Rank3DGAN: Semantic mesh generation using relative attributes
This repository provides Tensorflow implementations for Rank3DGAN paper.
This code is heavily based on Multi-chart Generative Surface Modeling implementation multichart3dgans.
shape_version
: the project code for watertight meshes (human and bird shapes) that requires triplet of landmarksface_version
: the project code for face meshes that requires quadriplet of landmarks
For all the details of the data prepration, please check the paper Appendix.
For the data pre/post-processing, please check matlab folder.
bunch
and tqdm
packagesCheck matlab/createDataset.m
for the details. To transform the charts to tfrecords format use:
python3 convert_to_tfrecords.py --database_signature=<database_signature>
python3 convert_to_tfrecords.py --database_signature=<database_signature> -p
python3 gan_main.py -c=configs/<my_config>.json
python3 evaluate_main.py -c=configs/config.json
After getting the generated charts. Use matlab/inspectGeneratedData.m
to obtain the resulting meshes.