Calculate the arithmetic mean of a strided array using a two-pass error correction algorithm.
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we’ve built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
Calculate the [arithmetic mean][arithmetic-mean] of a strided array using a two-pass error correction algorithm.
math
\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i
bash
npm install @stdlib/stats-base-meanpn
script
tag without installation and bundlers, use the [ES Module][es-module] available on the [esm
][esm-url] branch (see [README][esm-readme]).deno
][deno-url] branch (see [README][deno-readme] for usage intructions).umd
][umd-url] branch (see [README][umd-readme]).javascript
var meanpn = require( '@stdlib/stats-base-meanpn' );
x
using a two-pass error correction algorithm.javascript
var x = [ 1.0, -2.0, 2.0 ];
var N = x.length;
var v = meanpn( N, x, 1 );
// returns ~0.3333
Array
][mdn-array] or [typed array
][mdn-typed-array].x
.N
and stride
parameters determine which elements in x
are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in x
,javascript
var floor = require( '@stdlib/math-base-special-floor' );
var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ];
var N = floor( x.length / 2 );
var v = meanpn( N, x, 2 );
// returns 1.25
typed array
][mdn-typed-array] views.javascript
var Float64Array = require( '@stdlib/array-float64' );
var floor = require( '@stdlib/math-base-special-floor' );
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var N = floor( x0.length / 2 );
var v = meanpn( N, x1, 2 );
// returns 1.25
javascript
var x = [ 1.0, -2.0, 2.0 ];
var N = x.length;
var v = meanpn.ndarray( N, x, 1, 0 );
// returns ~0.33333
x
.typed array
][mdn-typed-array] views mandate a view offset based on the underlying buffer
, the offset
parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other value in x
starting from the second valuejavascript
var floor = require( '@stdlib/math-base-special-floor' );
var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ];
var N = floor( x.length / 2 );
var v = meanpn.ndarray( N, x, 2, 1 );
// returns 1.25
N <= 0
, both functions return NaN
.dmeanpn
][@stdlib/stats/base/dmeanpn], [smeanpn
][@stdlib/stats/base/smeanpn], etc.) are likely to be significantly more performant.javascript
var randu = require( '@stdlib/random-base-randu' );
var round = require( '@stdlib/math-base-special-round' );
var Float64Array = require( '@stdlib/array-float64' );
var meanpn = require( '@stdlib/stats-base-meanpn' );
var x;
var i;
x = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = round( (randu()*100.0) - 50.0 );
}
console.log( x );
var v = meanpn( x.length, x, 1 );
console.log( v );