Pytorch implementation of DCGAN, CDCGAN, LSGAN, WGAN and WGAN-GP for CelebA dataset.
Pytorch implementation of DCGAN, CDCGAN, LSGAN, WGAN and WGAN-GP for CelebA dataset.
$ git clone https://github.com/AndrewZhuZJU/Pytorch_GAN_CelebA.git
$ cd Pytorch_GAN_CelebA
To train any GAN please use main_**.py
. For example,
$ python main_DCGAN.py
Not that all the setting parameters for the modesl are in args.py
, please change properly.
DCGAN | LSGAN | CGAN(Up:Male, Bottom:Female) |
![]() | ![]() | ![]() |
WGAN | WGAN-GP | |
![]() | ![]() |
DCGAN | LSGAN | CGAN(Up:Male, Bottom:Female) |
![]() | ![]() | ![]() |
WGAN | WGAN-GP | |
![]() | ![]() |
Inception score calculated in Epoch 40 (30K generated images)
DCGAN | LSGAN | WGAN | WGAN-GP |
2.10 $\pm$ 0.04 | 2.08 $\pm$ 0.02 | 2.20 $\pm$ 0.02 | 1.97 $\pm$ 0.02 |
Inception score calculated in Epoch 20 (30K generated images)
DCGAN | LSGAN | WGAN | WGAN-GP |
2.07 $\pm$ 0.03 | 1.95 $\pm$ 0.03 | 2.05 $\pm$ 0.02 | 2.00 $\pm$ 0.02 |
Take DCGAN for example:
Generator Loss |
![]() |
Discriminator Loss |
![]() |
1.Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
2.Conditional Generative Adversarial Nets