项目作者: k9luo

项目描述 :
A Comparative Evaluation of Active Learning Methods in Deep Recommendation
高级语言: Jupyter Notebook
项目地址: git://github.com/k9luo/Deep-Preference-Elicitation.git
创建时间: 2019-04-01T19:19:44Z
项目社区:https://github.com/k9luo/Deep-Preference-Elicitation

开源协议:

下载


A-Comparative-Evaluation-of-Active-Learning-Methods-in-Deep-Recommendation

Example Commands

Data Split

For fine-tuning, to split ML1M dataset use

  1. python3 getmovielens.py --implicit

For fine-tuning, to split Yelp dataset use

  1. python3 getyelp.py --enable_implicit --name yelp/yelp_academic_dataset_review.json

For active learning, to split ML1M dataset use

  1. python3 getmovielens.py --implicit --disable-validation

For active learning, to split Yelp dataset use

  1. python3 getyelp.py --enable_implicit --name yelp/yelp_academic_dataset_review.json --disable_validation

Single Run

For ML1M,

  1. python3 main.py --path data/ --active_model Greedy --active_iteration 50

For Yelp,

  1. python3 main.py --path data/ --active_model Greedy --epoch 300 --lamb 0.001 --rank 200 --active_iteration 50

Other Run Examples

Please refer to reproduce_ml1m_final_result.sh and reproduce_yelp_final_result.sh.