项目作者: mynameisvinn

项目描述 :
Style Transfer for 360 Video
高级语言: Jupyter Notebook
项目地址: git://github.com/mynameisvinn/unclip_style_transfer.git
创建时间: 2016-10-23T15:56:30Z
项目社区:https://github.com/mynameisvinn/unclip_style_transfer

开源协议:MIT License

下载


fast-neural-style

what is this?

style transfer for 360 photos and videos.

specs

  • ubuntu 14.04
  • torch. includes nn, cutorch, image, lua-cjson, cunn and cuDNN bindings - the good stuff.

ml deets

for more information on approach and dataset, refer to “perceptual losses for real time style transfer and super resolution.”

get docker image

building torch/lua from source for osx ruined my weekend. it is not for the faint of heart so you should do one of the following:

option 1: pull from docker hub

  1. docker pull mynameisvinn/unclip_style_transfer
  1. git clone https://github.com/mynameisvinn/unclip_style_transfer
  2. cd unclip_style_transfer
  3. docker build -t mynameisvinn/unclip_style_transfer .

run

assuming youve placed images in /date/in, from command line, do

  1. docker run -v /Users/vincenttang/dropbox/temp/unclip_style_transfer/data:/root/fast-neural-style/data mynameisvinn/unclip_style_transfer th fast_neural_style.lua \
  2. -model models/eccv16/the_wave.t7 \
  3. -image_size 200 \
  4. -input_dir data/in/ \
  5. -output_dir data/out/
  • -model refers to pretrained models. styles include la muse, composition vii, starry night, and the wave.
  • -image_size refers to height/width. use 0 to keep original dimensions.
  • -input_dir refers to path to folder containing images.
  • -output_dir refers to path to folder for stylized images.

if successful, you should see modified images in /data/out.

option 2 - from container

from command line, do

  1. docker run -it -v /Users/vincenttang/dropbox/temp/unclip_style_transfer/data:/root/fast-neural-style/data mynameisvinn/unclip_style_transfer

then, from container, do

  1. th fast_neural_style.lua \
  2. -model models/eccv16/the_wave.t7 \
  3. -image_size 200 \
  4. -input_dir data/in/ \
  5. -output_dir data/out/