical-Machine-Lea_1650539092427.pdf
Chapter-9-Statistical-Estimation_2016_Introduction-to-Statistical-Machine-Learning_1650539092529.pdf
Copyright_2016_Introduction-to-Statistical-Machine-Learning_1650539092537.pdf
DISCRIMINATIVE-APPROACH-TO-STATISTICAL-MACHINE-LEARNING_2016_Introduction-to-Statistical-Machine-Learning_1650539092621.pdf
DISCRIMINATIVE-APPROACH-TO-STATISTICAL-_2016_Introduction-to-Statistical-Mac_1650539092708.pdf
FURTHER-TOPICS_2016_Introduction-to-Statistical-Machine-Learning_1650539092714.pdf
GENERATIVE-APPROACH-TO-STATISTICAL-PATTERN-RECOGNITION_2016_Introduction-to-Statistical-Machine-Learning_1650539092740.pdf
GENERATIVE-APPROACH-TO-STATISTICAL-PATT_2016_Introduction-to-Statistical-Mac_1650539092791.pdf
Half-Title-Page_2016_Introduction-to-Statistical-Machine-Learning_1650539092797.pdf
INTRODUCTION_2016_Introduction-to-Statistical-Machine-Learning_1650539092866.pdf
No-title-available_2015_Introduction-to-Statistical-Machine-Learning_1650539092884.pdf
No-title-available_2015_Introduction-to-Statistical-Machine-Learning1_1650539092902.pdf
Preface_2016_Introduction-to-Statistical-Machine-Learning_1650539092909.pdf
References_2015_Introduction-to-Statistical-Machine-Learning_1650539092931.pdf
Chapter-32---Confidence-of-Predi_2016_Introduction-to-Statistical-Machine-Le_1650539090876.pdf
Chapter-32-Confidence-of-Prediction_2016_Introduction-to-Statistical-Machine-Learning_1650539091060.pdf
Chapter-33---Semisupervised-Lear_2016_Introduction-to-Statistical-Machine-Le_1650539091085.pdf
Chapter-33-Semisupervised-Learning_2016_Introduction-to-Statistical-Machine-Learning_1650539091138.pdf
Chapter-34---Multitask-Learni_2016_Introduction-to-Statistical-Machine-Learn_1650539091176.pdf
Chapter-34-Multitask-Learning_2016_Introduction-to-Statistical-Machine-Learning_1650539091227.pdf
Chapter-35---Linear-Dimensionality-_2016_Introduction-to-Statistical-Machine_1650539091262.pdf
Chapter-35-Linear-Dimensionality-Reduction_2016_Introduction-to-Statistical-Machine-Learning_1650539091390.pdf
Chapter-36---Nonlinear-Dimensionality_2016_Introduction-to-Statistical-Machi_1650539091449.pdf
Chapter-36-Nonlinear-Dimensionality-Reduction_2016_Introduction-to-Statistical-Machine-Learning_1650539091546.pdf
Chapter-37---Clustering_2016_Introduction-to-Statistical-Machine-Learning_1650539091584.pdf
Chapter-37-Clustering_2016_Introduction-to-Statistical-Machine-Learning_1650539091674.pdf
Chapter-38---Outlier-Detectio_2016_Introduction-to-Statistical-Machine-Learn_1650539091685.pdf
Chapter-38-Outlier-Detection_2016_Introduction-to-Statistical-Machine-Learning_1650539091728.pdf
Chapter-39---Change-Detectio_2016_Introduction-to-Statistical-Machine-Learni_1650539091770.pdf
Chapter-39-Change-Detection_2016_Introduction-to-Statistical-Machine-Learning_1650539091822.pdf
Chapter-4---Examples-of-Continuous-Probab_2016_Introduction-to-Statistical-M_1650539091879.pdf
Chapter-4-Examples-of-Continuous-Probability-Distributions_2016_Introduction-to-Statistical-Machine-Learning_1650539091897.pdf
Chapter-5---Multidimensional-Probabilit_2016_Introduction-to-Statistical-Mac_1650539091933.pdf
Chapter-25-Robust-Regression_2016_Introduction-to-Statistical-Machine-Learning_1650539089991.pdf
Chapter-26---Least-Squares-Classif_2016_Introduction-to-Statistical-Machine-_1650539090013.pdf
Chapter-26-Least-Squares-Classification_2016_Introduction-to-Statistical-Machine-Learning_1650539090038.pdf
Chapter-27---Support-Vector-Classif_2016_Introduction-to-Statistical-Machine_1650539090075.pdf
Chapter-27-Support-Vector-Classification_2016_Introduction-to-Statistical-Machine-Learning_1650539090128.pdf
Chapter-28---Probabilistic-Classif_2016_Introduction-to-Statistical-Machine-_1650539090191.pdf
Chapter-28-Probabilistic-Classification_2016_Introduction-to-Statistical-Machine-Learning_1650539090361.pdf
Chapter-29---Structured-Classific_2016_Introduction-to-Statistical-Machine-L_1650539090375.pdf
Chapter-29-Structured-Classification_2016_Introduction-to-Statistical-Machine-Learning_1650539090458.pdf
Chapter-3---Examples-of-Discrete-Probabi_2016_Introduction-to-Statistical-Ma_1650539090493.pdf
Chapter-3-Examples-of-Discrete-Probability-Distributions_2016_Introduction-to-Statistical-Machine-Learning_1650539090525.pdf
Chapter-30---Ensemble-Learnin_2016_Introduction-to-Statistical-Machine-Learn_1650539090636.pdf
Chapter-30-Ensemble-Learning_2016_Introduction-to-Statistical-Machine-Learning_1650539090762.pdf
Chapter-31---Online-Learning_2016_Introduction-to-Statistical-Machine-Learni_1650539090821.pdf
Chapter-31-Online-Learning_2016_Introduction-to-Statistical-Machine-Learning_1650539090849.pdf
Chapter-17---Bayesian-Inferen_2016_Introduction-to-Statistical-Machine-Learn_1650539088959.pdf
Chapter-17-Bayesian-Inference_2016_Introduction-to-Statistical-Machine-Learning_1650539089039.pdf
Chapter-18---Analytic-Approximation-of-M_2016_Introduction-to-Statistical-Ma_1650539089051.pdf
Chapter-18-Analytic-Approximation-of-Marginal-Likelihood_2016_Introduction-to-Statistical-Machine-Learning_1650539089089.pdf
Chapter-19---Numerical-Approximation-of-Pr_2016_Introduction-to-Statistical-_1650539089113.pdf
Chapter-19-Numerical-Approximation-of-Predictive-Distribution_2016_Introduction-to-Statistical-Machine-Learning_1650539089172.pdf
Chapter-2---Random-Variables-and-Probabi_2016_Introduction-to-Statistical-Ma_1650539089210.pdf
Chapter-2-Random-Variables-and-Probability-Distributions_2016_Introduction-to-Statistical-Machine-Learning_1650539089403.pdf
Chapter-20---Bayesian-Mixture-Mo_2016_Introduction-to-Statistical-Machine-Le_1650539089435.pdf
Chapter-20-Bayesian-Mixture-Models_2016_Introduction-to-Statistical-Machine-Learning_1650539089496.pdf
Chapter-21---Learning-Models_2016_Introduction-to-Statistical-Machine-Learni_1650539089510.pdf