Eye-Gaze Estimation using multi-model CNN.
Pull the image from Docker Hub. It contains all the required packages.
docker pull kroniidvul/pytorch_mpiigaze:latest
Run the container interactively.
docker run -it --rm kroniidvul/pytorch_mpiigaze /bin/bash
$ wget http://datasets.d2.mpi-inf.mpg.de/MPIIGaze/MPIIGaze.tar.gz
$ tar xzvf MPIIGaze.tar.gz
$ python preprocess_data.py --dataset MPIIGaze --outdir data
$ python -u main.py --arch lenet --dataset data --test_id 0 --outdir results/00
$ python -u main.py --arch lenet --dataset data --test_id 0 --outdir results/lenet/00 --batch_size 32 --base_lr 0.01 --momentum 0.9 --nesterov True --weight_decay 1e-4 --epochs 40 --milestones '[30, 35]' --lr_decay 0.1
This work explores various parameters, lr schedulers, deep neural architectures, ensembling, and a mask-based approach of using upsampled gaze vectors for appearance based gaze estimation on the MPIIGaze dataset.