项目作者: janicky

项目描述 :
Lodz University of Technology Project (Intelligent Data Analysis)
高级语言: Java
项目地址: git://github.com/janicky/multilayer-perceptron.git
创建时间: 2018-05-08T18:10:06Z
项目社区:https://github.com/janicky/multilayer-perceptron

开源协议:

下载


Multilayer Perceptron

A multilayer perceptron (MLP) is a class of feedforward artificial neural network. An MLP consists of at least three layers of nodes. Except for the input nodes, each node is a neuron that uses a nonlinear activation function. MLP utilizes a supervised learning technique called backpropagation for training. Its multiple layers and non-linear activation distinguish MLP from a linear perceptron. ~Wikipedia

#

Configuration (Configurator class)

Configurator constructor:

  1. Configurator cfg = new Configurator(int input_count, int[] layers);

Layers structure (example):

  1. int[] layers = new int[] {
  2. 3, // second layer (hidden) -> 3 neurons
  3. 4, // third layer (hidden) -> 4 neurons,
  4. 2, // fourth layer (output) -> 2 neurons
  5. }

Last element - output layer.

  1. 1st layer (input) - input_count
  2. 2nd layer (hidden) - layers[1]
  3. 3rd layer (hidden) - layers[2]
  4. ...
  5. n layer (output) - layers[n - 1]

Options:

  • setInput(double[])
  • setExpected(double[])
  • setRange(double, double) default: (-0.5, 0.5)
  • setLearningFactor(double) default: (0.8)
  • setMomentum(double) default: (0.2)
  • setBias(boolean) default: (true)
  • setInputRotation(boolean) default: (true)
  • setEpochs default: 1000
  • setErrorLogStep default: 10
  • setError default: 0.01