3D CNN predicting protein residues' identity and change-of-stability of single-site mutants.
3D Convolutional Neural Network predicting the identity probability distribution for each protein residue, based on their direct structure environment.
Beyond the identity prediction, the cavity model estimates the change of stability for any single-site mutation (ΔΔG). These ΔΔG values are also scaled non-linearly with a Downstream model based on site saturation libraries Guerois [1] and Mayo [2].
This work is based on [3]. The demo implementation comes from [4].
For interactive use:
use with Colaboratory.
git clone https://github.com/JBVDB/Single_site_cavity_model.git
cd Single_site_cavity_model/
git clone https://github.com/rlabduke/reduce.git
cd reduce/
make; make install # This might give an error but provide the reduce executable in this directory
MINICONDA_INSTALLER_SCRIPT=Miniconda3-4.5.4-Linux-x86_64.sh
MINICONDA_PREFIX=.
wget -nc https://repo.continuum.io/miniconda/$MINICONDA_INSTALLER_SCRIPT
chmod +x $MINICONDA_INSTALLER_SCRIPT
./$MINICONDA_INSTALLER_SCRIPT -b -f -p $MINICONDA_PREFIX
bash ./Miniconda3-4.5.4-Linux-x86_64.sh
conda install conda=4.9.2 --yes
conda create -n cav_model python=3.6 --yes
In case “conda activate cav_model” raises an error:
Ini shell for conda:
conda init bash
Restart shell session and return to Single_site_cavity_model/ dir.
conda activate cav_model
conda install -n cav_model -c omnia openmm=7.3.1 pdbfixer=1.5 -y
conda install -n cav_model tqdm pandas=1.1 matplotlib=3.3 seaborn scipy=1.5 plotly>=4.14 -y
conda install -n cav_model -c conda-forge biopython -y
conda install -n cav_model pytorch=1.7 -c pytorch -y
The env is ready for use with shell. If use with a Jupyter-notebook:
python -m pip install jupyter
python -m ipykernel install --user --name=cav_model
jupyter-notebook --no-browser --port 8100 --ip IP_ADDRESS
NB: to find your ip:
hostname -i | cut -f 2 -d " "
[1]
https://doi.org/10.1016/s0022-2836(02)00442-4
[2]
https://doi.org/10.1101/484949
[3]
Boomsma, W & Frellsen, J 2017, Spherical convolutions and their application in molecular modelling. in Advances in Neural Information Processing Systems 30: NIPS 2017. Curran Associates, Inc., pp. 3436-3446. https://papers.nips.cc/paper/6935-spherical-convolutions-and-their-application-in-molecular-modelling.pdf