找到正确的最小支持和最小置信度值并以0个频繁项目集或0个关联规则结束的问题非常普遍。读
这个
如果你需要复习什么是支持和信心的确切含义。
我们先来看看你的交易数据:
summary(trans)
transactions as itemMatrix in sparse format with
2531 rows (elements/itemsets/transactions) and
6632 columns (items) and a density of 0.0005951533
most frequent items:
AR845311 AR800369 AR828249 AR839869 AR831167 (Other)
84 35 31 29 24 9787
element (itemset/transaction) length distribution:
sizes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
767 509 306 238 160 112 100 52 69 50 31 27 18 12 13 15 9 10 7 5 4
23 24 25 27 28 32 34 36 48
3 4 2 3 1 1 1 1 1
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.000 2.000 3.947 5.000 48.000
</code>
要处理的第一个问题是最低限度的支持。摘要说你最常用的项目(
AR845311
)在数据集中出现84次。您的物品通常支持率很低
summary(itemFrequency(trans))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0003951 0.0003951 0.0003951 0.0005952 0.0003951 0.0331900
</code>
你用一分钟。支持0.6,但最常见的单项只有0.033的支持!你需要减少支持。如果要查找数据中至少出现10次的项目集/规则,则可以将最低支持设置为:
10/length(trans)
[1] 0.003951008
</code>
第二个问题是您的数据非常稀疏(摘要显示密度约为0.0006)。这意味着您的交易相当短(即只包含少量项目)。
table(size(trans))
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
767 509 306 238 160 112 100 52 69 50 31 27 18 12 13 15 9 10 7 5 4
23 24 25 27 28 32 34 36 48
3 4 2 3 1 1 1 1 1
</code>
短交易意味着规则的可信度可能很低。对于你的数据,事实证明它非常低,所以我先使用0。
rules <- apriori(trans,
- parameter = list(support = 0.004, confidence = 0, target = “rules”))
Apriori
Parameter specification:
confidence minval smax arem aval originalSupport maxtime support minlen maxlen
0 0.1 1 none FALSE TRUE 5 0.004 1 10
target ext
rules FALSE
Algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE
Absolute minimum support count: 10
set item appearances …[0 item(s)] done [0.00s].
set transactions …[6632 item(s), 2531 transaction(s)] done [0.00s].
sorting and recoding items … [40 item(s)] done [0.00s].
creating transaction tree … done [0.00s].
checking subsets of size 1 2 done [0.00s].
writing … [46 rule(s)] done [0.00s].
creating S4 object … done [0.00s].
summary(rules)
set of 46 rules
rule length distribution (lhs + rhs):sizes
1 2
40 6
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 1.00 1.00 1.13 1.00 2.00
summary of quality measures:
support confidence lift count
Min. :0.004346 Min. :0.004346 Min. : 1.000 Min. :11.00
1st Qu.:0.004741 1st Qu.:0.004840 1st Qu.: 1.000 1st Qu.:12.00
Median :0.005531 Median :0.005729 Median : 1.000 Median :14.00
Mean :0.006803 Mean :0.057301 Mean : 3.316 Mean :17.22
3rd Qu.:0.007112 3rd Qu.:0.008890 3rd Qu.: 1.000 3rd Qu.:18.00
Max. :0.033188 Max. :0.705882 Max. :21.269 Max. :84.00
mining info:
data ntransactions support confidence
trans 2531 0.004 0
</code>
结果表明,至少有一条规则的置信度为0.7。您可以更高的信心再次运行APRIORI。以下是最值得信赖的规则:
inspect(head(rules, by = “confidence”))
lhs rhs support confidence lift count
[1] {AR835501} => {AR845311} 0.004741209 0.7058824 21.26891 12
[2] {AR743988} => {AR845311} 0.004346108 0.6470588 19.49650 11
[3] {AR800369} => {AR845311} 0.007111814 0.5142857 15.49592 18
[4] {AR845311} => {AR800369} 0.007111814 0.2142857 15.49592 18
[5] {AR845311} => {AR835501} 0.004741209 0.1428571 21.26891 12
[6] {AR845311} => {AR743988} 0.004346108 0.1309524 19.49650 11
</code>
可以找到有关如何使用关联规则挖掘的完整示例
这里
。
希望这可以帮助!