介绍.docx


立即下载 一生浮华
2025-04-16
学习 机器 数据 分析 算法 数学 实践 分布 特征 课程
23.4 KB

课程目标:
 
本课程特点是从数学层面推导最经典的机器学习算法,以及每种算法的示例和代码实现(Python)、如何做算法的参数调试、以实际应用案例分析各种算法的选择等。
 
 
内容特色:
 
1.每个算法模块按照“原理讲解→分析数据→自己动手实现→特征与调参”的顺序,“原理加实践,顶天立地”。
2.拒绝简单的“调包”——增加3次“机器学习的角度看数学”和3次“Python数据清洗和特征提取”,提升学习深度、降低学习坡度。
3.增加网络爬虫的原理和编写,从获取数据开始,重视将实践问题转换成实际模型的能力,分享工作中的实际案例或Kaggle案例:广告销量分析、环境数据异常检测和分析、数字图像手写体识别、Titanic乘客存活率预测、用户-电影推荐、真实新闻组数据主题分析、中文分词、股票数据特征分析等。
4.强化矩阵运算、概率论、数理统计的知识运用,掌握机器学习根本。
5.阐述机器学习原理,提供配套源码和数据;确保“懂推导,会实现”。
6.删去过于晦涩的公式推导,代之以直观解释,增强感性理解。
7.对比不同的特征选择带来的预测效果差异。
8.重视项目实践(如工业实践、Kaggle等),重视落地。思考不同算法之间的区别和联系,提高在实际工作中选择算法的能力。
9.涉及和讲解的部分Python库有:Numpy、Scipy、matplotlib、Pandas、scikit-learn、XGBoost、libSVM、LDA、Gensim、NLTK、HMMLearn,涉及的其他“小”库在课程的实践环节会逐一讲解。
 
 
课程大纲:
 
第一课:机器学习的数学基础1 - 数学分析
 
1.  机器学习的一般方法和横向比较
2.  数学是有用的:以SVD为例
3.  机器学习的角度看数学
4.  复习数学分析
5.  直观解释常数e
6.  导数/梯度
7.  随机梯度下降
8.  Taylor展式的落地应用
9.  gini系数
10. 凸函数
11. Jensen不等式
12. 组合数与信息熵的关系
 
第二课:机器学习的数学基础2 - 概率论与贝叶斯先验
 
1.  概率论基础
2.  古典概型
3.  贝叶斯公式
4.  先验分布/后验分布/共轭分布
5.  常见概率分布
6.  泊松分布和指数分布的物理意义
7.  协方差(矩阵)和相关系数
8.  独立和不相关
9. 


学习/机器/数据/分析/算法/数学/实践/分布/特征/课程/ 学习/机器/数据/分析/算法/数学/实践/分布/特征/课程/
-1 条回复
登录 后才能参与评论
-->