Compute the Bessel function of the second kind of order zero.
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we’ve built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
Compute the [Bessel function of the second kind][bessel-second-kind] of order zero.
math
Y_0(x) = \frac{1}{\pi} \int_0^\pi \sin(x \sin\theta) \, d\theta -\frac{2}{\pi} \int_0^\infty e^{-x \sinh t} \, dt.
bash
npm install @stdlib/math-base-special-bessely0
script
tag without installation and bundlers, use the [ES Module][es-module] available on the [esm
][esm-url] branch (see [README][esm-readme]).deno
][deno-url] branch (see [README][deno-readme] for usage intructions).umd
][umd-url] branch (see [README][umd-readme]).javascript
var y0 = require( '@stdlib/math-base-special-bessely0' );
x
.javascript
var v = y0( 0.0 );
// returns -Infinity
v = y0( 1.0 );
// returns ~0.088
v = y0( Infinity );
// returns 0.0
x < 0
or x
is NaN
, the function returns NaN
.javascript
var v = y0( -1.0 );
// returns NaN
v = y0( -Infinity );
// returns NaN
v = y0( NaN );
// returns NaN
javascript
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var bessely0 = require( '@stdlib/math-base-special-bessely0' );
var opts = {
'dtype': 'float64'
};
var x = uniform( 100, 0.0, 100.0, opts );
logEachMap( 'bessely0(%0.4f) = %0.4f', x, bessely0 );
c
#include "stdlib/math/base/special/bessely0.h"
x
.c
double out = stdlib_base_bessely0( 0.0 );
// returns -Infinity
out = stdlib_base_bessely0( 1.0 );
// returns ~0.088
[in] double
input value.c
double stdlib_base_bessely0( const double x );
c
#include "stdlib/math/base/special/bessely0.h"
#include <stdio.h>
int main( void ) {
const double x[] = { 0.0, 1.0, 2.0, 3.0, 4.0 };
double y;
int i;
for ( i = 0; i < 5; i++ ) {
y = stdlib_base_bessely0( x[ i ] );
printf( "bessely0(%lf) = %lf\n", x[ i ], y );
}
}