Real-time multi-person tracker using YOLO v5 and deep sort
This repository contains a collection of pluggable, state-of-the-art multi-object trackers designed to seamlessly integrate with segmentation, object detection, and pose estimation models. For methods leveraging appearance-based tracking, we offer both heavyweight (CLIPReID) and lightweight (LightMBN, OSNet) state-of-the-art ReID models, available via automatic download. Additionally, clear and practical examples demonstrate how to effectively integrate these trackers with various popular models, enabling versatility across diverse vision tasks.
Multi-object tracking solutions today depend heavily on the computational capabilities of the underlying hardware. BoxMOT offers a wide range of tracking methods designed to accommodate various hardware constraints—from CPU-only setups to high-end GPUs. Additionally, we provide scripts for rapid experimentation that allow you to save detections and embeddings once, and then load them into any tracking algorithm, eliminating the need to repeatedly generate this data.
Start with a Python>=3.9 environment.
If you want to run the RFDETR, YOLOX or YOLOv12 examples:
git clone https://github.com/mikel-brostrom/boxmot.git
cd boxmot
pip install uv
uv sync --group yolo
activate .venv/bin/activate
but if you only want to import the tracking modules you can simply:
pip install boxmot
bash
yolox_s.pt
$ python tracking/track.py --yolo-model rf-detr-base.pt # bboxes only
python tracking/track.py --yolo-model yolox_s.pt # bboxes only
python tracking/track.py --yolo-model yolov10n # bboxes only
python tracking/track.py --yolo-model yolov9s # bboxes only
python tracking/track.py --yolo-model yolov8n # bboxes only
yolov8n-seg # bboxes + segmentation masks
yolov8n-pose # bboxes + pose estimation
bash
$ python tracking/track.py --tracking-method deepocsort
strongsort
ocsort
bytetrack
botsort
imprassoc
boosttrack
bash
$ python tracking/track.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
bash
$ python tracking/track.py --source 0 --reid-model lmbn_n_cuhk03_d.pt # lightweight
osnet_x0_25_market1501.pt
mobilenetv2_x1_4_msmt17.engine
resnet50_msmt17.onnx
osnet_x1_0_msmt17.pt
clip_market1501.pt # heavy
clip_vehicleid.pt
...
bash
python tracking/track.py --source 0 --yolo-model yolov8s.pt --classes 16 17 # COCO yolov8 model. Track cats and dogs, only
bash
$ python3 tracking/val.py --yolo-model yolov8n.pt --reid-model osnet_x0_25_msmt17.pt --tracking-method deepocsort --verbose --source ./assets/MOT17-mini/train
$ python3 tracking/val.py --yolo-model yolov8n.pt --reid-model osnet_x0_25_msmt17.pt --tracking-method ocsort --verbose --source ./tracking/val_utils/MOT17/train
--gsi
to your command for postprocessing the MOT results by gaussian smoothed interpolation. Detections and embeddings are stored for the selected YOLO and ReID model respectively. They can then be loaded into any tracking algorithm. Avoiding the overhead of repeatedly generating this data.bash
# saves dets and embs under ./runs/dets_n_embs separately for each selected yolo and reid model
$ python tracking/generate_dets_n_embs.py --source ./assets/MOT17-mini/train --yolo-model yolov8n.pt yolov8s.pt --reid-model weights/osnet_x0_25_msmt17.pt
# evolve parameters for specified tracking method using the selected detections and embeddings generated in the previous step
$ python tracking/evolve.py --dets yolov8n --embs osnet_x0_25_msmt17 --n-trials 9 --tracking-method botsort --source ./assets/MOT17-mini/train
bash
# export to ONNX
$ python3 boxmot/appearance/reid_export.py --include onnx --device cpu
# export to OpenVINO
$ python3 boxmot/appearance/reid_export.py --include openvino --device cpu
# export to TensorRT with dynamic input
$ python3 boxmot/appearance/reid_export.py --include engine --device 0 --dynamic
For BoxMOT bugs and feature requests please visit GitHub Issues.
For business inquiries or professional support requests please send an email to: box-mot@outlook.com