代码空间


摘要(Abstract)

深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。 同机器学习方法一样,深度机器学习方法也有监督学习与无监督学习之分.不同的学习框架下建立的学习模型很是不同.例如,卷积神经网络(Convolutional neural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(Deep Belief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。机器学习只关注解决现实问题。它还需要人工智能的一些想法。机器学习通过旨在模仿人类决策能力的神经网络。ML工具和技术是两个主要的仅关注深度学习的窄子集。我们需要应用它来解决任何需要思考的问题 —— 人类的或人为的。任何深度神经网络都将包含以下三层: 输入层 隐藏层 输出层


主题(Topic)

artificial-intelligence-udacity android-artificial-intelligence artificial-intelligence-algorithms artificial-intelligence-based-game artificial-intelligence-features artificial-intelligence-framework artificial-intelligence-microsoft artificial-intelligence-news artificial-intelligence-project artificial-intelligence-python artificial-intelligence-robotics artificial-intelligence-systems artificial-intelligence-vuw javascript-artificial-intelligence strong-artificial-intelligence advanced-artificial-intelligence artificial-general-intelligence artificial-intelligence-algorithm artificial-intelligence-application artificial-intelligence-courses artificial-intelligence-literatures artificial-intelligence-models artificial-intelligence-playlists artificial-intelligence-projects artificial-intelligence-requests artificial-intelligence-search artificial-intelligence-tps artificial-intelligence-workloads axplainable-artificial-intelligence comp430-artificial-intelligence coursera-artificial-intelligence distributed-artificial-intelligence embodied-artificial-intelligence ethical-artificial-intelligence explainable-artificial-intelligence game-artificial-intelligence general-artificial-intelligence home-artificial-intelligence insight-artificial-intelligence quantum-artificial-intelligence symbolic-artificial-intelligence usg-artificial-intelligence artificial-intelligence-for-android logic-based-artificial-intelligence artificial intelligence machine-learning udacity alpha-intelligence
项目(Project)