Kumaraswamy's double bounded distribution constructor.
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we’ve built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
Kumaraswamy’s double bounded distribution constructor.
bash
npm install @stdlib/stats-base-dists-kumaraswamy-ctor
script
tag without installation and bundlers, use the [ES Module][es-module] available on the [esm
][esm-url] branch (see [README][esm-readme]).deno
][deno-url] branch (see [README][deno-readme] for usage intructions).umd
][umd-url] branch (see [README][umd-readme]).javascript
var Kumaraswamy = require( '@stdlib/stats-base-dists-kumaraswamy-ctor' );
javascript
var kumaraswamy = new Kumaraswamy();
var mu = kumaraswamy.mean;
// returns 0.5
a = 1.0
and b = 1.0
. To create a distribution having a different a
(first shape parameter) and b
(second shape parameter), provide the corresponding arguments.javascript
var kumaraswamy = new Kumaraswamy( 2.0, 4.0 );
var mu = kumaraswamy.mean;
// returns ~0.406
a
must be a positive number.javascript
var kumaraswamy = new Kumaraswamy();
var a = kumaraswamy.a;
// returns 1.0
kumaraswamy.a = 3.0;
a = kumaraswamy.a;
// returns 3.0
b
must be a positive number.javascript
var kumaraswamy = new Kumaraswamy( 2.0, 4.0 );
var b = kumaraswamy.b;
// returns 4.0
kumaraswamy.b = 3.0;
b = kumaraswamy.b;
// returns 3.0
javascript
var kumaraswamy = new Kumaraswamy( 4.0, 12.0 );
var kurtosis = kumaraswamy.kurtosis;
// returns ~2.704
javascript
var kumaraswamy = new Kumaraswamy( 4.0, 12.0 );
var mu = kumaraswamy.mean;
// returns ~0.481
javascript
var kumaraswamy = new Kumaraswamy( 4.0, 12.0 );
var mode = kumaraswamy.mode;
// returns ~0.503
javascript
var kumaraswamy = new Kumaraswamy( 4.0, 12.0 );
var skewness = kumaraswamy.skewness;
// returns ~-0.201
javascript
var kumaraswamy = new Kumaraswamy( 4.0, 12.0 );
var s = kumaraswamy.stdev;
// returns ~0.13
javascript
var kumaraswamy = new Kumaraswamy( 4.0, 12.0 );
var s2 = kumaraswamy.variance;
// returns ~0.017
javascript
var kumaraswamy = new Kumaraswamy( 2.0, 4.0 );
var y = kumaraswamy.cdf( 0.5 );
// returns ~0.684
javascript
var kumaraswamy = new Kumaraswamy( 2.0, 4.0 );
var y = kumaraswamy.logcdf( 0.5 );
// returns ~-0.38
javascript
var kumaraswamy = new Kumaraswamy( 2.0, 4.0 );
var y = kumaraswamy.logpdf( 0.8 );
// returns ~-1.209
javascript
var kumaraswamy = new Kumaraswamy( 2.0, 4.0 );
var y = kumaraswamy.pdf( 0.8 );
// returns ~0.299
p
.javascript
var kumaraswamy = new Kumaraswamy( 2.0, 4.0 );
var y = kumaraswamy.quantile( 0.5 );
// returns ~0.399
y = kumaraswamy.quantile( 1.9 );
// returns NaN
javascript
var Kumaraswamy = require( '@stdlib/stats-base-dists-kumaraswamy-ctor' );
var kumaraswamy = new Kumaraswamy( 2.0, 4.0 );
var mu = kumaraswamy.mean;
// returns ~0.406
var mode = kumaraswamy.mode;
// returns ~0.378
var s2 = kumaraswamy.variance;
// returns ~0.035
var y = kumaraswamy.cdf( 0.8 );
// returns ~0.983