项目作者: kul-forbes

项目描述 :
Proximal operators for nonsmooth optimization in Julia
高级语言: Julia
项目地址: git://github.com/kul-forbes/ProximalOperators.jl.git
创建时间: 2016-08-25T10:16:02Z
项目社区:https://github.com/kul-forbes/ProximalOperators.jl

开源协议:Other

下载


ProximalOperators.jl

Build status
codecov
DOI
Aqua QA


Proximal operators for nonsmooth optimization in Julia.
This package can be used to easily implement proximal algorithms for convex and nonconvex optimization problems such as ADMM, the alternating direction method of multipliers.

See ProximalAlgorithms.jl for generic implementations of algorithms based on the primitives here defined.

See the documentation on how to use the package.

Installation

To install the package, hit ] from the Julia command line to enter the package manager, then

  1. pkg> add ProximalOperators

Usage

With using ProximalOperators the package exports the prox and prox! methods to evaluate the proximal mapping of several functions.

A list of available function constructors is in the documentation.

For example, you can create the L1-norm as follows.

  1. julia> f = NormL1(3.5)
  2. description : weighted L1 norm
  3. type : Array{Complex} Real
  4. expression : x λ||x||_1
  5. parameters : λ = 3.5

Functions created this way are, of course, callable.

  1. julia> x = randn(10) # some random point
  2. julia> f(x)
  3. 32.40700818735099

prox evaluates the proximal operator associated with a function,
given a point and (optionally) a positive stepsize parameter,
returning the proximal point y and the value of the function at y:

  1. julia> y, fy = prox(f, x, 0.5) # last argument is 1.0 if absent

prox! evaluates the proximal operator in place,
and only returns the function value at the proximal point:

  1. julia> fy = prox!(y, f, x, 0.5) # in-place equivalent to y, fy = prox(f, x, 0.5)

References

  1. N. Parikh and S. Boyd (2014), Proximal Algorithms,
    Foundations and Trends in Optimization, vol. 1, no. 3, pp. 127-239.

  2. S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein (2011), Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1-122.

Credits

ProximalOperators.jl is developed by
Lorenzo Stella
and Niccolò Antonello
at KU Leuven, ESAT/Stadius,
and Mattias Fält at Lunds Universitet, Department of Automatic Control.