项目作者: tamasandacian

项目描述 :
Twitter Sentiment Analysis using FastText, Elasticsearch, Kibana
高级语言: Python
项目地址: git://github.com/tamasandacian/twitter-sentiment-analysis.git
创建时间: 2019-05-07T13:12:04Z
项目社区:https://github.com/tamasandacian/twitter-sentiment-analysis

开源协议:MIT License

下载


Twitter Sentiment Analysis using FastText, Elasticsearch, Kibana

This project contains all the code necessary to reproduce Twitter sentiment prediction using FastText library.

In this project we employ an open source Twitter dataset collection containing 1.6 mil tweets (see https://www.kaggle.com/kazanova/sentiment140).

This dataset contains 800000 positive tweets while the other half contains a mix of negative and neutral tweets and is used for creating a binary classfication model using FastText.

The output given model predicts newly incoming tweets and index tweet’s data with the sentiment score to Elasticsearch for data visualization using Kibana builtin dashboard.

Demo:
Brand Sentiment Analysis

Required libraries:

  1. 1. install python 3
  2. 2. sudo pip3 install tweepy
  3. 3. sudo apt-get install python3-numpy
  4. 4. sudo apt-get install python3-pandas
  5. 5. sudo apt-get install python3-elasticsearch

Basic project installation steps:

  1. In the root folder twitter-sentiment-analysis clone repositories:
  2. 1. FastText:
  3. git clone https://github.com/facebookresearch/fastText.git
  4. cd fastText
  5. python setup.py install
  6. 2. Docker-elk
  7. git clone git@github.com:deviantony/docker-elk.git
  8. cd docker-elk
  9. sudo docker-compose up
  10. 3. To index data to elasticsearch use command:
  11. python3 indexer.py
  12. To stream twitter data provide Twitter user credentials:
  13. twitter_credentials.py