项目作者: stdlib-js

项目描述 :
Exponential distribution standard deviation.
高级语言: Makefile
项目地址: git://github.com/stdlib-js/stats-base-dists-exponential-stdev.git
创建时间: 2021-06-14T16:30:41Z
项目社区:https://github.com/stdlib-js/stats-base-dists-exponential-stdev

开源协议:Apache License 2.0

下载




About stdlib…

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we’ve built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.


The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.


When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.


To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!


Standard Deviation

[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]

[Exponential][exponential-distribution] distribution [standard deviation][standard-deviation].



The [standard deviation][standard-deviation] for an [exponential][exponential-distribution] random variable is



math \sigma = \lambda^{-1}





where λ is the rate parameter.



## Installation

bash npm install @stdlib/stats-base-dists-exponential-stdev

Alternatively,

- To load the package in a website via a script tag without installation and bundlers, use the [ES Module][es-module] available on the [esm][esm-url] branch (see [README][esm-readme]).
- If you are using Deno, visit the [deno][deno-url] branch (see [README][deno-readme] for usage intructions).
- For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [umd][umd-url] branch (see [README][umd-readme]).

The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.



## Usage

javascript var stdev = require( '@stdlib/stats-base-dists-exponential-stdev' );

#### stdev( lambda )

Returns the [standard deviation][standard-deviation] of a [exponential][exponential-distribution] distribution with rate parameter lambda.

javascript var v = stdev( 9.0 ); // returns ~0.11 v = stdev( 0.5 ); // returns 2.0

If provided lambda < 0, the function returns NaN.

javascript var v = stdev( -1.0 ); // returns NaN





## Examples



javascript var randu = require( '@stdlib/random-base-randu' ); var round = require( '@stdlib/math-base-special-round' ); var stdev = require( '@stdlib/stats-base-dists-exponential-stdev' ); var lambda; var v; var i; for ( i = 0; i < 10; i++ ) { lambda = randu() * 20.0; v = stdev( lambda ); console.log( 'λ: %d, SD(X;λ): %d', lambda.toFixed( 4 ), v.toFixed( 4 ) ); }




## C APIs







### Usage

c #include "stdlib/stats/base/dists/exponential/stdev.h"

#### stdlib_base_dists_exponential_stdev( lambda )

Returns the standard deviation of an exponential distribution.

c double out = stdlib_base_dists_exponential_stdev( 9.0 ); // returns ~0.111

The function accepts the following arguments:

- lambda: [in] double rate parameter.

c double stdlib_base_dists_exponential_stdev( const double lambda );





### Examples

c #include "stdlib/stats/base/dists/exponential/stdev.h" #include <stdlib.h> #include <stdio.h> static double random_uniform( const double min, const double max ) { double v = (double)rand() / ( (double)RAND_MAX + 1.0 ); return min + ( v*(max-min) ); } int main( void ) { double lambda; double y; int i; for ( i = 0; i < 25; i++ ) { lambda = random_uniform( 0.0, 20.0 ); y = stdlib_base_dists_exponential_stdev( lambda ); printf( "λ: %lf, SD(X;λ): %lf\n", lambda, y ); } }





*

## Notice

This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].

#### Community

[![Chat][chat-image]][chat-url]

—-

## License

See [LICENSE][stdlib-license].


## Copyright

Copyright © 2016-2025. The Stdlib [Authors][stdlib-authors].