项目作者: YeongHyeon

项目描述 :
TensorFlow implementation of "Going Deeper with Convolutions"
高级语言: Python
项目地址: git://github.com/YeongHyeon/Inception_Simplified-TF2.git
创建时间: 2020-08-11T09:44:41Z
项目社区:https://github.com/YeongHyeon/Inception_Simplified-TF2

开源协议:MIT License

下载


[TensorFlow 2] Going Deeper with Convolutions | Simplified Version

TensorFlow implementation of “Going Deeper with Convolutions”

XCeption-TF2

Concept



The Inception module [1, 2]. In this repository, the concept of a simplified inception module is adopted for implementation.


Performance

Indicator Value
Accuracy 0.99500
Precision 0.99495
Recall 0.99498
F1-Score 0.99497
  1. Confusion Matrix
  2. [[ 976 0 0 0 0 1 2 1 0 0]
  3. [ 1 1129 1 0 0 0 1 3 0 0]
  4. [ 1 0 1030 0 0 0 0 0 1 0]
  5. [ 0 0 1 1007 0 1 0 0 0 1]
  6. [ 0 0 0 0 976 0 1 0 0 5]
  7. [ 1 0 0 4 0 886 1 0 0 0]
  8. [ 2 0 0 0 0 2 954 0 0 0]
  9. [ 0 1 5 0 0 0 0 1021 0 1]
  10. [ 1 0 2 0 0 1 0 0 969 1]
  11. [ 0 0 0 0 5 1 0 1 0 1002]]
  12. Class-0 | Precision: 0.99389, Recall: 0.99592, F1-Score: 0.99490
  13. Class-1 | Precision: 0.99912, Recall: 0.99471, F1-Score: 0.99691
  14. Class-2 | Precision: 0.99134, Recall: 0.99806, F1-Score: 0.99469
  15. Class-3 | Precision: 0.99604, Recall: 0.99703, F1-Score: 0.99654
  16. Class-4 | Precision: 0.99490, Recall: 0.99389, F1-Score: 0.99440
  17. Class-5 | Precision: 0.99327, Recall: 0.99327, F1-Score: 0.99327
  18. Class-6 | Precision: 0.99479, Recall: 0.99582, F1-Score: 0.99531
  19. Class-7 | Precision: 0.99513, Recall: 0.99319, F1-Score: 0.99416
  20. Class-8 | Precision: 0.99897, Recall: 0.99487, F1-Score: 0.99691
  21. Class-9 | Precision: 0.99208, Recall: 0.99306, F1-Score: 0.99257
  22. Total | Accuracy: 0.99500, Precision: 0.99495, Recall: 0.99498, F1-Score: 0.99497

Requirements

  • Python 3.7.6
  • Tensorflow 2.1.0
  • Numpy 1.18.1
  • Matplotlib 3.1.3

Reference

[1] Christian Szegedy et al. (2015). Going Deeper With Convolutions Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1-9
[2] François Chollet (2016). Xception: Deep Learning with Depthwise Separable Convolutions. arXiv preprint arXiv:1610.02357.