项目作者: kayvank

项目描述 :
Scala application to stream from AWS Kinesis stream to AWS Aurora RDS
高级语言: Scala
项目地址: git://github.com/kayvank/kinesis-to-aurora.git
创建时间: 2017-12-18T16:03:10Z
项目社区:https://github.com/kayvank/kinesis-to-aurora

开源协议:

下载


kinesis-to-aurora

This is an Idempotent Scala service that persists user-events from kinesis stream to Aurora RDS.

Purpose

The main purpose of the project is to demonstrate

  • http4s
  • kamon
  • AWS kinesis & KCL
  • scalaz streams & Task implementation for AWS Kinesis stream
  • scala & docker
  • doobie
  • circe
  • statsd

Getting Started

These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. See deployment for notes on how to deploy the project on a live system.

Prerequisites

What things you need to install the software and how to install them

Assumption

  • you have
    1. [docker-id]
    2. [AWS account]

Installing

  • set up development environment

  • set up environmnet variables
    ```
    export DOCKER_USER=’docker_userid’
    export DOCKER_PASS=’docker-password’
    export AWS_REGION=’us-east-1’
    export AWS_ACCESS_KEY_ID=XXXXXX
    export SECRET_ACCESS_KEY=XXXXXX
    export JDBC_USER=xxxxx
    export JDBC_PASSWORD=xxxxx
    export JDBC_DB=mytestdb
    export JDBC_URL=’mysql://$JDBC_USER:$JDBC_PASSWORD@0.0.0.0:3306/$JDBC_DB’

  1. #### Setup Project

git clone git@github.com:kayvank/kinesis-to-aurora.git
cd kinesis-to-aurora
sbt clean compile ## to build prject

  1. #### Test & distribution
  2. The following will
  3. - test
  4. - dockerize
  5. - publish docker images
  6. - create executable scripts

sbt test
sbt clean compile universal:packageBin
sbt clean compile docker:stage docker:publishLocal
docker images | grep ‘kinesis-to-aurora’ ## verify your docker image was published locally
sbt clean compile docker:stage docker:publish

  1. #### Running the Project locally
  2. Instruction for running the project locally.
  3. We are going to use mysql docker image to simulate AWS [Aurora RDS](http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html)
  4. - Assumptions
  5. * you have created a AWS kinesis stream
  6. - Setup database

cd ./scripts/sql
docker-compose -f ./docker-compose-mysql.yml up -d
mysql -h 0.0.0.0 -u $JDBC_USER -p $JDBC_DB < ./like_events.sql

  1. - Setup statsd & graphite

docker run -d\
—name graphite\
—restart=always\
-p 80:80\
-p 2003-2004:2003-2004\
-p 2023-2024:2023-2024\
-p 8125:8125/udp\
-p 8126:8126\
hopsoft/graphite-statsd

  1. ### TODO
  2. Put the various docker images into a docker-compose
  3. #### To run the project

sbt clean run

  1. ## Deployment
  2. - local deployment

sbt docker clean compile docker:stage docker:publishLocal

docker run \
-p9000:9000 \
-e AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID} \
-e AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY} \
-e KINESIS_STREAM_NAME=${KINESIS_STREAM_NAME} \
-e JDBC_URL=${JDBC_URL} \
-e JDBC_PASSWORD=${JDBC_PASSWORD} \
-e JDBC_DIRVER=${JDBC_DIRVER} \
q2io/kinesis-to-aurora

  1. ### Sample Json event

{
“entity_type”: “USER”,
“entity_id”: “USUV71400762”,
“user_id”: “26985937”,
“action”: “UNLIKE”
}

  1. ### Table structure

mysql> describe like_events;
+——————-|———————|———|——-|—————————-|———-+
| Field | Type | Null | Key | Default | Extra |
+——————-|———————|———|——-|—————————-|———-+
| id | varchar(40) | YES | MUL | NULL | |
| user_id | varchar(40) | YES | MUL | NULL | |
| entity_id | varchar(140) | YES | MUL | NULL | |
| entity_type | varchar(20) | YES | MUL | NULL | |
| ts | timestamp | NO | MUL | CURRENT_TIMESTAMP | |
| created_at | timestamp | NO | | CURRENT_TIMESTAMP | |
+——————-|———————|———|——-|—————————-|———-+
```

Authors

  • Kayvan Kazeminejad - Intitial work

References