大数据学习资源.docx

立即下载
荧惑 | 上传时间: 2021-04-15 | 大小: 49.6 KB
Apache/数据/框架/数据库/系统/分布式/模型/执行/MapReduce/Hadoop/
这大概是史上最全的“大数据”学习资源了!
内容目录
关系数据库管理系统(RDBMS)
框架
分布式编程
分布式文件系统
文件数据模型
Key -Map 数据模型
键-值数据模型
图形数据模型
NewSQL数据库
列式数据库
时间序列数据库
类SQL处理
数据摄取
服务编程
调度
机器学习
基准测试
安全性
系统部署
应用程序
搜索引擎与框架
MySQL的分支和演化
PostgreSQL的分支和演化
Memcached的分支和演化
嵌入式数据库
商业智能
数据可视化
物联网和传感器
文章
论文
视频
关系数据库管理系统(RDBMS)
MySQL:世界最流行的开源数据库;
PostgreSQL:世界最先进的开源数据库;
Oracle 数据库:对象-关系型数据库管理系统。
框架
Apache Hadoop:分布式处理架构,结合了 MapReduce(并行处理)、YARN(作业调度)和HDFS(分布式文件系统);
Tigon:高吞吐量实时流处理框架。
分布式编程
AddThis Hydra :最初在AddThis上开发的分布式数据处理和存储系统;
AMPLab SIMR:用在Hadoop MapReduce v1上运行Spark;
Apache Beam:为统一的模型以及一套用于定义和执行数据处理工作流的特定SDK语言;
Apache Crunch:一个简单的Java API,用于执行在普通的MapReduce实现时比较单调的连接、数据聚合等任务;
Apache DataFu:由LinkedIn开发的针对Hadoop and 和Pig的用户定义的函数集合;
Apache Flink:具有高性能的执行时间和自动程序优化;
Apache Gora:内存中的数据模型和持久性框架;
Apache Hama:BSP(整体同步并行)计算框架;
Apache MapReduce :在集群上使用并行、分布式算法处理大数据集的编程模型;
Apache Pig :Hadoop中,用于处理数据分析程序的高级查询语言;
Apache REEF :用来简化和统一低层大数据系统的保留性评估执行框架;
Apache S4 :S4中流处理与实现的框架;
Apache Spark :内存集群计算框架;
Apache Spark Streaming :流处理框架,同时是Spark的一部分;
Apache St
-1 条回复
登录 后才能参与评论