项目作者: ArmanBehnam

项目描述 :
Files of Coursera, Udemy and Udacity courses
高级语言: Jupyter Notebook
项目地址: git://github.com/ArmanBehnam/Courses.git
创建时间: 2020-05-24T15:07:28Z
项目社区:https://github.com/ArmanBehnam/Courses

开源协议:

下载


week_3_final_1647069352441.pptx
52 - Using CNNs with a mixture of Gaussians_1647069330958.pdf
53 - Scaling variational EM_1647069331775.pdf
54 - Gradient of decoder_1647069332402.pdf
55 - Log derivative trick_1647069332923.pdf
56 - Reparameterization trick_1647069333503.pdf
60 - Nonparametric methods_1647069335478.pdf
61 - Gaussian processes_1647069336060.pdf
62 - GP for machine learning_1647069336434.pdf
64 - Nuances of GP_1647069337993.pdf
65 - Bayesian optimization_1647069338731.pdf
66 - Applications of Bayesian optimization_1647069339179.pdf
DE_1_1647069345605.pdf
Deep Learning and Reward Design for Reinforcement Learning_1647069348768.pdf
guoxiao_1_1647069348908.pdf
bookdraft2018jan1_1647069351818.pdf
C1M0V0-Slides_1647069271823.pptx
Module-1---Video-3---Slides_1647069271867.pptx
Module-1---Video-4---Slides_1647069271893.pptx
Module-1---Video-5---Slides_1647069271918.pptx
Module-1---Video-6---Slides_1647069271954.pptx
Video-1---Slides_1647069271975.pptx
Video-3---Slides_1647069272005.pptx
Video-4---Slides_1647069272013.pptx
Video-5---Slides_1647069272020.pptx
Video-6---Slides_1647069272061.pptx
C1M2V0-Slides_1647069275108.pptx
C1M2V1-Slides_1647069275143.pptx
C1M2V2-Slides_1647069275233.pptx
C1M2V3-Slides_1647069275423.pptx
C1M2V4-Slides_1647069275448.pptx
C1M2V5-Slides_1647069275470.pptx
C1M2V6-Slides_1647069275513.pptx
C1M3V0-Slides_1647069279154.pptx
C1M3V1-Slides_1647069279244.pptx
C1M3V2-Slides_1647069279292.pptx
C1M3V3-Slides_1647069279302.pptx
C1M3V4-Slides_1647069279343.pptx
C1M3V5-Slides_1647069279384.pptx
C1M3V6-Slides_1647069279392.pptx
C1M4V0-Slides_1647069283224.pptx
C1M4V1-Slides_1647069283233.pptx
C1M4V2-Slides_1647069283275.pptx
C1M4V3-Slides_1647069283315.pptx
C1M4V4-Slides_1647069283335.pptx
C1M4V5-Slides_1647069283364.pptx
Document-1-_1647069283397.docx
Document-2_1647069283427.docx
Coursera FNA7NL8TABCA_1647069267380.pdf
C1-Week-1-Quiz_1647069271815.pdf
C1-Week-2-Quiz_1647069275089.pdf
C1-Week-3-SQL-Assignment-Answer-Key_1647069279146.pdf
C1-Week-4-Quiz_1647069283152.pdf
Conceptual-Business-Model-solution_1647069283382.pdf
Relational-Data-Model_1647069283456.pdf
Particle identification quiz_1647069291066.pdf
Detector optimization quiz_1647069298654.pdf
2 - Think bayesian & Statistics review_1647069299786.pdf
3 - Bayesian approach to statistics_1647069300372.pdf
4 - How to define a model_1647069300725.pdf
5 - Example thief & alarm_1647069301537.pdf
6 - Maximum Likelihood Estimate_1647069302257.pdf
7 - Analytical inference_1647069302716.pdf
8 - Conjugate distributions_1647069303143.pdf
9 - Example Normal, precision_1647069303575.pdf
11 - Latent Variable Models_1647069304374.pdf
12 - Probabilistic clustering_1647069304917.pdf
13 - Gaussian Mixture Model_1647069305705.pdf
14 - Training GMM_1647069306299.pdf
15 - Example of GMM training_1647069306993.pdf
16 - Jensen's inequality & Kullback Leibler divergence_1647069307683.pdf
17 - Expectation-Maximization algorithm_1647069308372.pdf
18 - E-step details_1647069309307.pdf
19 - M-step details_1647069309866.pdf
22 - Summary of Expectation Maximization_1647069311983.pdf
23 - General EM for GMM_1647069312891.pdf
24 - K-means from probabilistic perspective_1647069313522.pdf
25 - K-means, M-step_1647069314144.pdf
26 - Probabilistic PCA_1647069314925.pdf
28 - Why approximate inference_1647069315797.pdf
29 - Mean field approximation_1647069316762.pdf
30 - Example Ising model_1647069317741.pdf
31 - Variational EM & Review_1647069318284.pdf
32 - Topic modeling_1647069318743.pdf
33 - Dirichlet distribution_1647069319254.pdf
34 - Latent Dirichlet Allocation_1647069319812.pdf
38 - Extensions of LDA_1647069320831.pdf
39 - Monte Carlo estimation_1647069321668.pdf
40 - Sampling from 1-d distributions_1647069322510.pdf
41 - Markov Chains_1647069323528.pdf
42 - Gibbs sampling_1647069324426.pdf
43 - Example of Gibbs sampling_1647069325022.pdf
44 - Metropolis-Hastings_1647069325778.pdf
45 - Metropolis-Hastings choosing the critic_1647069326401.pdf
46 - Example of Metropolis-Hastings_1647069327133.pdf
47 - Markov Chain Monte Carlo summary_1647069327662.pdf
48 - MCMC for LDA_1647069328469.pdf
49 - Bayesian Neural Networks_1647069329283.pdf
50 - Scaling Variational Inference & Unbiased estimates_1647069329796.pdf
51 - Modeling a distribution of images_1647069330390.pdf