项目作者: rohanchopra

项目描述 :
Predict CIFAR-10 labels with 88% accuracy using keras.
高级语言: Jupyter Notebook
项目地址: git://github.com/rohanchopra/cifar10.git
创建时间: 2017-06-11T15:18:40Z
项目社区:https://github.com/rohanchopra/cifar10

开源协议:MIT License

下载


CIFAR-10 using CNNs

This project aims to predict the labels of the CIFAR-10 datset. This project uses Keras to implement deep learning. Almost all the code is in the form of IPython notebooks.
Final accuracy - 87.94%

Mis-classifications

Mis-classified outputs

Metric graphs

Metrics

Dependencies

  • Jupyter
  • Keras
  • Tensorflow
  • Matplotlib
  • Pickle

Contents

  1. Helper - Helper functions which decode and fetch the data to the IPython notebooks
  2. Basic - IPython notebook to test helper functions and list images in the dataset
  3. Simple CNN - IPython notebook with a simple implementation of CNN taken from the Keras examples
  4. Improved CNN - IPython notebook which uses a pure CNN network with image augmentations to implove the accuracy of the model
  5. Model files (.h5) - Different saved models

Getting started

The quickest way to run these on a fresh Linux machine is to follow this tutorial:
Kerai-Labs

Then clone this repo and start Jupyter Notebook:

  1. git clone https://github.com/09rohanchopra/cifar10.git
  2. cd cifar10
  3. jupyter notebook

Tutorial

Kerai-Labs

Feedback

If you have ideas or find mistakes please leave a note.

License

MIT