项目作者: saquil

项目描述 :
Rank3DGAN: Semantic mesh generation using relative attributes
高级语言: MATLAB
项目地址: git://github.com/saquil/Rank3DGAN.git
创建时间: 2019-09-09T23:19:18Z
项目社区:https://github.com/saquil/Rank3DGAN

开源协议:

下载


Rank3DGAN: Semantic mesh generation using relative attributes

This repository provides Tensorflow implementations for Rank3DGAN paper.

This code is heavily based on Multi-chart Generative Surface Modeling implementation multichart3dgans.

Models

shape_version: the project code for watertight meshes (human and bird shapes) that requires triplet of landmarks
face_version: the project code for face meshes that requires quadriplet of landmarks

Datasets

For all the details of the data prepration, please check the paper Appendix.

For the data pre/post-processing, please check matlab folder.

Prerequisites

  • Python 3.5
  • TensorFlow 1.6
  • bunch and tqdm packages

Dataset creation

Check matlab/createDataset.m for the details. To transform the charts to tfrecords format use:

  • For the case of single meshes dataset:
    1. python3 convert_to_tfrecords.py --database_signature=<database_signature>
  • For the case of pairwise comparison meshes dataset:
    1. python3 convert_to_tfrecords.py --database_signature=<database_signature> -p

Rank3DGAN training

  1. python3 gan_main.py -c=configs/<my_config>.json

Rank3DGAN testing

  1. python3 evaluate_main.py -c=configs/config.json

After getting the generated charts. Use matlab/inspectGeneratedData.m to obtain the resulting meshes.

Mesh generation