项目作者: enginBozkurt

项目描述 :
Visualizing lidar data using Uber Autonomous Visualization System (AVS) and Jupyter Notebook Application
高级语言: Jupyter Notebook
项目地址: git://github.com/enginBozkurt/Visualizing-lidar-data.git
创建时间: 2019-05-21T19:35:14Z
项目社区:https://github.com/enginBozkurt/Visualizing-lidar-data

开源协议:MIT License

下载


Visualizing lidar data

Visualizing lidar data using Uber Autonomous Visualization System (AVS) and a Jupyter Notebook Application

This project contains two different applications for visualizing lidar data using KITTI Vision Benchmark Suite datasets.

ubPic

1. Uber AVS Autonomous Visualization System (AVS) —- XVIZ (the data layer for AVS)

Quick start

You need Node.js and yarn to
run the examples.

  1. # Clone XVIZ
  2. $ git clone https://github.com/uber/xviz.git
  3. $ cd xviz
  4. # Install dependencies
  5. $ yarn bootstrap

Convert and serve KITTI example data:

  1. # Download KITTI data
  2. $ ./scripts/download-kitti-data.sh
  3. # Convert KITTI data if necessary and run the XVIZ Server and Client
  4. $ ./scripts/run-kitti-example.sh

2. KITTI Dataset Exploration

Dependencies

Apart from the common dependencies like numpy and matplotlib notebook requires pykitti. You can install pykitti via pip using:

  1. pip install pykitti

Project structure

File Description
kitti-dataset.ipynb Jupyter Notebook with dataset visualisation routines and output.
parseTrackletXML.py Methods for parsing tracklets (e.g. dataset labels), originally created by Christian Herdtweck.
utilities.py Convenient logging routines.

I have used one of the raw datasets available on KITTI website.

2011_09_26_drive_0005 (0.6 GB)

Length: 160 frames (00:16 minutes)

Image resolution: 1392 x 512 pixels

Labels: 9 Cars, 3 Vans, 0 Trucks, 2 Pedestrians, 0 Sitters, 1 Cyclists, 0 Trams, 0 Misc

notebook1

5ce4618251634176609181

References: