项目作者: magerton

项目描述 :
Macro generates global, exports get_ and set_ functions
高级语言: Julia
项目地址: git://github.com/magerton/GenGlobal.jl.git
创建时间: 2017-08-22T23:48:33Z
项目社区:https://github.com/magerton/GenGlobal.jl

开源协议:Other

下载


GenGlobal

Build Status

Coverage Status

codecov.io

Installing

Clone by running the following, and then package can be imported as usual.

  1. Pkg.clone("https://github.com/magerton/GenGlobal.jl.git", "GenGlobal")

Explanation

@GenGlobal declares expression to be a global variable and generates exported functions
set_ and get_ that set the global. Should be used in a module declaration. Thanks to @npfrazier for suggesting how to use global variables in parallel computations.

Example

See example/example.jl and src/TestFunctions/testModule.jl for how to use GenGlobal to (1) update a shared array, (2) compute things based on the values in the Shared Array, and (3) return all the computations. This is useful in problems like dynamic discrete choice models where the inner NFXP loop computes the Emax function / integrated value function in parallel, and the outer loop returns the log-likelihood and its gradient (for which we need the pplus and remote_mapreduce functions).

Other examples

In the module

  1. module mymodule
  2. export dostuff
  3. @GenGlobal myglob1 myglob2
  4. dostuff(i::Int) = myglob1 * i
  5. end
  1. using mymodule
  2. dostuff(1) # errors out
  3. set_myglob1(1.0)
  4. get_myglob1() == 1.0
  5. dostuff(2) == 2.0
  6. set_myglob1(2.0)
  7. dostuff(4) == 2.0

Example 2

Using @GenGlobal is one way to declare pre-allocated tmpvars for parallel
computations. Just make sure to annotate the type of the variables so that the compiler
knows what types are being used

  1. module testModule
  2. using GenGlobal
  3. using StatsFuns
  4. @GenGlobal globalx
  5. export pplus, globf
  6. pplus(x...) = broadcast(+, x...)
  7. function globf(i::Int, s::T) where {T}
  8. y = logsumexp(globalx::Vector{T})
  9. return (y, fill(y, 2, 2), )
  10. end
  11. end # module end
  1. using Base.Test
  2. using BenchmarkTools
  3. using testModule3
  4. iters = 1:1000
  5. addprocs()
  6. @everywhere begin
  7. using testModule
  8. using StatsFuns
  9. rx = collect(1.:1000.)
  10. rxmyid = rx * myid()
  11. # to show that each worker has different variables...
  12. set_globalx(myid() * collect(1.:1000.))
  13. function fmyid(i::Int)
  14. y = logsumexp(rxmyid)
  15. return (y, fill(y, 2, 2), )
  16. end
  17. end
  18. # ---------- check on what gets computed ---------
  19. plsemyid = @parallel (pplus) for i=iters
  20. fmyid(i)
  21. end
  22. gplse = @parallel (pplus) for i=iters
  23. globf(i, zero(Float64))
  24. end
  25. @show @benchmark mapreduce(fmyid, pplus, iters)
  26. @show @benchmark begin
  27. @parallel (pplus) for i=iters
  28. f(i)
  29. end
  30. end
  31. @show @benchmark begin
  32. @parallel (pplus) for i=iters
  33. globf(i, zero(Float64))
  34. end
  35. end