Robust Subspace Tracking with Missing Data and Outliers
We propose a novel algorithm called PETRELS-ADMM to deal with subspace tracking in the presence of outliers and missing data. The proposed approach consists of two main stages: outlier rejection and subspace estimation. Particularly, we first use ADMM solver for detecting outliers living in the measurement data in an efficient online way and then improve the well-known PETRELS algorithm to update the underlying subspace in the missing data context.
This code is free and open source for research purposes. If you use this code, please acknowledge the following papers.
[1] L.T. Thanh, V.D. Nguyen, N. L. Trung and K. Abed-Meraim. “Robust Subspace Tracking with Missing Data and Outliers: Novel Algorithm with Convergence Guarantee”. IEEE Trans. Signal Process., 2021. [DOI],[PDF].
[2] L.T. Thanh, V.D Nguyen, N.L. Trung and K. Abed-Meraim. “Robust Subspace Tracking with Missing Data and Outliers via ADMM”. Proc. 27th EUSIPCO, 2019. [DOI],[PDF].