PyTorch EfficientDet Solution for Global Wheat Detection Challenge
See wheat/config.py for hyper-parameters and system configurations.
The best mAP score I’m able to get is 0.6167 (Private) / 0.7084 (Public) with a D4 model trained on 768x768 resolution (using a single P100 GPU).
Note: You’ll need to use my fork of efficientdet-pytorch to use the O2 level of Apex AMP.
Resizing images:
python scripts/resize_images.py 512 --root data/
Training (pass --help
for more information):
python -m wheat.train data/512 --epochs 10 --grad-accu 4 --batch-size 8 --arch tf_efficientdet_d3 --fold 0 --mixup 24 --mosaic-p 0.5
Evaluation (pass --help
for more information):
python -m wheat.eval data/512 export/tf_efficientdet_d3-mosaic-mixup-fold0.pth --batch-size 8 --arch tf_efficientdet_d3 --fold 0