项目作者: secimTools

项目描述 :
A set of metabolomics tools for use in Galaxy
高级语言: Jupyter Notebook
项目地址: git://github.com/secimTools/SECIMTools.git
创建时间: 2015-07-15T21:21:45Z
项目社区:https://github.com/secimTools/SECIMTools

开源协议:MIT License

下载


Synopsis

SECIMTools project aims to develop a suite of tools for processing of metabolomics data, which can be run in a standalone mode or via Galaxy Genomics Framework.

Motivation

The SECIMTools a set of python tools that are available both as standalone and
wrapped for use in Galaxy. The suite includes a comprehensive set of quality
control metrics (retention time window evaluation and various peak evaluation
tools), visualization techniques (hierarchical cluster heatmap, principal
component analysis, linear discriminant analysis, modular modularity
clustering), basic statistical analysis methods (partial least squares -
discriminant analysis, analysis of variance), advanced classification methods
(random forest, support vector machines), and advanced variable selection tools
(least absolute shrinkage and selection operator LASSO and Elastic Net).

Installation

SECIMTools are available as a secimtools pypi package. Project has also been packaged for bioconda and Galaxy Genomics Framework.

Contributors

Feel free to fork the repository and submit pull requests.

License

The project is licensed under MIT license

ST000006_anova_fixed_with_group_qq_plots_1647142578872.pdf
ST000006_anova_fixed_with_group_volcano_1647142578893.pdf
ST000006_bland_altman_plot_with_group_figure_1647142578976.pdf
ST000006_bland_altman_plot_with_group_flag_distribution_1647142579114.pdf
ST000006_coefficient_variation_flags_with_group_figure_1647142579196.pdf
ST000006_distribution_features_with_group_figure_1647142579208.pdf
ST000006_distribution_samples_with_group_figure_1647142579217.pdf
ST000006_hierarchical_clustering_heatmap_figure_1647142579244.pdf
ST000006_kruskal_wallis_with_group_volcano_1647142579273.pdf
ST000006_lasso_enet_var_select_plots_1647142579373.pdf
ST000006_linear_discriminant_analysis_none_figure_1647142579494.pdf
ST000006_magnitude_difference_flags_figure_1647142579573.pdf
ST000006_mahalanobis_distance_figure_1647142579600.pdf
ST000006_modulated_modularity_clustering_figure_1647142579617.pdf
ST000006_partial_least_squares_none_figure_1647142579642.pdf
ST000006_principal_component_analysis_figure_1647142579648.pdf
ST000006_random_forest_figure_1647142579672.pdf
ST000006_run_order_regression_figure_1647142579681.pdf
ST000006_scatter_plot_2D_default_figure_1647142579690.pdf
ST000006_scatter_plot_2D_palette_color_figure_1647142579697.pdf
ST000006_scatter_plot_3D_default_figure_1647142579805.pdf
ST000006_scatter_plot_3D_palette_color_figure_1647142579907.pdf
ST000006_standardized_euclidean_distance_figure_1647142579933.pdf
ST000006_ttest_select_unpaired_volcano_1647142579948.pdf
ST000006_ttest_single_group_no_group_volcano_1647142579969.pdf
ST000006_ttest_single_group_with_group_volcano_1647142579990.pdf
TEST0000_mzrt_match_figure_1647142580507.pdf
TEST0000_retention_time_flags_figure_1647142580513.pdf