项目作者: OctoberChang

项目描述 :
MMD-GAN: Towards Deeper Understanding of Moment Matching Network
高级语言: Python
项目地址: git://github.com/OctoberChang/MMD-GAN.git
创建时间: 2017-07-06T14:04:34Z
项目社区:https://github.com/OctoberChang/MMD-GAN

开源协议:

下载


MMD-GAN

Code accompanying the paper MMD-GAN: Towards Deeper Understanding of Moment Matching Network.

Prerequisites

  1. - Python, NumPy, Scipy
  2. - PyTorch (v0.1.12)
  3. - A recent Nvidia GPU

Usage

  1. ./mmd_gan [OPTIONS]
  2. OPTIONS:
  3. --dataset DATASET: type of dataset (mnist/cifar10/celeba/lsun)
  4. --dataroot DATAROOT: path to dataset
  5. --workers WORKERS: number of threads to load data
  6. --batch_size BATCH_SIZE: batch size for training
  7. --image_size IMAGE_SIZE: image size of dataset
  8. --nc NC: number of channels in images
  9. --nz NZ: hidden dimension in z and codespace
  10. --max_iter MAX_ITER: max iteration for training
  11. --lr LR: learning rate (default 5e-5)
  12. --gpu_device GPU_DEVICE: gpu id (default 0)
  13. --netG NETG: path to generator model
  14. --netD NETD: path to discriminator model
  15. --Diters DITERS: number of updates for discriminator per one generator update
  16. --experiment EXPERIMENT: output directory of sampled images

For a quick start, please set the DATA_PATH variable in run_exp.sh to

  1. ./data

and run

  1. $ ./run_exp.sh [mnist/cifar10/celeba/lsun]

Dataset

For mnist and cifar10, the dataset will be automatically download if not exist in
the designated DATAROOT directory.

For CelebA and LSUN dataset, please run the download script in ./data directory.

More Info

This repository is by
Chun-Liang Li,
Wei-Cheng Chang,
Yu Cheng,
Yiming Yang,
Barnabás Póczos,
and contains the source code to
reproduce the experiments in our paper
MMD GAN: Towards Deeper Understanding of Moment Matching Network.
If you find this repository helpful in your publications, please consider citing our paper.

  1. @article{li2017mmd,
  2. title={MMD GAN: Towards Deeper Understanding of Moment Matching Network},
  3. author={Li, Chun-Liang and Chang, Wei-Cheng and Cheng, Yu and Yang, Yiming and P{\'o}czos, Barnab{\'a}s},
  4. journal={arXiv preprint arXiv:1705.08584},
  5. year={2017}
  6. }

For any questions and comments, please send your email to
wchang2@cs.cmu.edu