项目作者: JuliaSmoothOptimizers

项目描述 :
A Julia Basket of Hand-Picked Krylov Methods
高级语言: Julia
项目地址: git://github.com/JuliaSmoothOptimizers/Krylov.jl.git
创建时间: 2015-03-10T19:37:53Z
项目社区:https://github.com/JuliaSmoothOptimizers/Krylov.jl

开源协议:Mozilla Public License 2.0

下载


Krylov.jl: A Julia basket of hand-picked Krylov methods

Documentation CI Coverage DOI Downloads
docs-stable docs-dev build-gh codecov doi downloads

How to Cite

If you use Krylov.jl in your work, please cite it using the metadata given in CITATION.cff.

BibTeX

  1. @article{montoison-orban-2023,
  2. author = {Montoison, Alexis and Orban, Dominique},
  3. title = {{Krylov.jl: A Julia basket of hand-picked Krylov methods}},
  4. journal = {Journal of Open Source Software},
  5. volume = {8},
  6. number = {89},
  7. pages = {5187},
  8. year = {2023},
  9. doi = {10.21105/joss.05187}
  10. }

Content

This package provides implementations of certain of the most useful Krylov method for a variety of problems:

  1. Square or rectangular full-rank systems


Ax = b

should be solved when b lies in the range space of A. This situation occurs when

  • A is square and nonsingular,
  • A is tall and has full column rank and b lies in the range of A.
  1. Linear least-squares problems


minimize ‖b - Ax

should be solved when b is not in the range of A (inconsistent systems), regardless of the shape and rank of A. This situation mainly occurs when

  • A is square and singular,
  • A is tall and thin.

Underdetermined systems are less common but also occur.

If there are infinitely many such x (because A is column rank-deficient), one with minimum norm is identified


minimize ‖x‖ subject to x ∈ argmin ‖b - Ax‖.

  1. Linear least-norm problems


minimize ‖x‖ subject to Ax = b

should be solved when A is column rank-deficient but b is in the range of A (consistent systems), regardless of the shape of A.
This situation mainly occurs when

  • A is square and singular,
  • A is short and wide.

Overdetermined systems are less common but also occur.

  1. Adjoint systems


Ax = b and Aᴴy = c

where A can have any shape.

  1. Saddle-point and Hermitian quasi-definite systems


[M A] [x] = [b]


[Aᴴ -N] [y] [c]

where A can have any shape.

  1. Generalized saddle-point and non-Hermitian partitioned systems


[M A] [x] = [b]


[B N] [y] [c]

where A can have any shape and B has the shape of Aᴴ.
A, B, b and c must be all nonzero.

Krylov solvers are particularly appropriate in situations where such problems must be solved but a factorization is not possible, either because:

  • A is not available explicitly,
  • A would be dense or would consume an excessive amount of memory if it were materialized,
  • factors would consume an excessive amount of memory.

Iterative methods are recommended in either of the following situations:

  • the problem is sufficiently large that a factorization is not feasible or would be slow,
  • an effective preconditioner is known in cases where the problem has unfavorable spectral structure,
  • the operator can be represented efficiently as a sparse matrix,
  • the operator is fast, i.e., can be applied with better complexity than if it were materialized as a matrix. Certain fast operators would materialize as dense matrices.

Features

All solvers in Krylov.jl have in-place version, are compatible with GPU and work in any floating-point data type.

How to Install

Krylov can be installed and tested through the Julia package manager:

  1. julia> ]
  2. pkg> add Krylov
  3. pkg> test Krylov

Bug reports and discussions

If you think you found a bug, feel free to open an issue.
Focused suggestions and requests can also be opened as issues. Before opening a pull request, start an issue or a discussion on the topic, please.

If you want to ask a question not suited for a bug report, feel free to start a discussion here. This forum is for general discussion about this repository and the JuliaSmoothOptimizers organization, so questions about any of our packages are welcome.