UNet : Convolutional Networks for Biomedical Image Segmentation
UNet : Convolutional Networks for Biomedical Image Segmentation
The u-net is convolutional network architecture for fast and precise segmentation of images.
Architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map.
The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box.
White boxes represent copied feature maps. The arrows denote the different operations.
#random image tensor
>>> image = torch.rand((1,1,572,572))
torch.Size([1, 2, 388, 388])
#output of UNet
tensor([[[[-0.1104, -0.1083, -0.1082, ..., -0.1108, -0.1088, -0.1078],
[-0.1099, -0.1078, -0.1075, ..., -0.1069, -0.1108, -0.1088],
[-0.1073, -0.1083, -0.1108, ..., -0.1117, -0.1080, -0.1087],
...,
[-0.1085, -0.1091, -0.1049, ..., -0.1089, -0.1054, -0.1109],
[-0.1139, -0.1094, -0.1111, ..., -0.1101, -0.1081, -0.1094],
[-0.1058, -0.1086, -0.1119, ..., -0.1075, -0.1078, -0.1067]],
[[ 0.0757, 0.0736, 0.0695, ..., 0.0746, 0.0725, 0.0754],
[ 0.0761, 0.0760, 0.0723, ..., 0.0738, 0.0730, 0.0728],
[ 0.0737, 0.0740, 0.0715, ..., 0.0728, 0.0714, 0.0746],
...,
[ 0.0793, 0.0739, 0.0711, ..., 0.0731, 0.0759, 0.0706],
[ 0.0739, 0.0737, 0.0725, ..., 0.0697, 0.0762, 0.0760],
[ 0.0736, 0.0739, 0.0733, ..., 0.0705, 0.0748, 0.0747]]]],
grad_fn=<MkldnnConvolutionBackward>)