代码空间


摘要(Abstract)

Hewitt认为Agent技术是一种处于一定环境下包装的计算机系统,为实现设计目的,能在该环境下灵活的,自主的活动。而在1995年Wooldrige给出了Agent的两种定义:(弱定义)Agent用以最一般的说明一个软硬件系统,她具有这样的特性:自治性,社会性,反映性,能动性;(强定义)Agent除了具备弱定义中的所有特性外,还应具备一些人类才具有的特性,如知识,信念,义务,意图等。 Agent技术在90年代成为热门话题,甚至被一些文献称为软件领域下一个意义深远的突破,其重要原因之一在于,该技术在基于网络的分布计算这一当今计算机主流技术领域中,正发挥着越来越重要的作用。一方面,Agent技术为解决新的分布式应用问题提供了有效途;另一方面,Agent技术为全面准确地研究分布计算系统的特点提供了合理的概念模型。 [1] 1. 从"人找信息"到"信息找人" 2. 并行工程 3. 分布式交互仿真 1. 利用Agent技术改善Internet应用 2. 利用Agent技术实现并行工程的思想 3. 利用Agent技术开发分布式交互仿真环境 1. 自主性 2. 交互性 3. 反应性 4. 主动性 1. 审慎式体系结构(Deliberative Architecture) 2. 反应式体系结构(Reactive Architecture) 3. 混合式体系结构(Hybrid Architecture)


主题(Topic)

reinforcement-learning- applied-deep-learning applied-machine-learning adversarial-reinforcement-learning berkeley-reinforcement-learning carla-reinforcement-learning causal-reinforcement-learning checkers-reinforcement-learning constrained-reinforcement-learning continuous-reinforcement-learning coursera-reinforcement-learning curriculum-reinforcement-learning deep-reinforcement-learning dissecting-reinforcement-learning distributed-reinforcement-learning feudal-reinforcement-learning hierachical-reinforcement-learning hierarchical-reinforcement-learning interactive-reinforcement-learning inverse-reinforcement-learning meta-reinforcement-learning minecraft-reinforcement-learning multiagent-reinforcement-learning munchausen-reinforcement-learning practical-reinforcement-learning pytorch-reinforcement-learning recurrent-reinforcement-learning reinforcement-learning-agent reinforcement-learning-agents reinforcement-learning-alberta reinforcement-learning-algorithm reinforcement-learning-algorithms reinforcement-learning-analysis reinforcement-learning-books reinforcement-learning-bot reinforcement-learning-bots reinforcement-learning-cartpole reinforcement-learning-concepts reinforcement-learning-datasets reinforcement-learning-environ reinforcement-learning-environment reinforcement-learning-environments reinforcement-learning-examples reinforcement-learning-excercises reinforcement-learning-exercises reinforcement-learning-frame reinforcement-learning-options reinforcement-learning-papers
项目(Project)