Lodz University of Technology Project (Intelligent Data Analysis)
A multilayer perceptron (MLP) is a class of feedforward artificial neural network. An MLP consists of at least three layers of nodes. Except for the input nodes, each node is a neuron that uses a nonlinear activation function. MLP utilizes a supervised learning technique called backpropagation for training. Its multiple layers and non-linear activation distinguish MLP from a linear perceptron. ~Wikipedia
#
Configuration (Configurator class)
Configurator constructor:
Configurator cfg = new Configurator(int input_count, int[] layers);
Layers structure (example):
int[] layers = new int[] {
3, // second layer (hidden) -> 3 neurons
4, // third layer (hidden) -> 4 neurons,
2, // fourth layer (output) -> 2 neurons
}
Last element - output layer.
1st layer (input) - input_count
2nd layer (hidden) - layers[1]
3rd layer (hidden) - layers[2]
...
n layer (output) - layers[n - 1]
Options:
setInput(double[])
setExpected(double[])
setRange(double, double)
default: (-0.5, 0.5)
setLearningFactor(double)
default: (0.8)
setMomentum(double)
default: (0.2)
setBias(boolean)
default: (true)
setInputRotation(boolean)
default: (true)
setEpochs
default: 1000
setErrorLogStep
default: 10
setError
default: 0.01