项目作者: wimlds-trojmiasto

项目描述 :
Polish bird species recognition - Bird song analysis and classification. Women in Machine Learning & Data Science project.
高级语言: Jupyter Notebook
项目地址: git://github.com/wimlds-trojmiasto/kosy.git
创建时间: 2019-08-21T17:18:51Z
项目社区:https://github.com/wimlds-trojmiasto/kosy

开源协议:MIT License

下载


birds

Analysis and modelling of Polish birds songs

Project Organization

  1. ├── LICENSE
  2. ├── Makefile <- Makefile with commands like `make data` or `make train`
  3. ├── README.md <- The top-level README for developers using this project.
  4. ├── data
  5. ├── external <- Data from third party sources.
  6. ├── interim <- Intermediate data that has been transformed.
  7. ├── processed <- The final, canonical data sets for modeling.
  8. └── raw <- The original, immutable data dump.
  9. ├── docs <- A default Sphinx project; see sphinx-doc.org for details
  10. ├── models <- Trained and serialized models, model predictions, or model summaries
  11. ├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
  12. the creator's initials, and a short `-` delimited description, e.g.
  13. │ `1.0-jqp-initial-data-exploration`.
  14. ├── references <- Data dictionaries, manuals, and all other explanatory materials.
  15. ├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
  16. │ └── figures <- Generated graphics and figures to be used in reporting
  17. ├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
  18. │ generated with `pip freeze > requirements.txt`
  19. ├── setup.py <- makes project pip installable (pip install -e .) so src can be imported
  20. ├── src <- Source code for use in this project.
  21. │ ├── __init__.py <- Makes src a Python module
  22. │ │
  23. │ ├── data <- Scripts to download or generate data
  24. │ │ └── make_dataset.py
  25. │ │
  26. │ ├── features <- Scripts to turn raw data into features for modeling
  27. │ │ └── build_features.py
  28. │ │
  29. │ ├── models <- Scripts to train models and then use trained models to make
  30. │ │ │ predictions
  31. │ │ ├── predict_model.py
  32. │ │ └── train_model.py
  33. │ │
  34. │ └── visualization <- Scripts to create exploratory and results oriented visualizations
  35. │ └── visualize.py
  36. └── tox.ini <- tox file with settings for running tox; see tox.testrun.org

Project based on the cookiecutter data science project template. #cookiecutterdatascience