项目作者: PNNL-Comp-Mass-Spec

项目描述 :
Automated Collision Cross Section calculation software for ion mobility spectrometry-mass spectrometry
高级语言: Python
项目地址: git://github.com/PNNL-Comp-Mass-Spec/AutoCCS.git
创建时间: 2020-07-24T00:19:14Z
项目社区:https://github.com/PNNL-Comp-Mass-Spec/AutoCCS

开源协议:BSD 2-Clause "Simplified" License

下载


AutoCCS

Automated Collision Cross Section calculation software for ion mobility-mass spectrometry

DOI

Main features

AutoCCS supports the following platforms and methods:

How to install AutoCCS

Please install conda and create an environment from an environment.yml file. More details about managing the conda environment can be found on the Managing environments.

  1. conda env create -f environment.yml

And then activate the new conda environment autoccs.

  1. conda activate autoccs

Use pip

Install Python 3.7 (or newer) [link] and use pip as follows to install dependencies.

  1. pip install -r requirements.txt

Tutorial with demo data

In this tutorial, we demonstrated the CCS determination using AutoCCS for the Agilent tune-mix samples in three different platforms: stepped-field DTIMS-MS, single-field RapidFire-DTIMS-MS, SLIM-based IMS.

Demo dataset is publicly available at MassIVE (Accession: MSV000085979)

For readability purposes, the input parameters are split over multiple lines. When using the command line, all parameters must be included as a single line.

Stepped-Field DTIMS-MS

  1. python -u autoCCS.py
  2. --target_list_file data/SteppedField-DTIMS/TargetList.csv
  3. --config_file data/SteppedField-DTIMS/autoCCS_config.xml
  4. --framemeta_files "data/SteppedField-DTIMS/ImsMetadata/*.txt"
  5. --feature_files "data/SteppedField-DTIMS/Features_csv/*.csv"
  6. --output_dir data/SteppedField-DTIMS/Results/
  7. --threshold_n_fields 5
  8. --mode multi &> "data/SteppedField-DTIMS/LogFiles/multi.log"

Single-Field RapidFire-DTIMS-MS

  1. python autoCCS.py
  2. --config_file data/SingleField-RapidFire-DTIMS/autoCCS_config.xml
  3. --framemeta_files "data/SingleField-RapidFire-DTIMS/ImsMetadata/*.txt"
  4. --feature_files "data/SingleField-RapidFire-DTIMS/Features_csv/*.csv"
  5. --calibrant_file data/SingleField-RapidFire-DTIMS/TuneMix-CCS.txt
  6. --output_dir data/SingleField-RapidFire-DTIMS/Results/
  7. --tunemix_sample_type AgilentTuneMix
  8. --sample_meta data/SingleField-RapidFire-DTIMS/Datasets.csv
  9. --colname_for_sample_type SampleType
  10. --colname_for_filename RawFileName
  11. --colname_for_ionization IonPolarity
  12. --degree 1
  13. --single_mode batch
  14. --mode single &> data/SingleField-RapidFire-DTIMS/LogFiles/single.log

SLIM-based IMS-MS

  1. python -u autoCCS.py
  2. --config_file data/SLIM-IMS/autoCCS_config.xml
  3. --feature_files "data/SLIM-IMS/Features_csv/*.csv"
  4. --output_dir data/SLIM-IMS/Results/
  5. --mode single
  6. --calibrant_file data/SLIM-IMS/TuneMix-CCS_POS.txt
  7. --sample_meta data/SLIM-IMS/Datasets.csv
  8. --tunemix_sample_type AgilentTuneMix
  9. --colname_for_sample_type SampleType
  10. --colname_for_filename RawFileName
  11. --colname_for_ionization IonPolarity
  12. --single_mode batch
  13. --degree 2
  14. --calib_method poly
  15. --ppm 150 &> data/SLIM-IMS/LogFiles/slim.log

Users are allowed to apply high-order polynomial functions: quadratic (--degree 2), cubic (--degree 3), quartic (--degree 4), and so on.

  1. --degree 3 # for cubic

Also, it allows users to apply non-linear regression based on the linearized power function.

  1. --calib_method power

Citation

JY Lee, A Bilbao, CR Conant, KJ Bloodsworth, DJ Orton, M Zhou, … & TO Metz (2021). AutoCCS: Automated collision cross section calculation software for ion mobility spectrometry-mass spectrometry. Bioinformatics. DOI: 10.1093/bioinformatics/btab429, PMID 28763190

Contacts

Written by Joon-Yong Lee for the Department of Energy (PNNL, Richland, WA)\
Copyright 2020, Battelle Memorial Institute. All Rights Reserved.\
E-mail: proteomics@pnnl.gov\
Website: https://github.com/PNNL-Comp-Mass-Spec/AutoCCS or https://www.pnnl.gov/integrative-omics

License

AutoCCS is licensed under the BSD 2-Clause License; License