TensorFlow implementation of "Going Deeper with Convolutions"
TensorFlow implementation of “Going Deeper with Convolutions”
The Inception module [1, 2]. In this repository, the concept of a simplified inception module is adopted for implementation.
Indicator | Value |
---|---|
Accuracy | 0.99500 |
Precision | 0.99495 |
Recall | 0.99498 |
F1-Score | 0.99497 |
Confusion Matrix
[[ 976 0 0 0 0 1 2 1 0 0]
[ 1 1129 1 0 0 0 1 3 0 0]
[ 1 0 1030 0 0 0 0 0 1 0]
[ 0 0 1 1007 0 1 0 0 0 1]
[ 0 0 0 0 976 0 1 0 0 5]
[ 1 0 0 4 0 886 1 0 0 0]
[ 2 0 0 0 0 2 954 0 0 0]
[ 0 1 5 0 0 0 0 1021 0 1]
[ 1 0 2 0 0 1 0 0 969 1]
[ 0 0 0 0 5 1 0 1 0 1002]]
Class-0 | Precision: 0.99389, Recall: 0.99592, F1-Score: 0.99490
Class-1 | Precision: 0.99912, Recall: 0.99471, F1-Score: 0.99691
Class-2 | Precision: 0.99134, Recall: 0.99806, F1-Score: 0.99469
Class-3 | Precision: 0.99604, Recall: 0.99703, F1-Score: 0.99654
Class-4 | Precision: 0.99490, Recall: 0.99389, F1-Score: 0.99440
Class-5 | Precision: 0.99327, Recall: 0.99327, F1-Score: 0.99327
Class-6 | Precision: 0.99479, Recall: 0.99582, F1-Score: 0.99531
Class-7 | Precision: 0.99513, Recall: 0.99319, F1-Score: 0.99416
Class-8 | Precision: 0.99897, Recall: 0.99487, F1-Score: 0.99691
Class-9 | Precision: 0.99208, Recall: 0.99306, F1-Score: 0.99257
Total | Accuracy: 0.99500, Precision: 0.99495, Recall: 0.99498, F1-Score: 0.99497
[1] Christian Szegedy et al. (2015). Going Deeper With Convolutions Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1-9
[2] François Chollet (2016). Xception: Deep Learning with Depthwise Separable Convolutions. arXiv preprint arXiv:1610.02357.